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Wind turbine blades undergo high operational loads, experience variable environmental
conditions, and are susceptible to failure due to defects, fatigue, and weather-induced
damage. These large-scale composite structures are fundamentally enclosed acoustic
cavities and currently have limited, if any, structural health monitoring (SHM) in place.
A novel acoustics-based structural sensing and health monitoring technique is developed,
requiring efficient algorithms for operational damage detection of cavity structures. This
paper describes the selection of a set of statistical features for acoustics-based damage
detection of enclosed cavities, such as wind turbine blades, as well as a systematic
approach used in the identification of competent machine learning algorithms. Logistic
regression (LR) and support vector machine (SVM) methods are identified and used with
optimal feature selection for decision-making via binary classification algorithms. A
laboratory-scale wind turbine with hollow composite blades was built for damage detec-
tion studies. This test rig allows for testing of stationary or rotating blades, of which time
and frequency domain information can be collected to establish baseline characteristics.
The test rig can then be used to observe any deviations from the baseline characteristics.
An external microphone attached to the tower will be utilized to monitor blade health
while blades are internally ensonified by wireless speakers. An initial test campaign with
healthy and damaged blade specimens is carried out to arrive at several conclusions on
the detectability and feature extraction capabilities required for damage detection.
[DOI: 10.1115/1.4036951]
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1 Introduction

As wind energy increases its industry market share, wind farm
operators are investigating ways to decrease operation and mainte-
nance costs [1]. Field experience has determined that blades are
the highest contributors to wind turbine maintenance costs [2,3].
As composite turbine blades continue to increase in size (improv-
ing energy output), it becomes harder to retain structural integrity
in operation, which in turn amplifies the cost associated with oper-
ation and maintenance. Turbine blades are subjected to aerody-
namic and gravitational loads under varying environmental
conditions, which can result in cracking, holes, delamination, and
deformation. While the blades are traditionally inspected using a
time-based maintenance strategy, these inspections are relatively
infrequent, expensive, pose a physical risk to the inspector, and
are reliant on what can be visually detected by the inspector [4].
Developing a smart methodology for condition-based mainte-
nance would stand to significantly reduce costs.

Several inspection methods are currently available for detecting
various blade faults such as holes, cracks, and delamination.
Vibration, acoustic emission, and wave propagation-based meth-
ods are frequently used in order to evaluate the structural integrity
of turbine blades [5–7]. Photogrammetry-based optical techniques
have recently been used to detect defects in wind turbine blades
[8,9]. Ultrasound-based inspection is one of the most widely used
blade inspection techniques in industry and has been successfully
demonstrated in the literature [10–12]. Acoustic beamforming is a

versatile but costly technique that has been demonstrated to suc-
ceed under certain conditions [13,14]. Acoustic signatures taken
from the structure, before and after damage, may allow for detec-
tion and differentiation of fault existence and can also be used as
a blade inspection method [14–18]. Aizawa et al. investigated
damage detection of wind turbine blades by installing a speaker
inside of a stationary wind turbine blade and qualitatively charac-
terizing the sound radiation using a microphone array [14]. They
ultimately observed that faults would change acoustic energy radi-
ated from the test object. Arora et al. used vibroacoustic modal
analysis to determine that, when exciting a structure via internal
loudspeaker, vibroacoustically coupled mode shapes will change
due to damage on the structure [5].

In addition to the numerous proposed inspection methods, there
are a number of data processing schemes proposed to arrive at
conclusions about the health of the turbine blades. Nair and Kire-
midjian use Gaussian mixture models as clustering algorithms in
pattern classification. Initial parameters are estimated through
the use of the K-means algorithm [19]. Sohn et al. utilize linear/
quadratic discrimination methods in addition to statistical control
charts to arrive at a damage diagnosis [20]. Principal component
analysis is a well-established technique that has been used to map
a large set of input features to a much smaller combination of fea-
tures (which are linear combinations of the original ones) [21].
Krause et al. use a model of a cracking sound in comparison with
acoustic detection of a structure [22]. They use five features
extracted from the comparison: power slope, tonality, spectrum
slope, spectrum similarity, and impulse decay, to arrive at conclu-
sions on the health state of the structure. Edwards et al. [23] pro-
pose a robust SHM system that uses an initial time-series
algorithm (trained to predict system response using “baseline”
data) to compare predicted response to measured response and
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generate a specified “damage indicator.” Furthermore, they use
info-gap decision-making theory to measure the uncertainty and
obtain the bounds of variation.

Autoregressive models in conjunction with time-series analysis
have been widely used in SHM both for feature extraction as well
as damage detection [24]. Figueiredo et al. use an autoregressive
model to perform feature extraction from accelerometer time data
measured on a structure under varying health conditions [25].
Auto-associative neural networks, factor analysis, Mahalanobis
squared distance, and singular value decomposition algorithms
were used to normalize data and generate a scalar damage indica-
tor. Algorithm performance was evaluated using receiver operat-
ing characteristic curves [25]. Nick et al. used unsupervised
learning on acoustic emission signals to identify the existence and
location of damage, and then switched to supervised learning
(support vector machines, na€ıve Bayes classifiers, feedforward
neural networks, random forest ensemble learning, and AdaBoost)
to identify the type and severity of damage [26]. They found
SVMs to be the best performing, both in precision as well as clas-
sification time. Neural networks have widely been used for dam-
age identification using vibration data, and support vector
machines are also becoming increasingly utilized [27].

Most of the previously mentioned inspection methods are not
applicable during wind turbine operation and are instead utilized
for inspection when the blades are stationary. There is a clear
need for the development of a new technique which will detect
damage and ensure the integrity of wind turbine blades in opera-
tion. Niezrecki and Inalpolat have proposed a novel acoustic
sensing-based structural health monitoring technology for use on
operating turbine blades. The preliminary computational and
experimental results of this method have been presented in earlier
publications [28–30]. There is also a need for additional literature
with regard to implementing machine learning algorithms to
monitor structures via selected feature sets to observe and detect
damage [20].

This paper extends the method of active acoustic detection by
considering experimental data from a laboratory wind turbine test
rig. The executed test plan addresses a variety of wind turbine
blade damage types, locations, and severities. The blades are sta-
tionary throughout each test case, with the exception of one test
case to include the influence of rotational blades on the data.
Multiple acoustic excitation types, including single-tone har-
monic, multitone harmonic, and white noise, are considered for
each test case. Experimental results are evaluated using super-
vised machine learning techniques in order to interpret the health
state of wind turbine blades in operation. The data presented
include the laboratory measurements required for the proof-of-
concept studies, with a focus on data interpretation via machine
learning to observe and detect structural damage. This paper is
expected to contribute to structural health monitoring methodolo-
gies and its application to practical systems such as wind turbines.
Specifically, the contributions are expected to be in the fields of
signal acquisition and processing, data interpretation, decision-
making, and algorithm development for operational damage
detection.

