

# Wind-Tunnel Results for a Modified 17-Percent-Thick Low-Speed Airfoil Section 

Robert J. M WGhee and William D. Beasley Langley Research Center
Hampton. Virginia

## N/SA

National Aeronautics
and Space Administration
Scientific and Technical
Information Branch

## SUMMARY

An investigation was conductod in the Langley Low-Turbulence Pressure Tunned to evaluate the effects on performance of modifying a 17 -percent-thick low-speded airfoil. The airfoil contour was altered to reduce the pitchinctmoment coefficient by increasing the forward loading and to increase the climb lift-drag ratio by decreasing the aft upper surface prossure gradient. the tests were conducted over a Mach number range from 0.07 to 0.32 , a cliord Reynol ds number range from $1.0 \times 10^{6}$ to $12.0 \times 10^{6}$, and an angle-of-attack range from about $-10^{\circ}$ to $20^{\circ}$.

The results of the investigation indicate that the modification to the airfoil contour produced the design objectives of reduced pitching-moment coefficient at cruise and increased lift-drag ratio at climb. The magnitude of the pitching-moment coefficient was reduced about 20 percent at the design ifft coefficient of 0.40 , and the lift-drag ratio was increased about 10 percent at the climb lift coefficient of 1.0. The maximum lift coefficient was also increased about 10 percent at Reynolds numbers of $2.0 \times 10^{6}$ and $4.0 \times 10^{6}$. However, the stall characteristics of the modified airfoil were less desirable at keynolds numbers greater than $2.0 \times 10^{6}$ because of a rapta forward movement of the trailing-edge separation point.

## INTRODUCIION.

Research on advanced-technology airfoils for low-speed general-aviation applications has received considerable attention at the Langley Research Center since the development of the LS(1)-0417 airfoil (formerly GA(V)-1) of reference 1. This 17-percent-thick airfoil provided higher lift-irag ratios during ciimb and higher. maximum lift cocfficionts (with or without flaps) when compared with the older NACA (National Advisory Committec for Aeronatics) airfoils. However, because of the large amount of aft camber incorporated in the airfoil, the quarter-chord pitchingmoment coefficient at desiom lift was about -0.10 . This airfoil has been analytically roshaped with two objectives in mind: to reduce the pitchinçmoment coefficient by increasing the forward loading and to increase further the climb lift-drag ratio by decreasing the aft upper surface pressure gradient. This report presents the basio-low-sped section characteristios of this modified airfoil and evaluates the effects on performance resulting from the change in airfoil shape.

The investigation was performed in the Langley Low-Turbulence Pressure Tunncl. at free-stream Mach numbers froin 0.07 to 0.32. . dhe chord Reynolds number varied from about $1.0 \times 10^{6}$ to $12.0 \times 10^{6}$, and the geometric angle of attack varied from about $-10^{\circ}$ to $20^{\circ}$.

## SYMBOLS

Values are yiven in both SI and U.S. Customary Units. The measurements and calculations were mide in 11.5 . Customary Unites.
$C_{\tilde{p}} \quad$ pressure coefficient, $\frac{r_{\ell} P_{o}}{q_{\infty}}$


Subscripts:
$\begin{array}{ll}\ell & \text { local point on airfoil } \\ \max & \text { maximum } \\ S & \text { separation } \\ \infty & \text { free-stream conditions }\end{array}$
Airfoil designations:
LS(1)-0417. Iow speed (first series); 0.4 design lift coefficient, 17 percent thick
Mod modified

## AIRFOIL MODIFICATION

The airfoil contour was changed with two objectives in mind: to reduce the pitching-moment coefficient by increasing the forward loading and to increase the climb lift-drag ratio $\left(c_{i}=1.0\right)$ by decreasing the aft upper surface pressure gradient. The maximum thickness ratio, trailing-edge thickness, and design lift coefficient $\left(c_{i}=0.40\right)$ of the original airfoll were retained.

The upper surface modification to the original airfoil was accomplished by using the computer code of reference 2. This inverse method calculates inviscid coordinates of an airfoil. from a prescribed velocity distribution. A boundary-layer correction is made to allow for viscous effects by computing the displacement thickness of the turbulent boundary layer, which is subtracted from the inviscid coordinates. The inviscid velocity distributions for both airfoils are shown in figure. 1 . and figure 2 illustrates the change in airfoil shape. The design conditions for the airfoil were a lift coefficient of 0.40 , a Reynolds number of $4.0 \times 10^{6}$, and a Mach number of 0.15 . Figure 3 compares the mean thickness distributions and camber lines for the two airfoils. Coordinates for the modified airfoil. are presented in table $I$.

