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Abstract: Effective prediction of wind power output intervals can capture the trend of uncertain wind
output power in the form of probability, which not only can avoid the impact of randomness and
volatility on grid security, but also can provide supportable information for grid dispatching and grid
planning. To address the problem of the low accuracy of traditional wind power interval prediction,
a new interval prediction method of wind power is proposed based on PSR-BLS-QR with adaptive
rolling error correction. First, one-dimensional wind power data are mapped to high-dimensional
space by phase space reconstruction (PSR) to achieve data reconstruction and the input and output
of the broad learning system (BLS) model are constructed. Second, the training set and the test
set are divided according to the input and output data. The BLS model is trained by the training
set and the initial power interval of training data is constructed by quantile regression (QR). Then,
the error distribution of nonparametric kernel density estimation is constructed at different power
interval segments of the interval upper and lower boundaries, respectively, and the corresponding
error-corrected power is found. Next, the optimal correction index is used as the objective function to
determine the optimal error correction power for different power interval segments of the interval
upper and lower boundaries. Finally, a test set is used for testing the performance of the proposed
method. Three wind power datasets from different regions are used to prove that the proposed
method can improve the average prediction accuracy by about 6–14% with the narrower interval
width compared with the traditional interval prediction methods.

Keywords: wind power interval prediction; PSR; BLS; QR; error correction

1. Introduction

The effective use of new energy can overcome the pollution of traditional fossil energy
to the environment and ecology. The installed capacity of new energy is increasing year by
year [1], and the most typical one is wind energy. Under the background of the national
new energy policy, the power grid will be transformed from a traditional grid to a new
energy grid with a large number of new energy units. However, wind power is affected by
environmental and meteorological factors [2]. The fluctuation and randomness of output
power is relatively large, and the large-scale integration into the grid will affect the security
and stability of the grid. Thus, the more accurate wind power prediction is, the safer the
entire grid system is. Wind power prediction consists of point prediction [3,4] and interval
prediction [5,6]. Interval prediction can provide more information for decision-makers by
predicting the upper boundary and the lower boundary of power [7]. How to improve the
interval prediction accuracy of wind power has become a popular direction of research.

Wind power interval prediction can be divided into upper and lower boundary
theory [8] and probabilistic interval prediction [9]. The upper and lower boundary theory
is used to predict the interval of power output directly, and the interval prediction model is
relatively simple, without a complex structure. Mei directly constructed the output of the
model with different confidence intervals by introducing confidence interval parameters,
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and directly output the power intervals through the input data [10]. The overall model
is simple and feasible, and the effect is improved compared to the traditional interval
prediction method. In addition to the construction of the model output, it is also feasible
to construct the structure of the model itself. Reference [11] completes the model power
interval output by constructing two loss functions of the long short term memory (LSTM)
network. However, the quality of interval prediction depends on the construction of the
loss functions, and it is difficult to construct good loss functions. In addition to constructing
the model interval output directly by using the upper and lower boundary theory, the data
interval can also be constructed indirectly in a probabilistic way based on point predic-
tion. They are mainly divided into statistical probability interval prediction [12], quantile
regression (QR) [13], bootstrap [14], and other probability predictions [15]. Statistical prob-
ability interval prediction is based on the known probability distribution and on construct
interval predictions with confidence intervals according to the quantile. Zhang et al. used
the Fourier distribution to fit the wind speed error. The different confidence intervals of
wind speed are constructed [16]. Although the use of distribution fitting can construct
a good confidence interval and obtain a certain accuracy of the interval distribution, it
is very dependent on the model of the fitting error and the accuracy of point prediction.
Traditional Bayes [17], bootstrap [18], quantile regression [19], and Gaussian regression [20]
are also used to construct prediction intervals. In [19], Mei et al. obtained the prediction in-
tervals under different quantiles by using a quantile regression model. Quantile regression
does not suppose data distribution; however, a great amount of relevant historical data is
required, and the solution process is more complicated. Various neural network algorithms
with the quantile regression model are also used to make interval predictions. Antonio
et al. established a two-stage quantile cooperation system for load interval prediction, and
a quantile regression forest was used to improve the accuracy of forecasting load compared
with traditional quantile regression [20]. Although the prediction interval network based
on neural network and quantile regression can directly output the interval of the data, the
structure of a neural network is relatively complex, with a large number of parameters
and hyper-parameters, and the training process is very time-consuming. It is also easy
to fall into the local optimum. Apart from the adjustment of the model, the accuracy can
be further improved by changing the learning rate, training batch, dropout, and solving
algorithms [21]. He et al. decomposed the predicted load power into different layers by
variational mode decomposition (VMD) and performed quantile convolutional neural
network (QCNN) interval prediction for different decomposition layers. The decomposed
effect is better than the undecomposed effect [22]. The above is based on changing the
prediction model and adjusting the internal structure of the model. It is necessary to
proceed from the inherent nature of the data and further analyze their characteristics [23].
Mining the data character can be considered from data dimensionality reduction [24],
clustering [25], and data reconstruction [26]. In [26], Wang mined the correlation of the
high-dimensional space of the data and used phase space reconstruction (PSR) to realize the
high-dimensional reconstruction of one-dimensional data. Clustering is also used. Fuzzy
C-mean clustering is used to divide the initial dataset into several clusters and prediction
models for different clusters are built separately. The result verifies that the prediction
effect is higher than the unclassified effect [27]. In [28], the typical weather factors were
extracted using principal analysis, and the high-dimensional feature information was re-
duced to the low-dimensional space. The reduction of dimensionality is beneficial to avoid
redundant information.

