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Wind power, as a new energy generation technology, has been applying widely and growing rapidly, which make it
become the main force of renewable energy. However, wind speed sequence has its own character of the intermittent and
uncertainty, which brings a great challenge to the safety and stability of the power grid, one of the valid ways solving
the problem is improving the wind speed predicting accuracy. Therefore, given atmospheric disturbances, we firstly used
empirical mode decomposition (EMD) to deal with the non-linear wind speed sequence, and combined with strong adaptive
and self-learning ability of BP neural network, then, a wind speed prediction model, EMD-BP neural network based on
Lorenz disturbance, was proposed. Finally, it was to made use of actual wind speed data to take a simulation experiment
and explored the improvement effect of the preliminary forecasting sequence of wind speed influenced by Lorenz equation in
the transient chaos and chaos. The results show that, the improved model weakened the random fluctuation of wind speed
sequence, effectively corrected the wind speed sequences initial prediction values, and made a great improvement for the
short-term wind speed prediction precision. This research work will help the power system dispatching department adjust
the dispatching plan in time, formulate the wind farm control strategy reasonably, reduce the impact brought by wind power
grid connection, increase the wind power penetration rate, and then promote the global energy power market innovation.

K e y w o r d s: short-term wind speed prediction, renewable energy, Lorenz system, empirical mode decomposition, BP
neural network

1 Introduction

Excessive consumption of fossil fuels has led to a sharp
drop in fossil energy reserves, aggravating environmental
pollution and abnormal weather. Developing and utilizing
clean renewable energy, and promoting countries towards
low-carbon and sustainable energy systems, are effective
ways to cope with the energy crisis and environmental
crisis.

At present, wind power as a green renewable energy
generation technology has been applied in the world. Ac-
cording to the global wind energy council (GWEC) in
2018 [1], in 2017, the wind power newly installed capac-
ity was 52.57 GW, and the cumulative installed capacity
was 539.581 GW, of which Chinas newly installed ca-
pacity reached 19.5 GW, accounting for 37.1% of the
total newly installed capacity, leading the world. In re-
cent years, the offshore wind power installed capacity
is on a steady increase, it has increased by 4.331 GW
in 2017. The cumulative installed capacity has reached
18.814 GW, a 30% increase over the cumulative in-
stalled capacity in 2016. However, wind power safety grid-
connected still faces some challenges, which is including
the instability of its output power and its influence on
power system operation. Accurate wind power prediction
is beneficial to the power dispatching department to make

the overall scheduling plan, alleviate the influence of wind
power instability on the power grid, and guarantee the
balance of supply and demand in the power grid. In the
meantime, wind power forecasting accuracy is also the
key to reduce the cost of wind power generation and keep
competitiveness in the power market [2]. Therefore, the
research of wind power development mostly focuses on
improving prediction methods of wind speed and power,
among which, wind speed prediction is not only basic
work but also key link.

The characteristics of the prediction object itself, data
processing methods and the prediction model perfor-
mance determine the wind speed prediction accuracy. The
random fluctuation characteristics that the wind speed
series show have a great influence on the prediction ac-
curacy. The larger the fluctuation amplitude is, the low
the prediction accuracy will be. Preprocessing the wind
speed series can mine the hidden information of the se-
ries and reduce the complexity of the series, and im-
prove the prediction model performance. Common data
processing methods include wavelet decomposition [3, 4],
principal component analysis [5], independent component
analysis [6], and empirical mode decomposition [7]. At
this stage, commonly used wind speed prediction meth-
ods include artificial neural networks [8–10], grey predic-
tion [11, 12], time series analysis [13–14], support vector
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machines [15, 16], and so on, in which, artificial neural
network not only has nonlinear fitting ability, but also
has the adaptive and self-learning characteristic, espe-
cially suitable for wind power prediction.

The wind formation is a typical nonlinear process in
the atmospheric system, and its inherent volatility brings
many difficulties to wind speed prediction. The atmo-
spheric dynamical system is a certain system, whose mo-
tion change laws are explained by a set of Lorenz equa-
tion. Changing the Rayleigh number of this equation, the
Lorenz attractor will exhibit four different motion pat-
terns. Reference [17] verifies the effectiveness and feasi-
bility of Lorenzs atmospheric disturbance system in im-
proving wind speed prediction accuracy. Reference [18]
discusses the compensation effect on the preliminary wind
speed forecast results using atmospheric disturbances
with different initial values. The Lorenz atmospheric dis-
turbance system has unique advantages in increasing the
wind speed forecasting accuracy. Thus, in the predic-
tion work, based on the Lorenz atmospheric disturbance
system, we consider changing the Rayleigh number, and
study the compensation effect the compensation effect of
the Lorenz atmospheric disturbance system under tran-
sient chaos and chaos on the initial wind speed prediction
value.

