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ABSTRACT The development and deployment of an effective wind speed forecasting technology can
improve the stability and safety of power systems with significant wind penetration. However, due to the
wind’s unpredictable and unstable qualities, accurate forecasting of wind speed and power is extremely
challenging. Several algorithms were proposed for this purpose to improve the level of forecasting reliability.
A common method for making predictions based on time series data is the long short-term memory
(LSTM) network. This paper proposed a machine learning algorithm, called adaptive dynamic particle
swarm algorithm (AD-PSO) combined with guided whale optimization algorithm (Guided WOA), for wind
speed ensemble forecasting. The proposed AD-PSO-Guided WOA algorithm selects the optimal hyper-
parameters value of the LSTM deep learning model for forecasting purposes of wind speed. In experiments,
a wind power forecasting dataset is employed to predict hourly power generation up to forty-eight hours
ahead at seven wind farms. This case study is taken from the Kaggle Global Energy Forecasting Competition
2012 in wind forecasting. The results demonstrated that the AD-PSO-Guided WOA algorithm provides high
accuracy and outperforms a number of comparative optimization and deep learning algorithms. Different
tests’ statistical analysis, including Wilcoxon’s rank-sum and one-way analysis of variance (ANOVA),
confirms the accuracy of proposed algorithm.

INDEX TERMS Artificial intelligence, Machine learning, Optimization, Forecasting, Guided whale
optimization algorithm

I. INTRODUCTION

Due to the intermittence and unpredictability of wind power,
the increasing penetration of wind power into power grids
might significantly impact the safe functioning of power sys-
tems and power quality because the amount of wind energy
generated is proportional to the wind speed. As a result,
the development and deployment of an effective wind speed
forecasting technology can improve the safety and stability
of power systems with significant wind penetration. Wind
energy is one of the essential low-carbon energy technolo-

gies. It can deliver a long-term energy supply and serves as
a core component for micro-grids as part of intelligent grid
architecture [1].

However, wind power generation is stochastic and inter-
mittent, posing several hurdles to its widespread adoption.
With the aid of wind speed and power generation projections,
it is possible to reduce energy balancing and make power
generating scheduling and dispatch choices. In addition,
forecasts can reduce costs involved by mini missing the
demand for wind curtailments and, as a result, enhancing
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income in power market operations. Due to the wind’s unpre-
dictable and unstable qualities, however, accurate forecasting
wind speed and power is extremely difficult. A wind power
forecast predicts the projected output of one or more wind
turbines, often known as a wind farm. When one talks about
production, it usually refers to the amount of power that a
wind farm can generate (with unit’s kW or MW depending
on the nominal capacity of the wind farm). By combining
power production throughout each period, forecasts may also
be stated in energy [2].

Offer essential information about the projected wind speed
and power over the next several minutes, hours, or days is the
primary purpose of forecasting wind speed and power. The
prediction can be separated based on power system operation
requirements into four distinct time frames: long-term (from
one day to seven days), medium-term (from six hours to
twenty-four hours), short-term (from thirty minutes to six
hours), and extremely short-term (from few seconds to thirty
minutes. Turbine control and load tracking are based on very
short-term estimates. Preload sharing is based on the short-
term forecast. The medium-term projections are used for
power system management and energy trading. Maintenance
schedules for wind turbines are based on long-term forecasts
[3].

Wind speed is considered a non-linear and time-relevant
forecasting problem. This encourages researchers to make
use of the knowledge included in the wind’s historical data.
Based on time-series data, one of the common methods for
making predictions is the long short-term memory (LSTM)
network [4]. Marcos et al. in [5] addressed the problem of
wind power forecasting based on statistical and numerical
weather prediction model models. Two different areas in
Brazil were Brazilian developments on the regional atmo-
spheric modeling system is employed to simulate forecasts
of seventy-two hours ahead of the wind speed, at every ten
minutes.

Liu et al. in [6] employed backpropagation neural network
(BPNN), least squares support vector machine (LSSVM),
and radial basis function NN (RBFNN) methods to forecast
a sixteen MW wind farm that is located in Sichuan, China,
based on two months data size at fifteen minutes sampling
rate. Recently, Lin et al. in [3] applied Isolation Forest (IF)
and deep learning NN for SCADA data of a wind turbine in
Scotland to address the problem of wind power forecasting
based on data size of twelve months and one-second sam-
pling rate. Another method based on IF and feed-forward NN
is applied to a seven MW wind turbine in Scotland (ORE
Catapult) using a data size of twelve months and a one-
second sampling rate.

To capture the wind speed data’s unsupervised temporal
features, an interval probability distribution learning (IPDL)
model based on rough set theory and restricted Boltzmann
machines were proposed in [7]. The IPDL model had a set
of interval latent variables which can be tuned to capture
the wind speed time series data’s probability distribution. A
real-valued interval deep belief network (IDBN) was also

designed based on a fuzzy type II inference system and
IPDL model for the future wind speed values’ supervised
regression. M. Khodayar et al. [8] proposed a deep neural
network (DNN) architecture based on stacked auto-encoder
(SAE) and stacked denoising auto-encoder (SDAE) for wind
speed forecasting based on short-term and ultra-short-term.
The auto-encoders (AEs) are used by the authors in [8] for the
unsupervised feature learning from the unlabeled wind data.
In addition, a supervised regression layer was employed for
wind speed forecasting at the top of the AEs.

A scalable graph convolutional deep learning architecture
(GCDLA) was proposed in [9] to learn the powerful Spatio-
temporal features from the wind speed and direction data in
the neighboring wind farms. GCDLA leveraged the extracted
temporal features to forecast the whole graph nodes’ wind-
speed time series. The rough set theory was incorporated
with the GCDLA by introducing lower and upper bound
parameter approximations in their model. Authors in [10]
proposed a framework based on an enhanced grasshopper
optimization algorithm to optimize the hyperparameters and
architecture of the LSTM deep learning model for wind speed
forecasting. Table 1 shows the recent wind power prediction
methods.

Hybrid machine intelligence techniques were proposed re-
cently in the literature for wind forecasting based on different
models. Authors in [11] utilized various variants of Support
Vector Regression (SVR) and wavelet transform to forecast
short-term wind speed. They evaluated their proposed tech-
niques using various performance indices to get the best
regressor for wind forecasting applications. A hybrid tech-
nique was presented in [12] using learning algorithms such as
Twin SVR (TSVR), Convolutional neural networks (CNN),
and random forest, in addition to, discrete wavelet transform
(DWT) for wind forecasting. The extracted features from
wind speed in their work were enhanced based on the wavelet
transform. Another hybrid technique was proposed for the
anomaly detection problem for wind turbine gearbox in [13]
using adaptive threshold and twin SVM (TWSVM) methods.