Since wind power output is affected by various factors and its own output has nonlin-
ear characteristics, it is more complicated to establish a nonlinear model and more difficult
to predict when correlations between data are not explored. Moreover, it is necessary
to find a new prediction model to avoid a series of problems such as a large amount of
parameter training and time-consuming traditional neural networks’ prediction models.
What is more, the method for improving the accuracy of interval prediction needs to be
further explored. Based on this, the characteristics of data are mined, and correlation of the
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data is found by PSR; the prediction model effect is improved by the broad learning system
(BLS) model, and the accuracy of interval prediction can be further improved by adaptive
rolling error correction proposed in this paper. Therefore, a new interval prediction method
based on PSR-BLS-QR with adaptive rolling error correction is proposed. One-dimensional
wind power data is mapped to high-dimensional phase space by PSR, and the correlation
between one-dimensional wind power data is mined to determine which data have cor-
relations. The related data are established in the form of input and output data. The BLS
model is used to find the specific relationship of input and output data. Wind power is
predicted by the BLS model, and the initial wind power prediction intervals are constructed
by quantile regression model. The initial wind power prediction intervals are corrected by
adaptive error rolling correction model to obtain the final wind power prediction intervals.

2. Core Model of Interval Prediction

The interval prediction models include the phase space reconstruction model, the
broad learning system prediction model, and the quantile regression model.

2.1. Phase Space Reconstruction

Since the one-dimensional time series itself has a certain correlation, the phase space
reconstruction is used to mine the points in the one-dimensional time series that are
correlated [29]. When the correlation of the one-dimensional time series is mined, the
data will change from one-dimensional space to high-dimensional space, which is called
phase space.

Thus, one-dimensional time series is input into the PSR model, and high-dimensional
matrices are output. The embedding dimension m and the delay amount t are most
important parameters to reflect whether the reconstructed phase space can well reflect the
original information of one-dimensional time series and determine the degree of correlation
between points. Inappropriate delay amount and embedding dimension are difficult to
reproduce in the original one-dimensional time series. Thus, the best embedding dimension
mop and the delay amount top need to be found. C-C phase method is used to find mop and
top. The process of obtaining the best parameters mop and top can be explained as follows.

{x(i), i = 1, 2, · · · , N} is a one-dimensional time series of wind power, whose length
is N. The i-th phase point can be expressed in Equation (1) after mapping the phase space.

X(i) = {x(i), x(i + t), · · ·, x(i + (m− 1)t)} (1)

where M = N − (m− 1)t.
The correlation integral of wind power output time series is introduced in Equation (2).

C(m, N, r, t) =
2

M(M− 1) ∑
1≤i≤j<M

θ(r− ‖X(i)− X(j)‖∞) (r > 0) (2)

where r is the search radius, θ function can be expressed in Equation (3).

θ(∗) =
{

0 ∗ ≤ 0
1 ∗ > 0

(3)

Considering the limitation of time series length and the possible correlation between
the data, the length of time series is divided into t subsequences of length N/t. Test statistics
S(m, N, r, t) can be defined in Equation (4) combined with Equation (2).

S(m, N, r, t) =
1
t

t

∑
s=1

[Cs(m, N/t, r, t)− Cm
s (1, N/t, r, t)] (4)
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When N is infinite, test statistics S(m, N, r, t) can be modified into S(m, r, t).

S(m, r, t) =
1
t

t

∑
s=1

[Cs(m, r, t)− Cm
s (1, r, t)](m = 2, 3, · · · .) (5)

Combined with S(m, r, t), test statistics ∆S(m, t) can be defined in Equation (6).

∆S(m, t) = max{S(m, ri, t)} −min{S(m, ri, t)} (6)

The best delay amount top can be obtained from first local minimum point of ∆S(m, t).
If the length of the time series N is more than 3000 according to Brock–Dechert–

Scheinkman (BDS) statistics theorems, the range of the embedding dimension m is between
2 and 5, and the value of the search radius r can be obtained by the equation r = k × 0.5σ.
The range of k is between 1 and 4. σ represents the standard deviation of the wind power
time series.

Combined with the related parameter above, the means of S(m, N, r, t) and ∆S(m, t)
are calculated in Equation (7).

S(t) = 1
16

5
∑

m=2

4
∑

i=1
S(m, ri, t)

∆S(t) = 1
4

5
∑

m=2
∆S(m, t)

(7)

The new test statistic Scor(t) is constructed by Equation (7)

Scor(t) = ∆S(t) +
∣∣S(t)∣∣ (8)

The best embedding dimension mop can be calculated by tW in Equation (9). tW is the
global minimum point of Scor(t).

mop = f loor(tw/top) + 2 (9)

where f loor(∗) is round-down function.
After phase space reconstruction, one-dimensional time series is converted into high-

dimensional space. The matrix of high-dimensional space with mop and top is shown in
Equation (10).

X =


x(1) x

(
1 + top

)
· · · x

(
1 +

(
mop − 1

)
top
)

x(2) x
(
2 + top

)
· · · x

(
2 +

(
mop − 1

)
top
)

...
...

x(M) x
(

M + top
)
· · · x

(
M +

(
mop − 1

)
top
)

 =


X(1)
X(2)

...
X(M)

 (10)

where M = N − (mop − 1)top − 1.
Each row of Equation (10) represents each phase point and maintains equivalence

with the original one-dimensional time series. Moreover, there exists a nonlinear mapping
relation between X and Y according to the trend change of the chaotic attractor trajectory
in [30], which can be expressed as:

Y =


x
(
2 +

(
mop − 1

)
top
)

x
(
3 +

(
mop − 1

)
top
)

...
x
(

M + 1 +
(
mop − 1

)
top
)
 = f




x(1) x
(
1 + top

)
· · · x

(
1 +

(
mop − 1

)
top
)

x(2) x
(
2 + top

)
· · · x

(
2 +

(
mop − 1

)
top
)

...
...

x(M) x
(

M + top
)
· · · x

(
M +

(
mop − 1

)
top
)


 (11)

where f (∗) is the nonlinear mapping function.
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The following BLS prediction model is to find the nonlinear mapping relationship
between X and Y. X is the input of BLS model, Y is the output of BLS model.