2 Methodology

2.1 Acoustics-Based Blade Monitoring Methodology. The
intent of this study is to further develop an acoustics-based
damage detection methodology by employing machine learning
algorithms to determine whether maintenance is required on a tur-
bine blade in operation. It is anticipated that the blade damage
will manifest itself in changes to the statistical features extracted
from the acoustic data.

The acoustic sensing method proposed by Inalpolat et al.
[28–30] involved two approaches for discrimination of healthy
and damaged specimens: passive and active detection. Passive
detection seeks to determine damage by measuring the acoustic
response of the blade cavity to ambient external wind flow. For
active detection, the cavity is excited via an internally mounted
speaker (with controlled output frequency and volume level). The
sound radiation from the cavity is measured via a microphone
mounted externally on the tower, which will allow cracks and
other damage types to be observed. Results presented in this paper
are derived from experimentation via the second method, “active
detection.” The proposed active damage detection method is
depicted in Fig. 1.

Active detection was used in this study as it allowed the excita-
tion tones to be variables in the algorithm’s ability to discern out-
put classes. Additionally, it allowed each blade to be ensonified
with a separate unique tone, for later use in attempting to identify
which blade is in possession of a fault, and to determine if the
optimal feature vector changed between single-tone and multitone
tests. Once a damaged blade is discovered, further testing will be
performed on that blade, drawing more specific conclusions as to
the health of the blade. The initial goal of this study is to use
supervised machine learning techniques to identify whether dam-
age is present in the blades. Using cavity acoustics and supervised
machine learning techniques will provide a means of continuous
structural health monitoring, even while blades are in operation,
providing a more cost-effective and proactive monitoring scheme.

A concern regarding SHM implementation in industry is the
volume of data accrued from continual collection of sound pres-
sure information from the blades. Processing this data manually
would require a trained individual to visually monitor all of the
incoming data from each of the blades in a wind farm, quickly
becoming prohibitively costly. To combat this, an acquisition
strategy is proposed, which samples the blade’s acoustic signature
at predetermined intervals (for example, every 30mins). Each
time signature is then condensed to a set of features which seeks
to preserve as much information as possible from the time data
while reducing the data to a much smaller dimension. Once the
feature vector has been generated, machine learning algorithms
will be used to process the information and diagnose/monitor the
health of the blade.

2.2 Feature Selection. Proper feature selection is critical to
the success of the health monitoring algorithm and involves iden-
tifying a feature set that contains as much information as possible
about the system while minimizing the likelihood of false alarms

Fig. 1 Schematic of the active damage detection
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[27,31]. In preparing the data for conversion to a set of representa-
tive features, it is good practice to first attenuate noise and other
undesired signal artifacts. Selected features are often chosen based
on previous experience and observation of fault-sensitive charac-
teristics. Understanding how the system is expected to change
due to damage is often helpful in selecting features. For example,
faults can result in changes to the power spectrum, signal
magnitude, and the energy of the system [31]. Good features are
insensitive to operational and environmental variability, and can
distinctly separate classes [31]. One method for determining
which features are sensitive to the development of faults is to cre-
ate damages on the structure that are similar to those anticipated
to occur during the operational life of the component [32]. Poor
selection of features can result in the variations due to environ-
mental and operational conditions overwhelming any changes
present due to actual damage. This problem occurs both in statisti-
cal approaches and model-based approaches [27].

A total of 12 features are considered in this study consisting
primarily of signal statistics. A complete list of the features is as
follows: mean, median, root-mean-square (RMS), root-sum-of-
squares (RSSQ), mean frequency, median frequency, kurtosis,
variance, crest factor, standard deviation, skewness, and peak
amplitude of the fast Fourier transform (FFT). Signal statistics
have been used as damage-sensitive features with success and can
be computed with minimal computational effort and time [32].
All statistics that are considered are readily available functions in
MATLAB, where all processing and algorithms were developed.
Adding features requires more computational time, memory, and
effort to process all the data. Limiting the number of features
allowed the study to focus on proper evaluation of the machine
learning algorithms and feature contribution metrics.

2.3 Feature Contribution Metrics. An alternative to
selecting a new feature set for each unique analysis or running an
algorithm with an unnecessarily large global feature vector is to
develop a metric to establish how well each feature represents the
data and select a subset of the global feature vector to represent
the system. An automated procedure can select this subset prior to
training the algorithm, reducing the time it takes to optimize the
algorithm. In practice, feature vectors can become quite large.
Data are collected from a myriad of sensors, in many locations,
which can result in hundreds and thousands of processed features.
In some applications, not all of these features are needed at the
same time, and in machine learning, there is a balance between
the number of features needed and the number of training exam-
ples needed. In terms of the efficiency of the damage detection
algorithm, the best performance is often attained when limiting
the feature vector to the features that are most sensitive to dam-
age. Using a large input feature vector with features that are not
very sensitive to damage takes a longer time to converge on an
optimized algorithm solution than fewer features that are more
fault-sensitive. Though the feature set presented in this paper is
comparatively small (roughly a dozen features), two proposed fea-
ture contribution metrics are tested as a proof-of-concept study for
implementation as an optimized feature selection methodology in
an SHM system. In this paper, the distinguishability measure and
Fisher’s ratio are proposed as feature contribution metrics. These
methods are selected due to ease of implementation and quick
processing time. It is desirable that the optimized feature selection
is a quick process, so that in real time, the training algorithm can
determine which subset of an overall large feature vector is best
applied under certain conditions to determine and monitor the
health of the structure.

2.3.1 Distinguishability Measure. A feature’s ability to
differentiate between multiple classes can be quantified by its dis-
tinguishability. Figure 2 displays two probability distributions
(p1ðzÞ and p2ðzÞ, where z represents the values of a selected fea-
ture), plotted along the same axis, representative of two classes of
some feature, A. It should be noted that both distributions are

assumed to be Gaussian, which is valid for most of the large
training datasets [31].

