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ABSTRACT

There are many problems to be addressed with respect to the
design of wind turbine blades. Foremost among these are aerodynamic
performance, structural integrity and cost. The subject of aero-
dynamic performance, at least in the steady state condition, has
been dealt with at some length by various investigators. The
cost of a blade system is beyond the scope of this paper.

The structural integrity of wind turbine blades must be insured
in both the static and dynamic load cases. The critical static load
has been determined to be a hurricane wind perpendicular to the
blade planform. The dynamic loads include the fluctuating com-
ponent due to the wind and all blade-support interactions.

Vital to an understanding of these structural problems is a
description of the natural frequencies and mode shapes of the blades.
These considerations are the subject of this paper. While these
characteristics can be computed using existing programs (e.g. NASTRAN)
the cost of the repetititve use of those codes is prohibitive for
the general user. The enclosed codes are much less expensive to run,
and are not as comprehensive. They are, however, closely matched to
the needs of the Alternative Energy Program of the School of Engin-
eerinf at the University of Massachusetts, and have been developed to

be of use to the small wind energy conversion industry.
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CHAPTER I
RATIONALE

1.1 Description of WF-1 Blades

At the University of Massachusetts, there exists the Wind Furnace
I. This machine is a prototype wind turbine which is intended to
contribute a large portion of the heat energy required for space heat-
ing for the University's Solar Habitat I. The machine has a downwind,
three bladed rotor. Each blade is inclined from the plane of rotation
by the static coning angle of 10°. Each blade is capable of being
pitched through an arc of 93° by the automatic pitch control mechanism.

The blade planform and geometry are described in Figure 1.1. The
NACA 4415 airfoil shape was chosen as the exterior profile on each cross

section. (The reasons for this choice are partly historica]l‘]

and
partly based on the popu]ar use of the NACA 4415 airfoil in airplane
propellers.) The blades are of 4 part construction (Figure 1.2). The
skin is of a relatively low bending modulus composition fiberglass
epoxy matrix. The spar is made of a relatively high modulus fiberglass
epoxy matrix. The blade stock (Figure 1.1) is surrounded by a steel
sleeve. (The intended cross section construction is described in

Table 1.1)

Measurements subsequent to blade construction showed that the
cross sections varied considerably from the intended 15% thick airfoil
(Table 1.2). Thicknesses as great as 22% were measured on the spare
blade of te rotor system. The variation in the chord was slight. It
is not, at this time, possible to measure the internal components of the

blade to check for uniformity.
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FIG. .2
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TABLE 1.1
BLADE DESIGN

WF-1 (Radius = 16.25 ft)
L.E. to Skin Spar Web
r/Radius Chord Twist Spar Web  Thickness Thickness Thickness

(Station:10) (ft) (degrees) (ft) (in) ~ (in) {in)

o 1.35 45 .54 .036 .238 .238

.2 1.46 25.6 .584 .036 .238 .238

.3 1.26 15.9 .504 .036 .205 .220

.4 1.02 10.4 .41 .036 .205 .150

.85 7.4 .34 .036 .205 .050

.6 .73 4.5 .29 .027 .186 .050

.7 .63 2.7 .25 .027 .148 .050

.8 .55 1.4 .22 .018 .110 .050

.9 .45 .4 .18 .018 .072 .050

1.0 .35 0 .14 .018 .053 .050
Eqin™ 22 x 10%si G .= 5 10%si . = .0565 %
Epar™ 44 X 108051 Separ™ +3 X 108psi pspar™ 0501 o5

m



TABLE 1.2
BLADE SHAPE
WF-1 (Radius = 16.25 ft)

CHORD ‘ AIRFOIL THICKNESS

r Design Result Design Result Error
o G T Gt Tt T
R 16.2 15.8 2.4 5 108
.2 17.5 17.8 2.6 3.0 15.4
3 15.1 15.5 2.3 2.6 13.0
4 12.2 12.7 1.8 2.3 27.8
.5 -10.2 10.5 1.5 2.0 33.3
.6 8.8 9.0 1.3 1.8 38.5
i 7.6 7.9 1.1 1.5 36.4
.8 6.6 6.8 1.0 1.4 40.0
.9 5.4 5.5 .81 1.2 48.2
1.0 4.2 3.2 .63 .65 3.2



1.2 OQbservations on Design

It appears at this time that there is little if anything to be
lost in terms of aerodynamic performance if thicker airfoils are used in
design.l'2 In fact, the observed thicknesses of the UMass WF-1 blades and
the better than predicted performance tend to confirm this thought.

At this time however, there is no reason to expect that future blade
designs will incorporate the same airfoil section at all radial points.

It may turn out that specific parameters, e.g. low noise requirements or
aeroelastic requirements, require blade shapes both highly twisted and
tapered, as well as having various cross-sectional shapes.

The increasing availability of composite materials is a factor of
great significance to the designer. Traditional structural materials will
certainly continue to play a major role in blade construction. The 1ikeli-
hood of designs incorporating more than one material becoming commonplace
is great. In fact, this is now standard practice in the military aircraft

propeller industry.

1.3 Program Input Requirements

It is apparent from the foregoing that any comprehensive code for
blade bending stress analysis must allow for the following -inputs.
1) Cross section exterior shape

2) Cross section interior structure

3) Bending modulus distribution
4) Density distribution

5) Twist distribution

6) Radial spacing



7) Bending axis location

These inputs are sufficient for the bending stress analysis of the
blade. (With the addition of the shear modulus, the input would be suf-
ficient for a total stress analysis of the blade. The shear stress
is ordinarily of secondary importance in the design of blades. Time does

not allow its inclusion here.)

1.4 Program Qutput Requirements

The parameters of primary interest to the designer must be included
in the output. These include

1) Bending stress distributions

2) Deflections under load

3) Mass of blade

4) Mass moment of inertia about axis of rotation

5) Natural frequencies of blade.
A11 of the above except for 4 and 5 can be uniquely specified. Number 4
is weakly dependent on the mode shape of the natural frequencies. Number
5 is strongly dependent on the means by which the blade is supported.
The approach taken is to assume a cantilever beam and to compute the
natural frequencies attendent to that configuration. From this point,
the dynamacist should be able to predict most of the important system

modes!'3"'4



CHAPTER I1
DESCRIPTION OF PROBLEM

2.1 Historical Perspective

Traditionally, windmills have been designed to operate in the stalled
aerodynamic mode. Figure 2.1 slowsa plot of power versus RPM for a three
bladed windmill. On the far left the region of stable stalled operation is
indicated. In this mode of operation, all turbines have pretty much the same
aerodynamic characteristics. The power output is dependent on the swept area
of the rotor, the solidity of the blade system, rpm,etc. It is obvious that
much more power can be delivered at the same wind speed by the same rotor if
the rotational speed is allowed to increase. The rotor can then gain suf-
ficient speed to allow the blades to "fly," that is to operate at a very low
angle of attack with consequent high Tift and low drag.

It was not until the early 20th century that airfoil knowledge had pro-
gressed sufficiently to allow the construction of efficient propellers and
1ifting surfaces. _

These developments opened the way to powered flight and to the develop-
ment of modern wind turbines. Since the introduction of airfoils into
turbine technology, there have been two major thrusts in blade design.

The first approach, typified by the Smith-Putnam machine%‘%ws been to
de-emphasize aerodynamic sophistication with respect to the cost of un-
twisted, untapered blades. The penalities that are paid by using these
simple blades are slightly (-10%) reduced performance with respect to aero-
dynamica11y.optimum blades, noise of operation, and the investment of a

relatively large amount of material in the blades per unit power. The

8
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primary benefit is ease of fabrication and consequent Tow cost.

The second approach, as exemplified by the Hutter, Brace Institute,
NASA MOD-0 and UMass machines, is to incorporate both twist and taper
into the blade design in an attempt to optimize performance and reduce
noise. Much work has been done to characterize the planforms required
for optimum or nearly optimum performance over a wide range of design con-
straints. Recent work by Hutte?zﬁldilson, Lissamann and Wa1ker2f'and
Cromack and Lefebvrez“r’nave elucidated these problems.

A serious objection to the above work is that the performance curves
were generated using quasi-steady, high Reynold's Number airfoil data.
Experience has shown that wind turbines almost never operate at their design
point. The nature of the wind is such that the mean wind speed, with no
other information, is only marginally adequate to characterize performance.
The nature of practical turbines is such that, traditionally, airfoil data
has been collected at from 3 to 10 times the Reynold's Number at which most
of the power in a wind turbine is produced. (The Reynold's Number, Vel-
ocity x Chord - Kinematic Viscosity, varies radialiy along blade. Most
of the turbine's power is produced in the outbard 3/10 of the radius.) Work
has yet to be done which will show which if any additional data are needed
for adequate performance predictions, and how or if they can be included

in existing performance codes.

2.2 Formal Description of Blade Problem

Rotating wings have traditionally been analyzed as beams with various
boundary conditions. Depending on the detailed construction, these beams
may be either hinged at the root, pinned at the root, or some combination.

The outer edge is invariably free.
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The simplest rotating winds, are of a rectangular planform and a
single material. For example, extruded aluminum blades are now com-
mercially available in various sizes. These are the simplest to analyze
it will always be possible to find a set of axes which completely un-
couples the bending deflections in one direction from those in the
other. These are by definition the principal axes. They will have the
same orientation for all sections and all loads and moments can be re-
solved about them.

The introduction of twist complicates the analysis. The twist will
make it difficult or‘impossible to find axes for which the bending de-
flections are decoupled. However, the moments of inertia need only be
calculated once. They can then be transformed by rotation into the cor-
rect orientation. At this point, the analysis requires the solution of
the coupled bending equations (Appendix A) and the coupled bending stress
equations.

The introduction of taper requires that the moments of inertia be
computed at each_stafion of interest. The equations which must be solved
are then the same as in the case of a beam of rectangularplanform with twist.

If the rotor blades are constructed of more than one material, for
example aluminum and fiberglass or fiberglass of two or more different
bending moduli, it is necessary that the so-called modulus weighted section
properties be computed. This is a method by which the tensile properties
of the different components of each cross-section are weighted in the
accumulation of those quantities necessary for analysis. For example,
the modulus weighted x and y centroid locations define the location of the
tension center for the cross-section. (The tension center is that point

at which an applied radial load gives no lateral deflections.)
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The blades on the WF-1 are just such non-homogeneous, twisted,
tapered beams. The solution of the bending and stress equations re-
quires the incorporation of numerical techniques in some algorithms.

The fact ‘that the blade cross-sections are rather complex shapes (both
externally and internally) indicates the need for some numerical methods
for the computation of the section properties. (It turns out that many

numerical techniques were required for the section property integrations.)

2.3 Description of Load

In the case of non-accelerated rotation the loads encountered are
1ift, drag, gravity loads and centrifugal loads. Performance codesz'6 can
predict the quasi-steady 1ift and drag operating on a blade section sub-
ject to the above restrictions. These loads can then be resolved about
reference axes and the bending equations solved. The gravity load 15
both radial and flexural, depending on the blade orientation relative to
the horizon. For each blade, gravity gives a one per revolution cyclic
excitation. The centrifugal loads are constant if the angular speed is
constant and deflections out of plane due to gravity are not too great.

Unsteady, accelerated motion introduces other loads. The tower
shadow or wake may cause a cyclic variation in the applied wind loads.
This will cause a change in the deflection pattern on a one per revolution
per blade basis. The cyclic variation in deflection will cause the gen-
eration of so-called coriolis forces by the blade elements. The magnitude
of these periodic loads is of considerable interest. They will determine
the cyclic stresses, hence the fatigue properties of the blades. The per-
jodic response of the blade to the tower wake is very poorly understood at

this point. Ongoing investigations at the University of Massachusetts
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and elsewhere may shed 1ight on this area.

2.4 (Other Dynamic Considerations

The effect of torsional coupling of vibrations has been neglected in
the foregoing. The effect of the coupling between radial Toads and vi-
brations has also been neglected. These effects are considered to be of
marginal interest to the windmill designer because of the relatively low
rotational speed of the rotor.

In a paper written by Ormiston2;71oads are scaled according to the
radius of the wind machine under consideration. Ormiston shows that for
very large machines, the one per revolution gravity loads may be the
1imiting design criterion. For moderately sized machines, the critical
loads are flexural and are due to the aerodynamics of power production.

The random nature of the wind also provides a non-steady component
in the air loads. This effect becomes more pronounced as the pitch at
which peak power is produced is approached. This effect is presently
thought secondary in importance to the tower wake and/or shadow with re-
spect to cyclic loads. This is another area under active invest-

igation.

2.5 Environmental Effects

The sun will degrade the strength of glass laminates which are not
protected from it. The experience at the University of Massachusetts has
been that significant erosion of the most exterior layer of resin took place
in_the first two years of operation. The blades were purposely not pro-

tected in order that structural defects would be easily seen. It is not
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felt that this erosion had any effect on blade strength. No structural
defects were found which can be unequivocally assigned to the design.

Metal-plastic composites may suffer from fatigue due to different
coefficients of thermal expansion and the diurnal temperature cycle.

Metals are subject to corrosion in the environment of the wind
turbine. There is presently great interest in the siting of windmills
either on or near the ocean. The effects of salt spray on metal are
fairly well understood. The fatigue properties of metals are quite
well known, once the stress environment is prescribéd. For inland
locations, rain and windblown sand and dust are significant factors in
the weathering of blades.

It seems at this time that the material properties of metals are
better understood than are those of composites. However, the data

base for composite fatigue is broadening.



CHAPTER ITI
GOVERNING EQUATIONS

3.1 Static Beam Bending

Beam theory for homogeneous prismatic beams is quite well developed.
The dynamic characteristics of such beams are also well known. This is
not the case with non-homogeneous, non-isotropic, or non-prismatic beams.

If we allow the existence of a coordinate system such that the x
axis is parallel to the plane of rotation; the x axis points down the
bending axis, and the y axis is inclined from the upwind direction by the

coning angle (see Figure 1) with

u unit deflection in the x direction

v = unit deflection in the y direction,

then the differential equations for beam bending are (see Appendix A)

G Ly g il
- @Yy T Iixlyy=(Ixy)
2
g—%—= 1 - 1__Mylxx+MxIxy
dz (1 - (_@)2)3/2 E-[ 11 (1 ) (2)
dz XX“yy“\ixy

The general equations for bending stress at point (X,y) in some cross-

section plane is

MI I - (M +M I
-E ( xtyy @y;;y)y ( %Ixy X gy)x (3)
I

XXIYY Ixy

15
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These equations are solved in the enclosed codes. Because of the

possibility of large deflections in a long, slender windmill blade, it

was thought advisable to include the influence of slope in the deflection
equations. The fact that many windmill blades are highly twisted and

tapered required the allowance of bending about non-principal axes.

3.2 Equations of Motion for Small Flexural Vibrations

In_genera1, the equations of motion of a rotating beam involve
coupling between flexural, longitudinal, and torsional vibration . 1In
many situations numerous simplifications may be made. Usually, however,
numerical techniques must still be used for solution.

The equations of motion for the flexural vibrations of a beam allowing

coupling between vibrations in orthogonal directions are (see Appendix B)

..___-a—_ a—'— 3
Ve S 2 [y =2V * Ly T2 u (4)
3 9
2z z z
- 2 2 2
I 3 9
u m -a—z'tlyya—-z-u + Ixya—z\’] (5)
z z z
. d2
where y = v
at?
-4
dt®
m = lineal mass density.




CHAPTER IV
NUMERICAL TECHNIQUES

4.1 Integration of Section Properties

The axes used in all discussion of the section properties is as
follows. Positive x has its origin at the leading edge and increases
along the chord 1ine. Positive y has its origin at the leading edge and

is positive towards the low pressure surface.

