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Wind Turbine Fault Detection and Identification

Through PCA-Based Optimal Variable Selection
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Abstract—An effective condition monitoring system of wind tur-
bines generally requires installation of a high number of sensors
and use of a high sampling frequency in particular for monitoring
of the electrical components within a turbine, resulting in a large
amount of data. This can become a burden for condition monitoring
and fault detection systems. This paper aims to develop algorithms
that will allow a reduced dataset to be used in wind turbine fault
detection. This paper first proposes a variable selection algorithm
based on principal component analysis with multiple selection cri-
teria in order to select a set of variables to target fault signals while
still preserving the variation of data in the original dataset. With
the selected variables, this paper then describes fault detection and
identification algorithms, which can identify faults, determine the
corresponding time and location where the fault occurs, and esti-
mate its severity. The proposed algorithms are evaluated with sim-
ulation data from PSCAD/EMTDC, Supervisory control and data
acquisition data from an operational wind farm, and experimental
data from a wind turbine test rig. Results show that the proposed
methods can select a reduced set of variables with minimal infor-
mation lost whilst detecting faults efficiently and effectively.

Index Terms—Variable selection, principal component analysis,
fault detection, condition monitoring, wind turbines.

I. INTRODUCTION

T
HE importance of continuous and autonomous condition

monitoring (CM) and fault detection systems for engineer-

ing applications has increased dramatically in the past decades.

This is particularly the case for wind power, as turbines are of-

ten deployed in remote and harsh environments. CM techniques

can help improve the performance and reliability of the wind

turbines (WTs) [1]. According to IRENA, the operation and

maintenance cost of a WT is between 10%–25% of the total

cost of electricity [2], [3]. With increasing size and complexity

of turbines, and the move to building more offshore wind farms,

maintaining the performance and reliability of WTs technically

and financially has become a challenge.

Based on the information collected from sensors, a CM sys-

tem monitors and identifies potential anomalies and predicts
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WT’s future operation trend, allowing preventative maintenance

of the turbine to be undertaken. With a sufficiently early warn-

ing, it is possible to reduce down-time and avoid component

damage due to unexpected failures. Moreover, by continuous

monitoring of the WT’s components, the life cycle of turbine

components can be estimated, and maintenance activities sched-

uled accordingly to optimize asset management.

An effective CM system for wind turbines relies upon al-

gorithms designed for accurate fault detection and prediction;

however, there are two major issues. The first of these is asso-

ciated with the amount of data generated by sensors. Typically,

a wind turbine CM system monitors approximately 150–250

variables [4], and its sampling rate depends on the nature of the

monitoring system, ranging from 0.002 Hz (e.g., SCADA) to

>10 kHz data for dedicated diagnostic purposes. The need to

store and process these data increases the cost, and complicates

the performance of both the CM system and the interpretation

of its output. The second issue relates specifically to sensor reli-

ability. Elouedi et al. and Guo et al. have both pointed out issues

regarding the accuracy and accountability of sensors used for

pattern recognition and fault identification and diagnosis [5], [6].

For a CM system, the accuracy of data acquired from sensors

has a pronounced impact on performance. Moreover, the use of

a large number of sensors, and hence monitoring variables, may

reduce the overall reliability of the sensor system.

Research into optimal sensor selection has been carried out for

many different applications. An entropy-based selection tech-

nique for condition monitoring for aerospace propulsion was

proposed in [7]. Sensor selection for target tracking to manage

sensor network topology, such as reduction of energy use and

prolonging network lifetime, can be found in [8]. In addition,

filtering and estimation methods for nonlinear tracking prob-

lems, using Cramer-Rao bound criteria-based sensor selection,

was presented in [9]. It has been proven that there are fewer out-

puts from the filter/estimator than direct input measurements.

However, the methods referenced above require the usage of all

data for prediction and for providing improved estimated out-

puts. Hovland et al. suggested a stochastic dynamic program-

ming method to solve the sensor selection problem for robotic

systems in real time [10]. Moreover, an experimental design

approach was proposed by Kincaid et al. to find effective loca-

tions to control and sense vibration for a complex truss structure

built at the NASA Research Center through a discrete D-optimal

design method [11]. This method aims to find a set of observa-

tion points that have the maximum determinant of the Fisher

Information matrix. Considering WT condition monitoring,
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Zhang et al. implemented a parallel factor analysis of SCADA

data, preserving relevant information for feature extraction and

hence allowing the identification of different operation condi-

tions of a WT through K-means clustering [12]. The authors of

this paper have also carried out a study of PCA-based variable

selection for a WT through maximizing data variability [13].

In this paper, a multivariate PCA-based variable selection al-

gorithm is proposed for targeting fault signals of wind turbines.