Distinguishability is a measure of how much overlap exists
between two classes of a feature. In Fig. 2, this is symbolically
represented as the shaded area. Intuitively, the smaller this area is,
the better that particular feature is at distinguishing the classes of
data. The distinguishability measure for a feature, A, is given in
the following equation:

dw1w2

A ¼
ðT

�1

1
ffiffiffiffiffiffiffiffiffiffi

2pv2
p e

�

� z�l2ð Þ2

2r2
2

�

dzþ
ð1

T

1
ffiffiffiffiffiffiffiffiffiffi

2pv1
p e

�

� z�l1ð Þ2

2r2
1

�

dz (1)

where w1 and w2 represent the two data classes, of which there
are N1 and N2 samples, respectively, l1 is the mean of the w1

training dataset, l2 is the mean of the w2 training dataset, r1 is the
standard deviation about l1, and r2 is the standard deviation about
l2. The point T is determined by differentiating Eq. (1) and setting
equal to zero [31]. Equation (1) can easily be expanded for multi-
class classification algorithms. Because supervised learning is uti-
lized in this study, the distribution of the training data is known
and can be used to determine the distinguishability power of each
feature over the training set. This information is used as a means
of determining which features have the best ability to distinguish
healthy and damaged classes.

2.3.2 Fisher’s Ratio. Fisher’s ratio is a single value that quan-
tifies the distance between the means of two distributions with
regard to the variance of each distribution [20]. Equation (2)
presents Fisher’s ratio

FR ¼
mi � mjð Þ2
�i þ �j

i 6¼ jð Þ (2)

In this equation, mi is the mean, �j is the variance, and subscripts i
and j denote the two classes (healthy and damaged). Equation (2)
can be easily expanded to multiclass classification with minimal
effort. Fisher’s ratio is a measure for the (linear) discriminating
power of some variable. A high score indicates a Fisher ratio in
which the means are more separable. Features with a larger ratio
are assumed to be more useful in differentiating between classes.

2.4 Machine Learning Selection/Development

2.4.1 Overview. The data-driven approach to structural health
monitoring uses statistical pattern recognition and machine learn-
ing to monitor a structure and determine whether a fault is present.
A benefit of data-driven methods is that they do not require much
advanced knowledge of a structure (i.e., material properties and
failure mechanisms) to monitor the health of the structure [33].
Certain steps, such as feature scaling and mean normalization, are
taken prior to applying a machine learning algorithm, to give it

Fig. 2 Illustration of the feature distinguishability metric
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the highest chance of success possible. These steps help to
normalize the data from each feature and help the algorithm to
converge on an optimal solution faster. This minimizes the prob-
lem of features with a greater numerical range from dominating
those with a much smaller range. Additionally, the initial dataset
is broken into three subsets: training, test, and cross-validation.
The algorithm is trained using the training set, and then evaluated
using the test and cross-validation sets to determine how well the
algorithm, once trained, can generalize to new examples.

“Machine learning” refers to developing and training an algo-
rithm to recognize patterns and make predictions, either with or
without knowledge of preceding examples. Three general catego-
ries of algorithms are used in statistical modeling: group classifi-
cation, regression analysis, and outlier detection. Determining the
best category from which to select an algorithm to use depends on
whether supervised or unsupervised learning is desired [25].
Supervised learning (linear/logistic regression and support vector
machines) relies on knowledge of preceding examples to predict
future results. In unsupervised learning (clustering, neural net-
works, and recommender systems), patterns are inferred from the
data with no knowledge of preceding examples [34]. With proper
feature selection and an appropriate algorithm, the presence of
damage in a structure can be monitored. This includes damage
severity, location, and remaining useful life. For a high-cost struc-
ture (such as bridges or space vehicles), inciting damage is not
practical. In these cases, unsupervised algorithms are typically
used though they are limited to the identification of damage
[20,25]. When data are known from both a damaged and undam-
aged state, supervised learning is preferred as it allows extent and
location of damage, as well as the remaining useful life, to be
determined [20].

In this study, a set of relatively low-cost subscale composite
turbine blades are used, allowing damage to be incited, and super-
vised learning to be used to observe how the acoustic signature
changes with damage. The efficiency and accuracy of selected
algorithms are monitored, as is feature sensitivity to environmen-
tal and operational conditions. Here, the primary concern is struc-
tural damage detection. Future studies will implement results
from this research on larger turbine blades where additional infor-
mation regarding the health state, such as extent and location of
damage, as well as remaining useful life will be sought. Logistic
regression and support vector machines (both supervised learning
algorithms) are discussed in detail in this paper. For both algo-
rithms, the process flow is similar: a training set of n samples
(each consisting of the reduced feature vector as well as a class
label (healthy/damaged)) is provided to the algorithm. This infor-
mation is weighted by an initial set of parameters, h, to develop a
hypothesis function. The hypothesis is iteratively updated to find
the best h matrix to fit the data. Once “trained,” the algorithm
can classify future input into its respective classes as depicted in
Fig. 3.

2.4.2 Logistic Regression. A binary classification logistic
regression-based algorithm is selected to monitor the existence of
damage on a turbine blade. Due to the binary nature, the system
does not show the extent of damage, only that a threshold has
been breached that indicated damage of a predetermined severity

is present. Intervention may be a visual inspection, repairing or
replacing the blade, or making other changes to the turbine to
inhibit further damage. Logistic regression sorts input feature
vectors into classes (either binary or multiclass) through learned
optimization of a weighting parameter matrix, h. In the current
case study, these feature inputs consist of statistical parameters in
both time and frequency domain. As stated, acoustic pressure time
data are acquired from an external microphone while the structure
is internally excited by a known acoustic input. The acquired time
data are condensed into a vector of n features which are compiled
into a matrix of m training examples given in the following
equation:

x ¼
x11 … xn1
� � �

x1m � � � xnm

2

4

3

5 (3)

The feature matrix, x, weighted by the set of parameters, h,
defines the hypothesis function which attempts to predict the
known output classes of the training set. Binary classification
yields two possible output values of y¼ 0 (healthy) and y¼ 1
(damaged). Thus, the sigmoid function is used as the hypothesis
depicted below

hh xð Þ ¼ g h
Txð Þ ! g zð Þ ¼ 1

1þ e�z
! hh xð Þ ¼ 1

1þ e�hTx
(4)

Figure 4 displays the sigmoid function, plotted as a function of z
(where z is taken to be all real numbers).

