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Abstract— Power curves constructed from wind speed and

active power output measurements provide an established

method of analyzing wind turbine performance. In this paper it is

proposed that operational data from wind turbines are used to

estimate bivariate probability distribution functions representing

the power curve of existing turbines so that deviations from

expected behavior can be detected. Owing to the complex form of

dependency between active power and wind speed, which no

classical parameterized distribution can approximate, the

application of empirical copulas is proposed; the statistical theory

of copulas allows the distribution form of marginal distributions

of wind speed and power to be expressed separately from

information about the dependency between them. Copula

analysis is discussed in terms of its likely usefulness in wind

turbine condition monitoring, particularly in early recognition of

incipient faults such as blade degradation, yaw and pitch errors.

Index Terms— Wind power generation, Energy conversion,

Power generation reliability.

I. INTRODUCTION

IND power based renewable energy has seen dramatic

growth over the past decade, which is set to continue as

many countries implement stringent targets for

sustainability and emissions reduction. The UK government is

aiming to generate 20% of the country’s electricity from wind

turbines by 2020, up from 3% in 2008 [1] to form part of the

European Union’s target of producing 20% of all energy from

renewable sources [2]. A supporting trend in wind generation

is the move towards larger turbines in offshore locations.

Notable examples include Danish plans to double offshore

wind capacity from 661MW to 1256MW over the coming four

years [3] and plans for 25 GW of wind generation as part UK

round 3 offshore sites [4].

Maintaining profitability with large offshore wind farms poses

a significant challenge as operation and maintenance costs are

significantly higher compared to those onshore, whilst turbine

availability is significantly less. Onshore turbine availability

can be maintained at levels up to 98% [5]; in comparison an

offshore farm in the South of England – Scroby Sands –

published average availability of 83% for 2007 [6]. Operation
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and maintenance (O&M) costs are also significantly higher

offshore: one estimate suggested O&M costs account for

approximately 10% of onshore total expenditure, offshore this

rises to 30% [7]. Initial work to translate onshore downtime

data to the offshore environment suggests that failure

downtime can be several multiples of the onshore average.

This stems from access issues and potentially limited

opportunities for windows in sea and wind conditions to return

the turbine to service. Failure rate in onshore turbines can be

as high as 6 failures per year per turbines for turbines with

capacity greater than 1MW, although most studies find rates

between 1 and 3 per year [8-9]. It is suggested in [10] that

failure rates of less than 0.5 per turbine per year are a likely

requirement of offshore operation.

One means of reducing the cost of maintenance and the effect

on availability is to implement condition monitoring and

preventative maintenance strategies on machines. These

techniques have matured for a range of rotating machines [11],

however they have only recently been applied to the specific

technical challenges of wind turbines. Wind turbines are

typically constructed from a number of subassemblies. Studies

of faults in these subassemblies give an idea of the importance

of monitoring and maintenance of specific turbine

components. Systems where the fault frequency is highest

include the electrical system, rotor, converter and yaw systems

[10]. Gearbox and generator failure, whilst not the most

common failure, do cause the greatest downtime per failure; it

has been estimated that a generator fault in an onshore turbine

can lead to 7 days downtime on average [9].

The power curve is an important metric of the performance of

a wind turbine; it relates the power output to the wind speed.

Traditionally, a power curves provide an expected relationship

under standard operating conditions, for example with

turbulence maintained within specified limits and air-density

corrections applied. Measurement for wind speed and power

must be made by following international specifications laid

down in standard IEC 61400 [12]. Power curves are often used

by manufactures as part of the technical specification of a

turbine, possibly a performance guarantee.

Power curves can be generated without the need for retrofitted

telemetry from operational SCADA data by utilizing wind

speeds measured by nacelle mounted anemometers [13]. The

variability of nacelle wind speed relative to free wind speed

makes it difficult to compare operational data with Original

Equipment Manufacturer (OEM) power curves. However, data

taken when a particular turbine is assumed operating correctly
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allows future performance to be benchmarked against this data

accounting for local variables such as turbulence and turbine-

wake interactions. This suggests that a probabilistic model

may prove useful; such a representation of wind speed and

power would allow probabilities for likelihood of pairs of

nacelle wind speed and power output to be computed.