,

N— —

The technique used in the computation of the section properties was
the replacement of integrations with summations when the use of the direct
ihtegrationwas inappropriate. This procedure isaccomplished by the functions.
INDEX and INTEG (Appendices E and F respectively).

The function INDEX isolates three adjacent points on the periphery of
the section being considered. It appends to this information the per-
tinent bending modulus and material thickness. (Thickness here refers to
the minimum distance from the outside to the inside. If the listed thick-
ness is zero the program assumes the section is solid.) It also appends
the weight density. (Units used for the density are pounds per cubic inch.)
This information is thenused with function INTEG.

Function INTEG first fits the best parabola, in the least square
sense, through the set of three points. The interval defined by these
points is then divided into ten equal segments. Points on the periphery of

each segment are then found by use of the least square coefficients,
18
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= 2§ =
(y; = Co * CX; + CX5, =1, 2, ..., 10)

and the value of x at the midpoint of each section. Thus ten points are
determined from the three input points. This has the effect of decreasing
the error due to the rep]acément of the section integrations with sum-
mations at the expense of the error introduced by the use of a fit curve
rather than the input data points.

If the section is solid, the section properties determined by the
above ten intervals are solved for directly.

If the section is not solid, the algorithm accomplishes the following.
For each value of y, another value is determined which is the former value
minus the projected thickness. (The projected thickness is found by
multiplying the thickness of the skin by the secant of the tangent at the

point x, y. That is t = t[cos tan”! (c; + zczxi)]'1, where t is

projected
the skin thickness and Cy, C, are least square coefficients.) The midpoint

values and the values Xi determine the area centroids of the load carrying
material in this small interval.

The worth of this information can best be shown by examination of

the following equations., If I I

Xx? I,, are the moments of inertia of

Xy’ “yy

some area about an arbitrary axis system xy, and I I I . are the

rr? °rs? “gs
moments of inertia of that same area about its own centroid axis system,

then
_ 2
IXX = Irr + Ay
Iyy = Ipg * Axy
I =1 + sz, where

yy S5
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A = geometric area of the considered,

r is parallel to x,

S is parallel to y,

X,y are the coordinates of the centroid

I

I I ¢ can be made vanishingly small by the use of either

rr?* “rs?*

a properly chosen coordinate system or a small area. Consider the following,

a 1 inch square centered at x = y = 2 1in.

As
47 r
3 W -
|
J
14 ‘
L X
0 P2
I =I _-._1

rr sS 12

I, =0

o= Trt 1 (27 = A
L, =+ (@)= by
I, =0+ 1 (2)(2) =4

For even so gross an example, the error in IXX and Iyy introduced
by neglecting the area's centroidal moment of inertia is only 2%.
When the cross section properties are computed, the small areas are

weighted according to the local bending modulus, or by the local density.
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The modulus weighting is a method whereby a composite cross section may

be represented by a single total bending stiffness. This is done by
dividing the local bending stiffness by an (arbitrary) reference modulus
and multiplying the considered area by the result. This is done for all
considered areas. Density weighting is accomplished by multiplying the
considered area by the local density. (See Appendix F.) The results of
the calculations are summed with the results of previous calculations for
the cross section.

The quantities computed are the modulus weighted areas, first moments,
and second moments, and the density weigited areas and first moments. In
addition, the geometric areas of the cross section are computed. The
modulus weighted area are used for the transposition of the section
moments of inertia from the leading edge, the origin, to the bending axis.
(The chordwise location of the bending axis is part of the program input.
The logic assumes that the y coordinate of the bending axis is the same
as the y coordinate of the tension axis.) The modulus weighed first moment
is used to determine the location of the tension center. (The line con-
necting all tension centers is the tension axis.) The modulus weighted
second moments are the section moments of inertia. They determine the
flexural characteristics of the beam.

The density weighted first moments are used to determine the location
of the centers of mass of the cross sections. The density weighted areas
give the blade section weights.

In summary, when a solid section is considered, direct integration
of the section properties is accomplished. When a non-solid section is

considered, the following series replace the integrations.
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- 2 ~ 2
Ik =Ty  ¢dA ST yoop 8 A
A i
Ixy = K xy ¢ dA = ? X; ¥; ¢ A Ai
3 2 ~ 2
Iyy = X X; ¢ dA = ? X{ ¢; A A
I ¢ x dA Zdsxs A A,
S - A L 1M 1
I ¢ dA z d; A Ai
A i
_ £<bydA ?¢1xiAAi
y= e
I ¢ dA z ¢; B A,
A i !

AREA = / ¢ dA I ¢; & Ai,

A 1
wherein
) = weighting function,
X, 9 = are centroid values dependent on the weighting function
AREA = either geometric or modulus weighted area of the load

carrying material in the cross section.

4.2 Bending Deflections

The governing equations for beam bending, using the coordinate system

of Chapter 1, where thermal stresses are not considered, are
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2 . 7 M M T

u o - Yy Xxx X X_Y)
2 72 ~ EREF 2
dz -

(1- (%) haxlyyTyx
d2v 1 2] (MxI My Ly )
F T e

0 - (7 XX"yy~ xy

These equations are non-linear. For small deflections, the non-linear
term is customarily neglected. It is desirable that the non-linearity be
included in an analysis of blade bending, however, because the blades are
very long, thin, and flexible.

The method used for the solution of these equations is a fourth order
Runge Kutta methodl}'1 This method uses the boundary conditions on a func-
tion and its derivatives to integrate the derivatives across some interval.

The particular Runge-Kutta formulation chosen is the so-called classic

method. Letting i be an index related to the position x, we have

Oi01 = 94 + § (kg * 2k, + 2Ky + Ky), where
k1 = h f (x4, ¥i)s
k2¥hf(xi+-2-,yi+;—),
k3=hf(xi+g,yi+;3),
kg = h f(x;+hs y5 +ks),
h=x,.=X,,

f dis the integrad from which y is determined,

® 1is a derivative of some order 1 less than f.
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By the use of this integration scheme, differential equations of any
order may be solved. A1l of the derivatives of intermediate value must
be carried in memory. (See APPENDIX G.) The precision available by the
use of this method is quite high. If the precision is not acceptable,
the integration interval may be shortened or higher order Runge Kutta
methods used. |

These equations could have been written in finite difference or
finite element form as well. The finite element method led to unnecessary
complication. The finite difference method required the introduction of
new data points if the same resolution of displacements were required.
Neither of these methods were considered uniquely superior to the Runge
Kutta solution for this problem.

(One disadvantage of the Runge Kutta methods is that the application
to partial differential equations is apparently unknown. This precludes

their use for the solution of vibration problems in the time domain.)

4.3 Bending Stress

The expression for the bending stress at some point (x,y) is

o MLty o Myt Ty

o] = (- X + Y)
zz 1.1 -1,.2 [..1. -1, 2
vy~ Ixy xxyy~Ixy

XX

There were no special techniques necessary for the solution of this problem.
The multipliers of the coordinate components x and y are also computed in
the solution of the bending equations. They are stored in memory and re-

called where the stress distribution is reported.
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The bending stress is resolved at each point listed in the first
two inputs to the program, that is,on the high and low pressure aero-
dynamic surface skins. (APPENDIX D, INPUT.) If any other data are
entered in their place, the stress will be reso]ved at the points entered.
The input section is very versatile in that no special order of data
entry is required (except CHORD, see APPENDIX D). The program output
would not have to be modified in any way if the order of data entry is
modified, as long as the operator keeps track of which data has been

entered.

4.4 Flexural Vibrations

The governing equations for fiexural vibrations of a twisted, non-

prismatic beam are (APPENDIXB)

E .2 2 2
- 3 3V 3U
Uu=--L5[1, 2% +1 ¥
moazc XX 52 XY a8z
E 2 2 2
- raJ au 3V
U= - = e [1 + 1 -—1ﬂ
m 4 Yy 822 Xy 3Z

These equations cannot be solved in closed form without simplifica-
tion. Their solution requires the use of numerical techniques. They may
be solved in a number of ways. Obvious choices are the use of finite
difference and finite element methods. The method used in this report
is called Rayleigh's method.

The technique as used here (see APPENDIX I) differs slightly from
the usual applications in that successive approximations are made to

refine the determined mode shape, when possible. (For higher modes,
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with twisted beams, the method does not always converge.) The technique
is very versatile because only the response to an assumed load pattern
need to be determined. Any response (axial, f]exura],_torsiona]) may be
included. Any degree of simplification can be achieved by neglecting
chosen parameters.

Rayleigh's method does not solve for the system behiavor in the time
domain. Instead, the method resolves the natural frequencies and mode
shapes of an cscillating system. This information can then be used in a
modal analysis of the system.

The expression for the square of the natural freqdency of an oscilla-

ting system 154'2

2 f F ¥
m:
2

where

F. is the imposed load at i,

¢s is the mede shape at i,

A is the amplitude,

M. is the mass at 1.

The key to the method of successive approximations is that the inertial

load is proportional to a mass times its displacement. Hence

F1.=kM.i¢i.

The constant k is of no interest, since the mode shapes are a property of
the load patterns, not the loads themselves. This load pattern is used to

compute another mode shape by calculating the deflections due to the imposed
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Toads. The magnitude of the deflection so computed at some one point

js called the amplitude (A). The set of all deflections divided by this
amplitude is the mode shape. When the inertial forces associated with some
mode shape produce a deflection pattern having the same mode shape, the
method has converged to the fundamental. At this point, the square of the
circular frequency is the reciprocal of the ampiitude. (See APPENDIX M
for a sample calculation.)

The maximum kinetic energy for the system is

1
The maximum potential energy is equal to the maximum kinetic energy and
is given by
1

- PN
u = ? 7 Fi (Aes) = ? > M. 05 A ¢;,where

o1

; is the mode shape from the last cycle of the iteration.

Setting these two expressions equal gives

1y 242 2_ 51 ;
or l-M ¢: ¢
. 1 2M %
w = ” (2)
.‘
ALz M 4

which is the same as equation 1 once the expansion of F; has beem accom-

plished. If convergence of the mode shape has been achieved, then

2 _1
A

w
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The introduction of twist in a beam, that is to say that the prin-
cipal axes of all cross sections of a beam being non-parallel, introduces
coupling between the loads in one plane and the deflections in another.

If a beam is prismatic and not twisted, or at worst tapered, then the
resonant vibrations of the beam will be aligned with one of the principal
axes. This is a consequence of the deflections being uncoupled from each
other. For a highly twisted beam, e.g. a windmill blade, the direction of
resonant vibrations will, in general, vary from cross section to cross
section. Any attempt at analysis, therefore, must allow two degrees of
flexural freedom at each cross section. (A more complete analysis would
also allow a torsional degree of freedom at each cross section. Since
there was no observable torsional deflection of the tested blade under
load, that component of the analysis was considered unimportant.) The same
general results hold, however. The amplitude is chosen to be the magnitude
of the tips deflection. The inertial forces are the mass per segment
times the mode shape at the midpoint of each spanwise section. The
deflections are computed using the function described above.

Rayleigh's method is usually used for a determination of the funda-
mental mode. There are various techniques available for the isolation of
higher modes, however. The first such method is to impose a deflection
in space oriented at 90° to the fundamental deflection pattern. (A free
beam in space has the property that the fundamental mode shape follows a
pattern which produces a maximum defiection for the given loads.) A load
pattern 90° out of phase but equal in magnitude will produce much smaller
deflections. (In fact, for a regular prismatic beam, the deflections so

produced will be a minimum.) This deflection pattern can then be used to
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compute the beam frequency. This frequency will be higher than the funda-
mental. It will often be the next highest frequency.
Another technique is known as Schmitt Orthogonalization (see APPENDIX

K ). (The following and much of the foregoing is taken from Biggs Struc-

tural Dynamics.) Any assumed deflection patten can be expressed as

*a = 2 W %im
where
58 = the assumed mode shape at i,
Yy T the participation factor of the mt" mode in $ig >
¢1m = the mode shape of mode m at i.

Multiplying both sides by Me $;,» W have

M ¢ia ¢in © ; M ¥m ¢im %in°

where
m, = mass at i
bin - mode shape at 1 for mode n
;T %a %in T2 2T Vn Sp b (3)

The orthogonality condition for normal modes is that

Z m. =0

; i 4’1’m ¢in

unless m = n. Equation 3 can now be rewritten

_ 2
1Emi‘#a ¢in—1§m1‘¢’m¢im-
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th

The participation factor for the m~ mode is
LMy 95 9in
p =
m 2
Lmy

1

Using this participation factor, the assumed mode shape can be swept
clean of the influence of previously determined mode shapes. The assumed

mode shape becomes

%1 % b4a TV By T Vo dyp T oeee m ¥y by

This procedure will converge to the next higher mode shape and frequency.
(If an iterative process is used and the procedure is functioning correctly,
the participation factors will all approach zero.)

Yet another procedure is to assume a number of mode shapes related
to each other and look for a frequency minimum. Since the prescription of

an incorrect mode shape does not excite resonant responses alone,

the mode shape giving the maximum natural frequency is the most accurate.
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5.1 Section Properties

The functions which
jected to verification.
pute the geometric prope

For the diamond sha

properties, compared wit

CALCULATED
. 4

Ixx 78.98 in

I 81.20 int

yy

Ly 0.00

AREA 5.45 in2

For the ellipse, th

the program compared wit

CALCULATED
4
Iy 190.7 in
I .4 ind
Ly 337.4 in
1, 0
AREA 7.55 in°

CHAPTER v

ROGRAM VERIFICATION

make up the programs as assembled were all sub-
The functions INDEX and INTEG were used to com-
rties of the sections shown in Fig. 5.1.

pe, the modulus weighted calculated section

h the exact properties, are as follows:

EXACT ERROR
78.75 in® 1%
78.75 in% 3.1%
0.00 0
5.37 in® 1.5%
Table 5.1

e modulus weighted section properties calculated by

h the exact values are as follows:

EXACT ERROR
190.4 in® 1%
357 in 5. 6%
0
7.66 in’ 1.4%
Table 5.2
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The relatively large error is due to the steep slope of the ellipse
as it nears the leading and trailing edges. The most expedient way to
improve the resolution of these rounded parts of the shape is to increase
the number of points describing this region. (Airfoil section coordinates
are usually listed in this way5°].

It was not possible to test the airfoil shapes direct1y; since the
moments of inertia of airfoil shapes are not commonly available., From

the foregoing, however, good results for the section properties can be

expected.,

5.2 Stress and Deflection

The elliptic cross section above was used as the cross section
shape of a hypothetical cantilevered beam 10 feet long. The deflection

predicted by the well known strength of materials formula is

PL? _ 1000 (120)3

8§ = 2T = 3(3x]07)(63.45) = .30 inches
where

8§ = deflection

P = Toad at 10 feet

L = Tength of the beam

E = Young‘s modulus (for steel)

1=63.45 int

The program calculated a deflection of .301 inches. The error is

negligible.
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The maximum stress predicted by the usual strength of materials

formuia for the above beam and load is

g

- EL_y - (1000)(120)(4)
max I

6345 = 7565 psi

where y = maximum distance from the neutral axis.

The maximum predicted stress was 7551 psi. The error is negligible.

5.3 WF-1 Blade Stress and Deflection

As a final test of the static portion of the analysis, the geometry
describing the WF-1 blade was entered. A hypothetical load of 15 1bs. 8 oz.
was input at .95 R. An actual Toad of the same weight was placed on the
test blade and the deflection and stress Tevels measured.

For the first trial, the published geometry of the WF-1 blade was
used as program input. The observed deflections differed from the calcu-
lated deflections by approximately a factor of two. At this time, the
blade geometry was established by measurement. The blade cross sections
were discovered to have a great deal more depth than originally thought.
The chord lengths of the cross sections were nearly at the specifications.
(See Table 2.2).