Simultaneously, Taking account of the strong nonlin-
ear characteristics of the wind speed sequence, we es-
tablished a wind speed prediction model with EMD-BP
based on Lorenz system. That is, through empirical mode
decomposition, the wind speed sequence can firstly be de-
composed into several empirical modal functions reflect-
ing the signal different scale characteristics and a resid-
ual term that represents a signal change trend, then, it
is to make a linear prediction for the remaining terms
and build the BP neural network prediction model for
each empirical mode function, which will greatly improve
the BP neural network prediction performance, finally,
Lorenz equation is used as an atmospheric disturbance
model to investigate the improving effect in different at-
mospheric motion states on wind speed prediction precise.

2 Empirical mode decomposition

and Lorenz system

2.1 Empirical mode decomposition (EMD)

Based on the local characteristics of the signal se-
quence time scale, EMD can adaptively decomposes the
signal without any basis functions pre-set. This is es-
sentially different from the Fourier decomposition and
wavelet decomposition methods. EMD is has unique
advantages in the processing of nonlinear and non-
stationary signals [19].

For a given original wind speed series {x(t)} , the steps
for empirical mode decomposition are as follows:

(1) Get the position and amplitude of all local maximum
and minimum values in the signal;

(2) The local maxima spline interpolation consists of the
upper envelope, and the local minima spline interpola-
tion composes the lower envelope, denoted by emax and
emin ;

(3) In each period t , calculating the average value of
upper and lower enveloping curve

u1 =
emax + emin

2
; (1)

(4) Subtracting the input signal in the average enveloping
line, namely l1(t) = x(t)−u1(t), which is the iteration of
the filtering process. The next step is checking if l1(t) is
an intrinsic modal function. While the difference of two
consecutive filters is less than a selected threshold SD,
the filtering process is stopped, and SD is defined as

SD =
T
∑

t=0

[

|l1(k−1)(t)− l1k(t)|
2

l21(k−1)(t)

]

(2)

where l11(t) = l1(t) − u11(t) and if this is k iterations,
then l1n(t) = l1(n−1)(t)− l1n(t).

(5) When the condition is satisfied, the intrinsic modal
function is defined as g1(t) = l1n(t).

After obtaining the intrinsic modal function g1(t), we
define the remainder as

s1(t) = x(t) − g1(t) .

(6) Take the above residual as the input signal, then
repeat the steps (1)–(6). Therefore, the result is

s2(t) = s1(t)− g2(t), . . . , sn(t) = sn−1(t)− gn(t) . (3)

When the residual does not contain any extreme points,
the empirical mode decomposition process is completed.
This means that the residual value can be a constant
or a monotonic function. The signal could be expressed
as the sum of the intrinsic modal function and the final
residual value

x(t) =
n
∑

i=1

gi(t) + sn(t) . (4)

2.2 Lorenz system

In the 1960s, when the American meteorologist
E. N. Lorenz studied the regional microclimate, starting
from the fluid convection model he extracted an atmo-
spheric convention model to represent the same motion
state, which is the famous Lorenz dynamic system. It is
regarded as the first dynamic system representing chaotic
state in the simplest way [18]. At the same time, the dif-
ferential equation (5) describes the chaotic state of the
nonlinear dynamical system in the easiest way [22].







ẋ = −σ(x− y) ,
ẏ = −xy + rx− y ,
ż = xy − bz .