The sigmoid function, g(z), is asymptotic at values of 0 and 1,
and greater than 0.5 for any input, z, greater than 0. In terms of the
hypothesis, this means that hhðxÞ � 0:5 will be generated when

h
Tx � 0. In binary classification, a threshold is set such that any

hypothesis value produced above this value corresponds to a pre-
dicted class of 1 (damage present) and conversely predicts a value

of 0 when h
Tx � 0. Developing a strong hypothesis involves

developing an appropriate parameter set. This is an iterative pro-
cess, in which the “cost” is computed to determine how well the
algorithm classifies the provided training data after each iteration.
The output weighting parameters h that generate the lowest cost,
based on the initial training set, are then used in the hypothesis to
predict future output values. The cost function penalizes the
hypothesis heavily each time it predicts a wrong value of y,
and minimally when a correct value is predicted as given by the
following equation:

costðhhðxÞ; yÞ ¼
�log ðhhðxÞÞ if y ¼ 1

�log ð1� hhðxÞÞ if y ¼ 0

(

(5)

Fig. 3 General process overview for the supervised learning
algorithms Fig. 4 The sigmoid hypothesis function, hhðxÞ5 gðzÞ
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Figure 5 depicts the cost function versus the hypothesis, plotted
for instances y ¼ 1 (damaged) and y ¼ 0 (healthy).

In Fig. 5, it is illustrated that the cost is high when the hypothe-
sis yields an output contradicting the actual value for y and vice
versa for correct predictions. When calculating the cost, it is
important to avoid overfitting in which the algorithm learns the
input/output relationship of the training set, but cannot generalize
to future examples. This occurs when there are too many features
for the number of training examples. Overfitting can be addressed
by either reducing the number of features, which is not ideal if all
the features are important, or employing regularization. Regulari-
zation adds a term, k, to the cost function, which helps to keep h
small essentially “absorbing” the function’s tendency to try and fit
every data point [35]. The two-piece cost function in Eq. (6) with
the embedded regularization parameter can be summed across all
examples in the training set, m

J hð Þ ¼ � 1

m

X

m

i¼1

y ið Þ log hh x ið Þð Þ� �

"

þ 1� y ið Þ
� �

log 1� hh x ið Þð Þ� �

i

þ k

2m

X

n

j¼1

h
2
j (6)

The gradient descent algorithm is used for minimizing the cost
function with respect to h [35]. Once the optimal vector h has
been determined, the hypothesis function can be plotted represent-
ing the boundary at which the algorithm switches between predict-
ing one class or another. The optimized hypothesis now allows
future feature sets to be classified. As the number of features and
the number of output classifications increase, the decision bound-
ary can become highly complex. Computation time is expensive,
particularly in regard to a real-time health monitoring system.
Therefore, care is taken to make the iterative solver run as
efficiently as possible by applying feature scaling. Features can
have ranges that are quite different from each other, resulting in
extended computation time to converge. Taking advantage of its
superior optimization capabilities, the MATLAB function fminunc,
which uses Broyden–Fletcher–Goldfarb–Shanno-based optimiza-
tion, was used [36]. This compensates for range differences and
does not require manual selection of a learning rate.

2.4.3 Support Vector Machines. Support vector machines
(SVMs) are a type of supervised, classification-based machine
learning algorithm and have only recently become popular in
structural health monitoring [20]. SVMs are robust to very large
numbers of variables and a very small sample size, which is bene-
ficial in cases where minimal supervised data are available. By
controlling the overall complexity of the model, SVMs are

typically able to generalize well to new examples and can learn
both simple and highly complex classification models [20]. As
unified classifiers, SVMs allow many types of discriminant func-
tions to be used with little or no modification to the overall algo-
rithm (i.e., linear, nonlinear, neural networks, and radial-basis)
[20]. SVMs also have the ability to produce nonlinear boundaries,
unlike logistic regression, by transforming the feature space and
placing a linear boundary in this new space. SVMs minimize the
influence of points that are well within a class boundary, reducing
the amount of data the SVM is actively using to draw a boundary,
decreasing solution time [37].

Support vector machines work to identify the optimal separat-
ing hyperplane. This is done by finding the hyperplane which
maximizes the margin between output classes. Equation (7)
presents the formulation for a hyperplane

wTx ¼ 0 (7)

In Eq. (7), w and x are vectors, the multiplication of which
represents the equation of the hyperplane in n dimensions. This
notation is used because it guarantees that w is always normal to
the hyperplane, and it is easier and faster notation when hyper-
plane dimensions exceed two. In two dimensions, the hyperplane
is a line which is drawn to differentiate between classes. Figure 6
displays a two-dimensional plot, with healthy and damaged data
points linearly separable.

Figure 6 displays the many lines which can be drawn, effec-
tively separating the healthy and damaged classes. Given only this
training data, each of the lines drawn is successful in separating
classes. However, certain hyperplanes are better than others at
generalizing to new examples. Hyperplanes that pass very closely
to a training data point are more susceptible to misclassification
when new test data are introduced. Hyperplanes that are further
from existing training data are more robust to the introduction of
new test data. The goal of SVMs is to select the hyperplane which
has the maximum margin. The margin is essentially twice the
magnitude of the perpendicularly projected distance of the nearest
point to the hyperplane. Figure 7 displays the manner of projec-
ting the point distance onto the perpendicular vector of the
hyperplane.

Figure 7 displays the vector p, which is the projected distance
of point A to the perpendicular vector w to the hyperplane. Twice
this value is indicative of the margin of the particular hyperplane.
Figure 8 displays two cases in which the margin of an ill-fitting
hyperplane and an optimal hyperplane is shown. It can be seen in
Fig. 8(a) that the margin is relatively small. A new data point
introduced which falls just outside the existing cluster of healthy
data but still far removed from the damaged cluster could easily

Fig. 5 Logistic regression cost curves for y5 1 and y50
Fig. 6 Multiple hyperplanes fitting sample dataset
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be misidentified as damage. This is undesirable in that, from a
structural health monitoring perspective, detecting damage when
none is present can result in added expense and downtime for a
structure.

It can be seen in Fig. 8(b) that this hyperplane is much more
robust to the case where a new data point falls slightly outside of
the existing clusters and is less likely to misidentify a data point
that still maintains characteristics of a particular class and falls
near to that class.

Similar to logistic regression, the optimal SVM parameters (the
best hyperplane) are found by minimizing a cost function which
evaluates the performance of the algorithm being trained in com-
parison to the output of the existing training set. SVMs are convex
functions, which imply that any local optimum is also the global
optimum. Though the cost function is formulated slightly differ-
ently than that of logistic regression, the optimum algorithm
parameters are found by minimizing the respective cost function.
Figure 9 displays the two part cost function for cases where y¼ 1
and y¼ 0. For comparison, the logistic regression cost function
for each case is overlaid in a dotted line.