The contribution of this paper is to develop a probabilistic

model of a power curve for condition monitoring purposes

based on copulas; modeling such a relationship is challenging

as the form of dependency between wind speed and active

power is clearly non-linear; copula statistics are used to deal

with the complexity of the relationship. In the section that

follows, condition monitoring techniques specific to wind

turbines are reviewed. Following this, Copula statistics are

introduced with their use illustrated with examples of their

application in other domains. In section IV, the application of

Copulas to modeling the power curve of a wind turbine is

developed. This unobtrusive, economic means of monitoring

the condition of the plant is the key contribution of this paper

and its practical use is demonstrated on SCADA data taken

from a fleet of operational wind turbines.

II. WIND TURBINE CONDITION MONITORING

Condition monitoring telemetry may be expensive or

impractical to retrofit so most modern wind turbines integrate

some condition monitoring systems into their design. These

may include sensors for drive train vibrations, analysis of

particulates in gearbox oils and blade strain gauges [14]. A

review of commercially available condition monitoring

systems is provided in [15].

Numerous methods have been employed to carry out system-

wide monitoring. Neural networks are the most common and

have been used in a number of studies to ‘data-mine’

relationships between variables recorded in SCADA data and

faults in the wind turbines [18]. SCADA data typically

includes active power output, wind speeds from nacelle

mounted anemometers, component temperatures, electrical

currents and power factors all with a frequency of 5 to 10

minutes. Data-mining algorithms can be used together with

historic SCADA data and fault information to estimate fault

likelihoods [19]. Data from neighboring turbines can be

combined to estimate the expected operation of one particular

turbine, this can be used to spot ‘soft’ faults that do not cause

the turbine to shut down, but can reduce performance [20-21].

Other methods proposed include Physics-based modeling [16]

where a model of the physical law operating in a gear box is

developed. The wind speed time-series seen by a particular

turbine is then applied to the model to estimate fatigue damage

and the likely condition of the gearbox. Petri-net analysis has

been applied to the cooling and lubrication systems of a wind

turbine gear box [17]. This method allows non-deterministic

modeling of processes that can lead to fault development.

Condition monitoring is now being combined with fault

likelihood estimation and automated maintenances scheduling

[22]. The ultimate aim is to notify operators when a

component is showing early signs of failure, maybe months

before a catastrophic failure occurs, allowing preventative

maintenance to be planned around weather and other O&M

activities.

III. WIND TURBINE OPERATION AND EFFICIENCY

The performance of a wind turbine can be visualized by its

power curve which relates the power output to the wind speed

observed thus giving a measure of performance. The key

features of a wind turbine power curve are illustrated in Fig. 1.

The power curve illustrates the operational regimes of a

wind turbine. Turbines do not operate at low wind speeds; if

the wind falls below a cut-in speed for a specified period of

time the turbine will switch off. Around the cut-in speed, it is

often necessary for the turbine to draw power from the

electrical grid to start up or maintain rotation during short

lulls, which can result in negative power production. At higher

wind speeds power increases approximately as the cube of the

wind speed until rated power is reached, which occurs at the

rated wind speed. In above rated operation the turbine control

system limits the power extracted from the wind attempting to

maintain a constant power output while at very high wind

Fig 2: Key features of a wind turbine power curve [29].

Fig 1: Kernel density estimate of the joint probability of wind speed and
power output.
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speeds – often 25m/s, the turbine shuts down to avoid

incurring damage.

Comparison between published power curves and

operational data is difficult for a number of reasons. OEM

curves are created under standard conditions, and are recorded

using a specific methodology that is not possible to reproduce

within an operating wind farm. Operational power curves

created from SCADA data use wind speeds measured by the

nacelle mounted anemometer. Results from these will differ

from the standard power curve due to local turbulence,

averaging period and turbine condition. Wind speeds

measured at the nacelle are significantly different from the

upstream speeds from which the OEM power curves are

constructed. Comparisons can be made between operational

power curves created using data from different months. This

provides a direct method of benchmarking the performance of

a specific turbine. Terrain and therefore wind conditions

remain the same between the two sets meaning the changes to

the power curve will come from changes in the condition of

the turbine its self. If the turbine can be assumed to be

operating correlly during a particular month, this data can be

used as a benchmark power curve for comparison with future

data set. In [13], this approach is used to build turbine specific

power curves models.