(5)
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Fig. 1. Three-dimensional phase diagram in transient chaotic and chaotic(Lorenz attractor): (a) – the Lorentz attractor motion pattern
when r = 19, (b) – the Lorentz attractor motion pattern when r = 45

Table 1. The actual fluid motion of the Lorenz system in the different Rayleigh numbers

r > 1
r 0 < r < 1 r < 13.9656 13.9656 < r < 24.06 r > 24.06

Actual Heat Convection Regular Irregular

fluid motion conduction motion convection * turbulent motion

* after a long period of transient chaos

V (m/s)

0 500 20001000 t - 10 min

30

20

10

Fig. 2. The actual wind speed distribution recorded every 10 min-
utes in Chinese wind farm

In the formula, the state variable x, y, z , respectively
represent the convection motion amplitude, the temper-
ature difference between the rising and falling fluids in
the horizontal direction, and the deviation from the linear
case by the vertical temperature difference due to convec-
tion. Parameters σ, r, b are all the dimensionless positive
value, indicating the Prandtl number, Rayleigh number
and the parameter related to the size of regional climate
respectively.

Referencing the research of meteorologists Saltzman
and Lorenz, fixing the parameters σ, b as 10 and 8/3,
and making the initial value of the Lorenz equation un-
changed, it is changing the Prandtl number r to observe

how the Lorenz attractor motion state changes. The ac-
tual fluid motion of the Lorenz system in the different
Rayleigh numbers is shown in Tab. 1 [23].

The wind formation is a very typical nonlinear pro-
cess, so in this paper, we focus on the corrected effect of
the Lorenz disturbance sequence in the transient chaos
and chaos on the wind speed forecasting result. Figure 1
is the motion of Lorenz attractor in the case that the ini-
tial condition is (0.01, 1, 1), the parameters are σ = 10,

b = 8
3 , and the Rayleigh number is respectively r = 19,

r = 45. As it is shown in Fig.1, in the same initial con-
dition, Lorenz attractor in the transient chaos and chaos
exhibit completely different motions.

3 The modeling process of EMD-BP wind speed

forecasting model based on Lorenz disturbance

Wind speed sequence is a set of complex nonlinear time
series, which presents not only strong non-stationary, but
periodic variation laws with nesting different cycles. Em-
pirical mode decomposition (EMD) method with good
time-frequency localization properties, can adaptively de-
compose the original wind speed sequence into intrinsic
modal functions with local time-varying characteristics
and a residual, and better reveal the internal changing
rules of signals. The BP neural network with a strong
nonlinear fitting ability, can map the complex nonlinear
relationship at random, which is a significant wind speed
prediction modeling method. Lorenz System restores at-
mospheric motion status and effectively compensates pre-
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Fig. 3. The EMD decomposition results

liminary wind speed prediction results. In summary, in
this section, we combine the advantages of empirical mode
decomposition, BP neural network and Lorenz system to
establish the wind speed prediction model.

3.1 Data description

Wind speed data of Chinese wind farm is adopted to
carry out simulation experiment and verify the adaptabil-
ity of the research method for real wind speed sequences.
Figure 2 is wind speed distribution during a certain pe-
riod in China. From the figure, we see that, the maximum
wind speed is close to 30 m/s, but the minimum is only
close to 0 m/s, and the wind speed fluctuates very much,
obviously showing strong random fluctuations.

3.2 The EMD decomposition results

The original wind speed data was processed by empir-
ical mode decomposition, and the decomposition result is
shown in Fig. 3. The initial sequence was broken into nine
components. From IMF1 to IMF8 is the intrinsic mode
function, whose frequency fluctuation reduced in turn,
and the fluctuation range is smaller than the original se-
quence, in addition, it reflects different scale features of
wind speed sequences. The purple curve in the last graph

of Fig. 3 indicates the residual term, describing the wind
speed trend information.

3.3 The wind speed prediction model of EMD-BP neu-
ral network

As Fig. 3 shows, eight intrinsic mode functions has
nonlinear characteristics. So, the BP neural network with
strong nonlinear fitting ability is used to establish the
appropriate three-layer neural network for each intrinsic
modal function, getting the forecast result of each IMF
component. Fitting the true and measured values of each
component to test the BP neural network prediction abil-
ity. The real value and measured value of each component
are fitted to test the predicting capacity of BP neural net-
work, and the fitting effect is shown in Fig. 4. The hori-
zontal axis indicates the true value. As Fig 4 shows, the
vertical axis is the predicted value, the green plus sign
is the predicted value, and the black straight line is the
regression line. Graphs (a)–(h) from Fig. 4 describe the
fitting effect between forecasting values and real values of
the IMF component, the effect is better with the sequence
fluctuation becoming smaller, That is to say, the predic-
tion ability of BP neural network becomes better with the
sequence fluctuation becoming smaller. The fitting effect
of between forecasting values and real values of the wind
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Fig. 6. The Lorenz comprehensive disturbance series produced by
the Lorenz equation and the Lance-Williams distance

speed sequence is shown in graph (i), the dispersed range
of the prediction result is pretty large, and is not close
to the regression curve, so the BP neural network’s pre-
diction ability for each component is significantly higher
than that of the original wind speed sequence.