Combining the terms for y¼ 1 and y¼ 0, the global cost func-
tion for SVMs is given in the following equation:

Fig. 7 Illustration of the steps in hyperplane formulation

Fig. 8 Ill-fitting and optimal hyperplane comparison

Fig. 9 Cost functions for (a) y5 1 and (b) y50
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J hð Þ ¼ C
X

m

i¼1

y ið Þ cos t1 h
Tx ið Þ

� �

þ 1� y ið Þ
� �

cos t0 h
Tx ið Þ

� �

h i

þ 1

2

X

n

j¼1

h
2
j (8)

It can be seen in Eq. (8) that the regularization parameter k is no
longer present in the second term of the equation, and that a new
parameter C has been introduced. C acts against overfitting in the
presence of outliers. If C is very large, the decision boundary will
be largely influenced by outliers, whereas conversely, if C is very
small, the algorithm will largely ignore the presence of outliers.
For this paper, MATLAB’S toolbox is used to evaluate SVMs for
SHM applications [36].

2.5 Limitations. In a realistic situation, it is unlikely to have
access to a sufficiently large amount of labeled data from
full-scale wind turbine blades that can be leveraged for data clas-
sification using supervised learning. The currently envisioned
damage detection system involves a two-stage detection and clas-
sification algorithm. The first stage is to do anomaly detection
using unsupervised learning (clustering-based) for damage detec-
tion. This is based upon the principles of data clustering, i.e.,
newly collected data having statistical departure from the baseline
(healthy) new blades. The baseline data will be collected by the
system using the second-stage algorithm to train itself for damage
identification (not only detect but also localize and predict the
severity). The second stage will allow increasing the labeled data-
base as the data will be labeled right after a new turbine (no blade
damage initially) is deployed in the field (healthy baseline data)
and during maintenance stages (healthy baseline or damaged, if
any). The data collected and processed (using supervised learning)
in this study and the future controlled experimental studies con-
ducted by the team are geared toward developing an initial data-
base (data collected from different blades and under different
conditions) and develop the second stage of the operational dam-
age detection system. This initial experience will be comple-
mented by data obtained from wind farms and in situ application
of the system and is critical for the success of the proposed dam-
age detection system.

The test structure under investigation is a subscale model of an
actual wind turbine system that is tested in a controlled laboratory
environment. A fully operational wind turbine system will be sub-
jected to various internal and external noise sources including the
wind flow over the blades, whining of the gearbox, and other envi-
ronmentally induced noise. Some noise will be clearly distinct or
tonal, such as the gearbox-related part, and can be simply filtered
out. Most noise will be complex, such as the flow-induced noise,
and will require the use of advanced signal processing algorithms
to account for the influences on the data, and subsequently the
machine learning algorithm. Further investigation into the charac-
teristics of tonal and nontonal noise contributors will include wind
tunnel testing and active detection tests in the field on a real wind
turbine system. For the purpose of this paper, the expected noise
contributions in the field are ignored with the intent to provide a
proof of concept. In response to the success of the investigated
machine learning algorithms and active detection concept, further
development and testing can be performed to address any noise
concerns.

3 Test Structure

One of the primary objectives of this study is to select machine
learning algorithms that can detect the presence of damage. The
capability to detect damage should be unaffected by the type,
severity, and location in which the damage can exist. In order to
assess whether the selected machine learning algorithms provide
sufficient capability to detect damage despite the various circum-
stances in which damage can exist, a practical and large test

matrix was developed and executed. The results obtained from
executing all the tests provide enough data to properly evaluate
the machine learning algorithms. A laboratory-scale wind turbine
(rendered model in Fig. 10(a)) was designed to test the effective-
ness of the selected machine learning algorithms. The completed
wind turbine (Fig. 10(b)) has three hollow composite blades, each
containing a wireless speaker. The composite blades were manu-
factured using vacuum infusion, which is the preferred manufac-
turing method in the wind turbine industry. Each blade consists of
two halves (clam-shell design) that are sealed together along the
edges with sealant putty and acoustic foam tape. The entire test
setup was surrounded by acoustic absorbing material in order to
minimize sound reflections. Acoustic pressure time history and
the corresponding frequency spectrum were recorded using a PCB
130D20 microphone mounted onto the tower, where the micro-
phone was vibration-isolated from the tower using a foam
material.

Each wind turbine blade was labeled from 1 to 3 for bookkeep-
ing purposes. The blades were orientated in the same position
during all stationary tests, and blade 1 was always used as the
damaged blade. Each blade had the same acoustic excitations dur-
ing multitone tests, and the same volume (amplitude) was used for
all speakers. When testing a specific damage type at a specific
location, all tests were performed within the same day starting at
the healthy state and increasing in damage from small to large.
The temperature was monitored for each measurement and
recorded due to the known effects of the environmental conditions
on acoustic data. All specified precautions were taken in order to
minimize the variability among experiments. The following test
matrix shown in Table 1 presents all states in which the blades
were tested. A total of 28 different blade states were performed, in
which four were tested while the wind turbine hub was rotating.
During these tests, the rotor hub’s rotational speed was controlled
using a direct current motor.

Two damage types were considered in this paper, holes and
edge splits. Holes provide a simple (but still realistic) form of
damage to understand and implement, which is done with a hand
drill and drill bits. Edge splits resemble a practical and common
type of damage and are created by removing the sealant putty and
acoustic foam tape sealing the two edges together. Holes are
repaired by using Bond-O all-purpose putty. Edge splits are
repaired by reapplying the sealant putty and acoustic foam tape
along the edge where damage was induced. Damage types were
individually implemented at the root, midlength, or tip of the
blade to cover a range of locations in which damage could occur.
A full schematic of each damage type and location on blade 1 is
shown in Fig. 11. Each damage was tested at four levels of sever-
ity classified as healthy, small, medium, or large in order to assess
the sensitivity of the machine learning algorithm. The dimensions
of each damage severity are shown in Table 1. Dimensions

Fig. 10 (a) Solid model of the subscale turbine and (b) com-
pleted subscale turbine prototype
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represent the diameter of the holes and length of the edge splits,
respectively.

Once one damage type and location had been tested at every
severity, the blade was repaired to a "healthy" state as outlined.
The repaired blade acts as the new baseline healthy state for the
next damage type and location. Therefore, any possible influences
from the repairs performed on the blade are neglected when con-
sidering a damage type and location. A set of experiments were
performed with the wind turbine blade in operation. The blades
were set to rotate at a speed of approximately 45 rpm. The damage
case considered during the rotating test was an edge split located
near the midlength of blade 1.