An extension of this is to consider this data as a sample

from an underlying bivariate probability distribution; this

interpretation is already implied by the scatter plot of active

power and wind speed seen in Fig. 1. A probabilistic model

has several attractive attributes that could not be achieved with

a simple curve fitting analysis. In the first instance, the model

would be a direct replacement for the power curve by creating

a contour density plot of joint probability density of measured

wind speed and active power output.

The example shown in Fig. 2 is produced from a kernel

density estimator [23], which has no parametric form but

provides an accurate representation of the density it is

intended to approximate by summing kernel functions placed

on every observed data point. Although computationally

expensive, this approach does produce an estimate in

situations where a parametric distribution is not a good fit.

IV. COPULA STATISTICS

There are circumstances when dependent variables are related

by more than linear dependence or correlation. Even if the

marginal densities of these variables have a known

distribution their joint distribution may not be known. In

complex situations, it is not guaranteed that the joint

distribution is the multivariate equivalent of the known

marginal distributions, even if such a multivariate distribution

exists.

Originating from Sklar’s Theorem [24], copulas are a way

of describing complex dependency structures and how to

relate them to the marginal distributions within a single

function.

The formulation of a copula for a bivariate distribution is as

follows [25]: Given two random and continuous variables X

and Y, the probability distribution, H(x,y),  is defined as:

   yYxXyxH  ,Pr, (1)

The marginal distributions of H are given by:

    YxXxFx ,Pr (2)

   yYXyFy  ,Pr (3)

The marginal distributions can be used to transform the

original random variables X and Y to new variables U and V

with uniform marginal densities on the range [0,1]:

   yFvxFu yx  ; (4)

For any continuous bivariate distribution, Sklar’s theorm

states that there exists a bivariate function, C, such that [24]:

   yxHvuC ,,  (5)

and C is a copula. To clarify, C is the bivariate distribution

joining u and v which are transformed variables with uniform

distribution:

      
 vVuU

yFxFCyxH yx





,Pr

,, (6)

Inverting equation (4) provides a way of estimating the

copula:

   vFyuFx yx

11 ;   (7)

And substituting into equation (5):

      vFuFHvuC yx

11 ,,  (8)

If H, Fx and Fy are known or can be estimated from data they

can be used to construct the copula.

Copulas are useful because they allow the marginal

distributions and the dependency structure to be specified

separately. Copulas have been applied extensively over the

past decade in economics to analyze situations where

relationships are non-linear and the dependency between the

variables is non-symmetric, for example the relationship

between variations in three or more exchange rates [26].

Recently, copulas have been applied in a biological context to

analyze the firing rate relationships between neurons [27].

Copula estimation can be achieved by fitting parameterized

copula families to data or alternatively by a number of non-

parametric techniques such as kernel density estimation [28].

In this paper a simple non-parametric method of copula

estimation is used. The marginal distributions, Fx and Fy,, and

the full bivariate distribution H are estimated from a large

baseline data set (approximately 6300 data points).



???? 4

V. COPULA POWER CURVE MODEL

A copula representation of a power curve can be constructed if

the power curve is considered as a bivariate joint distribution

[29].  Correct estimation of the wind speed and power

marginals are required to ensure the transformed variables

have a uniform distribution. Parameterized models such as

Weibull or mixture-of-normal distributions can be fitted.

However, unless a suitable fit is found this method may lose

the specifics of the operational condition of individual

turbines. Estimation of the marginal distributions is used to

form the estimate of the copula – the distribution of the

transformed variables u and v. Here non-parametric

estimation is used. This non-parametric function is used to

make the transformation. An example of an estimated power

curve copula is shown as a non-parametric probability density

estimate in Fig. 3.

This estimated copula power curve follows a straight line

between (0,0) and (1,1) and illustrates the dependency of the

data across the range [0,1]
2

showing correct estimation of the

marginals. Features include a larger spread of data at the tails

compared to the center, this corresponds to a lower correlation

between wind speeds and powers around cut-in and above

rated. This highlights that the dependency between wind speed

and power changes with the operating regime. This precludes

the use of a single parameterized copula. The copula model

therefore needs to be either a piecewise ensemble of copulas

or an empirical copula.