New data files were established by multiplying the coordinates in the
old files by the fractional difference between the observed and listed
depths. (These data files are listed in APPENDIX M.) The new data files
were used as input to the program.

Figure 52 shows the location of strain gages used for the test. The
set of gages (1-10) around the circumferences of the blade at .475 R were

350 @ Constantan BLH strain gages of various lots. The strain gages
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organized radially (11-20) were 500 @ Constantan BLH strain gages of the
same lot. All bonds between gage and substrate were by Eastman 910 ad-
hesive. The strains were detected and transduced by a shop built resistor
bridge and amplifier.

Table 5.3 1ists the observed and predicted values of stress for all
gages. They are plotted in Figure 5.3 Agreement between predicted and
measured values were good for all gages except number 17. The gage bond
is suspect there, largely because of the good agreement between predicted
and observed deflections.

Figure 5.4 shows the observed blade tip displacement due to the single
15 1b. 9 0z. load at .95 R. This load was oriented at 90° to the chord
1ine at the tip, towards the low pressure surface (towafds the bottom of
the page). The deflection in the lead direction (positive x direction
according to the paper's sign convention) is due entirely to the coupling
between the deflections in two planes. It is a consequence of the blade

twist. The deflection values are as follows:

Predicted Measured
u .57 in. .36 + .13 in.
v 2.99 1in. 2.96 + .06 in.

This agreement is acceptable. Uncertainties in the geometry of the
trailing edge, particularly relative to the load carrying capacity of the
roving bundle used to seal the trailing edge, make any more precise deter-

mination of the bending coupling unlikely.
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TABLE 5.

3

BENDING STRESS BY GAGE NUMBER

(Refer to Figure 5.2)

Predicted

267
398
462
466
203
360
520
563
342

40.

143
323
517
557
565
634

-1075

610
346
0

Stress, psi
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Observed +33

264
386
448
402
141
356
478
540
-356
- 26.5
- 94
-293
-351
-503
-550
-678
-585
-690
-421




COMPRESSION —psi—=— TENSION

——psi—-—

COMPRESSION

38

FIG. 5.3
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FIG. 5.4
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5.4 Vibration

The Rayleigh Ritz method was used for the solution of the natural
frequencies. The mode shapes were all normalized to the magnitude of the
tip displacement vector (see APPENDIX I).
As a simple test of the program, the dimensions and section properties
of a six foot long steel beam whose cross section was a one inch by four

inch rectangle (Figure5.5) were used. The three lowest frequencies of

this beam are

wy = 39.8 radians/sec

wp 159 radians/sec

wg 251 radians/sec.

The numbers predicted by program FREQ are

wq 39.8 radians/sec

wy = 159 radians/sec

wg 259 or 260 radians/sec

- The égreement is seen to be quite good. The reason that two numbers
are given for the highest predicted frequency is that the program FREQ
contains two algorithms for the determination of this frequency. The first
uses Schmitt orthogonalization for the solution. The second superimposes
the function sin (nx%L)}over the fundamental mode shape and the value of x
is varied.

On the spare wind furnace blade, a shaker was mounted for the isolation
of resonant frequencies. The total weight of the shaker was 2.79 1bs.

It was mounted at .35 R, 48.8 inches from the blade support. The rotor



FIG.

TEST BEAM

4 ——

|« 4" - —

CROSS SECTION

STEEL BEAM
E=3x IO7 psi.

m =.,02095 Ib./in.
g

yoIV4

1 U

- 6 tt.

SIDE VIEW

47

8.5



42

weighed .40 1bs. and had an eccentricity of .38 in. The blade support
was bolted atop a section of 8 inch diameter steam pipe 5 feet tall.
The pipe was fixed to the concrete floor. The stand was stiffened by
external supports in both bending and torsion.

The results of the frequency analysis of the WF-1 are shown below.

Measured Predicted

(radians/sec)
w1 25 28
wy 56 65
w3 84 : 93

The agreement is not extremely good. The primary reasons for the
disagreement can be guessed at. First, the density of the blade's
material {s not known with any great precision. Second, the blade was
balanced during construction (vis. a vis. the other similar blades) by the
introduction of lead shot at unknown locations. Third, any remaining
flexilibity in the support would lower the observed frequency. {(Qualita-
tively, the support was quite rigid. A penny balanced on edge on the
blade support did not tumble off during a vibration test.) Fourth, the
apparatus available for the test, the rotor and a strobe light, do not
allow tremendous resolutionof the resonances, primarily because sympathetic
vibrations in the blade will be caused by exciting forces not precisely at
the resonant frequency. -

The agreement between observed and predicted frequencies, although
not tremendous, is considered acceptable. The predicted mode shapes are
listed in Table5.4. They appear to be correct, but measurement of these

mode shapes was not possible with the instrumentation at hand.
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26.8 radians/sec

0.0
0.0

63.1

0.0
.00

w= 90.0

u

v

0.0
0.0

0.0
.01

.01
.01

-.01
.02

-.01
.03

.05
.02

-.02
.08

TABLE 5.4

MODE SHAPES

-.02
.07

L1
.03

-.05
7

-.05
.15

.19
.05

-.08
.25

-.08

.30
.08

-.09
.27

-.12
.38

.43
.13

-.05
.16

-.17

.60
.19

.05
-.15
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-.23
.75

.79
.26

.20
-.66

-.30

1.0
.34



CHAPTER VI
CONCLUSIONS

The object of this study was the development of computer
programs useful to the wind turbine designer. Codes were developed
which allow the resolution of bending stress in and natural
frequencies of wind turbine blades. The codes are inexpensive to
operate when compared with finite element codes of comparable
sophistication.

Good agreement between the predicted and observed flexural
deflections has been shown. Acceptable agreement between predicted
and observed natural frequencies has also been shown. In short,
the verification of the codes with respect to an existing wind
turbine blade has been accomplished. This provides strong evidence
that the application of Rayleigh's method to the probliem of free
vibration of a beam, allowing coupling between deflections in two
directions, is valid. A1l other parts of the codes have also been
verified.

The inclusion of the computer codes and documentation in the
appendices should facilitate the use of these codes on other
computer systems.

The extension of these codes to allow, for example, shear
analysis and/or torsional coupling may be accomplished by sub-

routine modifications.

44
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APPENDIX A

COORDINATE SYSTEM CORRESPONDENCE

The differential equations for beam bending were taken from Rivello,

Theory and Analysis of Flight StructuresAﬂ The coordinate systems cor-
respond in the following manner. Primes refer to Rivello's system. All

indicated directions are positive.

Mz
Mx' .
> —p X
y
X
Vy My Mx
Vx
>b- » Z
Vz M,
Hence the following correspondences
P | = ] = - 1
X = -y Mx My Vy Vy
= o 2! = t = _ 1
y z My M, Vy v,
z=x' M, = M vV, =V
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Rivello's equations for beam bending are

2w 1 21 MZIZZ'M Izz
dz i —T I I -I2
(1 ( ) ) yy 2z “yz
dzv , 1 1 MZIZ[MXIZZ
d 2 372 N E] I I _12
X1+ (dx) yy zz "yz
These become
dy 1 -1 My Ly
2 2 3/2 E _
92 (%%9 ) T Ldyy=Uxy)
du 1 - 1__My1xx+MxIxy .
2 2 3/2 E :
dz (-l ( ) ) 1 IXXI_Y_Y_(IX)/)

Rivello's radial stress equation is

£ PA-(MZIyy—MnyZ)y (MMl )2

Q
1

2
InyZZ'(Iyz) |

This becomes,

M
s =E|P P~ My LMLy )X | (ngyy+MyI4y)y
2z Byl AT op (1) I.I —(I,.)
XX" Yy~ \TXy xx yy ‘°Xy

where
P is any radial load
A is the cross section area
M; is a bending moment about the jth axis

X,¥,2 are space coordinates
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APPENDIX B

Equations of Motion

Figure B1 shows the transverse shear forces and bending moments
acting on a slice of blade of length dz. This diagram neglects the
influence of an off axis placement of the c.g., the inclusion of which
would introduce torsional coupling. fx and fy are the D'alembert forces

acting on the oscillating section.

Summing moments about the inferior edge, we have

dM

dv
. _X dz _ Y =
X2 -M, + M+ 1 dz + Fy > (Vy * 5 dz)dz = 0

Neglecting higher order terms in dz and cancelling

dM
wz Yy (1)
dM dv
y: =M Mo+~ az - £, 95+ (v, + 2 dz)dz = 0

Neglecting higher order terms in dz and cancelling

Y - _
dz Vx (2)
Summing forces acting on the element
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FIG. B.I
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dv
x: Voo f +y +-%X dz=0
dz
dVX
fX = iz dz (3&)

1]
o

dv
A - A
y: Vy fy + Vy + iz dz

dv
f = HEX' dz (4a)

If m is the lineal mass density, u is a unit displacement in the x direc-

tions and v in the y direction, then

fX =mu dz
fy =m V dz

then from 3a and 4a, we have

. de

mou= = (3)
. dv

my = d—zx- (4)

For small displacements, we have from Rivello that

dzu 1 Mnyx+MxIxx

42 B 1 1 1 2 (5)
XX“yy ' xy

dev -1 M1 4MI

7 TR ey (6)

dz 1 I 1 I 2

XX“Yyy “xy



o0

where
a) E{ is an arbitrary reference modulus

b) My is the bending moment about the y axis

c) M, is the bending moment about the x axis

d) 1, = Ed) 2 g

—
[

XX a E1

e) I =17 Ei!iil—xz dA
woa o

f) IX = f Eﬁ.x_?l_).. Xy dA
Yoo b

We can now solve for the bending moments at some point z in terms of

the curvatures at that point. Let

and
k=E (I.1 -I2)
1 Y'xxX"yy “xy
Rearranging 5 and 6,
ku" - M1
= M (7)
XX y
-k v* - M/ I
L2 = M (8)
I X
yy

Substituting 8 into 7
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k u" (k v' + M I )

Yy Xy
+ I, =M
Tyx Ixnyy Xy y
" 12
u" Xy v Xy
k (53— + )+ M (=1—-1) =0
Tyx Ixxlyy y Ixx Yy
I I, I
o Gy e
XX tyy (Llyy xy)
Recalling the definition of k, this reduces to
M (__x_ V" + un)
E1lyy Ly
Solving for Mx by insertion into 8
E I I
-k v" _ 1 yxf(lxy v o+ uu) 1 =M.
Ly Ly lyy yooox
Expanding k and simplifying,
Ly Iy
“Eq v (I, - =5) - B¢ ( v E Ut I ) = M
1 XX Iyy 1 Iyy Xy X
_E] V" Ixx - E1 uu Ixy -
u" I
X u
My = Byl (L) (10)

Rewriting 1 in terms of 10 and 2 in terms of 9, we get
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I 2 2
-d xyy du d-v
Vo= == E 1 () + ) (11)
y oz TUxx LT 42 ggf
I 2 2
_ ~-d xy d°v  d7u
Vo= —= E.T1 ( — t =5 . (12)
X dz 1tyy Iyy dzz dz2

Rewriting 3 in terms of 12 and 4 in terms of 11, we get

- 2 I 2 2
- -d xy d°u , d%
mu = E.1 . (RLEY ) (13)
dzz 1" xx Ixx d22 dzz
2 I 2 2
-d xy dv . d7u
mv E. I, ( + —) (14)
a? T Ty a6

These are the equations of motion for the coupled flexural free
vibrations of a beam of arbitrary mass distribution and construction. No
closed form solution for these equations exists. Numerous simplifications
are of engineering interest, however.

For example, if we consider a uniform homogeneous beam without twist,

the equations 13 and 14 reduce to

(13a)

(14a)

where
dts

dz*

iv
£F o=

If we further restrict attention to the case of bending about principal

axes, then we have
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3
c
n

- v
EIxxv (13b)

- iv 4b
EIyyu (14b)

3
<
u

These latter equations are commonly encountered in books on beam vibrations

and structural dynamics.



APPENDTIX C

€.1 Flow Chart Formalism

B;[d;,dy,...d, ]

B;[k]

The subscript i implies that B is a data file with

more than one number (potentially assigned to it).

B; is assigned all numbers included within the

brackets.

Only the kth entry of B; is considered.

Input, OQutput or executable statement.

Decision or comparison.

Program control transfer

Machine control flow direction.
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C.2 Program Moments

This is the main program of the static ana]ysis.' The program flow
chart is included on the following pages.

The program first directs the presetting of pertinent variables,
then the input of information necessary to the analysis. Once the input
section is completed, the (modulus weighted) moments of inertia are
transposed to the point at which the bending axis passes through the
station. The program then rotates the section axes (hence the values of
the moments of inertia) into the proper orientation for the bending
analysis. Next the program computes the deflections due to bending by
calling function DEF (see Appendix G). Finally, the stress levels in the
skin are computed and reported.

The program then asks whether or not iteration is desired. If not,
program execution ceases. If yes, the operator is asked for the starting
value of the collective pitch, the increment by which the collective pitch
is to be changed (this may be positive or negative) and the number of
iterations desired. The Toad pattern is assumed to remain constant. The
program then computes the bending stress distribution associated with each
collective pitch setting.

There were few problems involved in writing the main program. The
coordinate transformations are straightforward. One peculiarity of the
algorithm is that the variable BMX is actually the negative of the bending
moments about the x axis.

The iterative loop for reporting stresses was introduced to save comp-
puter time. That section of the program uses very little computer time

when compared with the input section. Consequently, one input can result
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in analysis of many different collective pitch settings, One obvious
refinement, which has not been made is to allow the introduction of dif-
ferent load patterns within the iterative Toop. Presently, only collective
pitch may be indexed,

Alternatively, the program can be very easily modified to allow the
moments of inertia for particular designs to be stored in global memory.
This would require the input section to be used only once for any particular
blade design. The modification necessary is the removal of the variables

concerned from the header line of MOMENTS.



BETA
BETANOT
THETA

PR
PS
RHO
IXX
IYY
IXY
EUP
ELO
YU
XC
YL
XCL

cl

c2

STRU

E,
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PRINCIPAL VARIABLES

Local pitch angle

Collective pitch angle

1) Polar Mass Moment of Inertia about rotor axis

2) ANGLE of PRINCIPAL AXES w.r.t. chord at each station.
(Positive is a rotation from Leading edge towards Low
Pressure surface)

Minor principal moment of inertia

Major principal moment of Inertia

Local pitch angle w.r.t. wind mill axes

Section moment of inertia about windmill x axis

Section moment of inertia about windmill y axis

Mixed section moment of inertia about windmill axis

Bending modulus at low pressure surface skin

Bending modulus of high pressure surface skin

Y coordinate distribution of low pressure surface

X coordinate distribution of low pressure surface

Y coordinate distribution of high pressure surface

X coordinate distribution of high pressure surface

) J_. (MXI:Z:Z"'M::IXK)
E 2
Ixnyy'Ixy

1 (Mylxx+MxIxx)

[T .12

XX"yy Xy

Stress distribution in Low Pressure surface skin



STRL

Stress distribution in High Pressure surface skin
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£il
€21
€31
€43
£33
té3
(]
£el
Loz
T103
Lils
£l
£132
C143
£1S1]
C141
£171
£i181
£1%1
£201
£2:
Lz2
22
=41
L2354
L2s1
£271
t2e3
L2935
£3¢1
0313

- -
LZ:—'

£33
£343
393
L343
€371
£3el
393
£1301
411
r422
[431]
L4431
{471
463
£471
r421
[49]
[3C1
€511
{521
[531
£S54]
€351
[543
£573
£sel
€591
Cé01
L6131
L4621

PROGRAM LISTING

UMOMERTSO]®

QO

TMOMENTS ; T4M03 IVY0 IXYOS THETA} PR FS; ROOT § YEAR j GEOAREAR ; FKETA FHO; TUF § TLLOJC1 €D}

FooL1

INPUT

[

AFIND IXMC,ITTC,INYC

IXKC4+INXO—AREAX TEARRD
IVYC¢ITYO-AREAXXBAR] &2
INYCeIXTO-AREAXMEBARY X TEAR
BETA+EETA4+FHI

THETA&HX( {20FK) XIMBORD4HXx "1+ FMASS) 52
THETA+THETAQXMAES .
THETA[1]¢THETAL1]+2

THETAL P THETAJ+ TRETALPTHETA =2

IMAST MOMENT CF INERTIA AROUT THE ROTOR QXIS (L& IN
1

THETAMASSXH

THETAL1Je«THETAL1]+2

THETA[ FTHETAJ«THETAL p TRETA]+2

ISLADE WEIGAHT, FPOUNLS '}4+/THETA

o
L)
a .
AFIND PRINCIFAL ANGLE AND MOMENTS OF INERTIA
THITAC (TIB DX IHYCEITYC—INMC) Y22

SECx2)

Fhe { {THROFITTIT) 4D mROO0Te({ ( ( IXXC=ITTC)+2)a2)+IXYCA2)20.,5

FS«{((IMXC4+LIYTYC)<=2)+RCOT

FIMNCLIMATICOH GF SECTION FRINCIFAL AXES FROM CHORD (CCW=4+)'

? 2« THETAXZ7,29578

)

I MCDULUS WEIGHTED CENTROID LOCATIOM!
. NBOR TBAR!