Seven acoustic excitation types were used as inputs for each
test case to assess how well specific frequency tones or ranges can
detect damage, as well as how sensitive the frequencies are in the

presence of other tones. The specific frequencies and which blade
is excited for each test are shown in Table 2. Single-tone har-
monic (sinusoidal) tests ranging from 1 to 10 kHz excite only
blade 1, the damaged blade, to assess the detectability of damage
at low, medium, and high frequencies. Using a single tone asserts
that only the damaged blade is in consideration, the simplest form
of excitation is used, and all the sound energy is focused at one
frequency for ease in distinguishing results. Multitone sinusoidal
tests excite each blade at similar (but still different) frequencies to
assess how well damage can be detected when multiple tones
exist. Additionally, ensonifying each blade with a separate fre-
quency increases the likelihood of identifying which blade has
damage based on the frequency that indicates damage. Blade 1 is
excited with the same frequencies as was done with the single-
tone tests to reduce variability. For each multitone range tested,
blades 2 and 3 are excited at frequencies one-tenth less or greater
than the frequency of blade 1. White noise tests excite only blade
1 to assess the ability to detect damage with a broadband fre-
quency input. The data from a white noise test can be observed to
determine which frequency ranges within the input range are opti-
mal or insignificant for damage detection.

Data were acquired using a National Instruments PXI 64 chan-
nel system powered by MþP SMART OFFICE data acquisition soft-
ware. A complete summary of the data acquisition parameters for
all tests is shown in Table 3. Parameters were selected such that
all frequencies can be acquired with sufficient detail and enough
points exist to appropriately represent the features selected in the
machine learning algorithms. A total of 30 blocks were taken for
each measurement and saved along with an average. Three itera-
tions were performed for each measurement to give a total of 90
time blocks for each acoustic excitation in each test case. For
example, the healthy hole located at the tip of the blade will have
90 time blocks for each acoustic excitation adding up to 630
healthy time blocks. In total, 17,640 time blocks were acquired
and saved in which 4410 blocks represent healthy states. This
allows for a statistically significant quantity of data to train the
machine learning algorithm.

With the relatively large quantity of data acquired, machine
learning algorithms’ ability to detect the presence of damage can
be sufficiently tested under multiple damage types, severities, and
locations. Including and excluding datasets from specific tests
enable thorough assessments of the algorithms’ capability with
respect to acoustic excitation types and damage characteristics.
For example, some of the acoustic excitation types may be poor
indicators when detecting damage for some or all features.

Table 1 Summarized test matrix of all test cases performed

Operation Type Location Severity

Stationary Hole Root Healthy (0.000 in)
Small (0.125 in)

Medium (0.250 in)
Large (0.375 in)

Midlength Healthy (0.000 in)
Small (0.125 in)

Medium (0.250 in)
Large (0.375 in)

Tip Healthy (0.000 in)
Small (0.125 in)

Medium (0.250 in)
Large (0.375 in)

Edge split Root Healthy (0.000 in)
Small (1.000 in)

Medium (2.000 in)
Large (3.000 in)

Midlength Healthy (0.000 in)
Small (1.000 in)

Medium (2.000 in)
Large (3.000 in)

Tip Healthy (0.000 in)
Small (1.000 in)

Medium (2.000 in)
Large (3.000 in)

Rotational Hole Midlength Healthy (0.000 in)
Small (0.125 in)

Medium (0.250 in)
Large (0.375 in)

Fig. 11 Schematic of blade 1 damage locations

Table 2 Acoustic excitation parameters for each test case

Test Blade 1 (Hz) Blade 2 (Hz) Blade 3 (Hz)

Single low 1000 — —
Single mid 5000 — —
Single high 10,000 — —
Multi-low 1000 900 1100
Multi-mid 5000 4500 5500
Multi-high 10,000 8000 9000
White noise White noise — —

Table 3 Signal processing parameters for each test

Variable Value

Sample rate (Hz) 32,768
Block size (no. points) 131,072
Frequency resolution (Hz) 0.25
Time resolution (s) 3.05176� 10�5

Sample time (s) 4
Averages 30
Window None
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Therefore, these acoustic excitation types can be excluded when
training and testing the machine learning algorithms. A parametric
analysis is performed considering various combinations of the
data to identify optimal features, excitation types, and conditions
that ultimately provide the capability to detect damage from the
selected machine learning algorithms.

4 Results and Discussion

A test case is defined as a complete run through of all damage
severities of a specific damage type and location for a single
acoustic excitation type. For example, a hole-type damage located
at the root of the blade acoustically excited with white noise is
classified as one test case. It is assumed that if the accuracy of the
machine learning algorithms is poor when considering an individ-
ual test case, it will also be poor when considering that test case in
conjunction with other test cases. Therefore, each individual test
case is considered for evaluation first. Once every test case has
been evaluated, the test cases that were accurately classified are
considered for grouped analysis. The resultant accuracy of the
grouped test cases allows proper conclusions to be drawn about
the sensitivity and ability of the machine learning algorithms to
detect damage when subject to different damage types, severities,
and locations. The data were filtered with either a high-pass or
band-pass filter depending on the acoustic excitation method.
Undesired low-frequency content has a significant influence on
the features. Filtering as such allowed the time data to maintain
the contributions of the damage on the data while excluding noise
from the laboratory environment, equipment, and the wind turbine
blade motor. The filtered data are organized into features and nor-
malized. The resultant feature matrix is used in the logistic regres-
sion algorithm and SVM algorithms.

4.1 Evaluation of Machine Learning Algorithms. As previ-
ously mentioned, logistic regression machine learning algorithms
were implemented in MATLAB. The data were split into three
groups: the first for training the algorithm and the remaining two
for evaluating the algorithm’s ability to generalize to new
examples. Support vector machines are executed directly from the
MATLAB’S Classification Learner application. Six types of SVMs
are considered: linear, quadratic, cubic, fine Gaussian, medium
Gaussian, and coarse Gaussian. Linear, quadratic, and cubic make
a polynomial separation of the respective order between classes.
The Gaussian SVMs make distinctions between classes using a
Gaussian kernel. The terms fine, medium, and coarse refer to the
kernel scale in which the Gaussian kernel is based. The kernel is
calculated based on the number of predictors (features). As the
kernel decreases in size, the distinction between classes is finer
and captures detailed intricacies in the feature relationships. Finer
kernels may be required for distinguishing complex feature
relationships, but are easily prone to overfitting.

Figure 12 displays the number of instances that each machine
learning algorithm was able to accurately classify the presence of
damage with respect to each acoustic excitation type when consid-
ering each individual test case. The test case was considered
acceptable from the classification perspective, if the accuracy was

greater than 98%. A 98% accuracy corresponds to no more than 4
out of the 216 errors considered during training, 1 out of 72 during
testing, or 1 out of 72 during cross-validation. High accuracy in
the training and cross-validation sets implies that the logistic
regression algorithm was able to generalize to the test and cross-
validation sets indicating no issues exist with overfitting. A total
of seven different damage type and location combinations were
tested; thus, a value of seven indicates that the algorithm
accurately classified the damage data for all damage types and
locations. Values of seven are bolded and highlighted while
values greater than five are bolded.