2.2. Broad Learning System

Compared with the traditional deep neural network [31], the structure of BLS is based
on the random vector function-link neural network (RVFLNN) and is relatively simple [10].
It consists of an input layer, feature layer, enhancement layer, and output layer, as shown
in Figure 1.
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The feature layer is composed of N1 feature windows, and each feature window
contains N2 feature nodes for feature extraction. The enhancement layer is only one layer
and consists of N3 strong nodes. Input data X are extracted by the feature layer into a series
of feature nodes. The feature vector Zi of the i-th feature window is shown in Equation (12).

Zi = φ(XWei + βei) i = 1, 2, · · ·, N1 (12)

where Wei is feature weight part of the i-th feature window, βei is a bias part of the i-th
feature window, and φ is the feature function. In this paper, φ is linear function [10].

The sparse property of data is beneficial not only to reduce the linear correlation of
newly generated data, but also to improve the speed and efficiency of data operation.
Therefore, sparse refactoring of each feature window is carried out based on least absolute
shrinkage and selection operator (LASSO) in Equation (13).

Wei = argmin
Wei

‖XWei − Zi‖+ λ‖Wei‖1 (13)

where λ is the regularization parameter, which is used to control the relative size of the
second item. This paper uses cross-validation to obtain λ.

The first item is used to solve the least square estimation of linear equations Zi = XWei.
The second item uses the norm l1 to limit the sparsity.

The feature vectors of all feature windows are combined into the feature layer vector
Z = [Z1, Z2, · · ·, ZN1 ] after refactoring. The vector Z is mapped into the enhancement layer,
and the enhancement layer vector H can be obtained through non-linear functions ζ in
Equation (14).

H = ζ(ZWh + βh) (14)

where Wh is the weight of the connection between the feature layer and the enhancement
layer, βh is the bias term of the connection between the feature layer and the enhancement
layer, and ζ is the non-linear mapping function. In this paper, the hyperbolic tangent
function is adopted as the non-linear mapping function in Equation (15).

ζ(x) =
1− e−2x

1 + e−2x (15)
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Since the output layer is connected with the feature layer and the enhancement layer by
weights WY, the feature layer vector Z and the enhancement layer vector H are concatenated
into a new vector E = [Z|H] . Their connection relationship of output layer, feature layer,
and the enhancement layer is shown in Equation (16).

Y = [Z|H] WY = E WY (16)

In the process of BLS network training, Wei, βei, Wh, and βh are randomly generated
and do not change during the training process. Therefore, it only calculates WY, which is
solved in Equation (17).

WY = argmin
WY

‖E WY −Y‖ = E+Y (17)

where E+ is the Moore–Penrose generalized inverse matrix of the matrix E.

2.3. Quantile Regression

Quantile regression does not need the best error probability distribution and is used
to construct intervals of data [17]. Combined with the BLS model, the input data X and
the output data Y are used to train the BLS model. After the BLS model is trained, the
input data X is input into the model again; the predicted data Ypre of the BLS model are
output. The quantile regression model of the output data Y and predicted data Ypre can be
expressed in Equation (18).

QFY

(
τ
∣∣Fpre

)
= β0(τ) + β1(τ)Fpre,1 + β2(τ)Fpre,2 + . . . + βK(τ)Fpre,K = β(τ)TFpre (18)

where QFY

(
τ
∣∣Fpre

)
represents the conditional quantile of the output variable FY given the

explanatory variables Fpre = [Fpre,1, Fpre,2, · · · Fpre,K], Fpre is variable of predicted data Ypre,
FY is variable of output data Y, τ is quantile, and β(τ) is the vector of quantile regression
coefficients, which varies with the quantile τ. Reference [17] expands on the optimization
solution of β(τ).

When β(τ) is determined, the confidence intervals of Y can be constructed. For
example, the 90% confidence interval can be constructed by 0.05 quantile and 0.95 quantile.
β(0.05)TYpre is the lower boundary and β(0.95)TYpre is the upper boundary.

3. Adaptive Rolling Error Correction Model Based on PSR-BLS-QR

The second part of this paper describes the models of PSR, BLS, and QR. The original
wind power data is reconstructed by PSR to obtain the input and output data of BLS model.
Then, the interval construction of the output data is realized by the BLS and QR models,
and the initial wind power prediction interval is obtained. The adaptive rolling error
correction model is mainly used to correct the initial wind power prediction interval and
improve the accuracy of the prediction interval. The adaptive rolling error correction part
will be further elaborated below.

3.1. Adaptive Rolling Error Correction

The one-dimensional wind power is transformed into high-dimensional phase space
by PSR, and nonlinear mapping relationship of the wind power is established. Then, the
input and output part of the BLS model is determined in Equation (11). BLS is used to train
the input data and obtain the corresponding predicted data. Moreover, the power interval
of the predicted data is constructed with the predicted data and the actual output data by
the quantile regression model. Different quantile coefficients constitute different confidence
intervals of the predicted data. For example, the 90% confidence interval is composed of
the 0.05 quantile and 0.95 quantile prediction curves, and the upper and lower boundaries
of the prediction are formed. The input and output results after BLS and QR are as follows:
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X =


x(1) x

(
1 + top

)
· · · x

(
1 +

(
mop − 1

)
top
)

x(2) x
(
2 + top

)
· · · x

(
2 +

(
mop − 1

)
top
)

...
...

x(M) x
(

M + top
)
· · · x

(
M +

(
mop − 1

)
top
)

Ypr =


y1(τi), y1(1− τi)
y2(τi), y2(1− τi)

...
yM(τi), yM(1− τi)

 =


L1, U1
L2, U2

...
LM, UM

 (19)

where Ypr is predicted interval power output at different confidence intervals, yi(τi) is
i-th lower boundary prediction value at quantile τi, which can be expressed simply by Li;
yi(1− τi) is i-th upper boundary prediction value at quantile 1− τi, which can be expressed
simply by Ui.

Since the prediction interval is composed of upper and lower boundaries, the upper
and lower boundaries are subtracted from actual output data to obtain the errors of the
upper and lower boundaries. The error of the upper and lower boundaries for different
confidence intervals are shown in Equation (20).