The underlying copula is estimated here using a simple

empirical method. Baseline data, obtained from the normal

operation of the wind turbine, is transformed into copula

space, the region [0,1]
2

is divided into 100x100 bins

corresponding to percentiles. A count is made of baseline data

in each bin to estimate copula density in that region. This

method is used as a simple first pass and a more sophisticated

estimator may be based on a kernel density method.

To demonstrate the resulting model in use, SCADA data for

wind speed and active power averaged from two wind turbines

at a site in central Scotland is used. The turbines are Bonus

600kW Mk IV machines based on a fixed-pitch, fixed-speed,

stall-control design. Five minute averages data is used.

VI. APPLICATION OF COPULAS TO POWER CURVE ANALYSIS

Exemplar or baseline operational data is taken from the first

two months of data for each turbine – April and May – and is

used to estimate the marginal distributions and empirical

copula. A total of 6300 data points cover the full range of

wind speeds and power outputs during this period. Visual

inspection of the power curve is used to ensure that the data is

without outliers and is nominally consistent with a turbine

Fig 3:   Transformation of a Power Curve into Copula space.
(a)

(b)

Fig 4:  Cumulative marginal distributions for (a - top) wind speed and (b -
lower) active power.

Fig 5: August power curve data mapped into copula space using
marginals from figure 4.
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operating correctly. Records with no output data are removed

as it is assumed that the turbine is not operational at these

times. The cumulative probability density functions are

estimated for the marginals by locating the percentile values

and using linear interpolation. The cumulative density

functions for turbine 1 are shown in Fig. 4 (a) and (b).

The baseline data is transformed to the copula variables

according to:

Where w represents wind speeds and p is turbine power

output.

Data is binned in two dimensions as described in section V;

the resulting copula density estimate is shown in Fig. 5. It

should be noted that results show high joint probability close

to the u=v line with some variation in spread, the region in

which data has greatest spread is at the tails. These areas

correspond to operation above rated wind speed at the top end,

and the region around cut-in speed at the bottom.

To compare data from subsequent months, the estimated

marginals, Fw and Fp, are used as transforms to map observed

data onto the empirical copula. The data for August is

transformed and the resultant frequency distribution is shown

in Fig. 5. During August readings corresponding to u<0.8

appear to follow the estimated empirical copula. For u>0.8 the

data drops below the empirical copula. Fig. 6 shows the

August data plotted as a power curve, with shading illustrating

the distribution of the baseline data. The drop in the August

values of u and v can be seen to correspond to a small

reduction of power outputs for wind speed measured above

rated. This drop-off of data relative to the baseline is observed

for all months from July to October. Whilst this effect is

relatively small, it can have a significant effect on energy

generation across an extended period.

In order to compare operational data with baseline across

time periods or plant, three statistical measures of similarity

are investigated. Since the original data is distributed about the

u=v line with dissimilar data becoming increasingly distant

from this two measured based on the sum-of-squared method

are proposed. The third measure based on a chi-squared type

statistic investigates the difference between the expected and

measured number of data points within each binned region of

the copula.

A. Sum of Squares Similarity Estimation

As data sampled from the underlying copula should lay, with

some spread about the u=v line a simple statistic for

comparison is to sum either the residuals or the square of the

residuals relative to this line:

for analyzing a data set of n data pairs, (vi, ui) where for each

data set the expected value of vi, that is , is given by the

simple equation u=v; this leads to the second equality in each

line. The two statistics R and R
2

have different interpretations:

R will stay close to 0 if the distribution is symmetrical about

the u=v line and will not detect changes in the variability of

the data, it will however, detect data sets which deviate from

the u=v line, for example the results in Fig. 5.The R
2

statistic

allows detection of changes to the variability of the data whilst

symmetry around the u=v line is maintained. This corresponds

to a turbine showing higher variability of outputs across the

operating range. Data plotted on the empirical copula for a

number of months shows that performance often matches

baseline throughout all the operating regimes except above

rated. As this corresponds to values of u greater than

approximately 0.8 the R and R
2

statistics are calculated both

for entire range and the range u~[0.8,1]. Fig. 5 gives an

example of this.