Theoretical chordwise pressure distributions (ref. 2) for both airfoils are shown in figure 4 for a Reynolds number of $4.0 \times 10^{6}$. . Boundary-layer transition was specified at $x / c=0.03$ for the calculations to ensure a turbulent boundary-layer development on the airfoils. A reduction in the pitching-moment coefficient at design lift of about 28 percent is indicated by the theoretical calculations. Nute that a flat pressure distribution or reduced pressure-gradient region extends for about 0.20 c prior to the start of the aft upper surface pressure recovery for the modified airfoil. This reduced pressure-gradient region with the "corner" located at $x / c=0.60$ is considered to be an important feature of the airfoil design. Research reported in reference 3 for a modified 13-percent-thick airfoil clearly indicated that this reduced pressure-gradient region retards the rapid forward move* ment of upper surface separation at the onset of stall and promotes docile stall behavior for airfoils which stall from the trailing edge. The chordwise location of the corner is determined by the aft pressure gradient which must be gradual enough to avoid separation at climb lift coefficients ( $c_{i}=1.0$ ). Thus, the chordwise-location of the corner is dependent on airfoil thickness ratio and design lift coefficient. The chordwise extent of the reduced pressure-gradient region must be determined from experimental tests, since present computer codes are inadequate when large regions of separation are present. The theoretical separation points and pressure distributions
for both airfoils are shown in figure $4(b)$ at a climb ifft coefficient of 1.0. A reduction. in the extent of separation of about 0.05 c is indicated for the modified airfoil. Based on this theoretical prediction of reduced separation, some improvement in lift-drag ratio at $c_{1}=1.0$ woul.d be expected.

MODEL, APPARATUS, AND RROCEDURE

## Model

The airfoil model was constructed with a metal core around which plastic fill and two thin layers of fiberglass were used to form the contour of the airfoil. The model had a chord of $61 \mathrm{~cm}(24 \mathrm{in}$.$) and a span of 91 \mathrm{~cm}(36 \mathrm{in}$.$) and was equipped$ with both upper and lower surface orifices located $5 \mathrm{~cm}(2 \mathrm{in}$ ) off the midspan. The airfoil surface was sanded in the chordwise direction with No. 400 dry silicon carbide paper to provide a smooth aerodynamic finish. The model-contour accuracy was generally within $\pm 0.10 \mathrm{~mm}( \pm 0.004 \mathrm{in}$.$) .$

## Wind Tunnel

The Langley Low-Turbulence Pressure Tunnel (ref. 4) is a closed-throat, singlereturn tunnel which can be operated at stagnation pressures from 1.0 to 10.0 atm ( $1 \mathrm{~atm}=101.3 \mathrm{kPa}$ ) with tunnel-empty test-section Mach numbers up to 0.42 and 0.22 , respectively. The maximum Reynolds number is about $49.2 \times 10^{6}$ per $\mathrm{m}\left(15.0 \times 10^{6}\right.$ per. ft) at a free-stream Mach number of about 0.22 . The tunnel test section is 91 cm ( 3 ft ) wide and $229 \mathrm{~cm}(7.5 \mathrm{ft}) \mathrm{high}$.

Hydraulically actuated circular plates provided positioning and attachment for the two-dimensional model. The plates are $.102 \mathrm{~cm}(40 \mathrm{in}$.$) in diameter, rotate with$ the airfoil, and are flush with the tunnel wall. The airfoil ends were attached to rectangular model-attachment plates (fig. 5), and the airfoil was mounted so that the center of rotation for the circular plates was at 0.25 c on the model reference line. The air gaps in the tunnel walls between the rectangular plates and the circular plates were sealed with metal seals.