Eup(τi) = YU −Yac
Elo(τi) = Yac −YL

(20)

where Eup(τi) and Elo(τi) are upper boundary and lower boundary error at quantile τi
respectively, YU is prediction power of upper boundary, YL is prediction power of lower
boundary, and Yac is actual power.

The traditional error correction is to subtract the predicted and actual values to obtain
the error, establish the non-parametric kernel density cumulative distribution of all power
error, and to find out the error correction power by the cumulative distribution. However,
the error distributions of different power prediction range segments are different, such as
the power prediction range segment between 0 kW and 200 kW and the power prediction
range segment between 200 kW and 400 kW. Therefore, the error distribution of overall
power cannot be used to replace the error distribution of different prediction power range
segments, and the best error correction power of different power prediction range segments
needs to be found respectively. Moreover, the error distributions of the upper and lower
boundaries are also different. In this paper, the error distributions of different predicted
power interval segments at the upper and lower boundaries will be constructed separately,
and the error power corresponding to the quantile points of the distributions will be
determined, and the optimal correction power for different power interval segments at the
upper and lower boundaries will be chosen from the error power by the optimal correction
function. In this paper, these quantile points of error distribution are 5%, 10%, 15%, 20%, 25%,
30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, and 95%, respectively.

Based on the above, the adaptive rolling error correction can be understood as follows.
The first phase point X(1) =

{
x(1), x(1 + top), · · ·, x(1 + (mop − 1)top)

}
is input to the BLS

model, and the predicted value y1 can be obtained. At the same time, the prediction interval
[y1(τi), y1(1− τi)] of y1 is also obtained under the set confidence interval by quantile
regression model. Based on the predicted values of the upper and lower boundaries,
the optimal error corrected power of the upper boundary peup and the optimal error
corrected power of the lower boundary pelo summed with the original prediction interval
power to obtain the final result [y2(τi) + pelo, y2(1− τi) + peup]. When reaching the time
of x

(
2 + (mop − 1)top

)
, the actual values are added to the original time series and the

point furthest away from the time series is removed to form the second phase point
X(2) =

{
x(2), x(2 + top), · · ·, x(2 + (mop − 1)top)

}
. The second phase point is predicted

to be completed in the manner described above. Based on this rolling pattern, the final
prediction is completed.

3.2. Interval Evaluation Indexes

In this paper, two evaluation indexes are introduced to evaluate the performance of
the proposed prediction method.
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1. Prediction Interval Coverage Probability (PICP)

PICP calculates the probability of falling into the prediction interval and reflects the
reliability of the prediction interval in Equation (21).

ePICP =
1

Np

Np

∑
i=1

γi × 100% (21)

where Np is the number of predicted samples and γi is represented in Equation (22).

γi =

{
0 yi,ac /∈ [Li, Ui]
1 yi,ac ∈ [Li, Ui]

(22)

where yi,ac is the actual power of the sample.

2. Prediction Interval Normalized Average Width (PINAW)

Average bandwidth of prediction interval reflects the sharpness of the prediction
in Equation (23). The wider the prediction width is, the less reasonable and effective
information can be given.

ePINAW =
1

Np

Np

∑
i=1

((Ui − Li)/ymax) (23)

where ymax is the maximum value of wind power.

3. Optimal Correction Index

The optimization correction index is defined as Equation (24) to find the most optimal
correction power of different prediction power ranges.

f= (ePICP
′ − ePICP)/ePICP +

(
ePINAW − ePINAW

′)/ePINAW (24)

where ePICP, ePINAW are interval prediction evaluation indexes before correction ePICP
′,

ePINAW
′ are interval prediction evaluation indexes after correction.

3.3. The Process of Interval Prediction

Data preprocessing is also important before interval prediction. Data preprocessing
avoids the influence of bad data on model accuracy and improves prediction accuracy.
Therefore, the data needs to be cleaned before the data is divided and trained. The flowchart
of the wind power interval prediction method with adaptive rolling error correction is
shown in Figure 2, and the process is as follows:

1. The abnormal data of different datasets need be checked and corrected before training
and testing;

2. PSR is used to reconstruct the wind power time series and the input and output data
of BLS model are constructed;

3. Eighty percent of the input and output data is selected as training data and the rest is
used for testing;

4. The optimal parameters of the BLS model are found by the grid search method and
the training data is used for training the model of BLS;

5. Based on the training predicted value and the training actual value, the quantile
regression model is used to determine the quantile coefficients of different confidence
intervals, and the original wind power interval can be determined;

6. The nonparametric kernel density error distributions of different power interval seg-
ments of upper and lower prediction boundaries under different confidence intervals
are established respectively. Moreover, the optimal error correction power of different
power interval segments of upper and lower prediction boundaries under different
confidence intervals can be found by the optimal error correction index;
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7. BLS and QR are used to predict the new wind power curves to obtain the original
power interval of wind power. The original power interval is corrected to obtain the
final wind power interval according to the prediction power value.
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4. Analysis of Examples

Prediction and algorithmic models used in this paper are based on Matlab 2018a. The
operating system is a 64-bit Windows 10 system, the RAM is 12.0 GB, the CPU is Intel Core
I7-5500U, 2.4 GHz.

4.1. Datasets and Data Division

In this paper, three wind power datasets labeled Set 1–3 from different regions are used
to verify the effectiveness of the proposed method. The wind power curves of different
datasets are shown in Figure 3.

Set 1: The first dataset is total wind power generation from Jiangsu Province. The rated
power is 3.5 MW. The wind power data is selected from 1 January 2020 to 30 April 2020,
with a sampling interval of 15 min, for a total of 121 days.

Set 2: The second dataset is total wind power generation from Hubei Province. The
wind turbine model is EN-141/2.5. The rated power is 2.5 MW, the rated wind speed is
8.9 m/s, and the unit class is IEC 61400-1:2005S. The wind power data is selected from
1 January 2021 to 31 December 2021, with a sampling interval of 10 min, for a total
of 365 days.

Set 3: The third database is the total wind power generation offshore from Elia, located
in Belgium [32]. Set 3 involves the data collected once every 15 min from 1 January 2020 to
31 December 2020.