B. Chi-squared Hypothesis Test

A chi-squared style statistic can be used to test how

appropriate a model is for a given data set. In this case how

well the test data is modeled by the estimated copula. Test

data for a particular month does not require the same

marginals as the baseline data, for example in a particularly

windy month they may be an excess of data at high u values.

   pFvwFu pw

11 ;   (9)

   
n

uv

n

vv
R iiiii 





ˆ (10)

   
2

2

2

2

2 ˆ

n

uv

n

vv
R iiiii 





(11)

Fig 6: August data plotted as power curve. Shading represents distribution

of baseline data.

TABLE I
ACROSS FULL RANGE OF U

Month R (x10-2) R2 (x10-6) χ2 (x10-4)

June 0.201 0.579 2.95905

July 1.32 1.36 1.419221

August 0.931 0.34 2.884236

September 1.60 1.22 2.637837

October 0.845 1.17 2.10833

November 0.459 0.726 2.218387

December 0.571 0.713 4.893074
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To account for this the chi-squared statistic is constructed to

test how well observed power-data fits the copula give wind

speed measurements:

     
n

nEnO uiuivu

2

2




(12)

Where Oi is the observed number of data points given the total

observed points with the current u value summed over all

v(nu). Ei is the expected number of data points given nu, and n

is the total number of data points.

C. Application to case study data

The application of the copula analysis method is applied to

case study data. The method followed can be summarized by:

Step 1: Select baseline data; visual check to ensure

consistency

Step 2: Estimate marginals for wind speed and power

Step 3: Transform baseline data using estimated marginals

to produce empirical power curve copula

Step 5: Take new turbine data, transform using estimated

copula

Step 6: Use the statistics developed, R, R
2

and χ
2

Step 7: Do statistics show significant changes in

dependency from baseline? If yes go to Step 8.

Else go to step 9

Step 8: A change in power curve dependency has been

identified – notify operators of possible fault/

anomaly. Continue to Step 9.

Step 9: Take the next months data.

Tables I and II list the monthly R, R
2
, and χ

2
values as

calculated for turbine 2 and plotted in Fig. 7. As noted above,

turbine 2 showed signs of sub-optimal operation during the

months of July to October with the copula representation

showing a droop for high values of U (transformed wind

speed).

Of the statistics analyzed, high R values occur during these

months. The difference is more pronounced for R across the

restricted range (RU~[0.8,1]) . The other statistics do not, in this

case, provide a reliable signature that matches the

observations. It is anticipated that each statistic will be useful

in detecting specific fault modes as each will leave a particular

signature on the power curve dependency data. The possible

correlation between signatures and fault modes is discussed in

the next section.

As an example of a simple warning system, monthly data in

which the value of RU~[0.8,1] ≥ 2 x 10
-2

would provide a trigger

for operators of this turbine suggesting an incipient fault. The

particular value of this limit will differ between turbines. The

copula method outlined here provides a way of detecting

changes in the dependency between wind speed and power so

whilst 2 x 10
-2

provides a useful value here, this is likely to

vary between turbines depending on the specific location

conditions. For example if a turbine sees a higher turbulence

level, the value of R is likely to be higher.

VII. DISCUSSION

The results from the previous section showed that the Copula

approach has the ability to measure and identify changes in

dependency between operationally measured wind speed and

power. These changes may be linked to specific faults, or

more gradual changes such as blade surface wear which on

their own can lead to sub-optimal performance.

The correlation of faults or anomalies to statistical signatures

is key to developing copula-power curve condition

monitoring. This initially would require detailed fault-logs and

TABLE II
ACROSS U RANGE GREATER THAN 0.8 TO 1.0

Month R (x10-2) R2 (x10-6) χ2 (x10-4)

June 0.831 7.97 8.91

July 5.0549 9.62 6.00

August 3.3389 12.9 7.68

September 1.7741 3.12 6.73

October 3.2123 16.0 5.74

November 1.7327 6.65 6.20

December 0.0137 4.28 12.7

(a)

(b)

Fig 7: Monthly statistics for case study data including suggested warning

limits; upper (a) u~[0,1], lower (b) u~[0.8,1]



???? 7

regular, detailed manual inspection of turbines to provide

information on issues like blade condition. Due to commercial

sensitivities fault log data is often difficult to gain access to. In

fact, many minor faults may go unnoticed and future work will

need to include more detailed observations of turbines.