In this work, a dataset of wind power forecasting is tested
as a case study from Kaggle Global Energy Forecasting
Competition 2012-Wind Forecasting to predict hourly power
generation up to forty-eight hours ahead at seven wind farms.
A proposed adaptive dynamic particle swarm algorithm (AD-
PSO) with a guided whale optimization algorithm (Guided
WOA) improves the forecasting performance by enhancing
the parameters of the LSTM classification method. The
proposed AD-PSO-Guided WOA algorithm selects the op-
timal hyper-parameters value of the LSTM deep learning
model for forecasting purposes of wind speed. A binary-
based algorithm of the AD-PSO-Guided WOA algorithm is
used first for the feature selection problem from the wind
power forecasting dataset. The evaluation of the binary AD-
PSO-Guided WOA algorithm is presented in compared with
Particle Swarm Optimization (PSO) [18], Grey Wolf Opti-
mizer (GWO) [19], Stochastic Fractal Search (SFS) [20],
WOA [21], [22], Genetic Algorithm (GA) [23], and Firefly
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TABLE 1: Recent wind power prediction methods

Ref. Algorithm Datasets Data Size Sampling rate
Marcos et al. 2017 [5] Kalman filter, Statistical regression Palmas and RN05 wind farms in Brazil 7 and 12 months 10 min
Liu et al., 2017 [6] BPNN, RBFNN and LSSVM Sixteen MW wind farm in Sichuan, China 2 months 15 min
Bilal et al., 2018 [14] MLP Four sites in Senegal. 6-9 months 1 and 10 min
Wang et al., 2018 [15] ELM optimised by MODA Two sites of observation in Penglai, China 37 days 10 min
Hong et al. 2019 [16] CNN, RBFNN, DGF Historical power data of a wind farm in Taiwan 12 months 60 min
Zhang et al., 2019 [17] LSTM, Gaussian Mixture Model (GMM) A 123 units wind farm in north China 3 months 15 min
Khodayar et al., 2019 [7] IPDL, IDBN, Boltzmann Machines, Rough Set A wind site in Colorado, US 3 years 10 min
Khodayar et al., 2019 [9] GCDLA, LSTM, Rough Set 145 wind sites in Northern States, US 6 years 5 min
Lin et al., 2020 [3] Isolation Forest (IF), Deep learning NN A wind turbine SCADA data in Scotland 12 months 1 s

IF, feed-forward NN Seven MW wind turbine in Scotland 12 months 1 s
Jalali et al., 2021 [10] LSTM, Enhanced grasshopper optimization algorithm Two wind stations in Las Vegas and Denver, US 12 months 30 min

Algorithm (FA) [24]. The optimized ensemble method based
on the proposed algorithm is tested on the dataset. The
results of this scenario are compared with Neural Networks
(NN), Random Forest (RF), LSTM, Average ensemble, and
k-Nearest Neighbors (k-NN) ensemble-based methods.

The AD-PSO-Guided WOA algorithm ensemble model is
compared with the state-of-the-art optimization techniques
including PSO [18],WOA [22], GA [23], GWO [19], Har-
ris Hawks Optimization (HHO) [25], [26], Marine Preda-
tors Algorithm (MPA) [27], Chimp Optimization Algorithm
(ChOA) [28], and Slime Mould Algorithm (SMA) [29]. The
AD-PSO-Guided WOA algorithm ensemble model is also
compared with the state-of-the-art deep learning techniques
including Time delay neural network (TDNN) [30], Deep
Neural Networks (DNN) [31], Stacked Denoising Autoen-
coder (SAE) [32], and Bidirectional Recurrent Neural Net-
works (BRNN) [33]. The statistical analysis of different tests
is performed to confirm the accuracy of the algorithm, includ-
ing Wilcoxon’s rank-sum and one-way analysis of variance
(ANOVA). This paper’s contributions are summarized as
follows.

• An adaptive dynamic PSO with guided WOA algorithm
(AD-PSO-Guided WOA) is suggested.

• For feature selection problem from the wind power
forecasting dataset, a binary AD-PSO-Guided WOA,
version of the proposed algorithm, is tested.

• A one-sample t-test and ANOVA tests are used to test
the binary AD-PSO-Guided WOA algorithm’s statisti-
cal difference.

• To improve the wind power forecasting accuracy, an
optimized ensemble method using the AD-PSO-Guided
WOA algorithm is proposed.

• Wilcoxon’s rank-sum and ANOVA tests are used to test
the proposed optimizing ensemble method’s statistical
difference.

• The current work’s importance is applying a new opti-
mization algorithm to enhance LSTM classifier param-
eters.

• The proposed algorithms can be generalized and tested
for other datasets.

II. PRELIMINARIES

A. MACHINE LEARNING

1) Neural Networks (NNs)

Artificial neural networks (ANNs) are a type of prediction
model and classification approach. ANN is used to simulate
complicated relationships of finding data patterns or cause-
and-effect variable sets. Transient detection, approximation,
time-series prediction, and pattern recognition are just a
few of the disciplines they may use. ANN is considered an
information processing pattern that functions similarly to the
human brain. This information processing system comprises
highly linked processing pieces called neurons that work
together to solve issues in tandem. When formulating an
algorithmic solution, a neural network comes in handy and
where it is necessary to extract the structure from existing
data [34].

A Multilayer perceptron (MLP) has three layers: input,
output and one hidden layer. The weighted sum for the node
output value is computed as follows [35].

Sj =
n
∑

i=1

wijIi + βj (1)

where input variable i is indicated as Ii. Connection weight
between neuron j and Ii is represented as wij . βj represents a
bias value. Based on using of the sigmoid activation function,
the node j output can be calculated as

fj(Sj) =
1

1 + e−Sj
(2)

where the value of fj(Sj) is then used to get the network
output as follows.

yk =
m
∑

j=1

wjkfj(Sj) + βk (3)

where the weights between output node k and neuron j in
the hidden layer is defined as wjk and βk indicates the output
layer bias value.

2) Random Forest (RF)

As a method based on statistical learning theory, random
forests provide several advantages, including fewer config-
urable parameters, higher prediction precision, and improved
generalization ability. It extracts numerous samples from
the original sample using the bootstrap sampling approach,
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FIGURE 1: LSTM Neural Network Architecture

builds decision tree modeling based on each bootstrap sam-
ple, combines the predictions of multiple decision trees, and
uses a voting mechanism to determine the outcome.

For the RF training algorithm, the regression/classification
tree fb is trained based on Xb and Yb training examples
for X = x1, . . . , xn and Y = y1, . . . , yn. For B times,
let b = 1, ..., B. After the process of training, the unseen
samples predictions x′ is calculated by averaging all the
predictions of individual regression trees on x′ as in equation
4.

f̂ =
1

B

B
∑

b=1

fb(x
′) (4)

3) k-Nearest Neighbors (k-NN)

The model’s interpretability. The findings of the prediction
algorithm using the k-nearest neighbor’s technique are based
on the previous events that are the most like the current state
based on a given distance metric. A simple average of the
output values of the k nearest neighbors, or any weighted
averaging, is used to make predictions. Thus, experts can
analyze the findings of the k-nearest neighbor’s method. The
object’s predictable variable in the k-NN numerical predic-
tion this number is the average of its k closest neighbors’
values. The k-NN method is one of the basic and the most
powerful machine learning algorithms.

The k-NN model employs a similarity measure, Euclidean
distance, to compare the data. Between xtrain as training
data and xtest as testing data, calculations of the Euclidean
distance are based on the following equation.

D (xtrain,i, xtest,i) =

√

√

√

√

k
∑

i=1

(xtrain,i − xtest,i)2 (5)

To predict the output variables, k-NN determines k train-
ing data close to testing data. For unknown testing data to be
predicted, the k training data output value is determined to be
the nearest neighbours. The following formula is applied for
predicting the testing data.