9 De&(2ypREAR)pREAR , TBAR

e

'MCDULUS WEIGHTED X CEMTROIL LOCATIOM AS CHORD FRACTION'

9 TeMNBARCHORD
.
IWASS CENTROIDN COORDINATES'®
' XEAR YeAQR !
@ 2eB(DyFMASSK)PMASSKyMASS T
LI
'MASS X CEMTROID AS CHORD FRACTION!
® JeMASSNLIOHORD
L)
'BENDIMG STIFFNESSES <1E7'
'AEOUT THE MAJOR FRINCIFAL AXIS:®
$? 2¢FK
L)
TAEOUT THE MINOR FPRINCIFAL AXIS!
9 2¢Ps
v
'TOTAL AREA OF MASS'
© 2+GEQAREA
L}
'WEIGHT OF UNIT SFAM, FOUNDS FER INCH'
@ 44MASS
]
PO} ACOMPUTE MOMENTS OF INERTIA ABOUT WINDMILL AXES

'RETA NAUGHT '} (T14BETA)x180+01

HCPHOLIYUSYLIYURL3YLOY

'§+/THETA:ZD, 2x1

'BENDIMG STIFFNESSES (+1E7) QEOUT WINDMILL AXES REFERRED TO EENDING AXIS'
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£s33
C643]
£653
L6863
673
£683
£691
€703
€711
€723
€733
£741
€753
€761
€773
t781
£791
£803
€813
£821
€831
€841
€853
1861
€973
cesl
(891
€901
£913
€921
€933
€943
€951
€983
€971
€992
£991
£100]
£1013
£1021
£103]
£1041]
£105]
£106)
£1073
1081
£1093
1101
€1113
€1123
£1133
C114]
£1153
£1163
£1171
£1183
£1193
L1203
£12113
C1223
£123]
£124]
£1253
£1263
€1273
£1281

RMO+BETA-0]1

TEXINKS1ET

P eIXKe(IRHNCX(20FHO) 22)+(ITTCX(1ORHO) 2D )-D0e2X( 1ORHO) X (20RHO) X INTC
v

'ExITTr-1E7"

9 DeIYTeE(INHCX(1ORHG)22)+(IYYCA(20RHO)22)+DD

e

{EXINY&1ET!

9 DeIXTE(IXKCX(1ORHO)XDORHI )= (ITYCX(1LORHD) X2ORHC ) +IRXTC 1202 XRHO
Ca

YOUNG+10000000

Cle(=TOUNG ) X ((BHXXITY)aBMIXINY)S(IMMNXITT )TN T2

CRe(+TOUNG ) X (((BMY X INNM)=BMXYIXT )= (IHXITYTYITIRXT A2

“

o

VIN THE FLAP DIRECTION®

(HypC1)DEF C1

v

"IN THE LEAD LAG DIRECTION?'

(HypC2)DEF €2

 ACOMPUTE STRESSES IN THE SXIM

Tet

AITERATIVE LOOF FOF REFORTIMG OUT STFESSS

ARRXIS FROTATIONM

EUFeTUPC131]

ELOTLOCL51]

HBeik

TUFLe(1 1)4TUP

TLO1e(1 1)4TLO

‘ORDER OF KEADIMG IS BENDINMNG STRESS ABROVE X, X/CHORDL, BEHDING STRESS
Plia== == a= === ===
TUFLLTI:Je"UPILI;]-TBAK(I]

TLOLLT; JevLOILT; J-VYBPAKLCI]
Hle(T1XHBARICT])+XBLT;]
YUE(TLXX1X1ORHOCII)+TUFITI;Jo, xDORHOL I]
TLECTLIXMXIX1OFRHOLT])+TLOLILT};]o, ¢2ORHOLI]
HCe (X1 A20RHOCTI])+TUPI[T;]e,x1OFRHOLT]
KOL& (11 X2OFHOLTI])+TLO1[I}]o, Xx10RHOL I]

L]

ASTRESS FORMULATION AND SOLUTIONM
STRUCSTRL&(PTUF)p1
STRUCEUFX(CI1[TIJo,xTU)+CRACTIJo , XRXC
STRLEELOX(CILTJo, X L)4C2CITo, x: CL

‘e
‘STATION MNUMBER ';I

7 JeSTRU

7 2¢ (] +XRAKILT])+CHORDLI]
7 OeSTRL

. e

TeIel

+(IxpCl)ysP2

+F1
FR13(ITINDHQ) /P

v

"

‘DO TOU WAMT TO ITERATE WITH ME?'
ITINDeA/'TES '=3p[
S(ITIND2Q) /P4

ITIND«Q

' RUMEBER OF ITEFATIOHS'
NIT«Q

CINCREMENT*
ITING+(0+180)x0

*STARTING FOINT!
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[1301
£1311
£1323
£1331
L1341
L1353
[1363

1TeTARE(D+1802 20

ITSTQR&ITSTQR*ITIHC

BETQ@PHI+IT5TAR
P3:ITIND+ITIND+1
S¢ITINDYNIT) /™4
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F4ltEND
<

OF FROGRAM'

68



FUNCTION MOMENTS

[MITIALIZE PRINT MINOR PRINCIPAL
VARIABLES MOMENT GF IMERTIA AT
(FOOL 1) EACH RADIUS

EXE;Q‘TE LT PRINT MAJOR POINCIPAL
ECTION MCMENT OF INERTIA AT
(1xPUT) EACH RADIUS
DETERMINE IXX, IXY, IYY PRINT AREA OF LIAD
ABOUT THE 3EHOING AXIS CARRY (MG MATERIAL AT
EACH RADIUS

3ETA, < LOCAL PITCH ARGl PRINT LINEAL QENSITY

AT EACH RADIUS

Il

FIND POLAR MOMENT
OF IHERTIA OF BLADE
ABOUT ROTATION AXIS

|

h 2

FIND QRIENTATION Avp
LOCATION OF PRINCI-

PRINT COLLECTIVE PITI
SLE UOMENTS OF I4ERTIA LLECTIVE PITCH

PRLIT PRICIPAL AXIS ' REFER 70 W 1e
QTATIONS AT EACH tE Gsvég‘m s

RADIAL LOCATION

I

i

M LxX-m IXY,
23077y (LX)
1XXy 1YY, - 12V}

COMPUTE DEFLECTIONS
IN THE DCWIWIND POS-
ITIVE DIRECTION

COMPUTE DEFLECTIONS
IN THE CHOROWISE POS-
[TIVE DIRECTION

PRINT DEFLECTIONS

1-3

EUP~BENDING MOOULUS JF
LOW PRESSURE SKIN

ELO-BENDING MODULLS OF
HIGA PRESSURE SK:It

h k 4
PRINT LOCATION OF REFIR LIX, IxY, Ivy YuP1, ~LOM PRESSURE SKIN
TENSICY AXIS TO WINDMILL AXTS SYSTEM ¥ ¥ COOROINATES
<

PRINT LOCATION OF

UASS CENTROID Mo IYY Dy

er-1e7 x

0 vy, -1xvd)

YLO, ~HIGH PRESSURE SKIN
v COORDINATES




I
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MOMENTS (Continued)

TRAISFORM Y COORDINATES
INTO BENDING AXIS CEN-

TERED SYSTEM

TRANSFORM X COORGINATES
IKTO BENDING AXIS CEN-
TERED SYSTEM

ROTATE COORDIMATES
INTO WINDMILL AXIS
SYSTEM

1s
ITERATION
DESIRED

YES

COMPUTE X, Y COORDINATES
OF POINTS ON RIGH AlD
LOW PRESSURE SURFACES

ITIND=O

h

COMPUTE STRESS LEVEL
I UPPER AND LOW SKINS

MIT - DESIRED NUMBER OF
ITERATIONS

PRINT STRESS LEVEL AND
CHORDWIDE LOCATIONS

ITINC « DESIRED COLLECTIVE
PITCH INCREMENT

I« + 1

ITSTAR~ INITIAL COLLECTIVE
PITCH

I>NUMBER OF
RADIAL STATICN

IRITIALIZE LOCAL PITCH

—
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ITINDSITIND + 1

\ 4

0

YES

IHCREMENT PITCH
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TERMINAL SESSION

MOMENTS

ENTER THE MUMEBER OF DATA SETS

.
.

8
EMNTER THE UPPER SKIN v CO-ORDIMATES

*
*

MEWF 1
ENTER THE SKIN X CO-ORD

*
-

MEWF 12X
ENTER THE LOWEF SKIN Y CO-ORD

*
.

NEWF 2

ENTER THE v MATRI:

o:

HEWF3
X MATRIX
1 H

NEWF3 4%

ENMTER THE 7 MATRIX

o
NEWF4
X MATRIX
o3
NEWF34:<

ENTER THE Y MATRIN

o:
NEWFS
¢ MATRIX
s }]
HEWFS4X

ENTER THE T MATRIX

a:
NEWF &
X MATRIX
a:
HEWFS 43

ENTER THE T MATRIX

o3
HEWF7
X MATRIX
o:
NEWF 78X

ENTER THE Y MATRIX

a:

NEWFg
X MATRIX
o:

NEWE 78X



READ VECLTOR PHI, THE FREL, TWIST IMN DEGREKES

a:
NEWPHI
ENTER BETA HAUGHT
a:
0
ENTER THE RALIAL STATION SPACING, M
a:
19.5
ENTER THE LOCATION OF THE BRENDING AXIS
a:

» A5 XCHORD
SHEAR FORCE PER SPAHWISE SECTION IN THE X DIRECTIOM
o
Q00000000
SHEAR FORCE I THE T DIRECTION
o
¢ Q00009 0 15+9+14
ENTER THE RANIUS OF THE MOST INEOARD STATION,
o:
19.5

COMING AMGLE?
o:
10

MQSS MOMEMT OF IMNERTIA ABOUT THE ROTOR AXIS (LB IMN SECx2) 464.6

BLADE WEIGHT, FOUNDS 34,06

IHCLIMATION OF SECTIOW FRIMNCIFAL AXES FROM CHORD (CCW=4)

~10.89 $.39 5.06 4.58 3.50 4.77 17.23
MODULUS WEIGHTED CENTROID LOCATION

HBAR TRAR

3.61 1.04

4.29 0.63

3.77 Q.53

3.01 0.45

2.43 0.38

2,07 0.34

2.03 0.33

1.56 Q.27

1.33 Q.24

1.14 0.15

MODULUS WEIGHTED X CENTROID LOCATIOH AS CHORD FRACTION
223 0.245 0.249 0.244 0.238 0.236 0.269

MASS CENTROID COORDINATES

HBAR rBAR
3.80 1.02
4.62 0.62
4.08 0.54
3.28 0.45%
2,466 0.38
2,25 0.34
2.15 0.36
1.70 0.27

1.47 0.295
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1.31 0.16

MASS N CENTROID A% CHORD FRACTION
0,234 0,264 0.270 0,268

BEMDING STIFFNESSES —1E7
AROUT THE MAJOR PRINCIPAL AXIS

4.09 2.96 1.67 1.01

APOUT THE MINOR PRINCIPAL AXIS
13.89 13,13 10,23 5.50

TOTAL AREA OF MASS
10.32 6.33 4.94 4.16

WEIGHT OF UNIT sSPrAar, POUNDS PER INCH

0.5633 0.3431 0.2671 0.2254 0.1940

PETA NAUGHT (

0.281 0.254
0.65 0.39
3.18 1.51
3.57 2.76

0.1507

BENDIMG STIFFNESSES (+1E7) ABOUT WINDMILL AXES REFERKED TO RENDING AXIS

EXIXXL1E7
7.17 4.39 1.97 1.05

ExIVY&]lEY

10.81 13.71 9.93 3.45
EXIXYH]1E7

4,55 ~5.39 “2.86 T1.12

IN THE FLAP DIFRECTION
DEFLECTION

0.000 c.014 0.077 0.205 0.415

IN THE LEAD LAG DIRECTION
DEFLECTION
0.000 0.002 0,015 0.047 0.097

ORDER OF READING 1S BENDING STRESS AROVE

STATION NHUMEBER {

-447 —444 ~379  "220 -37 1
0.00 0.0%5 0.10 0.20 0.30 O.
=447 ~293 T181 22 215 4

STATION NUMBER
84 T203 297 ~391 “411 -3

0.00 0,05 0.10 0.20 0,30 o8

84 273 327 370 382 3

»

STATION NUMBER 3

My

63
40
06

77
40
&9

241 ~187 ~344 TS2S ~602 T6C4A

0.00 0.05 0.10 0.20 0.30 0.
241 484 536 547 519 4

40
76

67 0.
17 1.
47 ~o.

0.161 0.249

1 /CHOFD,

375
0.350
397

~306
0.50
39S

-s52
0.50
434

1.766

0.373

2,513

0.520

FEEMDIMG STRE3S SELOW

526

0.60.

787

207
0.60
3°8

T462
0.40
389

824
0.70
?77

85
Q.70
400

~340
©.70
343

1179
0.85
1265

14¢
0.85
410

96
0.85
285

73

0.2

~0.03

3.33%

0.678

M

1551
1,00
1351

418
.00
418

222
1.00

222

0.0295



STATION
257
0.00
257

STATION
232
0.00

232

STATION
285
0.00

2835

STATIONM
266
0.00
966

STATION
320
0.00
320

STATION
212
0.00

212

STATION
0

0.00

[

HUMBER
~173
0.05

492

HUMBEFR
-189
0.05

464

HUMBER
~178
0.05

531

MUMEKER:
172
0.0S
12598

HUMEEFR
T114
0.0%

S35

NUMEBER
e ¥4
0.05
333

HUMEBER
(o}

0.05

0

~334
0.10
538

(L]

“344
0.10
511

354
0.10
576

~184
0.10
1241

-289
0.10
565

~152
0.10
344

“525
0.2
537

~530
0.2
S13

~567
0.20
566

“$80
0.2
1054

~506
0.20
S3%

T286
0.2

320

0.20

“612
0.30
495

“613
0.30
474

T669
0.30
S12

T1006
0.30
802

~621
0.30
463

—342
0.30
270

DY TOU WAHT TO ITERATE WITH ME?

