WIND-TUNNEL INVESTIGATION OF EFFECTS OF
 TRAILING-EDGE GEOMETRY ON A NASA SUPERCRITICAL AIRFOIL SECTION

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION. LANGLEY RESEARCH CENTER LANGLEY STATION, VA

SEP 1971

THIS PAGE IS UNCLASSIFIED

ERRATA

NASA Technical Memorandum X-2336
WIND-TUNNE'L INVESTIGATION OF EFFECTS OF TRAILING-EDGE GEOMETRY ON A NASA SUPERCRITICAL AIRFOIL SECTION

By Charles D. Harris

September 1971
Pages 37 to 49, pages i4 and 75: Section drag coefficients, c_{d}, in figures 9, 10 , and 11 and the representat:re wake profiles, $\frac{\Delta p_{t}}{q}$, of figures $1: 3$ and 14 from which the section drag cuefficients were derived are incorrect because of an erroneous instrumentation sensitivity constant. Correct drag levels are roughly 8 percent greater than indicated. Since only the absolute drag levels a:e affecied, incremental drag effects are essentially unchanged and the discussion and conclusions pertaining to these figures are unaffected.

WIND-TUNNEL INVESTIGATION OF EFFECTS OF TRAILING-EDGE GEOMETRY ON A NASA SUPERCILIICAL, AIRFOIL SECTICN*

By Charles D. Harrta
Langley Research Center

SUMMARY

Wind-tunnel tests have 'oeen conducted at Mach numbers from. 0.60 to 0.81 to determine the effects of trailing-edge geometry on the aerodynamic characteristics of a NASA supercritical airfoil shape. Variations in trailing edge thickne'sses from 0 to 1.5 percent of the chord and a cavity in the trailing edge were investigated with airfoils with maximum thicknesses of 10 and 11 percent of the chord.

Comparison of supercritical airfolls of slightly different maximum thicknesses at the design normal-force coefficient implied that increasing trailing-edge thickness yielded reductions in transonic drag levels with no apparent penalty at subcritical Mach numbers up to a trailing-edge thickness of about 0.7 percent. Increases in both subsonic and transonic drag levels appeared with further increases in trailing-edge thickress. The relationship between the optimum airfoil trailing-edge thickness and the uppersurface boundary-layer-displacement thickness at the trailing edge is recognized and discussed, and a general design criterion for trailing-edge thickness is offered. In addition, smali drag improvements were realized when the airfoil with a trailing-edge thickness o: 1.0 percent was modified to irclude a cavity in the trailing edge.

INTRODUCTION

Design philosophy of the NASA supercritical airfoil requires that the trailing-edge slopes of the upper and lower surfares be equal. This requirement serves tc retard flow senaration by reducing the pressure-recovery gradient on the upper surface so that the pressure coefficients recover to only slightly positive values at the trailing edge. For an airfoil with a sharp trailing edge, such restrictions result in the airfoil being structurally thin over the aft region.

Because of this structural objection to sharp trailing edges and the potential aerodynamic advantages of thick trailing edges at transonic speeds (discussed, for example,
in reis. 1 and 2), an exploratory investigation was made during the early tevelopment phases of the supercritical airfoil to determine the effects on the aerodyiamic characteristics of thickening the trailing edge. Increasing the trailing-edge thickuess of an interim 11-percent-thick supercritical airfoll from 0 to 1.0 percent of the chord resulted in significant decreases in wave drag at transonic Mach numbers; however, these decreases were achieved at the expense of higher drag at subcritical Mach numhers.

Advantages of thick trailing edges at transonjc Mach numbers were real and significant, but practical application would appear to depend on whether the drag penalty at subcritical Mach numbers could be reduced or eliminated. Two questions naturally arose: What would the optimum trailing-edge thickness be for the supercritical airfoil and could the drag penalty at the subcritical Mach numbers due to the thickened trailing edge be reduced by proper shaping of the trailing edye?
la order to investigate more comprehensively the effects of trailing-edge geom. etry, a refined 10 -percent-thick supercritical airfoil was modified to permit variations in trailing-edge thickness and contour. Trailing-edge thicknesses of $0.7,1.0$, and 1.5 percent and a trailing-edge cavity were investigated.

Results of these trailing-edge variations and also the results of the investigation invelving the interim 11-percent-thick airfoil are reported herein.