ŷ =
k

∑

j=1

wjyj (6)

where the jth neighbor weight is indicated as wj and it is
adjusted by the observed data, for wj = j/n, for n indicates
number of training data. This model can be used as a k-NN
time series model.

B. DEEP LEARNING

1) Long Short Term Memory (LSTM)

LSTM is an improvement over standard version of ANN, and
it is considered as a Recurrent Neural Network (RNN) that
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can be applied for many problems [36]. The main feature
of LSTM is to remember the information for a long period
of time and it is more suitable for kind of problems where
avoidance of long term dependency is required. LSTM archi-
tecture is shown in Figure 1. To decide what data should be
discarded from the cell state is the the first step in LSTM.
A sigmoid layer, named forget gate layer, is used for this as
shown in equation 7.

ft = σ(Wf [ht−1, xt] + bf ) (7)

The next step is about deciding the new data that should
be stored in the cell state. The values that need an update
are decided by an input gate layer, sigmoid layer, and a new
candidate values’ vector to be added to the generated state by
tanh layer as shown in equations 8 and 9.

it = σ(Wi[ht−1, xt] + bi) (8)

C ′

t = tanh(Wi[ht−1, xt] + bi) (9)

Now, the old cell state Ct−1 is updated into the new cell
state Ct by equation 10 using equations 7, 8, and 9.

Ct = ft × Ct−1 + it × C ′

t (10)

Output decision based on the cell state is the final step. A
sigmoid layer will help to decide about cell state parts that
will be moved to output. After that cell state will use tanh
will force values between [-1,1] and will multiply it with the
output of the sigmoid gate as mentioned in equation 11.

ht = ot × tanh(Ct), ot = σ(Wo[ht−1, xt] + bo) (11)

C. ENSEMBLE TECHNIQUES

The goal such approaches is to combine the capabilities
of a variety of single base models to create a predictive
model. This concept can be implemented in a variety of ways.
For instance, key strategies rely on resampling the training
set, while others rely on alternative prediction methods or
modifying some predictive technique parameters. Finally, the
result of each prediction is combined using an ensemble of
approaches.

III. PROPOSED ADAPTIVE DYNAMIC PSO-GUIDED WOA

ALGORITHM

This section discusses the presented AD-PSO-Guided WOA
algorithm using adaptive dynamic technique, particle swarm
algorithm, and modified whale optimization algorithm. Al-
gorithm (1) shows the AD-PSO-Guided WOA algorithm.

A. ADAPTIVE DYNAMIC TECHNIQUE

After the initialization of the optimization algorithm and for
each solution in the population, a fitness value is evaluated.
For the best fitness value, the optimization algorithm then
gets the relevant best agent (solution). To start the adaptive

FIGURE 2: Balancing of exploration and exploitation groups
in the AD-PSO-Guided WOA algorithm.

dynamic process, the optimization algorithm starts to split
agents of the population into two groups, as in Fig. 2. The two
groups are named exploitation group and exploration group.
The main target of the individuals (agents) in the exploitation
group is to move toward the optimal solution, and the target
of the agents in the exploration group is to search the area
around the leaders. The change (update) between the agents
of the population groups is dynamic. To achieve a balance
between the exploitation group and exploration group, the
optimization algorithm is initiated with a (50/50) population.
Figure 3 explains the balancing and the dynamic change
between the number of agents in the groups over different
iteration until getting the best solution.

B. GUIDED WOA ALGORITHM

The WOA algorithm shows its advantages for different prob-
lems in the area of optimization. WOA is considered in the
literature as one of the most effective optimization algorithms
[20], [37]. However, it might suffer from a low capability
of exploration. The foraging behaviour of whales in nature
represents the WOA algorithm inspiration [38]. For mathe-
matical calculations, let’s consider n to be the dimension or
number of variables of the search space that whales will swim
in. If it is considered that the agents (solutions) positions in
the space search will be updated over time, the best solution
of food will be found.

The following equation can be used in the WOA algorithm
for the purpose of updating agents’ positions.

−→
X (t+ 1) =

−→
X ∗(t)−

−→
A.

−→
D,

−→
D = |

−→
C .

−→
X ∗(t)−

−→
X (t)| (12)

where
−→
X (t) term represents a solution at an iteration t.

The
−→
X ∗(t) term represents the food or the optimal solution
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FIGURE 3: Dynamic updating of the exploration and exploitation groups in the AD-PSO-Guided WOA algorithm.

position. The "." indicated in this equation a kind of pairwise
multiplication. The

−→
X (t+ 1) represents the changed agent

position. The two vectors of
−→
A and

−→
C will be updated during

iterations as
−→
A = 2−→a .r1 − −→a and

−→
C = 2.r2. The −→a

term will be changed linearly from 2 (maximum value) to
0 (minimum value). The values of r1 and r2 are changing
randomly between [0, 1].

The term Guided WOA, in this work, indicates a modified
version of the original WOA algorithm [37]. In Guided
WOA, the drawback of the original WOA is alleviated by
updating the search strategy through one agent. The modified
algorithm moves the agents toward the prey or best solution
based on more than one agent. Equation 12 in the original
WOA algorithm forces agents to move randomly around
each other to get the global search. In the Guided WOA
algorithm, however, the exploration process is enhanced by
forcing agents to follow three random agents instead of one.
For forcing agents not to be affected by one leader position
to get more exploration, equation 12 can be replaced by the
following one.

−→
X (t+ 1) =−→w1 ∗

−→
X rand1 +

−→z ∗ −→w2 ∗ (
−→
X rand2 −

−→
X rand3)+

(1−−→z ) ∗ −→w3 ∗ (
−→
X −

−→
X rand1)

(13)

where the three random solutions are represented in this
equation by

−→
X rand1,

−→
X rand2, and

−→
X rand3. The −→w1 term

value is updated in [0, 0.5]. The terms of −→w2 and −→w3 are
changing in [0, 1]. Finally to smoothly the change between
exploration and exploitation, the term −→z is decreasing expo-
nentially instead of linearly and is calculated as follows.

−→z = 1−

(

t

Maxiter

)2

(14)

where iteration number is represented as t, and Maxiter

represents the maximum number of iterations.

C. PARTICLE SWARM OPTIMIZATION

Unlike the WOA algorithm, the PSO algorithm simulates
the social behaviour of a different kind of swarming pattern
of flocks in nature such as birds [19]. The agents in the
PSO algorithm search for the best solution or food according
to the updated velocity by changing their positions. The
algorithm uses particles (agents) and each agent follows these
parameters:

• The term (xi ∈ Rn) indicates a point or position in Rn

search space. The agents’ positions are calculated by a
fitness function.

• the term (vi) represents velocity or rate of change of
agents positions,

• The term (pi) indicates the last best positions of the
particles.