TES

HUMBER OF ITERATIONS

o
o)

IHCREMENT

o:
2

STARTING FOIMT

o:

-

FETA HAUGHT 2

-425
0.40
445

=623
0.40
428

T692
0.40
449

T1211
0.40
537

T664
0.40
384

~39S
0.40
216

-S89
0.50
393

-S80
0.50
380

T658
0.50
385

T1329
0.50
267

T655
0.50
303

-398
0.50
140

~507
0.60
337

~501
0.60
328

S84
0.60
316

~1386
Q.50
-8

~4608
0.60
219

~379
0.460
103

—396
0.70
281

-390
0.70

275

T474
0.70
247

1391
0.70
~284

~330
0.70
133

=342
0.70
4as

T172
¢85
206

T145
0.85
206

T250
0.85
153

T1300
0.85
~683

~35S

15

T252
0.89
-3

128
1,00
123

134
1.00
134

Sé
1.00

56

-1087
1.00
T1087

~107
1.00
T107

“1290
1.00
~120
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BENDING STIFFNESSKES

EXIXXH1E7

6,86 4.67 2,09
ExIYY+1E7

11.12 13.42 9.81
ExIKY+187

4,87 ~5.57 “3.07
IN THE FLAP DIRECTION
DEFLECT ION

0.000 0.016 0.074

0.

IN THE LEAD LAG DIRECTIONM

DEFLECTION
0.000 0.002

ORDER OF READING

STATION NUMBER |

“491 T477
0.00 0.0S
T491 -329

STATION NUMBER

18]

63 T211
0.00 0.0%5
63 230

STATION MUMEBEFR 3

228 =207
0.00 0.0S
22 481

STATION HUMBER 4

2350 T192
0.00 0.05
2350 496

STATIOMN NUMBER 5§

225 "204
0.00 0.05
223§ 465

STATION MNUMBER §

277 T196
0.00 0.05
277 533

0.016

IS BENDING STRESS ABPOVE XN,

T403
0.10
—209

=299
0.10
306

~344
0.10
338

~355
0.10
547

~362
0,10
5135

~374
0.10

582

1,09

oS

Q.0350

T226
0.20
11

~382
0.20
334

~S43
0.20
556

—S46
0.20
$S52

546
0.20

923

To86
0.20
578

26
0.30

222

-

~394
0.30
374

~613
0,30
532

~630
0.30
915

T625
0.30
488

“684
0.30
529

0.68

3.15

~0.55

0.419

0,104

191
0.40
430

~354
0.40
388

~407
0.40
499

~637
0.40
470

~629
0.40
444

T701
0.40
472

0.731

0.176

¥ /CHORD, BRENDING STRESS EELOW

420
0.50
639

~278
0.50
400

~547
0.50
4565

TS89
0.50
422

581
0.50
402

~660
0.50
412

(+1E7) ABOUT WINDMILL AXES REFEIRRED

1.186

0.278

658
0.60
8446

~175
0.60
410

~447
0.40
424

~502
0.50
371

T494
0.40
354

~g77
0.60
348

TO BEMDING

1.826

0,424

902
0.70
1053

-1
0.70
420

~314
0.79
387

T3a2
0.70
319

~37s
0.70
306

~459
0.70

282

AXIS

0,601

1282
0.85
1367

179
0.85
341

52

0.85
338

“140
0.83
251

-137
0.85
243

-217
0.85
197

75

3.501

0.7990

H 4

1479
1.00
1679

459
1,00
459

286
1.00
286

179
1.00
179

1746
1.00
175

107
1.09
107



STATION
1097
0.00
1097

STATION
316
0.00
316

STATION
217

0.00
217

STATION
0

2.00

0

NUMBEF:
164
0.05
1453

HUMBER
“134
0.05

sa2

HUMBER
=)
0.0S
348

HUMEER
0

0,03

0

BETA MNAUGHT 4

BENDIMNG STIFFMESSES

EXIYY1E?Y
11.42 1

EXINYL{ED
4,7¢ -

I THE FLAF DOI
DEFLECTIONM

0.000

0.0

T249
0.10
1443

“310
0.10
377

T167
0.10
364

817
0.20
1244

529
0.2

552

—307
0.20
340

IH THE LEAD LAG DIRECTIONMN
CEFLECTION

0.000

OKDEFR OF READING

STATION

537
0.00
~S537

STATIOH

0.0

MUMEER

512
0.05
—367

HUMBER

~1184
0.30
963

~642
0.30
a84

~384
0.30
290

4,98 2.23 1.1
3.12 ?.67 S.3
5.73 T3.27 1.3
RECTION

16 0.97% 0,204

02 0.016 0.052

T429
0.10
~238

[

232
0.20
-1

IS BREMDING STRE3S AFOVE

~1408
0.40
6468

679
0,40
409

“414
0.40
235

76

T1529 T1576 T13561 T1423 T1140
0.50 0.60 0.70 0.85 1.00
348 &1 —247 690 ~1140

XX ~408 —520 ~328 “b61

0.50 0.4%0 0.70 0.85 1.00
332 250 1469 Sé Té1
T416 392 ~349 —249 “103
0.50 0.460 0.70 0.85 1.00
179 121 63 19 ~103
0 o o o] 0
0.30 0.60 0.70 0.85 1.00
0 [ 0 0 [

(+1E7) APOUT WINDMILL AMES FEFEFRRED TO BENDING ANXIS

4 0.70 0.39 0.19 0.13 0.06 0.01
7 3.13 1.51 0.88 0.44 0,27 0.15
8 T0.63 T0.25 T0.28 T0.07 T0.05 T¢.02
0.419 0.734 1,209 1.387 2.740 3.681
0o.111 0.190 0.305 0.478 0.488 0.912
Ky H/CHORD, BEMDING STRESS HELOW ¢

222 468 723 985 1291 1813

0.40 0.50 0.60 0.70 0.85 1.00

455 681 ?07 1132 1473 1813



42
0,00

a2

STATION
211
0.00
211

STATION
240
0.00
240

STATION
2195
0.09
215

3TATION
266
0.00
266

STATION
1258
0.00

1258

STATIONM
309
0.0C
309

STATIONMN
222

Q.00

222

oty

STATION
¢

0.00
[+]

-217
0.05
225

MUMBER
T226
0.05

470

HUMBER
211
0.0%5

496

NUNPER
“219
0.0%

463

NUMBER
213
0,05

532

NUMBER
145
0.05
1701

NUMBER
~154
0.0S

547

HUMBER
48
0.0S5
363

HUMBER
o

0,05
o

END OF PFROGRAM

T297
0.10
283

-381
0.10
532

~376
0.10
5352

-378
0.10
517

—394
0.10
86

—339
0.10
1702

~333
0.190
587

~183
0.10
382

—370
0.20
336

~554
0.20
560

~565
0.20
565

560
0.20
531

~604
0.20
589

“999
0.20
1487

-5S52
0.20
568

~329
0.20
350

0.20

~374
0.30
362

~617
0.30
543

=644
0.30
533

~635
0.30
<01

~&697
0.30
546

T1415
0.30
1174

T661
Q.30
S04

407
0.30
311

—329
0.40
383

“403
0.40
518

~645
0.40
493

~434
0.40
444

~708
0.40
494

T1659
0.40
844

~693
0.40
435

~438
0.40
256

T248
0.50
402

TS533
0.50
491

~S88
0.50
451

-579
0.350
425

-458
0.50
440

“1778
0.50
509

T469
0.50
362

~433
0.50
201

143
0.40
418

—424
0.60
461

-492
0.60
405

=485
0.60
381

~867
0.60
381

~1810
0.60
165

~405
0.40
285

~405
Q.60
143

“16
0.70
435

“281
0.70
429

—362
0.70
359

~338
0.70
337

~439
0.70

322

T1748S
0.70
~181

507
0,70
208

~355
0.70
84

215
0.85
484

-4
0.85
392

-102
0.85
299

T106
0.85

282

<O

=180
0.85
244

~1560
0.85
~676

297
0.85
102

=242

0.85

494
1,00
494

351
1.00
351

236
1.00
236

152
1.900
162

T1180
1.00
~1180

-8
1,00

“81
1,00
“81

77



APPENDIX D

FUNCTION INPUT

Function input reads the data necessary for all subsequent calculations.

The function also calls the routines which compute the sections' structural

characteristics.

The calculations actually performed by the subroutine are Timited to

incrementing indices and the reduction of first moments to centroids by di-

vision by the appropriately weighted areas. Specifically,

XBAR

YBAR

MASSX

MASSY

where

| A(E(x,y)eE])x dA

AGE(x,y) +Ep) dA

AE(x,y) 47Dy dA

’ K(E(x,)’)éE]) dA

ﬂp(x,y)x dA
To(x,y) dA

1o(xsy)y dA

aP(x,y) dA

£<pdA is the integral of the function over all load carrying

area,

E(x,y) is the local bending modulus,

E] is an arbitrary reference modulus,
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p(X,y) is the local density.

The function checks to insure that the correct number of transverse
Toads have been entered in both the x and y directions.

By the time the vectorial inputs are required (1ine 28 and beyond)
the vector CHORD has already been established. This is useful if, for
example, the bending axis is scaled with the chord. Thus, when the pro-
gram asks for the location of the bending axis, one need only type '.25 x
CHORD' and all of the bending will be referred to the quarter chord line.

If scaled any other way, this can also be entered as long as the scale has
the same shape as CHORD.

MASSX and XBAR have also been established at this point. They could
be exploited in a similar manner.

(The characterization of the rotor as a cantilever beam supported at
the most inboard station is accomplished at this point by the function BEND.
This will be described explicitly in Appendix H. Any other beam type can
be accomplished by modification of this Function.)

The variable CHORD, the values of the chord length for the various
sections, is assigned by operation on the first entered file of x coordinates.
If any data file is entered which does not contain this information, the
values stored in CHORD will be incorrect. Subsequent calculations based on

the chord will be adversely effected.
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PRINCIPAL VARIABLES

YUP A record of the Low pressure skin Y coordinates and bending
modulus

YLO A record of the high pressure skin Y coordinates and bending
modulus

X " A Record of the X coordinates associated with the above

XBAR The X component of the modulus weighted centroid for each
station

YBAR The Y component of the modulus weighted centriod for each
station

MASSX The X components of the mass centroid locations

MASSY The Y components of the mass centroid Tocations



PROGRAM LISTING

LEGREES !

CIRECTION!

QINFUTCO]V

) CINPUT M JJI ;MM ;MM

11 v

€21 '

£33 'ENTER THE NUMBER OF DAT& SETS!'

[ »] HeQ

[} JJdeQ

€61 'ENTER THE UPFPER SKIM T CD_GRDIMATES
c7] MMy e TUPeQ

[ P] TENTER THE SKIN X CO-ORD!

£91 MMeRe

C101 CHORDe[ /MM

Ci111] DAL TON

£12] LEMOX] 'ENTER THE (OWER SKIN v CO-02D‘
C13] YLOeMM] €O

C141 +DAL TON

L1817 o

€161 v

€173 L1

€181 ‘e

121 'ENTER THE T MATRINX:®

€201 MM1ed

€213 ‘X MATEIN!

£z2 MHeg

[23] DALTOM;MM IHDEX MM

€241 JJedI+1

253 +{J-i=M) JALEANT

£261 +{(JJ=]; /LEHOX

€271 <L

£29]1 ALRANT:'READ VECTOR FHI, THE REL, TWIST Id
€291 HIAREHBAR-ARER

€301 TRARGTEAR-AFREA

€313 MASSKEMASS{=MASS

€321 MASSTEMASSTEMASS

£333] FHI«(0+180)x0

€341 'ENTER RETA MAUGHT'

£351 BETA«(2+180)«0

€351 'ENTER THE RADIAL 3TATION SFACING, H!
€371 HeDd

£381] 'ENTER THE LOCATION OF THE EEHDIMG AXIS!
L3931 RBAR1¢]

€401 31t 3HEAR FORCE PER SFAMWISE SECTIOM IM THE
£41] BMYEH BEMD

421 F((FEFMT)=pCHORD ) /€32

£a33] 'INCORKECT SHEAR IMPUT, TRY AGAIH,'
L44] +Cx]1

[45] C¥2:'SHEAR FORCE IM THE t DIRECTION:'
C461 EMXeH REND

C471] 4((PEMX)=FCHORD) /CKT

£481 'INCORRECT SHEAR IPUT, TRY AGAIM, '
£49] SCH2

[S50] CXJ:'ENTER THE RADIUS OF THE MO3T INEOARD STATIOM, !
€511 INBORD+[]

£s21 'CONING AHGLE? !

£531 FRe¢(09+180)x0

£S4] v

€551 v

v
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FUNCTION INPUT

HeNUMBER OF GATA DALTo —
MATRIX PAIPS
FUNCTION INOEX
(™ INDEX 1041 (BA'!1°XBAR‘- - ARE,l‘
Ja~¢
PRI
YBAR'-VEAR‘. - PREAi
<
¥4 -YUP L0 A
PRESSURE SUR-
FACE MATRIX
HASSXi-HASSX.: - Mssi
e
MAoX MATRDX Y
CORRESPONDING ves
70 ABOVE D
BELOW HASSY“HASS“' > HAsSi
l "
U
PHI (7 = 180) x
MM1.Y COORDINATE
RELATIVE TWIST AT
MATRIX EACH STATION, IN DEGREES
M4-X COOROINATE BETA-(™ + 180} x
LENOX MATRIX COLLECTIVE PITCH
IN DEGREES
YLO-POMT-HIGH
PRESSURE SUR-
FACZ COORDINATES
¥
-
H-SPACING BETWEEN
RADIAL STATIONS
XBARY i’CHDRDHISE
LOCATION
OF BERDING
AXIS




INPUT (Continued)

¥

BMYi« BENDING MOMENTS

DUE TO LOADS IN X
DIRECTION
(BMY H BEND )

SIZE OF BMY) = HUMBER OF
STATIONS

BMY ;« BENDING MOMENTS

DUE TG LOADS IN Y
DIRECTION
(BMY H BEND )

{SIZE GF BMX) = NUIMBER 0
STATIONS

INBORD+ RADIUS OF
MOST INBOARD
STATION
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APPENDTIX E
FUNCTION INDEX

This function reads the data files MM and MM1 and directs their inte-
gration.

The only arithmetic activity is the addition of the resuits of function
INTEG to the appropriate variables.

The vector X consists of the x coordinates, the local bending modulus,
and the local density. The vector Y consists of the thickness of the
section being considered, and three y coordinates corresponding to the above
x coordinates. The function INTEG is then called to operate on x and y.

On the first pass, that is when the first data file is being processed,
the size of the variables in lines 15 through 24 is established. When other
data files are being processed, the newly integrated quantities are summed
with the appropriate elements of the already established vectors. The unique
advantage of this arrangement is that any size data files may be used in the
analysis. The algorithm automatically adapts itself, as long as every data
file pertains to the same number of stations.