Wind data should be preprocessed before dividing the training set and testing set.
When there are bad data such as null values, negative values, and abnormal values in the
data sets, the data needs to be cleaned.
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In this paper, the data values of Set 1 and Set 3 are positive and are not null. Moreover,
the data values of Set 1 and Set 3 are normal values by 3 σ criteria test. Therefore, it can be
considered that the data in Set 1 and Set 3 are normal values and can be directly used for
training and testing. However, there is a negative value of low power at a certain moment
in Set 2, which is due to the fact that the turbine itself did not cut into the wind speed, and
power is provided for the wind turbine. Therefore, these negative power data values are
directly assigned to 0 and data in Set 2 is normal by 3 σ criteria test after data correction.

To fully consider the influence of seasonal characteristics on the prediction model,
this paper constructs the probability density distribution of different seasons in different
datasets and judges whether to construct different seasons’ prediction models by the
probability density distribution of different seasons. Since the data in Set 1 is from January
to April, the seasonality of data is not strong. Therefore, the probability density of different
seasons in Set 2 and Set 3 are explored, which is shown in Figure 4.
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As can be seen from Figure 4, the obvious changes in different seasons of Set 2 are
not strong, and different seasons maintain a certain trend as a whole. Therefore, it is
not necessary to carry out model predictions for Set 2 in different seasons. However, the
seasonal changes of Set 3 are more obvious, and the change trends of different seasons
are different.

Considering the characteristics of different datasets, the training and testing sets of
different datasets are determined respectively. The first 80 days are selected as training
data and the last 41 days are selected as test data for validation in Set 1. Twenty days of
each month are selected to form a training set for model training, and the remaining days
of each month form a test set for model testing in Set 2. The wind power in March, June,
September, and December are used as the test set, and other months are used as the training
set in Set 3. Models in different seasons are trained separately.

4.2. The Best Delay Amount and Embedding Dimension

Based on the phase space reconstruction theory, the C-C phase method is used to obtain
the best delay amount and embedding dimension to realize the phase space reconstruction
of the original one-dimensional time series. Taking the wind power of Set 1 as an example,
∆S(m, t) and Scor(t) of Set 1 are shown in Figure 5.
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It can be seen that the best delay amount is 17. Combined with the sampling interval,
the best delay time is 255 min. From Figure 5, we can see that the best delay window is 23.
Therefore, the best embedding dimension is 3.
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The best delay amount and the best embedding dimension of Set 2 are 8 and 4,
respectively. The best delay amount and the best embedding dimension of Set 3 are 15 and
5, respectively. Based on the best delay amount and the best embedding dimension, we use
Equations (10) and (11) to obtain the input and output of the BLS model.

4.3. The Effect of BLS Model

BLS can greatly reduce the complex structure of nonlinearities as well as reduce
parameter tuning. To verify the effectiveness of the BLS model used in this paper, the BLS
model is compared with traditional models, which include the traditional backpropagation
neural network (BPNN), long short term memory (LSTM) network, radial basis function
(RBF) neural network, kernel extreme learning machine (KELM), and extreme gradient
boosting (XGBoost), respectively.

To verify the validity of the model used only, each model uses the same training and
test set. Quantile regression is performed after a training model, and the initial interval of
the model is constructed for model performance comparison. The adaptive error correction
is not used. Optimal parameters of different models for different datasets are found by grid
search method. A comparison of the average prediction results between different models
in different datasets is shown in Table 1.

Table 1. Average accuracy comparison between different models in different datasets.

Model Average Prediction Index Set 1 Set 2
Set 3

March June September December

BPNN

PICP 56.1 53.6 56.7 57.5 57.9 55.9

PINAW 0.101 0.104 0.102 0.103 0.103 0.101

Time/s 23.2 45.6 10.2 11.3 11.6 10.9

LSTM

PICP 56.1 54.1 57.1 57.8 57.6 56.8

PINAW 0.101 0.105 0.102 0.103 0.103 0.102

Time/s 44.5 90.1 17.3 17.6 15.1 16.0

RBF

PICP 58.2 54.5 56.9 57.1 57.3 56.8

PINAW 0.101 0.105 0.101 0.102 0.103 0.101

Time/s 162.2 302.5 50.1 50.2 50.1 50.1

BLS

PICP 60.8 59.4 62.3 63.2 63.3 61.4

PINAW 0.099 0.103 0.101 0.102 0.102 0.101

Time/s 0.7 1.9 0.4 0.4 0.4 0.4

KELM

PICP 56.6 55.1 57.6 58.1 58.6 56.9

PINAW 0.100 0.103 0.101 0.103 0.103 0.100

Time/s 1.5 3.5 0.8 0.9 0.8 0.8

XGBoost

PICP 57.4 56.3 58.6 59.3 60.0 57.3

PINAW 0.102 0.104 0.102 0.104 0.104 0.102

Time/s 7.5 20.3 6.2 5.9 6.7 6.3

It can be seen from Table 1 that, under the condition of only comparing the model
effects, the prediction interval coverage probability and running time of BLS model are
obviously better than the other five models with the same interval width or the narrower
interval width in three different datasets. In Set 1 and Set 2, the predicted interval width
of BLS model is 0.001–0.002 lower than that of the other models. However, the average
accuracy of interval predictions improved by 2% to 6%. In Set 3, the width and coverage
probability of the model interval are not the same in different seasons due to seasonal
characteristics. However, no matter which season it is in, the width of the interval predicted



Energies 2022, 15, 4137 13 of 22

with the BLS model is still the narrowest, the prediction effect of the interval is also the best,
and the running time is much lower than that of other models. This is mainly determined
by the algorithm and structure of the model. Compared with other model structures, the
weights and biases between the input layer and the middle layer of the model are randomly
set, while the weights and biases can be directly solved by the Moore–Penrose generalized
inverse matrix without using the loss function to modify the weights and biases. This
structure and algorithm can ensure the accuracy and greatly reduce the running time of
model training and testing. At the same time, there are only three parameters to be adjusted,
and the model adjustment parameters are also greatly reduced compared with the other
five models.