The positions and velocities of agents are updating over it-
erations. The positions of agents changed using the following
equation.

xi
(t+1) = xi

(t) + vi(t+1) (15)

where the new agent position is indicated as xi
t+1. Updated

velocity of each agent vit+1 evaluated as in the following
form.
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Algorithm 1 :The AD-PSO-Guided WOA algorithm

1: Initialize population
−→
X i(i = 1, 2, ..., n) with size n,

maximum iterations Maxiter, fitness function Fn.
2: Initialize parameters −→a ,

−→
A ,

−→
C , l, −→r1 , −→r2 , −→r3 , −→w1, −→w2,

−→w3, t = 1
3: Evaluate fitness function Fn for each

−→
X i

4: Find best individual
−→
X∗

5: while t ≤ Maxiter do

6: if (t%2 == 0) then

7: for (i = 1 : i < n+ 1) do

8: if (−→r3 < 0.5) then

9: if (|
−→
A | < 1) then

10: Update current search agent position as
−→
X (t+ 1) =

−→
X ∗(t)−

−→
A.

−→
D

11: else

12: Select three random search agents
−→
X rand1,

−→
X rand2, and

−→
X rand3

13: Update (−→z ) by the exponential form of
−→z = 1−

(

t
Maxiter

)2

14: Update current search agent position as
−→
X (t+ 1) = −→w1 ∗

−→
X rand1 + −→z ∗ −→w2 ∗

(
−→
X rand2−

−→
X rand3)+(1−−→z )∗−→w3 ∗ (

−→
X −

−→
X rand1)

15: end if

16: else

17: Update current search agent position as
−→
X (t+ 1) =

−→
D ′.ebl.cos(2πl) +

−→
X ∗(t)

18: end if

19: end for

20: Calculate fitness function Fn for each
−→
X i from

Guided WOA
21: else

22: Calculate fitness function Fn for each
−→
X i from

PSO
23: end if

24: Update −→a ,
−→
A ,

−→
C , l, −→r3

25: Find best individual
−→
X∗

26: Set t = t + 1
27: end while

28: return
−→
X∗

vi(t+1) = C1r1(p
i
(t)− xi

(t))+C2r2(G− xi
(t))+ωvi(t) (16)

where the term ω represents the inertia weight. The terms C1

and C2 indicate cognition and social learning factors. The G
parameter represents the global best position and the values
of r1 and r2 are within [0; 1].

D. PROPOSED ALGORITHM COMPLEXITY ANALYSIS

The AD-PSO-Guided WOA algorithm’ complexity analysis
is presented in this section based on Algorithm (1). Using
population number indicated as n iterations number as Mt,

the complexity can be defined for each part of the algorithm
as

• Initializing of the population: O (1).
• Initializing of parameters −→a ,

−→
A ,

−→
C , l, −→r1 , −→r2 , −→r3 , −→w1,

−→w2, −→w3, t = 1: O (1).
• Evaluating fitness function Fn: O (n).
• Getting best individual

−→
X∗: O (n).

• Updating positions: O (Mt × n).
• Evaluating agents’ fitness function using Guided WOA:

O (Mt × n).
• Evaluating agents’ fitness function using PSO: O (Mt×

n).
• Updating parameters −→a ,

−→
A ,

−→
C , l, −→r3 : O (Mt).

• Updating best solution: O (Mt × n).
• Increasing iteration counter: O (Mt).

The complexity of the AD-PSO-Guided WOA algorithm can
be considered as O (Mt × n). For m variables problems, the
algorithm complexity can be considered O (Mt × n×m).

E. BINARY OPTIMIZER

For the feature selection problem, the output solution should
be changed to a binary solution using 0 or 1. The sigmoid
function is usually employed to change the continuous solu-
tion of the optimizer to a binary solution.

−→
X

(t+1)
d =

{

0 if Sigmoid(XBest) < 0.5

1 otherwise
,

Sigmoid(XBest) =
1

1 + e−10(XBest−0.5)

(17)

where the best position is indicated as XBest for t iteration.
The Sigmoid function is used to help in changing the con-
tinuous values to be 0 or 1. For Sigmoid(XBest) ≥ 0.5, the
value will change to 1, otherwise, the value will be changed
to be 0. Algorithm (2) shows the step by step explanation of
the binary AD-PRS-Guided WOA Algorithm.

F. FITNESS FUNCTION

The solutions’ quality of an optimizer is measured based
on the assigned fitness function. The function is mainly
depending on the error rate of classification/regression and
the features that have been selected from the input dataset.
The best solution is according to the set of features that
can give a minimum number of features with a minimum
classification error rate. The following equation is applied in
this work for the evaluation of solutions’ quality.

Fn = αErr(O) + β
|s|

|f |
(18)

where the optimizer error rate is indicated as Err(O), the
selected set of features is denoted as s, f represents total
number of existing features. The α ∈ [0, 1], β = 1 − h1

values are responsible of the classification error rate and the
number of selected features.
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Algorithm 2 :Binary AD-PSO-Guided WOA algorithm

1: Initialize AD-PSO-Guided WOA algorithm configura-
tion, including population and parameters

2: Change current solutions to binary solution (0 or 1)
3: Evaluate fitness function and determine the best solution
4: Train k-NN based model and then calculate error
5: while t ≤ itersmax do

6: Apply AD-PSO-Guided WOA algorithm
7: Change updated solution to binary solution (0 or 1)

based on equation 17
8: Evaluate fitness function for each agent
9: Update parameters

10: Update best solution
11: end while

12: Return best solution

IV. EXPERIMENTAL RESULTS

The experimental settings and results for wind power fore-
casting problems using the presented AD-PSO-Guided WOA
algorithm are presented in this section. The dataset is first
discussed, and then the experiments are divided into feature
selection, ensemble, and comparison scenarios.

A. DATASET DESCRIPTION

A wind power forecasting dataset to predict hourly power
generation up to forty-eight hours ahead at seven wind farms
is tested in the experiments as a case study. The dataset is
published on Kaggle as Global Energy Forecasting Competi-
tion 2012 - Wind Forecasting [39]. The presented AD-PSO-
Guided WOA algorithm is applied in different scenarios to
test the best available accuracy compared to algorithms in
the literature. A statistical analysis of different tests is also
applied to the tested dataset to show the algorithm’s accuracy.
Prediction of regression is shown in Fig. 4. The figure shows
the actual values from the dataset and the predicted values
based on the proposed AD-PSO-Guided WOA algorithm.

B. FEATURE SELECTION SCENARIO

The experiment in this scenario desired to show the feature
selection efficiency by the proposed binary AD-PSO-Guided
WOA algorithm. The binary AD-PSO-Guided WOA algo-
rithm performance is compared with the binary version of
GWO (bGWO) [19], binary PSO (bPSO) [18], binary SFS
(bSFS) [20], binary WOA (bWOA) [21], [22], binary FA
(bFA) [24], and binary GA (bGA) [23] using performance
metrics shown in Table 2. The variables in Table 2 are indi-
cated as follows. An optimizer number of runs is indicated
as M , the best solution at the run number j is represented
by g∗j , size of the g∗j vector is indicated as size(g∗j ), and the
number of tested points is N . A classifier’s output label for
a point i is Ci, a class’s label for a point i is Li, the total
number of features is D, and the Match function is used
for calculating the matching between two inputs. The metrics
include average error and standard deviation fitness.

FIGURE 4: The actual (green color) and predicted (red
color) values based on the proposed AD-PSO-Guided WOA
algorithm.

TABLE 2: Feature selection performance metrics.