The program first moves across the columns, then down the rows. Because

the program always picks out three points at a time, there are some require-
ments on the shape of MM and MM1. Since each row of MM1 except the first
contains thickness and coordinate information, each row must have an even
number of numerals included. Each row of MM must have an odd number of
entries. MMI1 must have one more row than MM, because the first row of MM

contains only bending modulus and density information.
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IXXO,i

IYYO,
i

IXYO,
i

AREA
i

YBAR,
i

MASS,i

MASSXi

MASSYi

GEOAREAi

; E(x,y)y? dA.
A, Bl

r E{x,y)xy dA;
E
Ay 1

r E(X,y) dAj
E
As H1

f p(xs.Y) dA]

.i

I/ xp(x,y) dA;

A,
3

£ ¥o(xay) dh;

PRINCIPAL VARIABLES

- measured from chord line

I measured from the leading edge
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C11]
L2
L33
L41]
L53]
(-]}
(|
£81l
[?]
£101
£111
£123
[13]
[14]
£1353
L1413
L1713
£is81
L1913
£201
L2123
£221
£233
[24]
251
[261]
£221
£281
[2%9]
£301
[31]
[321]
[333]
[34]
£3581
[361]
[371
£381
L3913
[401]
[411
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PROGRAM LISTING

| QINDEX[Q]Y

OMM IMDEX MM13EREF;JIjK;MjNH;T3FEI13I025I3;RASE]  MODWTX
EREF+10000000 $MODWTY § MAS j RHOWT j RHOWT Y ; AREA]
Je0
K«Q
RESET
MelppMM
MeT1APMM

FIRST (MeMMLIGK=]1]yMMLIGK]yMMLI3K+1],MM1I0151],MM10152]
Fed+1
TEMMILF K] MMI[F K41 ], MMILFjK+2]yMMI[F;1]
¥ IHNTEG ¥
3 (K=MN-1)/SECOND
KeR+D
$FIRST

SECOMD {3 (JJI%EQ) /THIRD
IHROEINHO,IF
IXYOEINYO,ID
ITTOEITYYO I]

AREACAREAQ, KASE]
TEBARE TEAR , MODWTY

KEBAR ¢ XBAR y MODW T3
MASSEMASS , MAS
MASSXEMASSHK y RHOWT
MASSTMASSY , RHOWTY
GEOAREA+GEOAREA , AREA]
S(J=M) sASWAN

RESET

+FIRST

THIRD! INHO[LJJeINNKO[JI+IZ
INYO[JUJeINYO[JIJ+ID
ITTOLYIeITTOLUI+I]
AREA[J]+AREA[ JJ+EKASE]
TEAR[J] ¢ TEAR[ J]+MODWT T
HEBARL J]+XBART JJ+MODWT
MASS[JJEMASSL JJ+MAS
MASSX[J]EMASSH[JI]+FRHOWTX
MASST[J]eMASSTLJ]+RHOWTT
GEOAREA[ J]«GEOAREAL JJ+AREA]
3 (JI=M) /ASWAN
RESET
SIFIRST

ASWAMNY 5

v



READ MATRIZES
w,

EREF <127

CALL FUNCTION

RESET

M~ MBER OF ROWS IN
e

K~HWNBER OF COLUMKS
IN
b

v

FUNCTION INDEX

v _

A

CALL FUNCTION X INTES

K=K+ 2

y FIRST

B[, (K1, X, x ¢ )2ty (0,203

Fad+

Y [®O[F, (K, ke L, x+2,1)]

87

h 4

IXXC~{1X0,13]

1XY0-{1xv0,12]

1Yo 1YY0,11]

AREA-{RREA, BASE1]

v



YEAR-[Y8AR, MOOWTY]

YBAR{XZAR, MODWTX]

MASS~[MASS, MAS]

INDEX

MASSX-{MASSX, RHOWTX]

MASSY~{MASSY, RHCWTY]

GEQARZA(GEDARER, AREA 1]

1]

CALL RESET

-
‘ m
t

(Continued)
.
4 h 4
XXZ(L\SJ]- MASS[J]~
1xx0{J) + I3 HASS[JE + MAS
A
xxvoSJ]- vASSX[ 3]~
xyo{J) + 12 MASSX[J{ + RHOWTX
< L
I'YOSJ]o wss(J]-
ye(d) + I MASSY(J] « RHOWTY
A 4
AREA[V]~ GEQAREA(J]-
AREA[J] « BasEl GEDAREA[J] + AREA !

YBAR[J]~
YBAR[J] + MOOWTY

XBAR[ 21+
X8AR(3] + MODNTX

T

it
A4

YES

CALL RESET

|
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APPENDIX F
FUNCTION INTEG

Function INTEG performs summations of the section properties to approx-
imate the integrals detailed in Appendix E.

If the specified thickness for the summation is zero, the logic assumes
that the specified section is solid. In this case, most of the integrable
section characteristics areccomputed directly (lines 17 through 29). Other-
wise, the section is broken up into many rectangles and the centroid
coordinates of these rectangles used.

The input requires the specification of three points on the surface.

A parabola is fit through these points, and evenly spaced intervals are pro-
scribed onto that curve. Thus, we get ten intervals evenly spaced between
the largest and smaliest value of x. The centroidal x coordinates are then
determined for each of the intervals. The values of y associated with these
X values are then determined.

If the section is solid, the included section properties are then de-
termined. If the section is not solid, then the projected thickness is
subtracted from the previous value of y and the intermediates between these
values of y are found. This establishes the coordinates of the centroid
of the section considered. This information is then operated on in lines

41 through 53 to establish the summation of interest.
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RHO

co

I

12

I3

MODWTY

MODWTX

MAS

RHOWTX

RHOWTY

AREA1

IV

PRINCIPAL VARIABLES

density

local bending modulus

x components of selected points
y components of selected points

coefficients of the best fit parabola co, + Coyx + c02x2 =y

o

)
Iy
—_ |-
)
-

Z.:p.X-AA.i

Toj Yy ok

-t



where

density
local bending modulus

small section of area

10’
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C13

€21

£33

€41

£s3

£41

£71

cel

£93

€101
£113
£123
£131
£141
£1s3
£161
£173
£181
£191
€203
£211
£223
€233
£241
€251
[263
£271
£281
£291
£301
£311
£321
£333
£341
€353
L343
€371
£381
£391
£402
£a13
£421
L4332
C441
Cas]
£a63
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PROGRAM LISTING

QINTEGCOI®
9 INTEG T;FHOJE}TF;COSTHET AR TI;RAGINGDT §XE; TR HEW
A THIS ROUTIME IDOES THE FIECEWISE SUMMATIOM OF THE
"AVARIOUS FROFPERTIES OF THE CRDSS SECTIOMS, MOST OF THE
AGUANRTITIES SHOULD EBRE READILY IDENTIFIAERLE,

ally I2, I3 HAVE TO IO WITH THE SECTIOM'S I¥Y, IXY, AMD
alxXX RESFECTIVELT,

RHOEHMLS]

EeXL4]

Ter[4]

E¢E+-EREF

e[ 3]

TerC13]

CO&yt FIT ¥
HERCLT+(DRE2)+((110)=1) XDie0, 1xX[3T=-%L1]
T€CO[1J+(COLZIxX)+COLITxHx2

2(T¥EQ) /HECK

I1e¢X1+4+/EXTXxDXXx0,29%xHx2

I2€ X244+ /EXQ,SXDRXHZXV D

IZ¢II++/EX(DRI)IXTAZ

RAGE | «¢EASE | ++/EXxDXxT

MODWT TeMOLWT T+4 /EXDR X0, Sx T2
MODWTXeEMOLWT X 44 /EXDIX T X

MAS+MAS++4 /DX TXRHO

RHOWTN@RHOWTH++/EHOXXxDKiT
FHOWTY¢FRHOWT T+4 /RHOXDXX),S5x a2

AREA]AREA]L +4+/DXXT

41000 '
HECK ! THET+ ™ 30COL23+2xCOL3IxX

TLer~=Q,.GX (XTVL2])XT+20THET

AAE(xT1)=xT[2]

YEe(AAXT]1)+0 ., SXTXwAA

DT¢( (COL2]XH-DRE2)FCOLIIxX (R=-DR+D2) x2)=(COLDJXH4DHED)+COLT ]
AETX ((DXQ)+DTRT)I 20,5

2(10=1+/RAA) /WORK

A+ (RAXAY4 (~#RA) X | DMXT

WOFRK:p THE EUTTER

HEe

IleIl++/EXAXNERD

IDEXID++/EXAXHEXTE

IZ€I3++/EXAXTERD

EASE] ¢EBASE] ++/EXxA

MODWT Y MODWT T+ /EXTEXA

MODW T e MODWT X 4+4 /E X KEXA

MASEMAS+FRHOX 4+ /A

FRHOWTHERHOWT M+ 4+ /RHO X HEXA

FRHOWTY«RHOWT Y44 /FRHOXTRXA

AREA] ¢AREA] +4 /R

X (H4DRED) 2



READ VECTORS
XY

RHO=X (5]
£ x{4]

T.Y(8]

»x{1, 2, 3}
wY(1, 2, 3]

CO-LEAST SQUARE
COEFFICIENTS OF
(Y = agry xuzlz)

DX—XP’ - Xl'l1 )

FEOR :—l

X=X « (1 x 0X)
1=0,1,2,...,9

FUNCTION

INTEG

Y-CO(1] «
X x COC2]
P cof3]

YES

1
y

10 2
I Yy xOXxXyxE
o1

111 »

o=

10

:DXxX,lY%x!
1=1

[2+42 «

)]
Tt

{1

1343 »

ExUXlYJ

io

BASET-BASET +

L
ial

Ex XY,

1
H

HMOOWTY.MOOHTY
10

1=}

:ExDX:Yf

10

MODHTX-MODWTX

1=1

ExDXxvyxx

L

93

MAS WS +

0

DX x Yy RHO
1=

A

RHOWTX- RHOWTX +

10
T RHO x DX x X¢ x Y

i
=}

CHOWT Y- RHOWTY +
‘10 2
T RHO x DX x Y{

1s1

AREAT-AREAT »
10

: DXtxY

1=l !

caga? -
24x€0{3]

-1

THET (- tan

1Y -(sign of ¥[2]) x

T- sin({THET),

A ~(SIGN OF ¥ ) o

(SIGN OF Y{2]

L
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INTEG
Page 2

YB < (AA;xY13)+ BASE 1 BASE 1
] + 7 ExA,
(Y, x(NOT AA.) g XA,
3 y
DYi+Y(X].-D—2)(- - MODWTY MODWTY
DX
Y(X’.+—2—|-) + ;EXXBixAi
— I,
As+T x MODWT X<~MODW1 X
(Dx2+pY2)1/2 + JEXXB, xA,
i
MAS<WAS +
1 RHOx A,
:
A 4 R —
A (AR XB{)F RHOWT X«<RHOWTX
(NOT AA ) xDXxY, +§RHO X XB; X A,
h 4
T1<11 + 1 RHOWTY-<RHOWTY
2 +JRHO X YB X A,
ExA. X XBS
_‘Z i i L‘L i i
12«12 + AREAT+AREAT +
A,
L;ExAixXBixYB1 § j

A
[3«13 + ‘liiiip
2

gExAixY%

| |




APPENDIX G
FUNCTION DEF

Function DEF solves the Equation of bending given in Chapter 3. It
utilizes a fourth order Runge-Kutta method for the solution (Chapter 4).
Its operation is straightforward. Integration begins at the most inboard
station and proceeds toward the tip. The deflection of the most inboard
station is assumed to be zero in both directions.

The initial slope is assigned the value zero. This must be changed to
some other value if some rotor support other than a cantilever is to be

considered.
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FF
RET

PRINCIPAL VARIABLES

station spacing

number of stations

slope

a2 record of slope as a function of radius
deflection

the quantity being integrated, for example

I +M
i[Mxyy Mo lyy

2
Ixnyy - IXy

9%



97

PROGRAM LISTING

VLEF[[]]®
VIM DEF CjH}M}F;FF;RET;IT;K;K23KI3K43L13L23L35L4
C11] HeIN[1]

L2131 HeIM[[2]

L3] FeFFeQ

C41] FRETe¢Q

£33 ITel

- LOIK&€O ,SXCLITI+CLIT+1]

£L71 KleHXKX (1+Fx2)%1,5

£81l L1eHxF

£l LOCHXERF+K] =D

£101 K26HXKX (1+EBEx2)x1.,5

111 L3eHXEBREF+K2-2

Ci121] KIEHXKX (1+FEx2)nl,5

Ci31] LAHYXERBF4+KZ

£141] KQqeHX KX (1+BEx2) %], 5

C151] FFeFF yF+(+4) XK1 +K4+2XKQ2+KT
L1461 RETERETy (TI4FET )+ (+6) xL1+L4+2xL2+L3
C171 F(IT=-1)/L11 '
£C1813] IT¢IT+]

191 FeT14FF

£201 2L0

21 L1i1¢'DEFLECTION!

[22]1 8 3eRET

231 v

A4



FUNCTION DEF

.
Y
READ VECTOR 1% K= 3 (C{IT] * C{I7] + 1]) L4-H x 88
READ VECTOR H
_ 215 2,1.8
H <IN{1] KleH x & x (1§51 xé-H x Kk z {1 +88°)
PRTIES LN x ¢ FEOFE, F e b (K1 s x4
+ 22 * K5}
Y .
-0 x RET (RET, (LAST ENTRY IN
. LS o Rty » L (L e Les2
RET-Q x (Lz + L33
. YES
2,1.5
X2+
i Hx € x (1 + 889
No
B F ¢ zg IT-IT 1
H
y !
-t x B 7~ LAST SLEMENT OF FE
K-Hxxx (18895 ___j
PRINT SET
|
88 .F + K3
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APPENDIX H
MINOR ROUTINES

Function Bend

Function Bend computes bending moments due to the loads F
according to the spacing defined by H. For positive H and positive
F the computer bending moments will all be positive. Care must
therefore be taken that the sign of the bending moments thus

calculated are adjusted correctly in the calling program.

Function RESET

RESET assigns variable type (empty vector) to the listed

vectors. It also assigns initial values to the listed scalars.

Function FOOL 1

FOOL 1 assigns variable type to the listed vectors and initial

values to the listed scalars.
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PROGRAM LISTING

CEEHL[LQ]Y
UMeH EEMD F3IK

Ci13 MeF
£21 Tel
[3] HEWIKeI+(11+(pF)-T)-1
La] MLIJeHX+/(0,S5+K-I)XF[K]
[s3 S(I=pF) /L
L63 Tel+l
C73] SHNEW
[81 LiMeM,0
v
CRESET[LCOJ®
QRESET
£13 MOLWTHeMOIWT T¢I € I2¢IZCRASEI cRAREAL (0
£21 RHOWTXeRHOWT T MASEQ
£33 Ke
£43 Jed+l
[53] I116€I226¢I33¢0
4

vFOOLI[D]w

oFOOL 1

Cid IMHOEINTOEITTOCAREAE TEAREHEBARCMASSEMASSH
C23 T11€I23€I33610 ¢MASSTGEDAREA(
C33 IMMEINTMEITMELQ

£a3 ITIMD&)

4
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FUNCTION BEND

READ DISCRETE LOAD

PATTERN AND SPACING
BETWEEN LOADS

ASSIGN MEMORY SPACE
TO M

INITIALIZE I

COMPUTE BENDING
MOMENTS AT EACH
STATION

ASSIGN 0 AT FREE END




FUNCTION
FOOL |

ASSIGN MEMORY
SPACE FOR
MAIN VARIABLES

102

FUNCTION
- RESET

h 4

ASSIGN ZERO
TO APPLICABLE
VARIABLES

ASSIGN INITIAL
VALUE TO APPLI-
CABLE VARIABLES

Y

|

&

K+2

J=J+1




APPENDIX I
PROGRAM  FREQ

FREQ calculates the natural frequencies and mode shdpes of a freely
vibrating beam. The beam considered may be of completely arbitrary con-
struction, material distribution, twist and taper so long as coupling
between flexural and any other non-flexural vibratory modes may be neg-
lected.

FREQ is written such that the required input to the program is
supplied during the normal execution of the program MOMENTS. The perti-
nent constants are calculated by MOMENTS and stored in global memory.

To execute FREQ you need only type the name.

FREQ uses the Rayleigh Ritz method of assumed solution to find the
frequencies and mode shapes. The beam js first allowed deflections with
no constraints. The method converges to the fundamental.

The next operation is to assume a mode shape which is the negative
transpose of the fundamental mode shape. This assumed mode shape is 90°
out of phase with the fundamental mode shape at each radial station.

The inertial load due to this assumed mode shape is determined. The
deflections, mode shape, and frequency due to this inertial load are com-
puted and reported.