SYMBOLS

Values are given in both SI and U.S. Customary Units. The measurements and calculations were made in U.S. Customary Units.
$\mathbf{C}_{\mathbf{p}} \quad$ pressure coefficient, $\frac{\mathbf{p}_{\mathbf{L}}-\mathbf{p}_{\infty}}{\mathbf{q}_{: c}}$
$C_{p, \text { sonic }}$ pressure coefficient corresponding to local Mach number of 1.0
c chord of airfoil, cm (inches)
$c_{d} \quad$ section drag coffficient,$\quad \sum c_{d}^{\prime} \frac{\Delta z}{c}$
$c_{d}^{\prime} \quad$ point drag coefficient (ref. 3), $2\left(\frac{\rho_{1}}{\rho_{2}}\right)^{1 / 2}\left(\frac{q_{1}}{q_{\alpha}}\right)^{1 / 2}\left[\left(\frac{\rho_{2}}{\rho_{\infty}}\right)^{1 / 2}-\left(\frac{q_{2}}{q_{\infty}}\right)^{1 / 2}\right]$
$c_{m} \quad$ section pitchiny-moment coefficient,
$\sum_{i}^{5} C_{p} \frac{\Delta x}{c}\left(0.25-\frac{x}{c}\right)-\sum_{j} C_{p} \frac{\Delta x}{c}\left(0.25-\frac{x}{c}\right)$
c_{n}

M
m
p
q

R
t
α
$\rho \quad$ density, $\mathrm{kg} / \mathrm{m}^{3}$ (siugs $/ \mathrm{ft}^{3}$)

Subscripts:

1 local point on airfoil
l lower surface
$\max \quad \operatorname{maximum}$
te
trailing adge
u
upper surface

1,2 flow stalions designated in figure 1

APPARATUS AND TECHNIQUES

Much of the apparatus ard many of the testing techniques used during the present investigation are similar or identical to those described in reference 4. The descriptions, when applicable, are repeated herein for completeness and convenience.

Wind Tunnel

The investigation wass performed in the Langley 8 -foot transonic pressure tunnel. This tunnel is a single-return, rectangular wind tunnel with controls that allow for the independent variation of Mach number, stagnation pressure, temperature, and humidity. The upper and lower test-seciion walla are axially slotted to permit testing through the transonic-speed range w ith minimum effect.s of choking. The slot width at the position of the model, designed on the basis of reference 5 , to minimize solid-bluskake interference, averaged about 5 percfint of the width of the upper and lower walls. A more complete description of the Langley 8 -foot transonic pressure tunnel may be found in reference 6 .

The solid side walls and slotted upper and lower walls make this tunnel well suited to the investigation of two-dimensional models since the side walls act as end plates while the slots permit development of the flow field in the vertical direction.

Model

Airfoil shape. - Recent research in aeronautics has led to the development of an air foil shape which delays, at the usual cruise lift conditions, the subsonic drag rise well beyond the critical Mach number. This unique airfoil concept, known as the supercritical airfoil, has demonstrated in three-climensional wind-tunnel-model appliciation poteritial for substantially improved performance and significant economic advantage over present-day subsonic commerial jet transports. While it is not the primary purpose of this yaper to report the charaitisistics of the supercritical airfoil itself, a brief discussion of some of its fundamental features may prove helpful in understanding the nressure distributions presented herein and in explaining the effects of the various trailing-euge nodifications.

This airfoil, developed on the basis of intuitive reasoning and substantiating windtunnel experimentation and shaped to reduce the drag associated with energy losses due to shock waves and flow separation, is characterized by a large leading-ed;ie radius, flattened upper surface, and highly cambered trailing edge. Early design philosonhy which led to the development of the supe.critical airioil inclucied a slotted tralling edge and is discussed in references 4 and 7 . The slotied trailing edge permitted high-energy flow
from the calabered lower suriace tc mix with the lower energy flow across the top of the airfoil. The slot, structurally complicated and sensitive to small deformities i.l shape, was eliminated when, in later unpublisied developmental testing, it was shown that a highly cambered, properly shaped, unslotted trailing edge did not significantly degrade performance potential.

When the flow over an airfoll exceeds a local Mach number of 1 , a region of super so:uc flow extends vertically over the airfoil ind usually terminates in a shock wave. The shock wave on conventional airfoil 3 becomes increasingly stronger with associated increases in drag as the free-stream Mach number is increasod. In addition, the strong, adver::e-pressure gradient associated with the growth of the shock wave is likely to give rise 10 boundary-layar separation whicl resuifts in an abrupt drag rise.

The supererilical airfoi'. In contanst, is shaped so the expansion waves fron the leadints ecge are reflected from the sonic line as a series of compression waves; thus, isentrcpic recompression in the supersonic flow downstream is encouraged and t_{1}.e strength of the shock wave is minimized. The essential geometric feature of such uppersurface shaping is an abrupt change from relatively high curvature at the leading edge to relatively low survature downstream and can be achieved with a large leading-edge radius.

Another ienture of the upper surface of tife supercritical airfoil is the shaping of the aft portion to produce a short region of near-sonic velocity immediately behind the shock wave at design conciltions. Such a plateau has been found desirable to permit the flow to stabilize jefore going through its final compression at the trailing edge and alsu to prevent disturbances from propagating forward and strength ninf the shock wave. Care must be excrcised, however, that the curvature required to produce such a near-sonic plateau does nct generate such an expansion at off-design conditions that a second shock wave is formed which would tend to separate the flow over the rear portion of the airfoil.