Metric Value
Average Error 1−

1

M

∑M
j=1

1

N

∑N
i=1

Match(Ci, Li)

Average Select Size 1

M

∑M
j=1

size(g∗j )

D
Average Fitness 1

M

∑M
j=1

g∗j
Best Fitness MinM

j=1
g∗j

Worst Fitness MaxM
j=1

g∗j

Standard Deviation
√

1

M−1

∑

(g∗j −Mean)2

TABLE 3: Configuration of AD-PSO-Guided WOA algo-
rithm.

Parameter Value
# Whales 20
# Iterations 20
# Runs 20
Dimension # Features
Inertia Wmax, Wmin [0.9,0.6]
Acceleration constants C1, C2 [2,2]
α of Fn 0.99
β of Fn 0.01

TABLE 4: Configuration of compared algorithms for feature
selection.

Algorithm Parameter (s) Value (s)
GWO a 2 to 0

# Wolves 20
# Iterations 20

PSO Inertia Wmax, Wmin [0.9,0.6]
Acceleration constants C1, C2 [2,2]
# Particles 20
Generations 20

SFS Maximum diffusion level 1
WOA a 2 to 0

r [0,1]
# Whales 20
# Iterations 20

FA # Fireflies 10
GA Mutation ratio 0.1

Crossover 0.9
Selection mechanism Roulette wheel
Population size 20
Generations 20
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TABLE 5: Results of feature selection for the presented and compared binary algorithms

AD-PSO-Guided WOA bGWO bPSO bSFS bWOA bFA bGA
Average error 0.4790 0.5047 0.5385 0.5481 0.5383 0.5369 0.5183
Average Select size 0.2320 0.4275 0.4275 0.5669 0.5909 0.4620 0.3699
Average Fitness 0.3510 0.3541 0.3525 0.3754 0.3603 0.4044 0.3655
Best Fitness 0.2521 0.2744 0.3328 0.2651 0.3244 0.3231 0.2688
Worst Fitness 0.3305 0.3413 0.4005 0.3667 0.4005 0.4207 0.3839
Standard deviation Fitness 0.1635 0.1679 0.1680 0.1742 0.1665 0.2011 0.1665

TABLE 6: Results of ANOVA test for feature selection of the presented and compared binary algorithms

SS DF MS F (DFn, DFd) P value
Treatment (between columns) 0.07358 6 0.01226 F (6, 133) = 11.75 P < 0.0001
Residual (within columns) 0.1387 133 0.001043 - -
Total 0.2123 139 - - -

TABLE 7: One sample t-test for feature selection of the presented and compared binary algorithms

AD-PSO-Guided WOA bGWO bPSO bSFS bWOA bFA bGA
Theoretical mean 0 0 0 0 0 0 0
Actual mean 0.479 0.5022 0.5393 0.5481 0.5388 0.5352 0.519
# values 20 r20 20 20 20 20 20

One sample t-test
t, df t=54.41, df=19 t=72.46, df=19 t=188.9, df=19 t=210.3, df=19 t=40.08, df=19 t=92.86, df=19
P value (two tailed) 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
P value summary **** **** **** **** **** ****
Significant (alpha=0.05)? Yes Yes Yes Yes Yes Yes

How big is the discrepancy?
Discrepancy 0.5022 0.5393 0.5481 0.5388 0.5352 0.519
Discrepancy SD 0.04128 0.03328 0.01298 0.01146 0.05972 0.02499
Discrepancy SEM 0.00923 0.007442 0.002902 0.002562 0.01335 0.005589
95% confidence interval 0.4829 to 0.5215 0.5237 to 0.5548 0.5420 to 0.5542 0.5334 to 0.5442 0.5073 to 0.5632 0.5073 to 0.5307
R squared 0.9936 0.9964 0.9995 0.9996 0.9883 0.9978

FIGURE 5: The AD-PSO-Guided WOA algorithm conver-
gence curve compared to different algorithms

The AD-PSO-Guided WOA algorithm configuration set-
ting in experiments is shown in Table 3. The AD-PSO-
Guided WOA algorithm’s initial parameters are the number
of population equal 20, the maximum number of iterations is
set to 20, and the number of runs equals 20 for the dataset.
The main parameters for the PSO algorithm are Wmax and
Wmin, which their values are set to 0.9 and 0.6, respectively.
In addition, the α parameter is assigned to be (0.99) and β is
assigned to be (1−α). The GWO, PSO, SFS, WOA, FA, and
GA algorithms’ configuration is shown in Table 4.

In this scenario, Table 5 shows the results provided by
GWO, PSO, SFS, WOA, FA, and GA algorithms. The AD-
PSO-Guided WOA algorithm shows a minimum average

FIGURE 6: The AD-PSO-Guided WOA algorithm average
error based on the objective function compared to different
binary algorithms

error of (0.4790) for feature selection for the presented re-
sults. The AD-PSO-Guided WOA algorithm, based on the
minimum error of the tested problem, is the best and the
SFS algorithm is the worst. In terms of standard deviation,
the AD-PSO-Guided WOA algorithm has the lowest value
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FIGURE 7: Residual, heteroscedasticity, QQ plots and heat map of the presented and compared algorithms for feature selection
problem

of (0.1635) which indicates the algorithm’s stability and
robustness.

The convergence curve of the AD-PSO-Guided WOA
algorithm compared to other algorithms is shown in Figure
5. The figure shows the optimizer exploitation capability and
the algorithm’s ability to avoid possible local optima. Figure
6 shows the AD-PSO-Guided WOA average error based
on the objective function compared to different algorithms.
The minimum, maximum, and average values for different
binary algorithms indicate the advantages of the proposed
algorithm. The p-values of the AD-PSO-Guided WOA algo-
rithm are tested compared to GWO, PSO, SFS, WOA, FA,
and GA algorithms by ANOVA and t-test tests in Tables 6
and 7, respectively. The statistical analysis results show the
superiority and statistical significance of the proposed AD-
PSO-Guided WOA algorithm.

The residual values and plots can be useful for some
datasets that are not suitable candidates for feature selection.
To achieve the ideal case, the residual values should be
distributed uniformly around the horizontal axis. Considering
that the sum and mean of the residuals are equal to zero,
the residual value is computed as the difference between pre-
dicted and actual values. The residual plot is shown in Figure
7. A nonlinear and linear model is decided from the residual
plot patterns and the appropriate one is determined. The het-

eroscedasticity plot is shown in Figure 7. Homoscedasticity
describes if the error term is the same across the values
of independent variables. Figure 7 also shows the quantile-
quantile (QQ) plot, probability plot, and heat map. Since
the distributions of points in the QQ plot are well fitted on
the predetermined line, the actual and predicted residuals are
considered to be linearly related. This confirms the presented
AD-PSO-Guided WOA algorithm’s performance.

C. ENSEMBLE FORECASTING SCENARIO

This scenario is formulated using ensemble-based models
of the average ensemble, k-NN ensemble, and the proposed
optimizing ensemble model based on the AD-PSO-Guided
WOA algorithm. Some ensemble models utilize the training
instances of the three base models of NN, RF, and LSTM.
This can be used to forecast the unknown observations to
the regression of the majority and gives the results to predict
wind speed. The hyperparameters that are fed to the AD-
PSO-Guided WOA algorithm to train the LSTM model are
the number of epochs Te, encoding length for each attention
weights Le, size of champion attention weights subset Wa,
and size of attention weights set Na.