3.4 The Lorenz comprehensive disturbance flow

From Fig. 1, it can be seen clearly that Lorenz attrac-
tor in transient chaos and chaos have different forms un-
der the same initial conditions. The wind formation shows
typical nonlinear feature. Therefore, in the different mo-
tion state of transient chaos and chaos, we investigate
the compensation effect of Lorenz disturbance sequence
on the initial wind speed prediction values.

3.4.1 S o l v i n g t h e L o r e n z e q u a t i o n

Fixed the initial value is C0(0.01, 1, 1), parameter

σ = 10, b = 8
3 , let Rayleigh number r = 19 and r = 45 to

determine the two kinds of motion patterns: the transient
chaos and the chaos, and obtain two sets of disturbance
variables, as shown in Fig. 5. It can be seen that under
the transient chaotic and chaotic states, each component
exhibits random fluctuation characteristics and changes
with time and the curves are very different.

3.4.2 T h e f o r m a t i o n o f t h e L o r e n z
c o m p r e h e n s i v e d i s t u r b a n c e f l o w
(L C D F)

The wind speed is a positive number, and we solve
the Lorenz equation to get a three-dimensional random
variable, that is the Lorenz disturbance variable. In or-
der to solve the problem of non-uniform dimensions, we
introduce Lance distance (LD) as a mapping function to
reduce the dimension of disturbance variables. It can map
the three-dimensional disturbance variable to the dis-
tance function, which calls the Lorenz comprehensive dis-
turbance flow (LCDF). To eliminate the influence of three
disturbance variable in different dimension, data need to
be standardized before calculating Lorenz comprehensive

disturbance flow [24, 25]. The standardized formula is as
follows

x̆t =
xt − x

σx

, y̆t =
yt − y

σy

, z̆ =
zt − z

σz

(6)

where the numerical solution of the Lorenz equation is ex-
pressed as xt , yt , zt , t = 1, 2, . . . , n , x , y , z indicate the
mean value, and σx , σy , σz indicate the standard devi-
ation. In order to facilitate the unification of the written
symbols, the standardized data (x̆t, y̆t, z̆t) is marked as
(xt, yt, zt). The Lance-Williams distance is defined as

dL(Ct, C0) =
|xt − x0|

xt + x0
+

|yt − y0|

yt + y0
+

|zt − z0|

zt + z0
(7)

where the motion state at a certain moment in the Lorenz
system is Ct(xt, yt, zt), and C0(x0, y0, z0) is the initial
value.

Based on the formulae (5)–(7), the three-dimensional
disturbance variables in the Lorenz system will be inte-
grated into one-dimensional random variables, resulting
in Lorenz Comprehensive Disturbance Flow (LCDF), the
distribution is shown in Fig. 6. The LCDF sequence ex-
hibits random fluctuation characteristics.

3.5 The modeling steps EMD-BP of emd-bp wind speed
forecasting model based on Lorenz disturbance

Based on the above EMD-BP wind speed forecasting
model and Lorenz atmospheric disturbance system, we
will obtain a detailed modeling process for the EMD-
BP wind speed forecasting model based on the Lorenz
disturbance, and named this model as the LD-EMD-BP
model.

Step 1: The original wind speed sequence decomposition.
Using EMD method decompose the original wind speed
series {x(t)} to obtain several IMF components with
different frequencies and the remainder r(t) reflecting
the trend of wind speed series;

Step 2: The IMF Components prediction. According to
each IMF component characteristic, the optimal BP pa-
rameters are respectively searched to establish the BP
model that can best fit the IMF component, and each
IMF component is predicted to obtain the forecasting
value y1, y2, . . . , ym ;

Step 3: The remainder r(t) prediction. The remainder
r(t) belongs to a more stable time series and is nearly
linear. Therefore, the linear prediction model is used to
fit the remainder to obtain the predicted value ym+1 ;

Step 4: The initial wind speed prediction value is ob-
tained by superimposing the IMF component prediction
value and the remainder prediction value vt ;