## Wake Survey Rake

A fixed wake survey rake (fig, 6) at the model midapan was mounted from the tunnel sidewall and located 1 chord length behind the trailing edge of the airfoil. The wake rake used $0.15-\mathrm{cm}$-diameter ( $0.06-\mathrm{in}$.) total-pressure tubes and $0.32-\mathrm{cm-}$ diameter ( $0.125-i n$.$) static-pressure tubes. The total-pressure tuhes were flattened$ to $0.10 \mathrm{~cm}(0.04 \mathrm{in}$.$) for 0.61 \mathrm{~cm}(0.24 \mathrm{in}$.$) from the tip of the tube. Each static-$ pressure tube had four flush orifices drilled $90^{\circ}$ apart; these orifices were located eight tube diameters from the $t i p$ of the tube and in the plane of measurement for the total-pressure tubes.

## Instrumentation

Measurements of the static pressures on the airfoil surfaces and of the wakerake pressures were made by an automatic pressure-scanning system using variablecapacitance precision transducers. Basic tunne!. pressures were measured with precision quartz manometers. Angle of attack was measured with a calibrated digital shaft
encoder operated by a pinion gear and rack attached to the circular model-attachment plates. Data were obtained by a high-speed anquisition system and were recorded on magnetic tape.

## TESTS AND METHODS

The airfoil was tested at free-stream Mach numbers from 0.07 to 0.32 over an angle-of-attack range from about $-10^{\circ}$ to $20^{\circ}$. Reynolds number based on the airfoil chord was varied from about $1.0 \times 10^{6}$ to $12.0 \times 10^{6}$. The airfoil was tested both in the smooth condition (natural transition) and with roughness located on both upper and lower surfaces at 0.075 c . The roughness was sized for each Reynolds number according to the technique described in reference 5. The roughness was sparsely distributed and consisted of granular-type strips $0.13 \mathrm{~cm}(0.05 \mathrm{in}$.) wide which were attached to the surfaces with clear lacquer.

The static-pressure measurements at the airfoil surface were reduced to standard pressure coefficients and were machine integrated to obtain section normal-force and chord-force coefficients as well as section pitching-moment coefficients about the quarter-chord point. Section profile-drag coefficients were computed from the wakerake total, and static pressures by the method reported in reference 6 .

An estimate of the standard low-speed wind-tunnel boundary corrections (ref. 7) amounted to a maximum of about 2 percent of the measured coefficients; these corrections have not been applied to the data. An estimate of the displacement of the effective center of a total-pressure tube in a velocity gradient on the values of $c_{d}$ showed these effects to be negligible. (See ref. 6.)

## PRESENTATION OF RESULTS

The results of this investigation have been reduced to coefficient form and are presented in the following figures:
Figure
7, 8
Section characteristics for LS(1)-0417 Mod airfoil
9
Effect of roughness on section characteristics
10
Effect of Reynolds number on section characteristics; model smooth; $M=0.15$
Effect of Reynolds number on section characteristics; roughness on; $M=0.15$ ..... 11
Effect of Mach number on section characteristics; roughness on: $R=6.0 \times 10^{6}$ ..... 12
Comparison of section characteristics for LS(1)-0417 and LS(1)-0417 Mod airfoils; roughness on; $M=0.15$ ..... 13
Effect of roughness on chordwise pressure distributions for LS(1)-0417 Mod airfoil; $M=0.15 ; \quad \alpha=0^{\circ}$ ..... 14
Effect of angle of attack and Reynolds number on chordwise pressure distributions for LS(1)-0417 Mod airfoil; roughness on $M=0.15$ ..... 15
Effect of Mach number on chordwise pressure distributions forLS(1)-0417 Mod airfoil; roughness on; $R=6.0 \times 10^{6} ; a=10^{\circ} \ldots \ldots . .$.

Effect of Reynolds number on chordwiee pressure distributions for LS(1,-0417 Mod airfoil; roughness on; $M=0.15 ; \alpha=10^{\circ} \ldots . .$.
Ccimparison of chordwise pressure distributions for Ls(1)-0417.
and LS (1)-0417 Mod airfoils; roughness oni. $M=0.15$;
$R=4.0 \times 10^{6}$
Variation of maximum lift coefficient with Reynolds number for LS(1)-0417 and LS(1)-0417 Mod airfoils; M K 0.15
Variation of maximum lift coefficient with Mach number for LS (1)-0417 and LS(1)-0417 Mod airfoils; roughness on: $R=6.0 \times 10^{6}$
Comparison of maximum.inft coefficients of LS(1)-04i7 Mod airfoil with those of NACA airfoils; models smooth; $M=0.15$
Variation of drag coefficient with Reynolds number for LS(1)-0417 Mod airfoil: $M \leqslant 0.15 ; \quad c_{1}=0.40$
Variation of lift-drag ratio with lift coefficient for LS(1)-0417 and LS (1)-0417 Mod airfoils; roughness on: $M=0.15$