The evaluation metrics that are used for the experiments
in this scenario include Root Mean Squared Error (RMSE),
Relative RMSE (RRMSE), Mean Absolute Error (MAE),

10 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3111408, IEEE Access

A. Ibrahim et al.: Wind Speed Ensemble Forecasting Based on Deep Learning Using Adaptive Dynamic Optimization Algorithm

FIGURE 8: The ROC curves of the presented optimizing ensemble model versus other models

TABLE 8: Different ensemble-based and single models wind speed forecasting results

NN RF LSTM Average Ensemble k-NN Ensemble Optimizing Ensemble
MAPE (%) 12.8372 7.3846 6.9924 5.1134 3.6111 1.8755
MAE 0.4961 0.3163 0.2303 0.1013 0.0134 0.00476
RMSE 0.491329643 0.231488171 0.109544 0.091676794 0.01493511 0.003728832

Mean Absolute Percentage Error (MAPE), and the correla-
tion coefficient (r) [40]. The RMSE metric can be calculated
as follow to assess the performance.

RMSE =

√

∑n

i=1(Hp,i −Hi)
2

n
(19)

where Hp,i represents a predicted value and Hi indicates the
actual measured value. The n parameter represents the total
number of values. The RRMSE metric is calculated as follow.

RRMSE =

√

1
n

∑n

i=1(Hp,i −Hi)2
∑n

i=1(Hp,i)
× 100 (20)

The MAE is used to calculate, in a set of predictions, the
average amount of errors. It can be calculated as

MAE =
1

n

n
∑

i=1

|Hp,i −Hi| (21)

The MAPE is one of the most commonly used metrics
to measure forecast accuracy, which is similar to MAE but

normalized by true observation. MAPE can be calculated as
follows.

MAPE =
100

n

n
∑

i=1

|Hp,i −Hi|

Hp,i

(22)

The next metric is the correlation coefficient r which can
be calculated as follows.

r =

∑n

i=1(xi − x̄)(yi − ȳ)
√

∑n

i=1(xi − x̄)2(yi − ȳ)2
(23)

where xi represents values of variable x in a sample and yi
represents values of variable y in a sample. x̄ and ȳ are the
mean of the x values and y values, respectively.

Different ensemble-based and single models results are
shown in Table 8. It can be seen that the ensemble-based
models show promising results than single models of NN,
RF, and LSTM. The proposed optimizing ensemble model,
based on the deep LSTM learning model, with RMSE of
(0.003728832), MAE of (0.00476), and MAPE of (1.8755),
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TABLE 9: The proposed optimizing ensemble model’ descriptive statistics versus other models.

NN RF LSTM Average Ensemble k-NN Ensemble Optimizing Ensemble
# values 30 30 30 30 30 30

Minimum 0.4306 0.181 0.08629 0.07737 0.01011 0.003668
25% Percentile 0.4521 0.194 0.09462 0.08521 0.0111 0.003682
Median 0.4696 0.2405 0.1144 0.09076 0.01387 0.003715
75% Percentile 0.4934 0.2598 0.1295 0.1012 0.01712 0.003744
Maximum 0.5354 0.288 0.1403 0.1085 0.01862 0.003918
Range 0.1048 0.107 0.05401 0.0311 0.008508 0.0002499

Mean 0.4749 0.2304 0.1136 0.09341 0.01407 0.003722
Std. Deviation 0.03051 0.03408 0.01845 0.009185 0.002865 0.00004836
Std. Error of Mean 0.005571 0.006222 0.003369 0.001677 0.0005231 0.000008829

Lower 95% CI of mean 0.4635 0.2177 0.1067 0.08998 0.013 0.003704
Upper 95% CI of mean 0.4863 0.2432 0.1204 0.09684 0.01514 0.00374

Coefficient of variation 6.425% 14.79% 16.25% 9.833% 20.37% 1.299%

Geometric mean 0.474 0.2279 0.1121 0.09298 0.01378 0.003722
Geometric SD factor 1.065 1.163 1.18 1.104 1.228 1.013

Lower 95% CI of geo. mean 0.4629 0.2154 0.1053 0.08962 0.01277 0.003704
Upper 95% CI of geo. mean 0.4853 0.2412 0.1192 0.09646 0.01488 0.003739

Harmonic mean 0.4731 0.2254 0.1106 0.09254 0.01351 0.003721

Lower 95% CI of harm. mean 0.4623 0.2133 0.1041 0.08926 0.01255 0.003704
Upper 95% CI of harm. mean 0.4844 0.2391 0.118 0.09607 0.01462 0.003739

Quadratic mean 0.4758 0.2329 0.115 0.09385 0.01435 0.003722

Lower 95% CI of quad. mean 0.4641 0.22 0.108 0.09035 0.01323 0.003704
Upper 95% CI of quad. mean 0.4873 0.245 0.1216 0.09722 0.01538 0.00374

Skewness 0.5804 -0.1167 -0.0517 0.08423 0.1666 2.278
Kurtosis -0.6107 -1.471 -1.401 -1.346 -1.438 8.546

Sum 14.25 6.913 3.407 2.802 0.422 0.1117

TABLE 10: ANOVA results of the base and ensemble models for the wind speed forecasting

SS DF MS F (DFn, DFd) P value
Treatment (between columns) 4.688 5 0.9377 F (5, 174) = 2228 P < 0.0001
Residual (within columns) 0.07323 174 0.000421 - -
Total 4.762 179 - - -

TABLE 11: Wilcoxon Signed Rank test results of the base and ensemble models for the wind speed forecasting

NN RF LSTM Average Ensemble k-NN Ensemble Optimizing Ensemble
Theoretical median 0 0 0 0 0 0
Actual median 0.4696 0.2405 0.1144 0.09076 0.01387 0.003715
# values 30 r30 30 30 30 30

Wilcoxon Signed Rank Test
Signed ranks (W) sum 465 465 465 465 465 465
Positive ranks sum 465 465 465 465 465 465
Negative ranks sum 0 0 0 0 0 0
P value (two tailed) 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
Estimate or Exact? Exact Exact Exact Exact Exact Exact
P value summary **** **** **** **** **** ****
Significant (alpha=0.05)? Yes Yes Yes Yes Yes Yes
How big is the discrepancy?

Discrepancy 0.4696 0.2405 0.1144 0.09076 0.01387 0.003715

gives competitive results compared to the average ensem-
ble and k-NN ensemble models. The detailed descriptive
statistics of the proposed optimizing ensemble model versus

other models are shown in Table 9. Figure 8 shows the ROC
(Receiver Operating Characteristics) curves of the proposed
optimizing ensemble model versus other models. The figures
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FIGURE 9: RMSE of the presented optimizing ensemble
model compared to other models based on objective function

FIGURE 10: Histogram of RMSE of the presented optimiz-
ing ensemble model compared to other models based on
number of values with Bin Center range (0.00 - 0.59).

show that the proposed ensemble model based on the AD-
PSO-Guided WOA algorithm can distinguish data with a
high Area Under the Curve (AUC) with a value of 1.0.
The RMSE distribution shown in Figure 9, the histogram of
RMSE shown in Figure 10, the histogram of RRMSE shown
in Figure 11, and the histogram of MAPE shown in Figure 12
confirms the stability of the proposed optimizing ensemble
algorithm versus the compared models.