This section provides some discussion on likely links

between the copula condition monitoring statistics and wind

turbine faults/anomalies. These may be difficult or impossible

to detect using current techniques and this section provides

suggestions which the authors intend to continue in future

work.

Faults/anomalies will change the dependency between wind

speed and power output and should therefore produce

signatures in the R, R
2

and χ
2

statistics. Specific fault modes

will affect the turbine system in different ways so

combinations of statistical signatures will be able to provide

suggestions on the type of fault the turbine is experiencing.

A. Blade Faults

Degradation of the blade surface leads to a reduction in power

production as the turbine will have reduced aerodynamically

efficient. The Copula-power curve will therefore lie below the

u=v line. In stall regulated machines such as those studies

here, this is likely to effect the onset of stall and may

contribute to the sub-optimal performance identified here. The

‘R’ statistic is likely to provide a good characterization of such

deviations, and provide information on the direction of power

production variation.

Minor blade damage may not be detectable using the current

sensor systems attached to wind turbines, however even a

small reduction in aerodynamic efficiency can have a

significant effect on the profitability of a turbine. Here the

changes in dependency caused by gradual changes in the

quality of the aerodynamic surfaces can be identified by the

proposed copula method.

B. Yaw System Faults

The yaw system attempts to maintain the turbine pointing

directly into the wind. Misalignment leads to lowered airflow

through the turbine and therefore lower power production.

This will occur across the wind speed range. The effect is

likely to be noticeable with a negative R value with the

signature appearing when calculated across the range u~[0,1].

In addition to this signature the values of R
2

and χ
2

would be

expected to increase.

C. Pitch System Faults

Most modern turbines are pitch regulated. Below ‘rated

wind speed’ the blades pitch to the angle which allows

greatest aerodynamic efficiency. With wind speed above rated

the blades pitch to reduce the fraction of power transferred

from the wind and to maintain rated power.  Faulty pitch

mechanisms are likely to show up through a greater variability

at all wind speeds, or may lead to over or under production of

power at high wind speeds. Increased variability will lead to

higher values of R
2

and χ
2

.The value of R is unlikely to provide

a clear signature as variability will occur above and below the

u=v line.

These three fault modes provide a subset of all possible

faults causing sub-optimal performance. The study of larger

data sets with more fault information will allow correlations to

be built up between copula statistics and faults. This provides

a clear aim of future research.

Copula-power curve condition monitoring provides a

method of analyzing dependency data that can complement

existing condition monitoring methods. Whilst neural-network

analysis of SCADA data typically studies correlations between

data over the past two or three measurements, copula will

allow comparison of dependencies over weeks, months or

longer. The use of copula methods to detect either minor faults

or performance degradation can be used to trigger more in-

depth fault-analysis such as running physics based models to

suggest possible faults modes.

VIII. CONCLUSIONS

The application of copulas to wind turbine power curves has

been shown to allow analysis of the underlying dependency

between wind speed and power; this paper has presented the

example of an empirical Copula tracking the non-linear and

non-stationary dependency between wind speed and active

power output from the SCADA data of two operational wind

turbines. Further developments may include the comparison,

using copulas of the dependency from two or more turbines,

and transforming data from one turbine using the marginal

distributions of another to allow comparison of the variability

of data at different levels of production.

This work provides a first pass at Copula modeling for power

curves. A more sophisticated method of parametric estimation

of marginals and dependency is required for the approach to

be maximally useful. This may take the form of a mixture

density estimate of the marginals and a cubic spline estimate

of the copula which would additionally capture and identify

changes in operating regime.  Additionally, features within

each regime could be identified by the parameterization of the

model such as the variance over the gradient of the linear part

of the curve which indicates the efficiency of the plant over its

useful operating range of wind speeds, including the region

between rated wind speed and cut-out where the machine is

operating at full power. Piecewise application of Copula

models to each of these regions may be sufficient to capture

these features of interest as local bivariate probability

densities.
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