## DISCUSSION OF RESULTS

## Section Characteristics

Lift.- The lift-curve slope for the 17 -percent-thick modified airfoil in a smooth condition (roughness off) was about 0.12 per degree for the Reynolds numbers investigated ( $M=0.15$ ) as indicated by figure $10(a)$. The angle of attack for zero lift coefficient was about $-3.5^{\circ}$. Maximum lift coefficients increased from about 1.70 to 2.10 as the Reynolds number was increased from. $1.0 \times 10^{6}$ to $12.0 \times 10^{6}$. (See fig. 19.). The largest effect of Reynolds number on maximum lift coefficient occurred for Reynolds numbers below $6.0 \times 10^{6}$. The stall. characteristics of the airfoil are of the trailinq-edge type as shown by the pressure data of figure 15. However, the nature of the stall was abrupt for Reynolds numbers greater than $2.0 \times 10^{6}$. (See fig. 7.) Abrupt stall characteristics were not expected for this airfoil, and a detailed discussion is included in a subsequent-section entitled "Pressure Distributions."

The addition of a narrow roughness strip at 0.075 c (fig. 9). resulted in the expected decambering effect for thick airfoils because of the increase in boundarylayer thickness. The lift coefficient at $\alpha=0^{\circ}$ decreased about 0.03 at the lower Reynolds numbers, but only small changes occurred at the higher Reynolds numbers. The roughness strip decreased the $c_{1}$, max performance of the airfoil as much as 0.04 for the test Reynolds number range. (See fig. 19.)

The effects of Mach number on the airfoil lift characteristics at a Reynolds number of $6.0 \times 10^{\circ}$ with roughness located at 0.075 c are shown in figure 12 (a). Increasing the Mach number from 0.10 to 0.32 resulted in the expected increase in lift-curve slope, and the stall angle of attack was decreased about $2.2^{\circ}$. However, there were only small changes in $c_{i, m a x ~ d u e ~ t o ~ M a c h ~ n u m b e r ~ e f f e c t s . ~(S e e ~ f i g . ~ 20 .) ~}^{\text {mat }}$

The lift data for the original and modified 17-percent-thick airfoils are compared in figure 13 for Reynolds numbers from $2.0 \times 10^{6}$ to $6.0 \times 10^{6}$ with fixed transition at 0.075 c . The data indicate that the linearity of the lift curve is extended to higher angles of attack and that $c_{1}$, max is increased for the modified airfoil. This result is attributed to reduced upper surface ooundary-layer separa-
tion for the modified airfoil, as illustrated by the pressure-data comparison of figure 18(c). Note, however, that the nature of the stall is more abrupt for the modified airfoil for Reynolds numbers of $4.0 \times 10^{6}$ and $6.0 \times 10^{6}$. The variation of $C_{1, \max }$ with Reynolds number and Mach number: is compared for both airfoils in figures. 19 and 20 , respectively. In the $10 w$ Reynolds number range ( $R \leqslant 4.0 \times 10^{6}$ ), an increase in $c_{i, m a x}$ of about 10 percent $i k$ shown for the modified airfoil. However, for Reynolds numbers sreater than $9.0 \times 10^{6}$, both airfoils develop about the same $c_{i, \max }$. Increasing the Mach number results in a decrease in $c_{i, m a x}$ for the original airfoil (fig. 20): however, only small. Mach number effects on $c i$, max are shown for the modified airfoil. Comparisons of the values of $c i, m a x$ for the modi-. fied airfoil with the NACA 4- and 5-digit airfoils and 65-series airfoils are shown in figure 21 for Reynolds numbers from $3.0 \times 10^{6}$ to $9.0 \times 10^{6}$. Substantial improvements in $c_{i, m a x}$ throughout the Reynolds number range are indicated for the modified low-speed airfoil. For example, at a Reynolds number of $3.0 \times 10^{6}$ a 35-percent improvement in. $c_{\text {, max }}$ is shown for the medified airfoil compared with the NACA 23018 airfoil.