The lower surface is generally shaped to prevent supercritical velocities on the lower surface which would lead to shock-wave formation and boundary-layer separation and also to provide a highly cambe:ed trailing edge tc compensate for the reduced lifting capacity of the relatively lightly cambered fore and mid region of the airfoll.

Because oi the substantial lift generated over the rear portion of the airfoil, section pitching moments are relatively high compared with those of conventional airfoils. Unpublished wind-tunnel iests of three-dimensional swept-wing models incorporatine the supercritical airfoil concept have shown that with the wing twist necessary to achieve the proper span load distribution, the overall wing pit^hing; moments do not differ significantly from those of conventional airplanes. Trim-drag probiems would therefore not be anticipated.

Wind-tunnel models-- Airfoll number designations used in the following discussion are those assigned as part of the overall supercritical-airfoil develonment-program numbering system and are noted for identificatior. purposes only.

For the exploratory investigation inentioned in the introduction, the iower surface of an interim supercritical airfoil with a maximum thickness of 11 -vcent and sharp irailing edge (designated as supercritical airfoil 4) was rotated downirard about the 64 -percent chord linc so that the trailing-rdge thickness was 1.0 percert (referred to as a 1.0 -percent-thick blunt trailing edge). Changing the trailing-edge thickness in this nanner tncreased the aft camber of the airfoil without disturbing the shape of the upper su.face. The resultant âisfoll was designated as airfoil 5. Sketches of both airioils are show'n in figure 2, and coordinates are prosented in table I. Figure 2(a) also illustrates the st.ructural depth advantages of the thicker trailing edge on the supercritical airfoil.

In order to further define the effects of trailing-edge geometry, a refined super critical aid:nil with a maximum thickness of 10 percent, it blunt trailing-edge thickness of about 1.0 perceni, and trailing-edse slopes of -0.37 (designated as supercritical airfoil 9 and described in tal!e m vis modified to : 2rmit variations in trailing-edge thickness. The airfoil with a naximum thickiess of 10 p\lrcorner rcent was fe', to be more representative of the midsemispan region of present-day trarsports. For convenience, the lower suriace of the airfoil was hinged along the 69.2 -perceni chord line to permit variations in trailing-edge thickness and resulted in an open cavity between the upper and lower surfaces. Changing trailing-edge thickness in this manne: minimized surface discontinuities since the center of rotation was near the lower-surface inflection point. Trailing-edge thickness was maintained by spacers placed at intervals along the spin and the cavity filled with wooden inserts snaped to the desired trailing-edge contours. The contour of the trailing edge was choser, somewhat arbitral:ily but bears strong resemblance to the cusp-cavity describer by Ringleb (snow cornice geometry) in reference 8.

Four traili,g-edge geometries were investigated: a blunt traiiing edge with $(t / c)_{t e}=1.0$ percent (airfoil 9); and a trailing edge with a cavity with $(t / c)_{r e}=1.0$, 1.5 , and 0.7 percent (airfoils $9 \mathrm{a}, 10$. and 11 , respectively). Sketches of these airfoils are shown in figure 2(b).

The models, mounted in an inverted position, completely spanned the wiath of the tunnel except for small clearances at each wall. This clearance permitted the angle of attack to be changed manually by rotating the model abcut pivots in the tunnel side walls. Sketches of an airfoil mounted in the tunnel and the profile-d:ag rake are shown in figure 3, and a photograph of the airfoil and profile-drag rake mounted in the tunnel is shown in figure 4.

Boundary-layer transition.- Transition was fixed in an attempt to simulate fullscale Reynolds number boundary-layer and shock-wave characteristics. From consider. ation of the techniques discussed in references 9 to $11,0.25-\mathrm{cm}$-wide (0.10 -inch) bands of distributed roughness (No. 90 carborundum grains) were applied asong the 28 -percentchord line on both the upper and lower surfaces to simulate the full-scale Reynolds;
narabers shown in figure 5. The simulation is limited on the upper suriace to those conditions in which the shock wave occurs behind the transition location, that is, to the hirher test Mach numbers. Full-scale simulation on the lower surface wouid be valid through the Mach number range of the investigation since the lower surface of the airfoil is shock free. Because the techniques on which this grit arsangement was based require that laminar flow be maintained ahead of the trip, the airfoil was painced and then sanded until it was extremely smonth.

Caution should be exercised when comparing the present results to results from earlier supercritical airfoil investigations since transition grit size and location used during earlier phases of the supercritical development program differed from that described above.

Measurements

Surface-pressure measurements.- The lift and pitching moments acting o: the airfoils were determined from surface-pressure measurements. The wing was ins'rumented with flush-suriace static-pressure orifices distributed in streamwise rows on the upper and lower suriaces approximately 0.32 c frum the center line of the tunnel. The orifices were concentrated near the leading and trailing edges of the airfoil to betier define the severe pressure gradients in these regions. In addition, a rearward-facing pressure orifice was included in the trailing edge of the airfoil (identified at an upper-surface x / c location of 100 percent). Pressures were measured with the use of electronically actuated differential pressure-scanning-valve units. The maxiaun ranges of the transducers in the valves were $\pm 68.9 \mathrm{kN} / \mathrm{m}^{2}\left(10 \mathrm{lb} / \mathrm{in}^{2}\right)$ for the tpper surface and $\pm 51.7 \mathrm{kN} / \mathrm{m}^{2}$ ($7.5 \mathrm{lb} / \mathrm{in} 2$) for the lower surface.