Wilcoxon’s rank-sum and ANOVA tests are applied to
measure the statistical differences between the proposed
and other models that are used for comparison in this sce-
nario. The ANOVA test results are presented in Table 10.
Wilcoxon’s rank-sum statistical analysis of the proposed
ensemble model in comparison to other models is shown

FIGURE 11: Histogram of RRMSE of the presented opti-
mizing ensemble model compared to other models based on
number of values with Bin Center range (1.0 - 51.5).

FIGURE 12: Histogram of MAPE of the presented opti-
mizing ensemble model compared to other models based on
number of values with Bin Center range (1.8 - 14.8).

in Table 11. Wilcoxon’s rank-sum test will determine if the
proposed models and other models’ results have a significant
difference; p-value < 0.05 will show significant superiority.
The results explain the superiority of the AD-PSO-Guided
WOA based proposed ensemble model and also indicate the
statistical significance of the algorithm.

The residual plot in this scenario is shown in Figure 13.
The heteroscedasticity plot, QQ plot, and heat map are also
shown in Figure 13. Since the distributions of points in the
QQ plot are well fitted on the line, the predicted and the actual
residuals are considered as linearly related which confirms
the proposed AD-PSO-Guided WOA ensemble-based algo-
rithm’s performance for the wind speed forecasting problem.

D. COMPARISONS SCENARIO

The third and last scenario is designed to show the perfor-
mance of the optimizing ensemble-based AD-PSO-Guided
WOA algorithm compared with PSO [18], WOA [22], GA
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FIGURE 13: Residual, heteroscedasticity, QQ plots and heat map of the presented ensemble-based and compared models for
wind speed forecasting problem

TABLE 12: Comparison of wind speed forecasting results using the proposed algorithm compared to other optimization
techniques.

Metric ADPSO-Guided WOA PSO WOA GA GWO HHO MPA ChOA SMA
MAPE (%) 1.8755 2.337 2.3559 2.6697 2.5574 4.1236 2.3157 2.44689 3.3312
MAE 0.00476 0.00715 0.007331 0.009123 0.008845 0.0099845 0.005089 0.007402 0.0068875
RMSE 0.003728832 0.00612567 0.006613066 0.008797 0.007802 0.009532 0.0049876 0.006675 0.0058746
RRMSE (%) 1.279369489 7.325162974 8.445619 9.985368 8.886955 10.131245 5.0124517 7.884593 6.991536
r 0.9998878 0.9977836 0.99764592 0.996771 0.997022 0.986612445 0.9945331 0.997536 0.9981303

[23], GWO [19], HHO [25], [26], MPA [27], ChOA [28], and
SMA [29]. The AD-PSO-Guided WOA algorithm ensemble
model is also compared with four deep learning techniques
including TDNN [30], DNN [31], SAE [32], and BRNN [33].

Table 12 shows the comparison results of the wind speed
forecasting based on the proposed algorithm compared to
other optimization techniques. The results in the table show
that the proposed optimizing ensemble model, based on the
LSTM deep learning model and the AD-PSO-Guided WOA
algorithm, with MAPE of (1.8755), MAE of (0.00476),
RMSE of (0.003728832), RRMSE of (1.279369489), and r of
(0.9998878) gives competitive results compared to the PSO,
WOA, GA, GWO, HHO, MPA, ChOA, and SMA algorithms
for the wind speed forecasting tested problem. Table 13
shows the descriptive statistics of the proposed algorithm
compared to other optimization techniques over 20 runs.

The ANOVA test results for wind speed forecasting based
on the proposed algorithm compared to other optimization

techniques is shown in Table 14. The test of the Wilcoxon
Signed-Rank rest of the wind speed forecasting results based
on the proposed algorithm compared to other optimization
techniques is also shown in Table 15. The results confirm
the superiority of the AD-PSO-Guided WOA based proposed
ensemble model and indicate the statistical significance of
the algorithm for the wind speed forecasting tested problem
compared to the PSO, WOA, GA, and GWO algorithms.

Table 16 shows the comparison results of the wind speed
forecasting based on the proposed algorithm compared to
other deep learning techniques. The results in the table show
that the proposed optimizing ensemble model with MAPE
of (1.8755), MAE of (0.00476), RMSE of (0.003728832),
RRMSE of (1.279369489), and r of (0.9998878) gives com-
petitive results compared to the TDNN, DNN, SAE, and
BRNN techniques for the wind speed forecasting tested prob-
lem. Table 17 shows the descriptive statistics of the proposed
algorithm compared to other deep learning techniques over
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TABLE 13: Description statistics of the proposed algorithm compared to other optimization techniques over 20 runs.

ADPSO-Guided WOA PSO WOA GA GWO HHO MPA ChOA SMA
Number of values 20 20 20 20 20 20 20 20 20

Minimum 0.003429 0.005126 0.004613 0.005797 0.00598 0.006532 0.003988 0.005675 0.005075
25% Percentile 0.003729 0.006126 0.006613 0.008797 0.007802 0.009532 0.004988 0.006675 0.005875
Median 0.003729 0.006126 0.006613 0.008797 0.007802 0.009532 0.004988 0.006675 0.005875
75% Percentile 0.003729 0.006126 0.006613 0.008797 0.007802 0.009532 0.004988 0.006675 0.005875
Maximum 0.003829 0.007126 0.008613 0.009997 0.009902 0.01235 0.005988 0.008675 0.007875
Range 0.0004 0.002 0.004 0.0042 0.003922 0.005821 0.002 0.003 0.0028

10% Percentile 0.003639 0.006126 0.005713 0.006897 0.007802 0.009532 0.004988 0.00657 0.005875
90% Percentile 0.003729 0.007026 0.007513 0.008797 0.007802 0.009532 0.005888 0.007665 0.006805

Mean 0.003714 0.006176 0.006613 0.008557 0.007816 0.009523 0.005038 0.006774 0.006
Std. Deviation 0.00007452 0.000394 0.000726 0.000867 0.000638 0.000945 0.000394 0.000563 0.000534
Std. Error of Mean 0.00001666 8.81E-05 0.000162 0.000194 0.000143 0.000211 8.81E-05 0.000126 0.000119

Coefficient of variation 2.006% 6.380% 10.97% 10.13% 8.159% 9.920% 7.821% 8.314% 8.900%

Geometric mean 0.003713 0.006164 0.006574 0.008508 0.007791 0.009476 0.005023 0.006754 0.00598
Geometric SD factor 1.021 1.066 1.12 1.121 1.085 1.111 1.081 1.081 1.086

Harmonic mean 0.003712 0.006152 0.006532 0.008451 0.007766 0.009423 0.005009 0.006735 0.005962

Quadratic mean 0.003715 0.006188 0.006651 0.008599 0.007841 0.009567 0.005053 0.006796 0.006023

Skewness -3.136 0.5305 5.71E-15 -2.126 0.6519 -0.284 0.5305 2.133 2.475
Kurtosis 12.45 4.985 5.327 5.698 9.699 9.538 4.985 7.604 8.619

Sum 0.07428 0.1235 0.1323 0.1711 0.1563 0.1905 0.1008 0.1355 0.12

TABLE 14: ANOVA test results for wind speed forecasting using the proposed algorithm compared to other optimization
techniques over 20 runs.