Pitching moment.- The pitching-moment-coefficient data of figures 9, 10(c), and 11(c) illustrate the expected positive increments in $c_{m}$ due to decreasing the Reynolds number or adding roughness at a constant Reynolds number. Tilis result is typical of the decambering effect associated with boundary-layer thickening for thick airfoils. At a Reynolds number of $6.0 \times 10^{6}$, increasing the Mach number from 0.10 to 0.32 (fig. $12(\mathrm{c})$ ) shows small effects on the pitching-moment data to about $\alpha=10^{\circ}$. At the higher angles of attack, a positive increment in $c_{m}$ is shown.

The pitching-moment data for the original and modified airfoils are compared in figure 13. The design objective of reducing $c_{m}$ by increasing the forward loading of the airfoil was accomplished. A reduction in the magnitude of $c_{m}$ of about 20 percent at $c_{2}=0.40$ (cruise condition) is indicated for the modified airfoil. The theory indicated a reduction in $c_{m}$ of about 28 percent. This result is important because of the expected reduced trim penalties for the modified airfoil at cruise conditions.

Drag and lift-drag ratio.- Natural transition usually occurs near the leading edge of wings in actual flight conditions of general aviation aircraft because of the roughness of construction or insect remains gathered in flight. Therefore, the discussion of the drag data is limited to data obtained with fixed transition at 0.075 c .

The profile-drag coefficient at design lift ( $c_{2}=0.40$ ) decreased from about 0.0115 at $R=2.0 \times 10^{6}$ to about 0.0085 at $R=12.0 \times 10^{6}$. (See figs. 11(b) and 22.) This reduction in $c_{d}$ is due to the decrease in the skin-friction coefficient of the turbulent boundary laye: at the higher Reynolds numbers. There are only. small effects of Mach number on $c_{d}$ (fig. $12(b)$ ) over a Mach number range from 0.10 to 0.32.

The drag data for the original and modified airfoils are compared in figure 13 for Reynolds numbers from $2.0 \times 10^{6}$ to $5.0 \times 10^{6}$ with fixed transition at 0.075 c . The design objective of reduced $c_{d}$ at typical climb conditions $\left(c_{1}=1.0\right.$; $R=4.0 \times 10^{6}$, by decreasing the aft upper surface pressure gradient was accomplished ( $c_{d}$ decreased about 0.0012 ). An increase in climb lift-drag ratio of about 10 percent was measured for the modified airfoil. (See fig. 23.)

The chordwise pressure data of figure 15 .111ustrate the effects of angle of attack for several Reynolds numbers for the modified airfoil. As the angle of attack is increased, upper surface trailing-edge separation is first indicated by the approximate constant-pressure region on the airfoil. At a Reynolds number of $2.0 \times 10^{6}$, separation is indicated at about $\alpha=12^{\circ}$. (See fig. 15(a).) Additional increases in angle of attack result in this constant-pressure region moving forward along the airfoil, and the stall characteristics are docile. The lift curve is well rounded at stall as shown by figure $9(a)$. However, at. $R=4.0 \times 10^{6}$ (fig. 15(b)) the trailing-edge separation point moves rapidly forward for an increase in angle of attack from about $16^{\circ}$ to $17{ }^{\circ}$, and the stall characteristics are abrupt. The lift data of figure $9(b)$ illustrate the abrupt decrease in lift at stall. As discussed in a previous section entitled "Airfoil Modification," docile stall behavior was anticipated for this airfoil because of the flat pressure distribution (reduced pressuregradient region) prior to the start of the aft upper surface pressure recovery at the design lift coefficient. However, as previously discussed, the rearward extent of this flat pressure distribution must be determined from experimental tests because the present airfoil theories are inadequate when large regions of separation are present. Thus, more desirable stall characteristics for this airfoil at the higher Reynolds number would be expected by reshaping the airfoil with a more reaxward extent of this flat pressure distribution.