Wake measurements.- The drag forces acting on the airfoil, as measured by the momentum deficiency within the wake, were derived from vertical variations of the total and static pressures measured across the wake with the rake shown in figure 3 (b). The rake was positioned in the vertical center-line plane of the tumel approximately 1 chord length rearward of the trailing edge of the airfoil. The total-pressure tubes were flattened horizontally and closely spaced vertically (0.36 percent of airfoil chord) in the region of the wake associated with skin-friction and boundary-layer losses. Outside this region, the tube vertical spacing progressively widened until in the region above the wiok where only shock losses were anticipated, the total-pressare tubes were sfaced approximateiy 7.2 percent of the chord apart. The static .ressure tubus were distributed as shown in figure 3(b). The rake was attached to the conventional sting mount of the tunnel, which permitted it to be moved vertically during the investlgation to center the close concentration of tubes on the boundary-layer wake.

The total-head and static pressures were also measured with the use of electronically actuated differential-pressure scanning va!ves. The range of the transducer in the valve connected to total-head tubes intended to measure losses in the boundary-layer wake was $\pm 17.2 \mathrm{kN} / \mathrm{m}^{2}\left(2.5 \mathrm{lb} / \mathrm{in}^{2}\right)$; the corresponding range for measuring shock and static pressure losses was $\pm 6.89 \mathrm{kN} / \mathrm{m}^{2}\left(1 \mathrm{lb} / \mathrm{in}^{2}\right)$.

Reduction of Data and Corrections

Pressure measuremerts.- Airfoll-section normal-force alıi pitciting-moment coefficients were obtained by machine integration of the local-pressure coefficients.

Wake measurements.- To obtain section drag coefficients from the total and static pressures behind the model, point drag coefficients for each of the total-pressure measurements were computed by using the procedure of reference 3 and theli summed by machine integration across the wake. Because of the special spacing of the total-pressure tubes, the errors of the results obtained by this procedure are estimated tc be less than 1 percent.

Corrections for wind-tunnel-wall effects. - The major interference effect of the wind-tunne! walls was an upflow at the position of the inverted model. This upflow, proportioned to the normal-force coefficient, would cause the aerodynamic angle of attack to be significantly less than the gevemetric angle of attack at the higher normal-force coefficients with attendant increases in the slope of the cuive for normal force as a function of angle of attack. The mean value of this upflow at the midchord of the model, in degrees, may be estimated by the theory of reference 5 to be approximately 3.0 times the section normal-force coefficifnt. Based on experience in other two-dimensional tests in the 8 -foot transonic pressure tunnel, however, such a correction is believed to be unrealistically large. Because if this uncertainty and since the forces and moments were obtained by surface-pressure and wake measurements which would be unaffected by angular corrections, the angles of attack used in the results presentad herein have not been corrected for such effects.

The upflow at the inverted model would vary slightly from the leading edge to the trailing edge of the airfoil, as discussed in reference 12. No corrections have been applied to account for this variation since it would be quite small compared with the curvature of the inciuced streamlines and, therefore, probably have only secondary effects on the characieristics of the mondi.

The theory of reference 5 also indicates that tunnel-wall-blockage effects would be small; consequently, no corrections have been applied to the data to account for blockage effects.

TEST CONDITIONS

Tests were conducted at Mach numbers from 0.60 to 0.81 for stagnation pressures nf $0.1013 \mathrm{MN} / \mathrm{m}^{2}$ (1 atm) with resultant wind-tunnel Reynolds numbers based on the air foil chord, as shown in figure 5 . The stagnation temperature 0 . the tunnel air was antomatically controlled at approximately $322^{\circ} \mathrm{K}\left(120^{\circ} \mathrm{F}\right)$ and dried until the dewpoint temperature in the test section was reduced sufficiently to avoid condensation effects.

PRESENTATION OF RESULTS

The comparison of the aerodynamic force and moment characteristics of the interim supercritical airfoil with trailing-edge thicknfsses of 0 and 1.0 percent is presented in figure 6, with the drag-rise characteristics summarized in figure 7 for the design normalforce coefficient of 0.7 . The normal-force coefficient of 0.7 was chosen as the design goal since, when account is taken of the sweep effect, it is representative of lift coefficients at which advanced technology transports utilizing the supercritical airfoil concept are expected to cruise. Representative eifects of trailing-edge thickress on airioll pressure distributions and wake profiles are presented in figure 8.