SS DF MS F (DFn, DFd) P value
Treatment (between columns) 0.000502 8 6.28E-05 F (8, 171) = 161.7 P < 0.0001
Residual (within columns) 6.64E-05 171 3.88E-07 - -
Total 0.000569 179 - - -

TABLE 15: Wilcoxon Signed Rank Test of wind speed forecasting results using the proposed algorithm compared to other
optimization techniques over 20 runs.

ADPSO-Guided WOA PSO WOA GA GWO HHO MPA ChOA SMA
Theoretical median 0 0 0 0 0 0 0 0 0
Actual median 0.003729 0.006126 0.006613 0.008797 0.007802 0.009532 0.004988 0.006675 0.005875
Number of values 20 20 20 20 20 20 20 20 20

Wilcoxon Signed Rank Test
Sum of signed ranks (W) 210 210 210 210 210 210 210 210 210
Sum of positive ranks 210 210 210 210 210 210 210 210 210
Sum of negative ranks 0 0 0 0 0 0 0 0 0
P value (two tailed) 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
Exact or estimate? Exact Exact Exact Exact Exact Exact Exact Exact Exact
P value summary **** **** **** **** **** **** **** **** ****
Significant (alpha=0.05)? Yes Yes Yes Yes Yes Yes Yes Yes Yes

How big is the discrepancy?
Discrepancy 0.003729 0.006126 0.006613 0.008797 0.007802 0.009532 0.004988 0.006675 0.005875

TABLE 16: Comparison of wind speed forecasting results using the proposed algorithm compared to other deep learning
techniques.

ADPSO-Guided WOA TDNN DNN SAE BRNN
MAPE (%) 1.8755 14.7615 8.1996 12.6632 7.113
MAE 0.00476 0.5377 0.3316 0.4991 0.3226
RMSE 0.003728832 0.5126012 0.3371776 0.478634 0.244604
RRMSE (%) 1.279369489 52.659735 27.887544 48.75756 22.4404
r 0.9998878 0.8766512 0.8963578 0.887633 0.909132
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TABLE 17: Description statistics of the proposed algorithm compared to other deep learning techniques over 20 runs.

ADPSO-Guided WOA TDNN DNN SAE BRNN
Number of values 20 20 20 20 20

Minimum 0.003429 0.4126 0.2372 0.3786 0.2014
25% Percentile 0.003729 0.5126 0.3372 0.4786 0.2446
Median 0.003729 0.5126 0.3372 0.4786 0.2446
75% Percentile 0.003729 0.5126 0.3372 0.4786 0.2446
Maximum 0.003829 0.6713 0.4937 0.5786 0.2946
Range 0.0004 0.2587 0.2565 0.2 0.09316

10% Percentile 0.003639 0.4934 0.3372 0.4156 0.2356
90% Percentile 0.003729 0.5126 0.3822 0.4786 0.2716

Mean 0.003714 0.5145 0.3425 0.4751 0.2459
Std. Deviation 0.00007452 0.04326 0.04379 0.03602 0.01674
Std. Error of Mean 0.00001666 0.009673 0.009792 0.008055 0.003744

Coefficient of variation 2.006% 8.409% 12.79% 7.582% 6.808%

Geometric mean 0.003713 0.5129 0.34 0.4738 0.2454
Geometric SD factor 1.021 1.083 1.131 1.08 1.07

Harmonic mean 0.003712 0.5113 0.3376 0.4724 0.2449

Quadratic mean 0.003715 0.5162 0.3452 0.4764 0.2465

Skewness -3.136 2.012 1.654 -0.1042 0.6119
Kurtosis 12.45 11.15 9.226 5.943 5.853

Sum 0.07428 10.29 6.85 9.503 4.919

TABLE 18: ANOVA test results for wind speed forecasting using the proposed algorithm compared to other deep learning
techniques over 20 runs.

SS DF MS F (DFn, DFd) P value
Treatment (between columns) 3.357 4 0.8392 F (4, 95) = 781.8 P < 0.0001
Residual (within columns) 0.102 95 0.001073 - -
Total 3.459 99 - - -

TABLE 19: Wilcoxon Signed Rank Test of wind speed forecasting results using the proposed algorithm compared to other deep
learning techniques over 20 runs.

ADPSO-Guided WOA TDNN DNN SAE BRNN
Theoretical median 0 0 0 0 0
Actual median 0.003729 0.5126 0.3372 0.4786 0.2446
Number of values 20 20 20 20 20

Wilcoxon Signed Rank Test
Sum of signed ranks (W) 210 210 210 210 210
Sum of positive ranks 210 210 210 210 210
Sum of negative ranks 0 0 0 0 0
P value (two tailed) 0.0001 0.0001 0.0001 0.0001 0.0001
Exact or estimate? Exact Exact Exact Exact Exact
P value summary **** **** **** **** ****
Significant (alpha=0.05)? Yes Yes Yes Yes Yes

How big is the discrepancy?
Discrepancy 0.003729 0.5126 0.3372 0.4786 0.2446

20 runs.

The ANOVA test results for wind speed forecasting based
on the proposed algorithm compared to other deep learning
techniques is shown in Table 18. The test of the Wilcoxon
Signed-Rank rest of the wind speed forecasting results based
on the proposed algorithm compared to other deep learning
techniques is also shown in Table 19. The results confirm
the superiority of the AD-PSO-Guided WOA based proposed

ensemble model and indicate the statistical significance of
the algorithm for the wind speed forecasting tested problem
compared to the TDNN, DNN, SAE, and BRNN techniques.

V. CONCLUSIONS

This paper uses a dataset of wind power forecasting as a case
study from Kaggle to predict hourly power generation up
to forty-eight hours ahead at seven wind farms. A proposed
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adaptive dynamic particle swarm algorithm with a guided
whale optimization algorithm improves the forecasting per-
formance of the tested dataset by enhancing the parameters
of the LSTM classification method. The AD-PSO-Guided
WOA algorithm selects the optimal hyper-parameters value
of the LSTM deep learning model for forecasting purposes
of wind speed. A binary AD-PSO-Guided WOA algorithm is
applied for feature selection and it is evaluated in comparison
with the GWO, PSO, SFS, WOA, FA, and GA algorithms
using the tested dataset. An optimized ensemble method
based on the proposed algorithm is tested on the experi-
ments’ dataset. The results of this scenario are compared
with NN, RF, LSTM, Average ensemble, and k-NN methods.
The statistical analysis of different tests is performed to
confirm the accuracy of the algorithm, including ANOVA and
Wilcoxon’s rank-sum tests. The current work’s importance
is applying a new optimization algorithm to enhance LSTM
classifier parameters. In future work, the proposed algorithms
will be tested for other datasets. The algorithm will also
be applied for other binary problems with a high number
of attributes for feature selection, classification problems,
and constrained engineering problems. The sparsity of the
proposed model will be evaluated and compared with other
methods including the sparse autoencoding methods.
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