Figure 12 gives insight into two aspects of the designed meth-
odology, namely, the quality of acoustic excitation method used
and the quality of the machine learning algorithms tested. In terms
of acoustic excitation, the best accuracy was received using the
multi-mid acoustic excitation. Second to the multi-mid excitation
is the multi-high acoustic excitation, closely followed by the
5000Hz sinusoid and white noise excitations. In regard to
the machine learning algorithms, each managed to perform with
significant and comparable accuracy. However, it is clear that the
fine Gaussian SVM performed poorly. The most accurate algo-
rithm was the quadratic SVM, which would be expected due to
the additional leniency in defining the boundary between the two
cases while maintaining a sufficient margin for future
generalization.

Based on how well the machine learning algorithms performed
for the individual test cases during stationary tests, multiple test
cases were selected to be evaluated collectively by the algorithms.
For example, it was found that using a 5000Hz acoustic excitation
yielded well-trained algorithms in all damage cases but those
located at the root. Therefore, the algorithms were provided all
the data from the 5000Hz test cases excluding the hole and edge
split test cases located at the root. It can also be noted that multi-
low excitations performed similarly to 5000Hz excitations, multi-
mid excitations worked well with all cases, multi-high excitations
could accommodate holes perfectly, and white noise was suffi-
cient to classify edge splits perfectly. Figure 13 shows the com-
bined test cases considered and the resultant accuracies for each
model. Accuracy values that are greater than 98% are highlighted
again. During the execution of some of the combined tests, it was
observed that the features resultant from the first damage state and
healthy damage state could not be distinguished. This is not
unlikely, as the smallest damage severity considered is quite insig-
nificant. It is plausible that the machine learning algorithm is not
able to detect such miniscule changes. Therefore, test cases in
which this phenomenon was observed were repeated without the
first level of damage. In general, an increase in accuracy was
obtained in this case.

Considering each machine learning algorithm, the cubic SVM
performed with the greatest accuracy. In fact, the cubic SVM was
able to successfully detect the presence of damage with an accu-
racy greater than 98% for all stationary blade tests when the
multi-mid acoustic excitation was used. Linear machine learning
algorithms were only able to detect damage groups when a single
damage type was considered. Therefore, to include additional
damage types, the machine learning algorithms will require a

Fig. 12 Instances of accuracies greater than 98%
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projection into a higher feature space to make appropriate deci-
sions about the data.

It is clearly observed that the multi-high–type acoustic excita-
tion is unsurmountable at distinguishing the presence of hole-type
damages. Similarly, the white noise acoustic excitation excels
when detecting edge split damages. Explanations as to why cer-
tain acoustic excitations work better than others are not com-
pletely understood at the current state of this work and need to be
further studied in the future. However, it is expected that complex
interactions exist between the sound pressure and damage geome-
try that significantly influence the sound field external to the wind
turbine blade. Depending on the size and shape of the damage,
radiated sound will exhibit different directivities when exiting
through the damage. Each blade forms an acoustic cavity that has
an associated set of acoustic modes. Some frequencies may pro-
duce a larger response than others, and the frequency response of
the blades is assumed to highly influence the results. In addition,
the sound pressure distribution along the internal cavity of the
structure will influence the radiated sound energy. For example, if
an acoustic node is located at the root position of the blade, it is
expected that little variance will exist in the external acoustic
field.

The accuracy results from the rotating blade tests conclude the
numerical evaluation of the performance of all the machine learn-
ing algorithms. Figure 14 displays the accuracy of all the machine
learning algorithms for each acoustic excitation type during the
rotating blade tests. For almost all acoustic excitation methods,
the algorithms were easily able to make the correct decision

between healthy and damaged blade states. The only acoustic
excitation method that was unable to enable appropriate damage
detection was white noise. Even though a single damage case was
tested, the results are promising when considering the implemen-
tation of the system on an operational wind turbine.

It is possible for the feature vector to extend to numerous
dimensions. In order to represent the classification ability of the

Fig. 13 Combined damage case testing accuracies

Fig. 14 Machine learning accuracies for rotating tests

Fig. 15 Comparison of the peak amplitude FFT and mean fre-
quency features for a stationary multi-mid excitation test
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algorithm, two-feature pairs are displayed with respect to various
test cases. In all the following classification plots, the healthy
data (H) is presented in the form of circles and damaged data as
an “x”.

Figure 15 displays the data from a multi-mid acoustically
excited test considering an edge split damage type located at the
midlength of the blade during a stationary test. The two features

compared are the mean frequency and the peak amplitude of the
FFT.

It can be seen in Fig. 15 that the healthy and damaged classes
are easily separable. The values that correspond to the features
change as the damage becomes more severe. Another example of
well-distinguished features is shown in Fig. 16 comparing the kur-
tosis and RMS from a multi-high excitation test considering a
hole-type damage located at the tip of the blade.

A comparison of two features from an evaluation when multiple
test cases were evaluated at once is shown in Fig. 17 as follows.
The results presented consider every damage type using a multi-
mid acoustic excitation test.

The data are no longer tightly clustered and separable. It is clear
that a higher order algorithm is needed to correctly classify the
data. This is a direct reflection of what has been observed numeri-
cally in Fig. 13, in which the algorithm suffered in correctly clas-
sifying the datasets unless a cubic SVM was used.

Figure 18 shows a side-by-side comparison of a two-feature
plot in the combined white noise excitation test for all edge split-
type damages. Figure 18(a) included all damage severities, and
Fig. 18(b) excluded the smallest level of severity.

It is clear that the smallest level of damage is well mixed
with the healthy data. When the first level of damage was
excluded, the healthy data are easier to distinguish from the
damages as shown in the rightmost plot. The augmentation in
accuracy is further verified in Fig. 13 where the accuracies of
the machine learning algorithm improved to 100% for almost
every algorithm.

One of the issues when comparing every damage type is the
nonrepeatable location of each healthy dataset across test cases.
Figure 19 shows a side-by-side comparison of a two-feature plot
for RMS and mean frequency from all hole-type damages using
the multi-high excitation parameters. Figure 19(a) includes all the
data from each test case. Figure 19(b) only includes the healthy
datasets. The legend in Fig. 19(b) indicates which test case the
healthy data are from.