Aerodynamic force and moment cuefficients of the refined 10-percent-thick airfoil with a 1.0 -percent-thick trailing edge with cavity (airfoil 9a) are presented over an extensive angle-of-attack range in figure 9 . The aerodynamic characteristics of the refined a'rfoll with the various trailing -edge geonietries investigated are compared in figure 10 over an abbrevlated angie-of-attack range near the design normal-force coefficient of 0.7 , with the drag-rise charanteristics fur the various trailing-edge geometries summarized in figure 11. Airfoll chordwise pressure distributions are compared in figure 12 and rep-esentative wake-profile measurements are presented in figures 13 and 14.

DISCUSSION

Increasing the trailing-edge thickness of an interim 11-percent-thick airfoil rom 0 to $\mathbf{1 . 0}$ percent produced significant decreases in wave drag at transonic Mach numbers for the design normal-force coefficient; however these decreases were achieved at the expense of higher drag at subcritical Mach numbers. These results focused attention on the geomutry of the trailing edge, and the following sections discuss results of an investigation which further defined the effects of trailiiz-edge thickness and shape.

Variations in Trailing-Edge Thickness

The incremental decrease in the drag level at $M=0.60$ resulting from decreasing the trailing-edge thickness of the 10 -percent-thick airfoil from 1.0 percent to 0.7 percent
(fig. 11) approximately equals the increase in drag due to increasing the trailing-edge thickness of the 11 -percent-thick airfuil from 0 to 1.0 percent (iig. 7). Although aeither the drag levels nor the drag increments can be directly compared because of the difference in maxinumi thicknesses, the implication is that the traling-edge thickness may be increased from 0 to approximately 0.7 percent, with significant improvements in the development of wave losses at transonic speeds, without incurring profile-drag penalties at subsonic Mach numbers. Further increases in trailing-edge thickness beyond approx imately 0.7 percent adve :sely affect botio the subscnic and transonic drag levels. The pressure distributions of figure 12 generally show a rearward movement of the uppersurface shock posit on and increases in the magnitude of the off-design second velucity peak with increases in trailing-edge thickness beyond 0.7 percem. In addition, the uppersurface pressure coefficients near the trailing edye become increasingly negative as the tralling-edge thickness increases, indicative of increased separation in this segion.

The peak in the drag-rise curve at $M=0.78$ (fig. 11) was due to the second region of supersonic flow on the upper sirface of the airfoil developing to such an extent that a secord shock wave was requirad to reduce the supersonic flow to subsome flow downstream. (Compare the airfoli pressure distribution and wake-shock losses for $M=0.76$ to those for $M=0.78$ i.i figs. 12 to 14.) Local Mach numbers in this second region of supersonic flow were on lhe order of those near the leading edge fow $M:=0.7 c$. These efiects may be related to the increased aft camber resulting from the mariner in which the trailing-edge thickness was increased. It is probable that the peak at $M=0.78$ could be reduced by slightly reducing the aft camber of tue airfoil while maintaining the same trailing- "dge thicknesses. Such a reduction in camber could be accomplished by reducing the value of the trailing-edge slope in the as yet unpublished equations defining the NAS'i supercritical airfoil.

As the Mach number was increased to 0.79 , the forward shock mered rearward (see fig. 12): thus, the magnitude of the second peak wat; reduced. Wave losses associated with the second peak are consequently reduced, as shown in firure 13 and as reflected in the dip in the drag-rise curve of figure 11.

A limited analysis (not presented) of the growth of the boundary-layer displacement thickness over the upper surface was made by using methods based on equations described in 1 oferences 13 and 14 with the experimental pressure distributions for representative Mach numbers of 0.60 and 0.78 and an angle of attack of 1.5°. The analysis mdicit d that at constani angle of attack the upper-surface boundary-layer displacement thickness at the trailing edge sia not vary appreciably and remained greater than the trailing-edge thickness of the airfcil as it was increased irom 0 to around 0.7 percent. The analysis further indicated that the cuper-surface boundary-layer cisplacement thickness at the trailing edye equals the trailing-edge thickness of the airfoil at (t / c) c e slightly greater than 0.7 percent at $M=0.78$ and slightly less than 0.5 percht at $M=0.60$. The 0.7 -percent-thick 10
trailing edge appears to be an acceptable compromise through the Mach number range for the simulated Reynolds numbers of this investigation.

The trend, therefore, was that of decreasing transonic drag levels with increases in tr-aling-edge thickness until the tralling-edge thickness of the airfoil exceeds that of the upper-surface boundary-layer dispiacement thickness at the trailing edge, after which, increases in toth subsonic and transonic drag levels appear. Such variations in drag and boundary-laver characteristics suggest some relationship between the optimum trallingedge thickness and the displacement thickness of the upper-surface boundary layer at the trailing edge. It is felt that in order to realize the full aerodynamic advantage, the design criterion for trailing-edge thickness should be such that the upper-surface pressure coefficients recover to approximately zero at the trailin, edge with the trailing-edge thickness of the airfoil equal to or slightly less than the local upper-surface boundary-layer displacement thickness.