To further explore the detailed change of interval width, interval coverage probability,
and the running time of different intervals in different datasets, this paper takes Set 1
as an example to show them in Tables 2 and 3. Table 2 shows the parameter settings
of different models with different confidence intervals, and Table 3 shows an accuracy
comparison between different models with different confidence intervals.

The BPNN in this paper adopts a three-layer hidden layer structure. The column
of the BPNN model is the number of nodes in the first, second, and third hidden layers
in order. The number of iterations is set to 300 and the activation functions are “tansig”,
“logsig”, and “tansig” from the first hidden layer to the third hidden layer, respectively.
The learning rate is set to 0.01, the target error is set to 0.001, and training function “trainlm”
is used. Other parameters are default parameters. The LSTM model in this paper adopts
the structure of a single-layer hidden layer. The number of nodes in the hidden layer with
different confidence intervals is shown in the table. The number of iterations is set to 100,
and other parameters are default parameters. The expansion speed of RBF model with
different confidence intervals is shown in the Table 2, the target error is set to 0.01, and
other parameters are default parameters. N1, N2, and N3 of the BLS model with different
confidence intervals are shown in the table in order. Because KELM is a single-layer
structure, the number of single-layer nodes, kernel parameters, and penalty coefficients are
shown in order. The XGBoost model parameter is the maximum depth of the tree in Table 2.
The learning rate of XGBoost with different confidence intervals are all 0.1. The number of
the generated maximum trees is set to 500. Other parameters are default parameters.

Table 3 shows the accuracy comparison results between different models with the
model parameters of Table 2. It can be found that the interval width of the prediction
interval increases as the confidence interval increases, and the prediction interval coverage
probability also increases among all the models. Comparing the average values of the six
models, it can be seen that the prediction using the BLS model can have more prediction
points falling into the interval band in a narrower interval width, that is, the curve predicted
using the BLS model can fit the actual power value better, meaning the interval band is
well around the actual power value after using the quantile regression model. In contrast,
the width of prediction interval is much wider than the other models when using XGBoost.
When using the BPNN model, the prediction interval coverage probability is much less than
other models, especially for low confidence intervals, such as the 10% confidence interval.
The prediction interval coverage probability of 10% confidence interval is 4–6% lower
than the proposed model within roughly the same interval width. In contrast, the interval
width is much wider than the BLS method when using RBF, LSTM, and KELM. Taking 60%
confidence interval as example, the interval coverage probability of three models is almost
similar to the BLS model; however, the interval width is wider than the BLS model. This
means that three models sacrifice interval width to improve prediction accuracy. Overall,
the BLS model can improve 2–4% accuracy on average, with a narrower interval width
when comparing with other models. The effect of the model is better than other traditional
prediction models. In addition, due to its own structural characteristics, the running time of
the model also has an absolute advantage. For short-term interval prediction, information
can be obtained in time for faster processing.
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Table 2. Parameter settings of different models with different confidence intervals in Set 1.

Confidence Interval BPNN LSTM RBF BLS ELM XGBoost

10% [20, 15, 10] 30 0.1 [5, 10, 19] [500, 0.5, 0.5] 25

20% [17, 11, 8] 35 0.1 [4, 15, 21] [500, 0.5, 0.5] 25

30% [18, 14, 10] 32 0.1 [6, 3, 18] [500, 0.5, 0.5] 25

40% [15, 7, 3] 30 0.1 [10, 8, 18] [500, 0.5, 0.5] 20

50% [18, 15, 7] 35 1 [15, 7, 10] [600, 1, 0.5] 20

60% [14, 9, 7] 37 1 [8, 8, 12] [600, 1, 1] 30

70% [15, 12, 10] 35 1 [12, 12, 20] [600, 1, 1] 30

80% [18, 14, 10] 30 1 [4, 9, 25] [600, 1, 1] 20

90% [18, 15, 8] 32 1 [7, 14, 19] [600, 1, 1] 20

Table 3. Accuracy comparison between different models in Set 1.