Step 5: The correction influence of the Lorenz integrated
perturbation flow on vt . In order to minimize the root
mean square error (RMSE) between the predicted series
and the real series, a disturbance modification formula
is used to impose a disturbance enhancement on the
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Fig. 7. The flow chart of LD-EMD-BP wind speed prediction model

initial wind speed prediction results. The disturbance
correction formula is shown as

V (v1, . . . , vn) = v(v1, . . . , vn) + LD(l1, . . . , ln) . (8)

In (8), V (v1, . . . , vn) indicates the preliminary wind
speed prediction values; v(v1, . . . , vn)+LD(l1, . . . , ln) in-
dicates the preliminary wind speed prediction values. The
parameter LD(l1, . . . , ln) is the applied Lorenz distur-
bance sequence, defined as

LD(l1, . . . , ln) = β × L(l1, . . . , ln) . (9)

In (9), the parameter β is the disturbance coefficient. Its
positive and negative values indicate the positive and neg-
ative reinforcement effects of the disturbance sequences
respectively. The parameter L(l1, . . . , ln) is a contiguous

sequence in the LCDF disturbance sequences, showing
the disturbance intensity. The parameter n is the predic-
tion sample number.

Step 6: Error Analysis. Use the mean absolute error
(MAE), the root mean squared error (RMSE) and the
mean absolute percentage error (MAPE) comprehensi-
bly evaluate the forecasting results.

MAE =
1

k

k
∑

t=1

|V (t)− V̂ (t)|

RMSE =

√

√

√

√

1

k

k
∑

t=1

(V (t)− V̂ (t))2 (10)

MAPE =
1

k

k
∑

t=1

∣

∣

∣

V (t)− V̂ (t)

V (t)

∣

∣

∣
× 100
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Fig. 10. The LD-EMD-BP model prediction error curve

In the three equations above, the parameter V (t) is

the original wind speed data and the parameter V̂ (t)
indicates the wind speed prediction value. According to
the above modeling steps, the modeling flow chart of the
LD-EMD-BP wind speed prediction model is shown in
Fig. 7.

4 LD-EMD-BP model wind

speed prediction results analysis

4.1 The optimal disturbance coefficient and disturbance
intensity

The method calculating the optimal disturbance co-
efficient and disturbance intensity is shown in this arti-
cle. To achieve the goal than the root mean square error
(RMSE) between the primary prediction sequences and
the real sequences is minimized, the optimal disturbance
coefficient and perturbation intensity of the LD-EMD-
BP model are obtained through two-dimensional network
search, as shown in Fig. 8. The optimal disturbance co-
efficients in the transient chaotic and chaotic states are

0.449 and 0.5306 respectively, which are positive num-
bers, indicating that the preliminary wind speed predic-
tion values is smaller than original wind speed values,
and a positive disturbance correction sequences needs to
be applied. However, the two optimal perturbation curves
are nearly symmetric. Under different motion conditions,
the difference in the applied perturbation curves is large.

4.2 wind speed forecasting results

According to the preliminary wind speed prediction
model and the obtained optimal disturbance coefficient
and disturbance intensity, the wind speed prediction
curve of LD-EMD-BP can be obtained, as shown in Fig. 9.
The horizontal axis indicates the prediction period and
the vertical axis shows the wind speed value. The black
curve is the original wind speed sequences. The brown
dashed line is the BP neural network wind speed fore-
casting results. The purple dashed line is the EMD-BP
neural network wind speed forecasting result. The green
solid line is the prediction result of the disturbance cor-
rection in the transient chaotic state, and the blue solid
line is the prediction result of the disturbance correction
in the chaotic state. The wind speed forecasting curves
of the BP neural network model and EMD-BP model
are all below the original wind speed curve and can de-
scribe the wind speed sequences trend. However, the wind
speed forecasting curve of the EMD-BP model is closer
to the original wind speed sequences, and the presented
trend is basically the same as the original wind speed se-
quences, which fully shows that EMD decomposition can
improve the BP neural network prediction performance.
The wind speed prediction curve of the EMD-BP model
is below the original wind speed curve, and a positive

perturbation sequence is applied to make it more in line
with the original wind speed movement. The green solid
line and blue solid line represent the wind speed predic-
tion results modified by Lorenz’s disturbance, the Lorenz
disturbance sequences under the transient chaos and the
chaos have big differences, but the modified LD-EMD-BP
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model maintains the trend of the original wind speed se-
quences and is numerically closer to the actual wind speed
sequences. This fully illustrates that the disturbance se-
quences obtained by the Lorenz equation under different
motion states weaken the randomness of the original wind
speed sequences to a certain extent, and obtain reliable
prediction results, improving the wind speed forecasting
accuracy.