(The function DOG is used to compute the deflections.)

Higher modes are now sought. The function ORTHOG is used to sub-
tract the influence of lower modes on the assumed solution by Schmitt
Orthogonalization. When applied iteratively, the assumed solution con-

verges on the next higher mode shape. Once convergence has been noted,
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the frequency is computed, and the frequency and mode shape are printed.

Once again the negative transpose of the mode shape is used to com-
pute a yet higher mode. The process is the same as described above.

The program as presently written now stops. The program will find
arbritrarily higher modes (up to the 1imit imposed by the size of the
data entered) if the 2 in 1ine 77 is changed to some arbitrary larger
integer. (In a test, a uniform beam defined by 11 stations was entered.
The modes predicted agreed with the exact result up to the third mode.
Above that agreement was progressively worse.)

If the operations on the Tower modes by ORTHOG do not converge to
a single assumed mode after 10 iterations, a different scheme is used.
First, a node is assumed at the sixth station. (The support is defined
to be station 1.) A sine function having a node at the support and at
the assumed mode is established. The fundamental mode shape is multi-
plied by the imposed sine. This becomes the assumed solution. The fre-
quency is computed on this basis. Next, a node is assumed at the free
end and the same operations are carried out. Next, a node is assumed
halfway between station six and the free end. The same operations are
carried out again.

These three steps are the first in a bisection search routine. Tne
search seeks the node position and frequency corresponding to a fre-
quency maximum. (This is the same in intent as the Schmitt Orthogonali-
zation of an assumed solution with just the fundamental.) This frequency
maximum corresponds to a well defined spanwise node. The frequency and

mode shape so determined are reported and the program stops.
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This program can be used for any boundary conditions once suitable
modifications have been made to functions BEND and DEF1 (DEF1 is logi-
cally identical to DEF, Appendix G), such that they reflect the bending
moments and initial slope due to the changed boundary conditions.

The deflected mode shapes and moments of inertia are all referred

to the most recent pitch setting in MOMENTS.



MASSi
IXX.
i
IYY,
1
IXY
ACCXi,
ACCYi,j
MAS
PHIXi
PHIYi
PXi

PYi

AAAA
PHIXA_i
PHIX ;
PHIYAi
PHIYT.
1
PHIXB,
PHIYBi

PRINCIPAL VARIABLES

Lineal weight density, 1bs/in.
Modulus weighted moment of inertia
Modulus weighted moment of inertia
Modulus weighted moment of inertia
X components of lower mode shapes
Y components of lower mode shapes
MASS of radial segments

X component of assumed mode shape
Y component of assumed mode shape
X component of inertial load

Y component of inertial load
Amplitude (1ines 25-80)

Node position (lines 81 on)
Amplitude (1ines 81 on)

Calculated mode shape, x
Calculated mode shape, x
calculated mode shape, ¥y
Calculated mode shape, y
Calculated mode shape, x

Calculated mode shape, y

Circular frequency



Al
A2
B1
B2

107

Previous node position
Previous node position
Previous circular frequency
Previous circular frequency
Deflection in the +x direction

Deflection in the +y direction
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PROGRAM LISTING

VFREQL]O

OFREQ;ACCH }ACCT 3 PR3P T §FHINGPFHITjPHIN] jFHIT] AL FRMS; IN;FSTI I FHINAIFHITA; A5
c13 LINFUT RECORD!
c231 'MASS ‘4 3FeMASS
C3l I 54 Dl
C43 CITT 34 DelTY
(3] PINY V54 DelNT
Cs1 s ‘36 oM
€71 v
[81 v
£e1 COUNT«(
103 ACCHEACTTE (QyppINI)p !
€111 IMNe0
€121 PHREPYE((PIN)~1)r1
C13] HieH, pIXX
141 ey T1+pMASS
Cis1 MOS+ (MASSL I ]+MASS(TI+1])=-2
C161 MASeHYMAS-T86, 4
£173 oG
£i8l FHIRe(FU)PL
C191 PHIT&FHIMN
201 RAALI(IH=0) AAA
C211 ORTHOG
£223 PReMASY(PHINI T T4+PHINEI+1])+2
[23] FreMASY (FHIT[I J&FHITLI+1])<2
£24] nos
€253 Ael/((Ux2)+Yr2)#0.5
[2&1 PHINeU-A
(e FHITeVEA
£281 ORTHOG
291 COUMT COUNT 41
L3201 +(COUMT=1Q) /AC
L3171 PAAIFHeMASX (FHIN[T]+FHIK[I+1])=2
321 FreMASY (FHIYLIT4+FHITLI4+1])-2
£331] noc
£341 RLIeT((UR2)+Ve2) 0.3
[33] FHIN]&U<AY
L3561 FHIT1eViAL
€371 FEMSe (+/(FHINFHINI}®2)20.,S
C381 RMSeRMS+ (4, (FHITAFHIT]1)22)20,5
391 2 (FM5¢0,001) /AR
Cao01l FHINePHIN]
(-3 PHITeFPHITY]
Ca21 R latc]

L4357 AEIACCHEACTHSFRINY
£44] ACCTeACCTyFHIT]

433 ‘OMEGA '
C4s] FHIMAE(PHINXLT]+PHINLI+1])+D

£473] PHIN] @ (FRINI[IJFHINICTI+1]) =2

ragl FHITAC(PHITLIJ+FHITLI+1])<D

(493 PHIVI(FHIYICIJ+FHITICI+1])+2

501 6 2eRe((+/MASX(FHIKAXFHINL)+(FHITAKFHIT]) )ALl X+/MASX (FHITI D) +FHIN]I22)2G.S
CS11 ‘FREGENCY, HERTT (34 DeB+p2 2 .
[s21 ' MODE SHAFE!

£s31 U 54 DePHINM

[543 'V 'i4 QePHIT

[SS1 v

€541 v

[sS71 P

£sel FHINACFNITY

CS?1 FHITAET] XFHIM]

L4601 PXeMASXPHINA

C6117 PY&MASXPHITA

© L6221 uoG
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€631 AeT/T/71V)yT /v

L&4] PHIMB&USA

£é651 PHITB&VLA

[é&é] FHIX]&(FHIXBLIJ+FHINBLI4+1])+2

L4671 PHIY] e (PHIYBLIJ+FHITL(I+]1])=2

£a33 TOMEGA '3 Ao B ' v s T Y y -
cee ,FRE“INC;f ;;R:;(T::a;:;zgzulXPHInA)Q(FHI'1xFH!vG))+ax+/~&§x(PHIH1)2)+PHIT1;2)go.s
L7021 ' “ODE SHAPE !

£713 'Y t3é6 QePHINXSE

L7231 VO 'ié QePHITE

€731 v

[741] '

€753 v

L7631 INeIlM4+]
£771 *(IN=2) /1000
781 PHINeXFHITe(pU)PL

€791 $AA

£80] AC:'NO CONVERGENCE OF ORTHOGONAL VECTYORS'
€811 aes

€82l INe)

(831 AEA!s SEARCH FOR FREGUENCY
£8al PHIXeACCHL1:]x10@(\HI[2])+A
£8s3 FHIYeACCTY[15]x108(1H1[2])+A
8461 AARAEL/((PHINR2Y+PHITRD) 20,5
£871] PHIZEPHINSAQAR

cael FHITePHIT  AQAQ

£8?] PHeMASY (PHINTIJ+FHINEI+1])+2
L9932 Fre(FHITLIY+PHITLI+]])xMAG:D
o1l ragc

€921 ARAAET /((Ua2)+Vx2) 20,5

£P3] FHI] ¢U+AAAAQ

£94) PHIT]¢V-ARAQ

€951 FHIZLE(PHINICTII+FHINICI«1))+2
£9s61 PHINe (PHINLIJ+FHIX(I4+1T)+2
L9731 ERITL&(PHITILTI+PHITI(Z+1])+2
981 PHIY(PHITLIJ+FHIY[I+1])=2
€993 Be((+/MASX(PHIXIXFHIX)+PHITXFHIT] )-ARAMX+/MASX(FHINI22)4+FHITIx2) 20,5

C100] INeTIN+:

1011 ~{IiH2)/ABR

[102] AleAr

C103] AepInx

C104] ®B1eE

[105] 4AFA

L1063 AREEB 4 (IN)>T)/ARC

L1071 Aalea

C108] E2eE

C109]1 Ac0.5xA1+4A

(1101 J4aEA

€111] ABCI4((141B=-E1)AQ,12]R~AL1)/ABL

£112]  +((EX®2) (BXE]) JAKE

[113] Bles

C114] AleA

€118] A«Q.S5xA2+A

1141 +ApA

£117] ARE!RDeE

C1181 ~A2¢a

C1191 A«Q.5xA1+A

£120] 9ABA

[121] ARD: ' OMEGA 'R

C122] 'HERTZ ’jR+02

€1231 ‘U 36 2ePHIN

C124] 'V 34 2ePHIT
A4



PROGRAM FREQ
READ
Dnxs Tyyg Ixy;
Massi H CALCULATE DE-
FLECTIONS DUE TO
PRESUMED LOAD
COUNT « 0
COMPUTE
RESULTANT
J MODE SHAPES
ACCX, ACCY
ASSIGNED SPACE
IN MEMORY

INITIAL LOAD
ASSIGNED 1
EVERYWHERE
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PROGRAM FREQ
Page 1

5 AAA

Hl« H, Tength
of Iix

COMPUTE
INERTIAL
LOADS

I« 1,2,3,...,
LENGTH OF
Iix -1

COMPUTE
DEFLECTIONS
DUE TO
INERTIAL LOADS

ESTABLISH
MASS
DISTRIBUTION

COMPUTE )
AMPLITUDE

NO

COMPUTE ORTHOGONAL
VECTORS TO LOWER

MODES AND SUBTRACT]
FROM ASSUMED MODRE

A

COMPUTE
INERTIAL LOAD

L

COMPUTE
DEFLECTIONS
DUE TO

INERTIAL LOADS

COMPUTE MODE
SHAPES

SUBTRACT
ORTHOGONAL
VECTORS

COUNT < COUNT+1

YES



COMPUTE MODE
SHAPES

COMPUTE LENGTH |
OF DIFFERENCE |
BETWEEN CURRENT
AND LAST PREVIOUS
MODE SHAPE

HAVE
MODE SHAPES
CONVERGED

il
OLD MODE SHAPE

ASSIGNED CURRENT
MODE SHAPE

l

YES

AB

11

PROGRAM FREQ
Page 2

h
(IN+1)Lh ROW OF
ACCX ASSIGNED X
PORTION OF MODE

SHAPE

(IN+1)tP ROW OF
ACCY ASSIGNED Y
PORTION OF MODE

SHAPE .

COMPUTE MODAL
CO-ORDINATES OF
CENTERS OF SPAN-
WISE SEGMENTS

COMPUTE
AND PRINT
FREQUENCY

PRINT MODE
SHAPES

T
i

h 4

COMPUTE NEGATIVE
TRANSPOSE OF
MODE SHAPES

CALCULATE
INERTIAL LOAD DUE
TO NEGATIVE

TRANSPOSE

v
CALCULATE
DEFLECTIONS
DUE TO
INERTIAL LOADS

CALCULATE
AND PRINT
FREQUENCY

CALCULATE
AND PRINT
MODE SHAPE

-

IN«IN+1

ASSUMED MODE
ASSIGNED ALL
1's

]

(eor )
RN,



ASSUME NODE
AT .6R
IN«1

INeIN+1

ABA

b

CALCULATE
MODE
SHAPE

CALCULATE
INERTIAL
LOAD

IN>2
NO

K]

Al<0LD NODE
POSITION

112

PROGRAM FREQ
Page 3

ABB

YES

'NO

h: 4

CALCULATE
DEFLECTION
DUE TO
INERTIAL LOAD

A2<TIP
POSITION

A+NEW NODE
POSITION AT FREE
END OF BEAM

I

CALCULATE
AMPLITUDE

B2«LAST
COMPUTED
FREQUENCY

h

B1«LAST
COMPUTED

I

!
Y

CALCULATE NODAL
COORDINATES AT

FREQUENCY

|

h 4

A<NEW NODE
POSITION, EQUALS|
(A1+A2)e2 |
5

EECTION MIDPOINTS

l

!

CALCULATE
FREQUENCY
AND STORE AS B

T




HAS
FREQUENCY

YES

(BxB1) (BxB2)
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PROGRAM FREQ
Page 4

CONVERGEDZ
NO

| ABD
PRINT B1<LAST
COMPUTED
FREQUENCY FREQUENCY
AzgéugD AT+CURRENT
MODE SHAPE NODE POSITION

CURRENT
A*[NODE +A2]+£
POSITION

ABA

ABE

B2<LAST
COMPUTED
FREQUENCY

A2«CURRENT

NODE POSITION

A

_

|

CURRENT

NODE  +AT

POSITION

E

ABA




INPUT RECOFD

TERMINAL SESSION
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0.563 0.343 0.2467 0.225 0.194 0.151 0.130 0.082 0.057 0.030
4.98 2.23 1.14 0.70 0.39 0.1? 0.13 0.06 0.01
11,42 13,12 9.7 S5.37 3.13 1.51 0.88 0.44 0.2 0.15
4,76 75,73 ~3.27 71,38 T0.63 ~0.25 T0,28 T0.07 T0.05 T0.02
FREGENCY, HERTZ 26
MODE SHAPE
0.00 ~0,01 ~0.02 “0.,05 ~0.08 T0.12 T0.17 T0.23 T0.30
0.01 0,03 0,07 0.15 0.,25 0.38 0.35 0.75 0.96
HERTZ  10.04
MODE SHAFE
0,00 0.0f 0.05 0.11 0.19 0,30 0.43 0.460 0.79 1.00
0,00 0,01 0,02 0.03 0.05 0,08 0.13 0.19 0.26 0.34
HO COMVERGEMCE OF ORTHOGONAL VECTORS
OMESA 89.76
~0.01 0,02 T0,05 T0.08 T0.09 T0.05 0.05 0.20
0.02 0.08 0.17 0.2% W27 0.146 70,15 T0.46



APPENDIX J
FUNCTION DOG

DOG reads the radial spacing of stations, the loads in two planes
and the section properties to compute the deflections in two planes.
The values of deflection are returned to the calling program.

The program uses the function DEF1. This function is logically

identical to DEF (Appendix G).
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PRINCIPAL VARIABLES

MXi Bending moment about x axis
MYi Bending moment about y axis
Cl,, €2;, €3 Bending constants

u Deflection in x direction

' Deflection in y direction



L1l
C21
£31
C43
LSl
L6131
L7131

PROGRAM LISTING

erocClv

TDOG; MK MT $C13CD303
MMe—1xH BEND PT
MTeH BEND PX

Cle(MTYXIRN)—MXXIXT
CRe(MHRXITTY=MTXINT
C3e(IXKXITT)=IXTXD
UeH] DEF] C1+C3x10000000
VeT1x(H1 DEF]1 C2+C3x10000000)

17
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FUNCTION DOG

READ H, H1, Px’

P I I, .1

Yy’ Uxx’ Tyy’ “xy

-

COMPUTE
BENDING
MOMENTS

l

COMPUTE
BENDING
CONSTANTS

COMPUTE
DEFLECTIONS

RETURN



APPENDIX K
FUNCTION ORTHOG

ORTHOG accomplishes the Schmitt Orthogonalization of the current
assumed mode shape with previously determined (lower) modes. The func-
tion requires only the mass distribution, assumed mode shape and past
mode shapes for input. (The procedure is explained in Chapter IV.)