Comparisons of the pressure data for the original and modified airfoils are shown in figure -18 at a Mach number of 0.15 and a Reynolds number of $4.0 \times 10^{6}$. The pressure data at $\alpha=0^{\circ}$ (fig. 18(a)) illustrate the increase in forward loading and the decrease in the aft upper surface pressure gradient for the modified airfoil. This reduced pressure gradient has a favorable effect on the airfoil boundary-layer. development (reduced thickness) and results in a decrease in $c_{d}$ at typical climb lift coefficients. Comparisons of the airfoil pressure data at $\alpha=12^{\circ}$ (fig. 18 (c)) indicate that the modified airfoil exhibits about 0.20 c less separation than the original airfoil.

## CONCLUDING REMARKS

Wind-tunnel tests have been conducted in the Langley Low-Turbulence Pressure Tunnel to evaluate the effects on performance of modifying a 17-percent-thick- lowspeed airfoil. The airfoil contour was altered to reduce the pitching-moment coefficient by increasing the forward loading and to increase the climb lift-drag ratio by decreasing the aft upper surface pressure gradient. The tests were conducted at free-stream Mach numbers from 0.07 to 0.32 . The chord Reynolds number was varied from about $1.0 \times 10^{6}$ to $12.0 \times 10^{6}$.

The results show that the modification to the airfoil contour produced the design objectives of reduced pitching-moment coefficient at cruise and increased lift-drag ratio at climb. The magnitude of the pitching-moment coefficient was reduced about 20 percent at the design lift coefficient of 0.40 , and the lift-drag ratio was increased about 10 percent at the climb lift coefficient of 1.0 . The maxi-
mum lift coefficient was also increased ahout 10 percent at Reynolds numbers of $2.0 \times 10^{6}$ and $4.0 \times 10^{6}$. However, the stali charactexistics of the modified airfoil. were less desirable at Reynolds numbers greater than $2.0 \times 10^{6}$ because. of a rapid forward movement of the trailingmedge separation point.

Langley Research Center<br>National Aeronautics and Space Administration<br>Hampton, VP 2366E<br>August 18, 1981

## REFERENCES

1. McGhee, Robert J.; and Beasley, William D.: Low-Speed Aerodynamic Characteristics of a 17-Percent-Thick Airfoil Section Designed for General Aviation Applications. NASA IN D-7428, 1973.
2. Bauer., Frances; Garabedian, Paul, and Korn, David: Supercritical Wing Sections III. Volume 150 of Jecture Nôtes in Economics and Mathenatical. Systems, Springer-Verlag, 1977.
3. McGhee, Robert J.: and Beasley, William D.: Low-Speed Wind-Tunnel Results for a Modified 13-Percent-Thick Airfoil. NASA TM X-74018, 1977.
4. Von Doenhoff, Albert E.; and Abbott, Frank T., Jr.: The Langley Two-Dimensional Low-Turbulence Pressure Trnnel. NACA.TN 1283, 1947.
5. Braslow, Albert $L_{0}$; and Knox, Eugene C.: Simplified Method for Determination of Critical Height of Distributed Roughness Particles for Boundary-Layer Transition at Mach Numbers From 0 to 5. NACA TN 4363, 1958.
6. Pankhurst, R. C.; and Holder, D. W.: Wind-Tunnel Technique. Sir Issac Pitman \& Sons, Ltd. (London), 1965.
7. Pope, Alan; and Harper, John J.: Low-Speed Wind Tunnel Testing. John Wiley \& Sons, Inc., c. 1966.