There is not a clear distinction or trend between the locations of
the healthy clusters. Several reasons could account for the vari-
ability. Each test case was performed on a different day; thus, the
equipment, temperature, and background noise could be different.
In between each test case, the blade is repaired as described in
Sec. 3. The influences of each damage or repair on the succes-
sively performed test case are unknown but expected to have min-
imal contributions to the variability. However, the influences from
damages and reparations are not expected to be of concern in field
tests on a full wind turbine system. Environmental effects are
expected to be significant and will need to be further understood
in order to account for the influences on the data for the future
system.

Fig. 16 Comparison of the RMS and kurtosis features for a sta-
tionary multi-high excitation test

Fig. 17 The two-feature plot for all test cases from a stationary
multi-mid excitation test

Fig. 18 A side-by-side comparison of a feature pair with and without the first level of damage
included
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4.2 Evaluation of Features

4.2.1 Distinguishability. Distinguishability was investigated
as a means of developing a quick feature selector. It became
apparent that this indicator was much more time intensive than
Fisher’s ratio. In fact, the distributions of the features were prone
to three distinct cases. Figure 20 shows the three distinct cases
using the feature distributions from a multi-high acoustic excita-
tion test.

Figure 20(a) shows the first case, in which the distributions
intersect twice and are essentially completely overlapped. Figure
20(b) displays a plot where there is only significant overlap
between a single tail from each distribution. In this case, the area
of overlap can easily be computed. The last case is shown in
Fig. 20(c), where there is virtually no overlap, which resulted in
an error when finding the point of intersection, as it was below
machine precision. Computing the actual area of overlap for all
cases would require code which could accurately account for each
case, which would require a complex logic. If distinguishability is
to be used as a smart feature selector, an approximation is pro-
posed. If there is two intersection points between the two distribu-
tions or the distributions are clearly overlapped beyond some
threshold value, as in case 1, a value of 1 is assigned, indicating
poor distinguishability. If there is only significant overlap between
a single tail from each distribution, as in case 2, the distinguish-
ability is determined as the area of overlap. In the final case, of
virtually no overlap, a value of 0 is assigned, indicating strong dis-
tinguishability. Figure 21 presents the distinguishability results for
the multi-high excited test case for a hole damage located at the
tip of the blade.

Distinguishability was found to be a more cumbersome method
for real-time feature selection than Fisher’s ratio, though results
were similar in identifying key features.

4.2.2 Fisher’s Ratio. Fisher’s ratio is proposed as a metric for
identifying the features from a global list, which are most

successful at discriminating between healthy and damaged
classes. In order to appropriately evaluate the Fisher’s ratio, only
the 49 individual test cases are considered. This way, every acous-
tic excitation type has the same number of samples. The Fisher’s
ratios calculated for each individual test case were rescaled to

Fig. 19 A side-by-side two-feature plot comparing the variability of healthy data clusters
across test cases

Fig. 20 Distinguishability distribution for (a) case 1, (b) case 2, and (c) case 3

Fig. 21 Multi-high tip hole distinguishability results
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range between 0 and 1 and averaged with respect to levels of
accuracy and acoustic excitation types. The final averages were
rescaled once again to range between 0 and 1. Therefore, features
which are better at separating the healthy and damaged classes
have a score closer to one, and those which are not very capable
of distinguishing the classes have a value closer to zero. This
allowed general conclusions to be drawn about the overall per-
formance of the features with respect to every test and acoustic
excitation type. Figure 22 displays the resultant Fisher’s ratios in
which perfect scores are bolded and highlighted, and scores above
0.85 are bolded.

First, it can be noted that the RMS, RSSQ, and standard devia-
tion were the most prominent features in detecting damage. This
is true for not only all tests but also tests with an accuracy greater
than 98%. This is further verified by acknowledging the large
number of highlighted cells while scanning across the columns for
each feature. The RMS, RSSQ, and standard deviation generally
ranked first or second as the best feature for all acoustic excitation
types. The peak amplitude of the FFT was far more significant
during the single-tone tests as opposed to the multitone tests. This
could be because the largest peak in the multitone tests was from
a frequency in an undamaged blade. Therefore, as damage was
implemented, the peak value would never change. Mean and
median frequency features were only significant during multitone
tests and the white noise test. It is clear that mean frequency and
median frequency would perform poorly during the single-tone
tests. The values for the two features should be essentially the
same as the frequency of the input tone. However, when a broad
frequency range is input in the system, the response could vary
significantly when damage is present. Some frequencies may
become more dominant in the spectrum as a result of the addi-
tional sound energy allowed to transmit through the damage. In
all cases, it is noted that the mean, median, kurtosis, skewness,
and crest factor almost never performed well in comparison to the
other features. The results extracted from the Fisher’s ratio are all
in agreement with the observed two-feature plot comparisons, as
evident from Figs. 15–19. These are preliminary observations on
a small series of pilot tests. It is anticipated that the variability due
to the blade setup will be minimized when the full-scale blade
tests are performed. It should be noted that the goal was not to
find a unique feature set for each test group (single versus multi-
tone). Instead, the purpose was to find a means on a per test basis,
of isolating and using particularly useful features. It is believed
that high variability in test conditions partially hampered the abil-
ity to correlate a particular ideal feature set with a particular test
condition (single versus multitonal tests).

5 Conclusions

In this study, the laboratory-scale acoustic tests were performed
to understand the damage classification abilities of two supervised
learning algorithms, logistic regression and support vector

machines, under different test conditions. Preliminary results indi-
cate normalized Fisher’s ratio can be used to determine feature
subsets for analysis. Both logistic regression and SVMs were able
to classify features into classes with minimal overfitting. Cubic
SVMs were required to generalize to all damage types, locations,
and severities, but had an accuracy of over 98%. The type of
acoustic excitation was studied, and the trends were identified in
regard to which excitation method was best for specific types and
locations of damage. It was found that white noise was best for
detecting edge splits, and multi-high excitations were best for
detecting holes. The multi-mid excitation performed well in all
cases. The ability to use different kernels allows for nonlinear
decision boundaries for the SVM, which is desirable when multi-
ple damage types and locations are considered. When variability
is minimized, acoustic damage detection using active monitoring
and supervised machine learning appears feasible given this initial
study. Future studies will include other means of excitation (chirp
and burst random) as well as be on full-scale blades with potential
to incorporate blind source separation for determination of which
blade is in possession of the fault. The effects of temperature and
the environment on acoustic measures will be pursued as well as a
method to account for environmental fluctuations. Additional
features will be introduced in the machine learning algorithms.
Algorithms will be extended to provide the capability of classify-
ing more than damage presence, but the type, location, and sever-
ity of damage.
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