Confidence
Interval

BPNN LSTM RBF

PICP PINAW Running
Time/s PICP PINAW Running

Time/s PICP PINAW Running
Time/s

10% 21.9 0.017 25.3 23.3 0.018 38.5 24.2 0.018 164.5

20% 32.5 0.035 23.1 33.4 0.036 49.6 31.3 0.035 164.6

30% 43.8 0.068 24.2 45.7 0.067 48.7 46.7 0.068 160.1

40% 52.1 0.084 20.5 55.8 0.083 40.3 55.1 0.082 160.3

50% 59.5 0.103 23.9 61.3 0.104 36.1 65.3 0.102 168.6

60% 68.7 0.124 20.9 69.5 0.129 55.2 70.0 0.132 160.4

70% 69.9 0.138 21.7 72.9 0.131 50.1 73.3 0.137 160.1

80% 76.4 0.151 24.4 78.3 0.154 36.2 76.5 0.152 160.1

90% 80.3 0.181 25.1 80.9 0.179 45.7 81.6 0.180 161.2

Average 56.1 0.101 23.2 56.1 0.101 44.5 58.2 0.101 162.2

Confidence
Interval

BLS KELM XGBoost

PICP PINAW Running
Time/s PICP PINAW Running

Time/s PICP PINAW Running
Time/s

10% 28.1 0.018 0.9 22.2 0.018 1.1 23.9 0.019 7.6

20% 36.5 0.036 0.8 30.1 0.036 1.3 32.8 0.035 7.4

30% 49.1 0.069 0.5 44.3 0.068 1.4 45.1 0.069 7.4

40% 57.8 0.081 0.7 53.2 0.080 1.1 51.9 0.084 6.9

50% 65.6 0.096 0.7 60.1 0.098 1.7 61.5 0.102 8.1

60% 70.1 0.125 0.8 69.2 0.131 1.6 68.8 0.134 7.6

70% 76.1 0.136 0.9 71.2 0.139 1.7 72.3 0.139 7.8

80% 79.3 0.151 0.8 77.8 0.155 1.8 78.0 0.157 7.3

90% 84.6 0.178 0.5 81.2 0.179 1.6 82.3 0.183 7.3

Average 60.8 0.099 0.7 56.6 0.100 1.5 57.4 0.102 7.5

To verify the validity of the BLS model used in this paper, a curve is randomly selected
as the predicted curve. The prediction results of 80% confidence intervals for different
models are shown in Figure 6.
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As can be seen from the Figure 6, the predicted power intervals of all six models capture
the trend of wind power output; however, there are some differences in the prediction
accuracy. Compared with the six graphs, it can be found that the actual power points
of wind power falling into the predicted interval band of BPNN are significantly lower
than the other models when using BPNN, especially between 0:00 and 6:00. At that time,
the narrow width of the formed interval results in the poor coverage of the predicted
interval. However, the interval width of the XGBoost model is significantly wider than that
of other models, which means that the interval width is sacrificed to ensure the accuracy of
the prediction.

Although the width of the interval is basically the same as the width of the other four
models, the prediction accuracy of the RBF model is not very high when the predicted
power is relatively high such as 1100 kW and 1300 kW. While using LSTM and KELM,
the effect is similar to BLS when predicting low power. However, the prediction width
is significantly wider when predicting high power. The BLS ensures suitable prediction
results in both low and high power intervals, with the best prediction coverage as well as
interval width.
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4.4. Error Correction

To further improve the prediction accuracy, this section uses error correction to im-
prove the effect. The error correction is made separately for the predicted power interval
segments of upper and lower boundaries. Moreover, 200 kW is the reference point for
dividing the power segment. In other words, the entire power is divided into 0–200 kW,
200–400 kW, 400–600 kW and other interval segments. The cumulative error distribution of
each power interval segment is established respectively.

Figure 7 shows the non-parametric kernel density probability density error distribution
for the predicted power interval segment of 200–400 kW and 400–600 kW of the lower
boundary at 80% confidence interval. It can be seen that the probability density error
distributions of two power interval segments are different, therefore it is also necessary to
obtain different error correction values for different predicted power ranges.
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It is worth stating that 200 kW is the reference point for dividing the power range in
this paper. This is because the probability density function is different for each 200 kW
interval in this paper. Of course, other values can be used for the division.

The optimal error correction for different power interval segments is determined by
the optimal correction index, which is superimposed with the above predictions to obtain
the final prediction value. A comparison of the before and after correction in different
datasets is shown in Table 4.

Table 4. Accuracy comparison before and after error correction in different datasets.

Datasets
Before Error Correction After Error Correction Correction

ImprovementPICP PINAW PICP PINAW

Set 1 60.8 0.099 68.9 0.100 12.3%

Set 2 59.4 0.103 67.2 0.103 13.1%

Set 3

March 62.3 0.101 70.5 0.102 12.2%

June 63.2 0.102 71.4 0.102 13.0%

September 63.3 0.102 72.3 0.103 13.3%

December 61.4 0.101 69.3 0.102 11.9%

It can be seen from Table 4 that the prediction interval coverage probability has been
significantly improved after the error correction in different datasets, while the interval
width of the prediction remains unchanged or is wider after error correction. To verify that
the effect after error correction is greatly better than that before correction, two indexes’
values before and after correction are brought into Equation (24), which is shown as the
correction improvement in the Table 4.
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It can be seen from Table 4 that, no matter which dataset it is, the correction effect
after error correction has been improved by more than 10%. Therefore, the effect after the
correction is much better than the effect before the correction.

To further demonstrate the detailed effects of different datasets before and after error
correction under different confidence intervals, this paper takes Set 1 as an example to show
the change of two indexes before and after correction under different confidence intervals
in Table 5.

Table 5. Prediction accuracy before and after error correction in Set 1.

Confidence
Interval

Before Error Correction After Error Correction

PICP PINAW PICP PINAW

10% 28.1 0.018 35.8 0.023

20% 36.5 0.036 45.9 0.042

30% 49.1 0.069 56.7 0.072

40% 57.8 0.081 66.7 0.088

50% 65.6 0.096 75.9 0.118

60% 70.1 0.125 79.9 0.123

70% 76.1 0.136 82.3 0.131

80% 79.3 0.151 86.9 0.145

90% 84.6 0.178 90.3 0.168

Average 60.8 0.099 68.9 0.100

As can be seen from Table 5, the overall prediction after correction is slightly higher
than the prediction before error correction. Although the interval width is 0.001 higher after
correction than the interval width before correction, the prediction interval coverage proba-
bility is, on average, 8% higher than before correction, which means that the accuracy is
8% higher at any confidence interval. It can be found that the interval width is significantly
wider than that before the correction between 10% and 50% low confidence interval, while
the prediction coverage can improve by about 10%. This means that, at the low confidence
interval, the increased interval width makes the prediction points that were outside the
interval band fall into the interval band, making the prediction accuracy improve further.
The interval width is narrower, and the prediction coverage is more accurate than that
before the correction at the 60–90% confidence interval. In other words, the correction of
the high confidence interval is to reduce the width of the interval that is relatively wide
and enhance the width of the interval that is relatively narrow. Therefore, the accuracy of
the prediction interval is improved while the whole width of the interval is reduced.