The lower-surface boundary layer "eed not be considered since the upper surface is more sensitive to conditions at the trailing edge because of the ad"erse pressure gradient on the upper surface in contrast to the iavorable gradient on the lower surface.

There exists evidence from unpublished wind-tunnel tests, wherein satisfactory results were obtained for three-dimensional applications of the supercritical airfoil with $(t / c)_{t e}$ of approximately 1.0 perceni, that $(t / c)_{t e}$ slightly larger than 0.7 percent would be acceptable in swept-wing three-dimensional applications. Although the reasons for this are not completely unde:.tood, it is believed to be in some way related to the threedimensional relieving effect of the spanwise flow near the tralling edge.

Trailing-Edge Cavity

The potential reduction in subsunic drag associated with some sort of cavity in the trailing edge of airfoils has been discussed in numerous reports. (See refs. 1, 2, and 15 io 17 , for example.) Such reductions in drag are generally attributable to two primary sources: reduction in base drag through changes in the pressure acting over the base area, and improvements in wake stability resulting in decreases in momentum losses associated with concentrations of vorticity in the wake. in addition to its influence or base drag and wake stability, the cavity was thought to hold potential fur delaying separation when considered from the viewpoint of a mixing region where there would be an i:terchange between the high-energy air passing over the upper-surface trailing edge and the lower energy air in the cavity itself.

The results of the present investigation show a small, but consistently measurabie, reduction in drag (fig. 11) for the 1.0 -percent-thick trailing.edge cavitv when compared with the 1.0 -percent-thick blunt trailing edge for the 10 -percent-thick airfoil. For the nost part the pressule distributions of figure 12 indicate slightly more negative pressure
coefficienis over the base (upper-surface pressure orifice at $x / c=1.00$ was located in the rearward face of the cavity) so the drag improvement due to the cavity must be attributed to improvements in the general flow over the airfoll itself or to the influence of the cavity on the wake rather than to an improyement in base drag. The influence of the cavity on the stability of the wake may only be conjectured in the absence of cletalled measurements of velocity fluctuations in the wake.

No attempt was made to achieve an optimum cavity size or shape since the drag reductions reported in reticence 15 fior a cavity with contour approximating one theoretically derived by Ringlel was very nearly the same as that given by a simple rectangular tralling-edge cavity in reference 16 .

CONCLUSIONS

Wind-tunnel tests have been conducted at Mach numbers from 0.60 to 0.81 to deter. mine the effects of tralling-edge geometry on the aerodynanic characteristics of a NASA supercritical airfoil shape. Variations in trailing-edge thicknesses from 0 to 1.5 percent of the chord and a cavity in the tralling edge were investigated with airfoils with maxinum thicinesses of 10 and 11 percent of the chord.

Results indicate the following general conclusions for the design nornal-force cocfficlent of 0.7:

1. Comparison of supercritical airfoils of slightly difierent maximum thicknesses implied that increasing trailing-edge thickness yielded reductions in transonic drag levels with nis apparent penalty at subcritical Mach numbers up to a tralling-edge thickness of about 0.7 percent. Increases in both subsonic and transonic dray, levels appeared with increases in: trailing-ecige thickness beyond approximately 0.7 percent.
2. Sniall drag reductions through the Mach number range resulted when the 10-percent-thick airfoil with 1.0 -percont-thick tralling enge was modified to include a cavity in the trailiny edge.
3. There appears to exist some relationship between thin optimuin airfoil trailingedge thickness and the boundary-laye r displacement thickness over the upper surface of the airfoil. Calculations suggest that the reversal of the favorable effect of increasing trailing-edge thickness occurs when the airfoil trailing-edge thickness exceeds the displacement thickness of the upper-surface boundary layer at the trailing edge.
4. The gencral design criterion to realize the full aerodynamic advantage of trailingedge thickness appears to be such that the pressure coefficients over the upper surface of
the airfoll recover to approximately zero at the trailing edge with the trailing-edge thickness of the airfoll equal to or slightly less than he local upper-surface boundary-layer displacement thickness.

Langley Research Center,

 National Aeronautics and Space Administration, Hampton, Va., July 6, 1971.
REFERENCES