4.3 Error analysis for wind speed prediction models

The prediction error of each model is obtained based
on the prediction result and the actual wind speed. The
error curve is shown in Fig. 10. The black curve represents
the error of the BP neural network prediction model, and
the purple curve represents the error of the EMD-BP
model. Most of the two curves are below y = 0. The
black curve fluctuates between −4 m/s and 1 m/s. Pur-
ple curve fluctuates between −2.5 m/s and 1 m/s. The
fluctuation range of the purple curve is smaller than that
of the red curve. The EMD decomposition can effectively
improve the BP neural network prediction performance.
The green curve and the blue curve respectively represent
the error of the modified wind speed prediction curve by
the disturbance sequence under the transient chaos and
the chaos. Both curves fluctuate around y = 0, and the
fluctuation range is small. This fully shows that the dis-
turbance sequences under the transient chaos and chaos
states have a good correction influence on the preliminary
wind speed prediction results.

Table 2. The wind speed prediction model error statistics

Wind speed
BP EMD-BP

LD-EMD-BP

prediction model r = 19 r = 45

MAE(m/s) 1.8915 0.9404 0.4232 0.4199

RMSE(m/s) 2.0172 1.0438 0.5963 0.5539

MAPE(%) 33.19 16.81 7.51 7.4

The mean absolute error (MAE), the root-mean-
square error (RMSE) and the absolute mean percentage
error (MAPE) were applied to evaluate the predicted re-
sults comprehensively. Table 2 shows the specific predic-
tion accuracy of each model. The three error indicators
of the BP neural network model are larger than those of
the EMD-BP model, and the three error indicators of the
EMD-BP model reduces by more than 50%. At the same
time, the error indicators of the BP and EMD-BP models
are far greater than the prediction accuracy of the LD-
EMD-BP model. This not only fully indicates that after
the EMD processes, the prediction BP neural network ef-
fect is significantly improved, but also illustrates the good
improvement effect of the Lorenz disturbance sequences
on the preliminary wind speed prediction. Compared with
the MAE of BP neural network, the LD-EMD-BP models

with r = 19 and r = 45 decreases by 77.6% and 77.8%

respectively, The RMSE decreased by 70.4% and 72.5%,

and the MAPE dropped by at least 25.68%. These data

objectively show that EMD decomposition effectively im-

proves the BP neural network prediction performance and

the introduced Lorenz system significantly improves the

preliminary wind speed prediction results and the model

prediction accuracy. For two different atmospheric mo-

tion modalities, the Lorenz equation has different effects,

but all of them modify the preliminary wind speed predic-

tion sequences to some extent, and obtain more accurate

prediction results.

5 Conclusion and prospection

With the continuous innovation of new energy tech-

nologies, the cost of renewable energy is rapidly declining,

and the proportion of new energy sources in the global en-

ergy structure is increasing, the world energy landscape

is transforming and updating. The extensive use of new

energy sources will reduce the exploitation rate of fossil

energy sources, ease carbon emissions, and reduce envi-

ronmental pressures caused by energy consumption. In

the new energy power generation systems based on wind

power and solar energy, wind power is the most mature

and most cost-competitive green energy power source.

The inherent random volatility of wind energy will

inevitably affect the stability of wind power grid con-

nection, thus limiting the wind power large-scale devel-

opment, and improving wind speed prediction accuracy

is a necessary link to ensure the wind farm safe opera-

tion. Therefore, this paper adopts wind speed data from

the Chinese wind farms, introduces the Lorenz distur-

bance models under two kinds of movement patterns,

improves the EMD-BP model, eliminates the random-

ness of the wind speed sequences, significantly improves

the wind speed prediction accuracy, and promotes wind

power large-scale grid-connected, and provides effective

protection for new energy generation replace traditional

energy generation. In view of the significant improvement

consequent of the Lorenz disturbance system for the wind

speed prediction result, in the next research work we will

continue to consider the influence of the Lorenz atmo-

spheric disturbance model on the wind power prediction

based on other numerical algorithms, and further improve

the prediction accuracy.
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