As can be seen from Figure 8, the power band with a narrower interval width is
increased so that the narrower power band becomes a little wider, which makes the actual
power closer to the interval band and more points fall into the interval. The prediction
effect can be improved further. Taking region 1 and region 2 as an example, the interval
width is wider after correction than that before correction, the points that originally did not
fall into the interval can also fall into the interval. At the same time, when the predicted
power interval can cover the actual power, it is also able to reduce the power part of the
comparative width of the interval. In this way, the accuracy of the prediction effect can be
guaranteed, and the width of the interval can be reduced. As in region 3, it is possible to
cover the actual power with a narrower interval width.
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4.5. Comparison of Interval Prediction Methods

In this paper, the initial wind power time series output intervals are constructed
by the BLS-QR method, and then the final wind power intervals are obtained by using
the adaptive rolling error correction model. To verify the effectiveness of the proposed
method in this paper, it will be compared with the traditional interval prediction methods.
The traditional interval prediction methods chosen in this paper are statistical probability
interval prediction and quantile neural network, respectively. The statistical probability
interval prediction method uses BLS for point prediction to obtain the corresponding error,
and then constructs the interval directly by nonparametric kernel density, which is denoted
as method 1. The quantile neural network is to use the quantile as the last layer of the LSTM,
which forms LSTMQR, and directly outputs the data interval. The method with quantile
neural network is denoted as method 2. The interval prediction method in this paper is
denoted as The Proposed Method. The accuracy comparison using different methods in
different datasets is shown in Table 6.

Table 6. Accuracy comparison with different interval prediction methods in different datasets.

Method Average Prediction Index Set 1 Set 2
Set 3

March June September December

Method 1
PICP 55.7 53.4 60.1 62.8 63.1 60.5

PINAW 0.101 0.106 0.103 0.104 0.104 0.103

Method 2
PICP 60.9 55.9 62.3 63.6 66.1 63.1

PINAW 0.100 0.103 0.102 0.103 0.103 0.102

The Proposed
Method

PICP 68.9 67.2 70.5 71.4 72.3 69.3

PINAW 0.100 0.103 0.102 0.102 0.103 0.102

The interval width of method 1 is obviously wider than that of the other two methods
no matter which dataset it is in; however, the prediction coverage probability is obviously
lower than that of other methods in Table 6. In other words, the interval prediction effect
with method 1 is obviously inferior to that of two other methods. The average width of the
interval is the closest to that of the proposed method when using method 2. However, the
prediction interval coverage probability is much worse than that of the proposed method.
The interval prediction method proposed in this paper can improve the average accuracy
of the interval by about 6–14% with the narrowest interval width. On the whole, the effect
of the interval prediction method proposed in this paper is obviously better than that of the
traditional interval prediction method.
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To further show the different confidence intervals of different methods in different
datasets in detail, this paper takes Set 1 as an example to show the comparison of indexes
in different confidence intervals with different methods in Table 7.

Table 7. Accuracy comparison with different interval prediction methods in Set 1.

Confidence Interval
Method 1 Method 2 The Proposed Method

PICP PINAW PICP PINAW PICP PINAW

10% 21.1 0.014 27.5 0.017 35.8 0.023

20% 29.6 0.032 34.1 0.034 45.9 0.042

30% 37.9 0.063 48.1 0.066 56.7 0.072

40% 42.9 0.075 56.3 0.079 66.7 0.088

50% 56.3 0.097 66.7 0.104 75.9 0.118

60% 69.6 0.127 72.1 0.129 79.9 0.123

70% 73.8 0.139 76.9 0.137 82.3 0.131

80% 81.5 0.167 80.3 0.156 86.9 0.145

90% 93.1 0.191 86.8 0.181 90.3 0.168

Average 55.7 0.101 60.9 0.100 68.9 0.100

As can be seen from Table 7, the prediction interval coverage probability and interval
width keep increasing as the confidence interval increases among all methods. In other
words, the power point falls into the interval band by sacrificing the interval width. On the
whole, the interval width of method 1 is the largest interval width among the three methods,
but the interval coverage probability is much lower than the other methods. The use of
the proposed method can improve the accuracy by about 8–13%, on average, with the
narrowest interval width when compared with the other interval prediction methods.

The interval width of method 1 and method 2 is significantly narrower than the
interval of the proposed method at the confidence interval between 10% and 50%; however,
interval coverage probability is about 10–20% lower than the proposed method, especially
for method 1. When the confidence interval is between 60% and 90%, the interval width
of method 1 and method 2 gradually become wider, which significantly improves the
prediction accuracy compared with the low confidence interval. However, the interval
prediction accuracy is still lower than that of the proposed method. For example, the
interval width of method 1 and method 2 are much wider than those of the proposed
method at the 80% confidence interval, though the prediction results are not as good
as those of the proposed method. This means that, although the interval width can be
sacrificed to improve the interval prediction effect, the accuracy remains low due to the
failure to increase the interval width at a reasonable location.

Therefore, the interval prediction method proposed in this paper can increase the
interval width and reduce the interval width at a reasonable location, which can better fit
the data itself and improve the prediction accuracy effectively.

Figure 9 shows the wind power interval predictions with different methods at
80% confidence interval. It is obvious from Figure 9 that the interval width of the proposed
method is narrower than that of the other two methods. When the prediction power is low,
between 0:00 and 6:00, it is able to ensure the same prediction coverage probability while
the interval width is narrower. Moreover, the width of power interval is also narrower at
high power, and the actual power is covered by predicted power interval and is closer to
the middle of the interval. Method 1 is closer to the lower bound of the interval at high
power and does not cover the actual power well. Therefore, the prediction is not as good
as the proposed method. The prediction effect of method 2 is worse than the proposed
method in some power prediction power, such as power between 700 and 800 kW. The
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proposed method can make adaptive optimal corrections at the most suitable position.
Therefore, the corrected interval can better cover the actual power.
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5. Conclusions

Aiming at the solving problem of the low accuracy of traditional wind power interval
prediction, this paper proposes a wind power interval prediction method with adaptive
rolling error correction based on PSR-BLS-QR, which can accomplish adaptive error cor-
rection and improve the accuracy of wind power interval prediction. The conclusions are
as follows:

1. The implicit characteristic information of the one-dimensional wind power is mined,
and the correlation between the data can be constructed;
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2. Due to the superiority of the BLS model compared with other models, it improves the
interval prediction by about 4% accuracy at a narrower interval width compared with
the traditional prediction model, and the running time of BLS has obvious advantages;

3. The adaptive error rolling correction model is used to make adaptive error corrections
to further improve the interval prediction accuracy at the same or narrower interval
width. Compared with the traditional interval prediction methods, the interval
prediction accuracy can be improved by about 6–14%.
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