1. Holder, D. W.: The Transonic Flow Past Two-Dimensional Aerofoils. J. Roy. Aeronaut. Soc., vol. 68, no. 644, Aug. 1964, pp. 501-510.
2. Pollock, N.: Two Dimensional Aerofoils at Transonic Speers. Note ARL/A. 314, Dep. Supply, Aust. Def. Scl. Serv., Apr. 1969.
3. Baals, Dollald D.; and Mourhess, Mary J.: Numerical Evaluation of the Wake-Survey Equations for Subsonic Flow Including the Effect of Encrgy Addition. NACA WR L-5, 1945. (Formerly NACA ARR L5H27.)
4. Whitcomb, Richard T.: :und Clark, Larry R.: An Airfoil Shape for Efficient Flight at Supercritical Mach Numbers. NASA TM X-1109, 1965.
5. Davis, Don D., Jr.; and Moore, Dewey: Anaiytical Study of Blockage- and Lift Interference Corrections for Slotted Tunnels Obtained by the Substitution of an Equivalent Homogeneous Boundary for the Discrete Slots. NACA RM L53E07b, 1953.
6. Schaefor, William T., Ir.: Characteristics of Major Active Wind Tunnels at the Langley Research Center. NASA TM X-1130, 1965.
7. Whitcomb, Richard T.; and Blackwell, James A., Jr.: Status uî Research on a Suprrcritical Wing. Conference on Aircrafi Acrodynamics, NASA SP-124, 1966, pp. 367-381.
8. Rableb, Priedrich O.: Separation Control by Trapped Vortices. Boundary Layer and Flow Control. Vol. I, G. V. Lachmam, ed., Pergamon Press, lac., 1961. pp. 265-294.
9. Loving, Donald L.: Wind-Tunnel-Flight Correlation of Shock-Induced Separated Fluw. NASA TN D-3580, 1966.
10. Biackwell, James A., Jr.: Preliminary Study of Effects of Reynuds Number and Boundary-Layer Transition Location on Shock-Lnduced Separation. NASA TN D-5U03, 1969.
11. Braslow, Al'sert L.; and Knox, Eugene C.: Simplified Method for Determination of Critical Helght of Distributed Rughness Particles for Botndary-Layer Transition at Mach Numbers From 0 t, 5. NACA TN 4363, 1958.
12. Katzoff, S.; and Barger, Raymond L.: Bounciary-Induced Downwash Due to Lift in a Two-Dimensional Slotted Wind Tunnel. NASA TR R-25, 1959. (Supersecies NACA TN 4289.)
13. Schliching, Hermann (J. Kestin, trunsl.): Boundary-Layer Theory. Sixth ed., McGraw-Hill Book Co., 1968.
14. Nash, J. F.; and MacDonald, A C. J.: Tise Calculation of Momentum Thickness in a Turbulent Boundary Layer at Macl: Numbers up to Unity. C.P. No. 963, Brit. A.R.C., 1967.
15. Pollock, N.: Sone Effects of Base Geometry on Two Dimensional Base Drag at Subsonic and Triansonic Speeds. Note ARL/Acro. 316, Dep. Supply, Aust. Def. Sci. Serv., Oct. 1969.
16. Nash, J. F.; Quincey, V. G.: and Callinan, J.: Experimente on Two-Dimensional Base Flow at Subsonic and Transonic Speeds. R. \& M. No. 3427, Brit. A.R.C., 1966.
17. Nash, J. F.: A Discussion of Two-Dimensional Turbulent Base Flows. R. \& M. No. 3466, Bril. A.R.C., 1967.

TABLE 1.- SECTION COORDINATES FOR 11-PERCENT-THICK INTERIM SUPERCRITICAL AIRFOM,

TABLE L.- SECTION COORDINATES OF 10-PERCENT-THICK SUPERCRITICAL

$$
[c=63.5 \mathrm{~cm} \text { (25 inche }) \text {) }]
$$

$x^{\prime} \mathbf{c}$	Calculated				Experinental (airfoll 9a)	
	y/c		L.		y/c	
	Upper	Lower	Upper	Lower	Upper	Lower
0.0075	0.0162	-0.0162	0.850	-0.874	0.0160	-0.0165
. 0125	. 0196	-. 0108	. 570	-. 810	. 0196	-. 0201
. 0250	. 0250	$\cdots .0257$. 345	-. 374	. 0250	-. 0259
. 0375	. 0287	-. 0297	. 255	-. 276	. 0286	-. 0299
. 050	. 0316	-. 0328	. 204	-. 219	. 0324	-. 0329
. 075	. 0359	-. 0373	.145	-. 153	. 0358	-. 0374
. 100	. 0390	$\cdots .0406$. 110	-. 114	. 0389	-. 0407
. 125	. 0414	$-.0431$. 086	-. 087	. 0415	-. 0432
. 150	. 0434	-. 0450	. 069	-. 067	. 0433	-. 3451
. 175	. 0448	-. 0465	. 056	-. 052	. 0448	-. 0465
. 200	. 0462	-. 0476	. 045	-. 040	. 0461	-. 0476
. 250	. 0480	-. 0492	. 028	-. 021	. 0,79	-. 0481
. 300	. 0492	-. 0499	. 017	-. 008	. 05.11	-. 0848
. 350	. 0408	-. 0500	. 008	. 003	. 0498	-. 0500
. 400	. 0500	-. 0495	. 000	. 014	. 0500	-.0494
. 450	. 0498	-. 0486	-. 007	. 025	. 0409	-. 0485
. 500	. 0493	-. 0469	-. 013	. 042	. 0494	-. 0468
. 550	. 0485	-. 0442	-. 021	. 070	. 0485	-. 0440
. 575	. 0479	-. 0422	-. 025	. 081	. 0480	-. 0420
. 600	. 0472	-. 0396	-. 029	. 120	. 0474	-. 0393
.6.5	. 0465	-. 0362	-. 034	.15"	. 0465	-. 0357
. 650	. 0456	-. 0316	-. 1339	. 206	. 0456	-. 0316
. 675	. 0445	-. 0259	-. 046	. 239	. 0445	-. 0255
. 700	. 0433	-. 0202	-. 053	. 216	. 01313	-. 0200
. 725	. 0418	-. 0151	-.06i2	. 193	. 0419	-. 0152
. 750	. 0402	-. 0105	-. 073	. 169	. 0401	-. 0109
. 775	. 0382	-. 0066	-. 085	. 145	. 0382	-. 0072
. 800	. 0359	-. 0033	-. 100	. 118	. 0359	-. 0041
. 825	. 0332	-. 0007	-.1:8	. 089	. 0332	-. 0014
. 850	. 0298	. 0011	-. 140	. 056	. 0300	. 0005
. 875	. 0261	. 0020	-. 165	. 017	. 0264	. 0016
. 900	. 0217	. 0019	-. 194	-. 031	. 0220	. 0016
. 925	. 0164	. 0004	-. 228	-. 090	. 0167	. 0004
. 950	. 0102	-. 0027	-. 269	-. 164	. 0103	-. 0026
. 975	. 0028	-. 0078	-. 316	-. 256	. 0035	-. 0073
. 980	-. 0021	-. 0123	-. 348	-. 321	-. 0016	-. 0130
1.000	-. 0057	-. 0157	-. 370	-. 370	-...-	-. 0157