Each of the previously determined mode shapes is represented by
one line in both ACCX and ACCY. The program first repeats the assumed
mode shape row by row until there is one row of the current mode shape
stored in memory for each previously determined mode. The coordinates
are then compressed into the modal coordinates of the section mid-spans.
The matrices are then operated on row by row to find the participation
factor(s) for each mode. The participation factors are then multiplied
into the respective mode shapes and the influence of each mode sub-
tracted station by station from the assumed mode shape. The modified

assumed mode shape is then returned to the calling program.
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PHIX .
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PHIY,
J
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PRINCIPAL VARIABLES

Accumulated x components of mode shapes
Accumulated y components of mode shapes

Matrix with the same shape as ACCX filled with
assumed mode components (lines 5-15)

As above for y components

Midspan components from ACCX

Midspan components from ACCY

Mass per segment corresponding to AC1 or AC2
Midspan coordinates from F1

Midspan coordinates from F2

X components' participation factor -

Y components' participation factor

Matrix of x lower mode coordinates times their
respective participation factors

As above for y
Assumed mode shape, x component

Assumed mode shape, y component



L1l
£21
£31
Cal
£33
L&
£71
£8l
L9l
£101
L1113
£121
L1321
£14]
L1531
£C1463]
£173

PROGRAM LISTING

QORTHOG[L]?
QORTHOG; PHINK;PHITY } M1 ;AC1 $ACR;ITIjF1;FR;FP1jPSINK;FSIYT

A THIS SUBROUTINE ACCOMPLISHES SCHMITY OFRTHOGOMHALIZIATION
AOF THE FPRESUMED MODRDE SHAFE WITH ALL FAST MODE SHAFES, SEE
ABIGES, SYRUCTURAL DYMAMICS FOR Al EXPLANATION OF THE PROCE-
ADURE, BYE FOR MNOW,

Fl1ePHIKNKXE(pACCH ) pPHINX

FOPHITY(PACCH)pPHIT

PHIVXE(PHIXNKX[FIJ+PHINKLjI+1])+2

PHIY P« (PHIYY[;I]+PHITTLjI+1])<=2

ACT1 «(ACCHKL ;I J+ACCRL;I+1])+2

ACA«(ACCYL;I]J+ACCYL;I+1])+2

Mle(PACY)pMASS

PRINE(+/ ML XACTI XPHINK )=+ /M1xACL 2D
PSIVeE(+/MLXACAXPHIYT) -4 /M1XAC2RD

FleACCHXQ(pRACCH)pFSIX

FREACTTYXR( pRACCY ) pPSIY

FHINEPHI Y~ dF )

PHIVEPHIT—44AFD

A4
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FUNCTION ORTHOG

READ PRESENT AS-
SUMED MODE SHAPE
AND ALL LOWER NODE
SHAPES, MASSi

ESTABLISH MATRICES
OF IDENTICAL ROWS OR
THE CURRENT MODE
SHAPE HAVING THE SAMH
SIZE AS THE MODE
SHAPES IN MEMORY

FIND RADIAL SECTION
MIDSPAN MODE
SHAPE CO-ORDINATES

COMPUTE
PARTICIPATION
FACTORS OF
LOWER MODES

A

MULTIPLY EACH
LOWER MODE SHAPE
BY ITSPARTICIPATION

FACTOR

h.
SUBTRACT (TERM
BY TERM) FROM
ASSUMED MODE

SHAPE




APPENDIX L
DATA FILES

The data files all have a number of well defined characteristics.
The y matrices contain the following information:

1) local bending modulus (in the [1;1] position)

2) local weight density (in the [1;2] position)

3) the material thickness at each station (in the first position

of each row)

4) the extreme co-ordinate relative to the chord (starting at the

second column of each row from the second row down)

The x matrix contains one entry for each of the y co-ordinates in the
corresponding y matrix and nothing else. The y matrix thus has one
more row and one more column than the x matrix.

The thickness listed in the first column of the y matrix is the
minimum distance from one side of the skin to the other. The integrating
routines which operate on these data files automatically correct for the
curvature of the skin rélative to the section axes. If the Tisted thick-
ness is zero, the integrating routines assume that the considered section
is solid.

For example, consider the following files: NEWF1, NEWF12X, NEWF3,
and NEWF34X. NEWF1 and NEWF3 are y matrices. NEWF12X and NEWF34X are
x matrices. NEWF1 refers to the exterior skin. NEWF3 refers to the
spar. They both refer to the low pressure surface of the stations. They
both have an even number of columns. (The routines require an odd number

of data points. Adding the thickness, in the first column, the total
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number of columns becomes even.) They both have the same number of rows
(one per station plus the bending and density information in the first
row).

The x matrices have only one row per station. The number of col-
umns will always be odd. The number of columns will always be one less
than the number of columns in the y matrix, the same for the number of
TOWS.

As written, NEWF1, NEWF2, and NEWF12X refer to the exterior skin.
NEWF3, NEWF4, NEWF34X refer to the spar. NEWF5, NEWF6, NEWF56X refer to
the spar web. NEWF7, NEWF8, NEWF78X refer to the trailing edge bond.

If any other data were entered, for example, a concentrated mass,
other data files could be developed. For example, a y matrix filled
with zeros would contribute nothing to the total. If any row contained
non-zero elements, its properties would be integrated as a lumped para-
meter. (However, it would be much more conservative of computer time
if such Tumped parameters were introduced subsequent to integration as
an addition to the appropriate element of some vector. This could be
(and has been) done by interrupting function INPUT.]

NEWPHI contains the twist information of the blade design. There
is one entry for each station. The reference point for 8, the collec-
tive pitch setting, is arbitrary. The tip has been used here.

A11 of the above information is stored in giobal memory. This
makes the information easily available. The local pitch setting could

easily be typed in by the operator during the data input stage of the

program.



DATA FILES

HEWF |
2.20084 0.0502 1 1 1 1 1 1 -1 1
3.54372 0 1.916 2.616 3,421 3.755 3.755 3.514 3.104 2.5446
3,543€72 0 1.146 1.566 2.047 2,247 2,247 2,103 1.857 1.524
3.543€72 ¢ 0.9893 1.351 1.767 1.9379 1.939 1.819% 1.603 1.319
3,343€72 ¢ 0.8572 1.171 1.531 1.48 1.48 1.572 1.389 1.139
3.543E72 0 0.767 1.048 1.37 1.503 1.503 1.407 1.243 1.02
2.754E72 0 0.6738 0.9203 1.203 1.321 1.321 1,236 1.092 0,8956
2,756E72 0 0.5771 0.7882 1.03 1.131 1,131 1,059 0.935 0.7671
1.96%9E72 0 0.5245 0.7191 0,9401 1,032 1.032 0.94658 0.853 0.6%98
1.969€72 ¢ 0.4558 0.4225 0.8139 0.8933 0.8933 0.2361 0.7384 0.4058
1.969872 0 0.2484 0.3392 0.4435 0.4848 0.4848 0.4556 0.4024 0.3301
MEWF { 23

0 0.81 1.62 3.24 4.86 6.48 8.1 9.72 11.34 13.77 16.2

9 0.876 1.7%2 3.504 5,256 7.008 8.76 10,51 12,26 14.8%9 172.52

0 0,7539 1.512 3.024 4,535 4,047 7.559 9.071 10.58 12.85 15,12

0 0,612 1.224 2.448 3,672 4.8946 46.12 7.344 8,568 10.4 12,24

0 0.51 1,02 2.04 3.06 4.08 S.1 6,12 7.141 8.671 10.2

0 0,438 0.876 1.752 2.628 3,504 4.38 S5.256 6,132 7.4446 8.76

0 0.378 0.7559 1.512 2.268 3.024 3.78 4,535 S5.291 6.425 7.S59

0 0.3299 0.6593 1.32 1.98 2,439 3,299 3.959 4.461% S5.4609 6.598

0 0.2701 0,5402 1,08 1,62 2.161 2,701 3.241 3.781 4.591 3S.402

o 0.21 0.4201 0.3402 1.26 1.68 2, 2,52 2,941 3.571 4.201

HEWF?2

2,20084 04,0502 ! 1 1 1 1 1 1
I.543872 0 “1.09: T1.328 "1.385 T1.252 ~1.085 T0.9073 T0.7142
3.543=72 0 “0.6531 T0.,7949 T0.8289 T0.749 T0.4491 T0.%543I3 T0.4274
3.543E72 O T0.5636 T0.,6859 T0.7152 T0.6463 T0.5401 T0.4488 ~0.3488
3.543E72 ¢ ~0.4883 T0.5943 T0.6197 T0.56 T0.48353 T0.4062 T0.3196
3.543872 0 T0.437 ~0.5318 T0.5546 T0.5011 00,4343 T0.3435 T0.285%
2.796E72 0 ~0.3838 T0.4472 T0.4871 T0.4402 T0.3815 T0.3193 T0.2512
2.7046E72 O ~0.3288 T0.4001 T0.,4172 T0,377 T0.3247 T0.2725 T0.2131
1.969872 O 2999 T0.365 TO0.3B046 T0.34T9 T0.29€:1 T0.2495 T0.1963
1.969€72 0 T0.2596 T0.3146 TQ.3295 T0.2778 T0.2381 T0.216 TO.145%
1.969E72 ¢ T0.1415 T0.1722 T0.1796 T0.1623 T0.1406 T0.1177 T0.09259
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1 1

1.442 0

0.8628 ¢

0.7445 0

0.6431 0

0.5773 0

0.5071 0

0.4343 0

0.3962 0

0.342 0

0.1869 0

1 1

T0.5173 T0.267
T0.3096 T0.1598
T0.2671  T0.1379
T0,2315 T0.11°%%5
T0.2071 T0.1067
T0.,1819 T0.09391
00,1558 T0.08043
©0,1422 7¢.07337
T0.1231 T0.043E2
T0.06707 T0.03401

[sReNoNoNaNol RN Re N o



COO0OOQOQOO0OO0 O

NEW
4.,400E6
S.P20E71
3.276€71
2,.872€71
3.074E7
3.,301E71
3,11371
2,564E71
22,1891
1,736€871
1.014E71

0.7359
0.6614
0,53794
0.4213

HEW
4,.400E6
S,920E7]1
3.2746€71
2.872€7y
3.07471
3.301E71
3.11371
2,.5646E71
2,189E71
1.,7346E71
1,014€E7}

Fl

F34
3.24
3.504
3.024
2,449
2,039
1,752
1,512
1.319
1.079
0.8386

Fa
0.055%

COOQCOO O OOO0

0.6893
0.35903
0.3163

4.862 6.

« 256 7,
4,535 6,
3.673 4,
3.059 4.
2,63 3.
2,268 3.
1.98 2.
1.622 2.

1.2 1,

1
“1.257
~0.754
T0.6463
T0.5524
~0.4848
~0.4326
T0.3613
70,3393
T0.2894
“0.15

1 1 1
3,348 3J.481 3,481
2.006 2.208 2,208
1.728 1.899 1,899
1,489 1.638 1,638
1.325 1.454 1,454
1.166 1.282 1,282
00,9949 1.094 1.094
Q.?P139 1.007 1.007
0.7871 0.8423 0.8623
0.4217 0.4663 0.44663
48
008
047
898
079
S04
024
638
1561
681
1 1 1
“1.314 T1.176 T1.014
T0.789%9 T0.7091 T0.6104
T0.6732 T0.4059 T0.5204
T0.5764 T0.5187 T0.4419
T0.5106 70,4539 T0.3368
T0.,4484 70,4009 00,3429
00,3822 T0.3404 T0.288
T0.3557 T0.3174 T0.2681
70,3009 T0.2662 T0.2315
“0.,1581 T0.141%? T0.1217
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4,4E¢
0.0E0
0.0%0
0.0E0
0.0E0
0.0E0
0.0E0
0.050
0.0EQ
0.0E0
0.0E0

4,362
6.89

3.937
4,833
4,055
3.48

2,776
2.614
2.138
1,657

4,284
0.080
0.0E0
0.0E0
0.0E0
0.0EQ
0.0€0
0.0E0
0.0%50
0.0E0
0.0€0

HEWFS;
0.0502
3,681
2.208
1.899
1.638
1.454
1.282
1,094
1.007

0.8623 0.8623

1 1

3.681 3,681
2,208 2,208
1,899 1.899
1,638 1.638
1,454 1.454
1.282 1.282
1.094 1,094
1,007 1.007

0:4663 0.4663 0.466

NEWFS 4
6.48 6.
7.008 7.
6.047 6.
4.898 4.
4,079 4.
3.504 3.
3.024 3.
2,638 2.
2.161 2.

1.681 1.

NEWF 4
0.0502
“1.014
“0.6104
“0.5206
00,4419
~0.3868
“0.3429
~0.268
“0.2681
0.231%
T0,1217

598
126
157
?72
102
528
276
661
185
705
1 1
“1.014 1.
“0.6104 T0.
T0.5206 T0.
~0.4419 ~0.
~0.3868 ~0.
~0.3429 0.
T0.288 “O.
~0.2681 0.
“0.2315 TO0.
“0.1217 T0.

0.8623

3

014

6104
5206
4419
3868
3429
288

2681
2315

1217
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NEWF 7
2.286 0,0502 ¢ 0
0.080 0.25 0.125 0
0.0E0 0.25 0.125 0
0.080 0,25 0.125 0
0.080 Q.23 0.125 0
0.0E0 0.2 0.125 ¢
0.080 0.2%5 0.125 ¢
0.080 0.295 0.125 ©
0.080 0.25 0.125 0
0.050 0.25 0.125 0
0.080 0.25 0.125 0
NEWF 7834
15.2 15.7 16.2
16,15 16.83 17.52
13.87 14.5 15.12
11.24 11.74 12,24
9.2 9.7 10.2
7.76 126 B.76
6.56 7.06 7.56
S.6 6.1 6.4
3.9 4,65 T.4
2,95 3.58 4.2
NEWFQ
2.286 0.0502 0 0
0.08D ~0.25 T0.125 0
0.0EC T0.25 0,123 0
0.0EN 70,25 “0.125 0
0.0EQ0 70,125 7¢C.12% 0
0.080 70,128 70.125 0
0,08Q 70,125 T0.1285 ¢
0.0E0 ~0.125 70.125 0
0.0E0 ~0.125 T0.125 0
0.0E0 T0.125 70.125 9
0.0EQ0 70,125 7T0.125 0

NEWFHI
45 25.6 15.9 10.4 7.4 4.5 2.7 1.4 0.4 0



APPENDIX M
SAMPLE CALCULATION FOR RAYLEIGH'S METHOD

This example is taken from Biggs, Structural Dynamics, p. 170.

The simply supported beam of figure 1 has three regions. The central

span has & mass intensity of

M, = .10 1b sec2
in
and a bending stiffness of
EL, = 20 x 10° 1b in?,

The two ends have mass intensities of

2
My = .050 lb—S—SE_
in
and bending stiffnesses of
EL; = 5 x 10° 1b in%.

The beam deflections are calculated by the conjugate beam method, in
which the bending moment due to the elastic load is equal to the deflection.
For the purpose of analysis, the beam is broken up into twenty equal seg-
ments. Since this is a simply supported beam, only the symmetric modes

will be important. Each section is assigned a mass
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Because of symmetry, only one half of the beam need be considered.

this half beam, five of the segments have an assigned mass of

M = g 1b_sec2
r in

and the other five an assigned mass of

M =1.0 1b sec

since AX = 10 inches.

The frequency is given by

Mo ‘s "
2. g_ ror 4
KT,
where Mr = the mass at r,
¢r‘ = the assumed mode shape at r,
¢r" = computed mode shape at r,
A" = computed amplitude.

The computations leading to the frequency are shown in table

131

For

1. Any

other method of computing the beam deflections would have led to the same

result. The initial assumed mode shape is a sine curve. The left half of

the beam is used for analysis.
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The computed natural frequency at the end of the first cycle is

wy = 94.13 radians/sec.

At the end of the second cycle, the computed frequency is

wy = 94,05 radians/sec.
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