TABLE I.- COORDINATES FOR LS(1)-0417 MOD AIRFOIL

| Upper surface |  | Lower surface |  |
| :---: | :---: | :---: | :---: |
| $x / c$ | 2/c | $x / \mathrm{c}$ | 2/c . |
| 0 | 0 | 0 | 0 |
| . 00124 | . 01286 | . 00106 | -. 00728 |
| . 00239 | . 01665 | . 00248 | -. 01063 |
| . 00741 | . 32642 | . 00765 | -. 01683 |
| . 01300 | . 03408 | . 01338 | -. 02096 |
| . 02088 | . 04266 | . 01991 | -. 02441 |
| . 03133 | . 05170 | . 03183 | -. 02945 |
| . 041150 | . 05894 | . 04187 | -. 03294 |
| .0EU80 | . 06464 | . 05110 | -. 03573 |
| . 07102 . | . 07488 | . 07203 | -. 04101 |
| . 09992 | . 08593 | . 10088 | -. 04665 |
| . 12642 | . 09341 | . 12531 | -. 05040 |
| . 15195. | . 09875 - | . 15156 | -. 05374 |
| . 17613. | . 10242 .. | . 17603 | -. 05633 |
| . 20136 | . 10503 - | . 20151 | -. 05851 |
| . 22458 | . 10651 | . 22487 | -. 06016 |
| . 25191 | . 10731 | . 25229 | -. 06167 |
| . 27462 | . 10734 | . 27686 | -. 06259 |
| . 30195 | . 10678 | . 30180 | -. 06323 |
| . 32382 | . 10597 | . 32330 | -. 06355 |
| . 35017 | . 10471 | . 35239 | -. 06367 |
| . 37685 | . 10320 | . 37431 | -. 06353. |
| . 40344 | . 10157 | . 40000 | -. 06312 |
| . 42607 | . 100.12. | . 42580 | -. 06243 |
| . 45228 | . 09836 | . 45148 | -. 0.6146 |
| . 47432 | . 09680 | . 47321 | -. 06042 |
| . 49983 | . 09488. | . 50.145 | -. 05869 |
| . 52478 | . 09280 | . 52561 | -. 05681 |
| . 55306. | . 09013 | . 55215 | -. 05424 |
| . 57414 | . 08788 | . 57495 | -. 05155 |
| . 60250 | . 08445 | . 60089 | -. 04793 |
| . 62408 | . 08153 | . 62389 | -. 04432 |
| . 64961 | . 07770 | . 65070 | -. 03976 |
| . 67575 | . 07339 | . 67458 | -. 03552 |
| . 70240 | . 06864 | . 69911 | -. 03104 |
| . 72617 | . 06416 - | . 72419 | -. 02632 |
| . 74966 - | . 05956 | . 74967 | -. 02148 |
| . 77674 | . 05412 | . 77634 | -. 01652 |
| . 80302 | . 04870 | . 80123 | -. 01216 |
| . 82446. | . 04422 | . 82480 | -. 00841 |
| . 85023 | . 03874 | . 85026 . | -. 00485 |
| . 87504 | . 03337 | . 87444 | -. 00195 |
| . 90244 | . 02737 | . 90007 | . 00032 |
| . 92463 | . 02238 | . 92418 | . 00147 |
| . 95022 | . 01657 | . 95022 | . 00160 |
| . 97593 | . 01034 | . 97586. | . 00013 |
| 1.00000 | . 00378 | 1.01000 | -. 00354 |





Figure 3.- Comparison of mean thickness distributions and camber lines for LS(1)-0417 and LS(1)-0417 Mod airfolls.


(a) $c_{1}=0.40$.

Figure 4. - Theorehical chordwise pressure distributions for LS(1)-0417 and $\mathrm{LS}(1)-0417$ Mod airfoils. $M=0.15 ; \quad R=4.0 \times 10^{6}$.

(b) $c_{1}=1.0$.

Figure 4.- Concluded.


Figure 5.- Typical airfoil model mounted in wind tunnel. $c=61 \mathrm{~cm}(24 \mathrm{in}$.$) .$


Figure $6 .=$ wake survey rake. $\dot{c}=61 \mathrm{~cm}(24 \mathrm{in}$.$) .$



$R=1.5 \times 10^{6}$.
Figure 7.- Continued.
(b)

> $R=2.0 \times 10^{6}$.

$$
\text { Figure } \because-\text { continued. }
$$


(d)

$$
R=3.0 \times 10^{6}
$$

Figure 7.- Continued.
 $\stackrel{0}{0}$


$$
R=4.0 \times 10^{6}
$$

(e)

$$
\begin{aligned}
& \mathrm{M}=0.15 ; \\
& \text { Figure 7. }
\end{aligned}
$$

Figure 7.- Continued.

$R=6.0 \times 10^{6}$.
(f) $\mathrm{M}=0.15$;
Figure 7.- Continued.

$R=9.0 \times 10^{6}$.


(g) $M=0.15$;

$R=12.0 \times 10^{6}$.


- 1.0EMTM


$$
\begin{gathered}
\text { (a) } M=0.15 ; \mathrm{R}=2.0 \times 10^{6} \\
\text { Figure 8.- Section characteristics for } \mathrm{LS}(1)-0417 \text { Mod airfoil. } \\
\text { Roughness located at } 0.075 \mathrm{c}
\end{gathered}
$$



$$
u, u \in y
$$

## 


$R=4.0 \times 10^{6}$.
Continued.