${ }^{2}$ Leading-edge radius, 0.0212 c .
ORIGINAL PAG. OF POOR QUALIT:

ORIGINAL PAGE \mathbb{S}
OR POOR QUALIII

(a) Alrfoil mounted in tunnel. Figure 3.- Apparatue.

ORIGNAL PAGE IS OH POOR QUALITY

(b) Profile-arag rake.

Figu:e 3.- Concluded.

Figure 6.- Continued.

(d) $M=0.74$.

Figure 6.- Continued.

Figur. 7.. Variation ol section drac coefficient with Mnch number at a nomel-force cocilililent of 0.7 for the 11 -percent-thick interim supereriticnl airfoil with shorp and blunt trailing dede.

(g$) \mathrm{n}=0.60 ; a=10$,
 an ll-percent-triei interim supereriticel irfo:l.

ORIGNAL PACEE IS OF YOOR QUALITI
 ORIGNAL PA:E IS OF YOOR QUALIIK

Flgure 9.- Veriation of section drag coefficjert, angle of attrek, and section itching-moment coefficiert, at varlous Mach numbers for lo-percent-thick supercritical. airfoil with 1.0 -percent-thick trailing edge with cavity.

Figure 9.- Coritinuer.

Firure !.- Coneluided.

(a) $\mathrm{M}=0.60$.

Figure 10.- Effect of trailing-edge geometry on force and moment charactar: stics of 10 -percent-thick supercritical airioil.

(b) $\mathrm{M}=0.65$.

Figure 10.- Continue 3 .
ORIGNAL PAGE IS OF POOR QUALITY

Figure 10.- Continued.

URIGINAL PAGE IS
UN POOR QUALITY
(a) M (.).".

Figure 10.- Continued.

Fipure 10.- Conthued.

(g) $M=0.79$.

Figure 10.- Continued.

(h) $M=0.50$.
figure 10.- Continued.

(1) $\mathrm{M}=0.81$.

Figure 10.- Concluded.

Figure 11. - Effect of : railing-edge geometry on varia*ion of section drag coefficient with Mach number at a normal-force cofficient o: 0.7 for the 10 -percent-thici: supercritical alrfoil.

Flourc 12.- Chorduise pressure distribution for 10 -percent-thick sumemetoine

(b) $M=0.00 ; a=1.0^{\circ}$.

Firure 1.- Continued.

Ficure L.- Continued.

(d) $M=0.10 ; \quad \alpha=-1 j^{\circ}$.

Figuri li.. - Continucis.

Figurs ís.- Continued.

GRIGNAL PAGE IS OF PUOR QIALITII
(n) in =0.73; $a=0.5^{\circ}$.

Fhure L.- Continucd.

Figure 12.- Continued.

Fifure La. - Contimued.

Fifure 12.- Concluder.

Ficure 13.- Representative wike profiles for 10 -percent-thick supercritical cirfoll with 1.0 -percent-thick trilling eder witn crvity. $\alpha=1^{\circ}$.

```
    ..28
    -.24
    -.16
    -.08}\cdot\mp@code{* . . . . N
        An,out i
    OM,
\Delta\mp@subsup{\rho}{1}{}
        OM=0.78
        . .-. ¢ & &
        0.0% M=0.60
        .20 ..44
        32,
```