(c) $M=0.10 ; R=6.0 \times 10^{6}$.


$R=6.0 \times 10^{6}$.
(d) $M=0.15$;
Figure 8.- Continued.

$R=6.0 \times 10^{6}$.

Continued.


$R=6.0 \times 10^{6}$.

$p=9.0 \times 10^{6}$.

|  | - |  |  |  |  |  |  | - ${ }^{\sim}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  | - |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  | $8$ |  |  |  |  |  |  | 为 |

(i) $\quad \mathrm{M}=0.15 ; \quad \mathrm{R}=12.0 \times 10^{6}$.

(a) $R=2.0 \times 10^{6}$.
Figure 9.* Effect of roughness on section characteristics. $M=0.15$.

(a) $R=2.0 \times 10^{6}$. Continued.
Figure 9.- Continued.


(3) $R=4.0^{1} \times 10^{6}$
Figure 9.- Continued.

(b) $R=4.0 \times 10^{6} . \quad$ Concluded.
Figure 9.- Continued.

(c) $\quad R=6.0 \times 10^{6}$.
Figure' 9.- Continued.

(c) $R=6.0 \times 10^{6} . \quad$ Concluded.
Figure 9.- Continued.

(d) $R=9.0 \times 10^{6}$.
Figure 9.- Continued.


(d) $R=9.0 \times 10^{6} . \quad$ Concluded.

(e) $R=12.0 \times 10^{6}$.
Figure 9.- Continued.


Figure 10.- Effect of Reynolds number on section characteristics. Model smooth; M = 0.15.

(c) Pitching monent.
Figure 10.- Concluded.

Figure 11.- Effect of Reynolds number on section characteristics. Roughness located at $0.075 \mathrm{c} ; \mathrm{M}=0.15$.


[^0]
(c) Pitching moment.
Figure 11.- Concluded.
 $\alpha$, deg
(a) Lift.
Figure 12.- Effect of Mach number on section characteristics.
Roughness located at 0.075 c ;

Figure 12.- Continued.

(c) Pitching moment.
Figure 12.- Concluded.

\[

$$
\begin{aligned}
& \text { (b) } \quad R=4.0 \times 10^{6} \\
& \text { Figure } 13 . \text { - Continued. }
\end{aligned}
$$
\]


(c) $R=6.0 \times 10^{6}$.
Figare 13.- Concluded.


[^1]
(c) $\quad R=6.0 \times 10^{6}$
Figure 14.- Continued.

(d) $R=9.0 \times 10^{6}$.
Figure 14.- Concluded.

(a) $\quad R=2.0 \times 10^{6}$.
stribution and Reynolds number on chordwise pressure symbols designate lower surfac airfoil. Roughness on; $M=0.15$. Flagged symbols designate lower surface.

(a) $R=2.0 \times 10^{6}$. Concluded.

(b) $R=4.0 \times 10^{6}$. Concluded.
Figure 15.- Continued.

(c) $R=6.0 \times 10^{6}$.
Figure 15.- Continued.


(a) $\mathrm{R}=9.0 \times 10^{6}$.
Figure 15.- Continued.

(d) $R=9.0 \times 10^{6}$. Concluded.
Figure 15.- Concluded.

Figure 17.- Effect of Reynolds number on chordwise pressure distributions for ' Ls (1)-04 designate lower surface.


(b) $c_{1}=1.0$.

Figure 18.- Continued.


Figure 18.- Concluded.


Figure 20.- Variation of maximum lift coeffficient with Mach number for LS (1)-0417 and LS(1)-0417 Mod airfoils. Roughness on; $R=6.0 \times 10^{6}$.



Figure 22.- Variation of drag coefficient with Reynolds number for Ls (1)-0417 Mod alrfoil. $M \leqslant 0.15 ; \quad c_{1}=0.40$.


Figure 23.- Variation of lift-drag ratio with lift. coefficient for LS(1)-0417 and LS(1)-0417 Mod airfoils. Roughness on: $M=0.15$.


[^0]:    (b) Drag.
    Figure 11.- Continued.

[^1]:    (b) $R=4.0 \times 10^{6}$.

    Figure 14.- Continued.