The proposed algorithm introduces a cost function with multi-

ple criteria, such that the selected variables not only maximize

dataset variability, but also contribute the most to a specific fault

signal. Moreover, it has the potential of reducing the number of

sensors installed through estimation of the least significant vari-

ables. Two fault diagnosis techniques are then proposed using

the variables obtained from the selection algorithm. The first

method detects anomalies based on the Hotelling T2 statistic,

making use of its identification capability by decomposing this

statistic through an instantaneous energy calculation. The sec-

ond method estimates fault severity by establishing an empirical

model related to a specific fault using principal component (PC)

coefficients. In both cases, only limited prior knowledge of the

system is required, as the input dataset is obtained from the

proposed selection algorithm.

The remainder of this paper is organized as follows. A gen-

eral overview of PCA is first given in Section II, followed

by a description of the targeted variable selection algorithm

and the anomaly detection algorithms. In Section III, the data

used in the evaluation process are described, including simula-

tion data, SCADA data, and experimental data. These data are

used to demonstrate the robustness of the proposed methods in

Section IV. Results are also presented in this section. Finally,

conclusions and ideas for future research are discussed in

Section V.

II. PCA BASED DETECTION AND IDENTIFICATION

PCA has been widely used in dimension reduction and feature

extraction [14], [15]. By maximizing the variance in data, it

captures the dominant features in an N-dimensional dataset in

descending order through an orthogonal transformation. Thus

the transformed data are linearly independent and are referred

to as the principal components (PCs). The PCs are commonly

obtained through Single Value Decomposition (SVD) of the

covariance matrix S (S = XX
T ) of the original dataset X .

For a dataset X with dimension of (n × p), where p is number

of variables and n is number of samples, the transformed PCs,

Z, are calculated from the covariance matrix S where it satisfies,

U
′
SU = L (1)

where L (l1 , l2 , . . . , lp) are the eigenvalues of S, which can

be solved from the characteristic equation |S − lI| = 0. The

eigenvalues l1 , l2 , . . . , lp are also the variances of each PC and

the sum of L equals the sum of the variance of the original

variables.

After obtaining these eigenvalues, the corresponding

eigenvectors U = {ui}, where ui is column of U , ui =
(u1i , u2i , . . . , upi), i = 1, . . . , p, can be calculated. The eigen-

vector U is referred to as the loadings, representing the correla-

tions between the variables and PCs. The relationship between

the PCs, Z (z1 , z2 , . . . , zp), and the original dataset X (n × p)
is expressed as Z = UX . It has been proven that, by retaining

q (q < p) PCs, the dimensionality of the data can be reduced sig-

nificantly, with only minor data variability being sacrificed [16].

A. Targeted Variable Selection

Optimal variable selection techniques for statistical applica-

tions have been proposed by Jolliffe and Beale et al. [17]–[19].

The idea was to establish a relationship between the transformed

PCs and the original variables, hence achieving dimension re-

duction with minimal loss in information compared to the orig-

inal dataset. Previous studies by the authors of this paper [13]

adopted similar approaches to carry out variable selection for

wind turbine condition monitoring based on data variability. It

has been demonstrated that the technique can reduce the di-

mensionality of the dataset while still maintaining maximum

information.

In this paper, a selection method that targets a specific fault

signal is proposed, namely the T selection method. The proposed

algorithm not only maximizes variance and maintains the uncor-

relatedness among the selected variables but also seeks to pre-

serve the underlying features regarding the fault signal/variable

within the retained dataset. The selection algorithm can be di-

vided into two steps. First, the PCs are selected based on the

equation below,

Rpc
j = arg min

i∈p

(

r2
i,j − r2

tar,j

)

, j ∈ q (2)

whereRpc refers to the set of q PCs to be selected by minimizing

the difference of the squared correlation coefficient between r2
i,j

and r2
tar,j , and r2

i,j is the squared correlation coefficient between

the ith variable and jth PC and r2
tar,j is the squared correlation

coefficient between the targeted variable and the jth PC. The

squared correlation is calculated by,

r2
i,j =

⎧

⎨

⎩

∑p
i=1 (xi − x̄i) (zj − z̄j )

√

∑p
i=1 (xi − x̄i)

2 ∑p
j=1 (zj − z̄j )

2

⎫

⎬

⎭

2

(3)

where x̄i and z̄j are the mean value of xi and zj , respectively.

The equation is also equivalent to,

r2
i,j = liu

2
i,j (4)

where li and ui,j are the corresponding eigenvalue and loadings

obtained from the SVD.

In the second step, the corresponding original variables are

identified from the retained PCs, based on (5),

Rvar
j = arg max uk , j ∈ q, k ∈ Rpc (5)

Rvar
j is updated at every iteration and the stopping criteria

for the iterations is set to the number of variables to be retained,

found by using a SCREE plot. This plot visually assesses which

PC components explain most of the variability in the data using

cross validation techniques [16], [17].

Once a set of variables is retained, three performance mea-

sures are used in order to evaluate the selection algorithm. The
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three measures are the cumulative percentage partial variance

(cppv), the average correlation coefficient (r̄) and the percent-

age information entropy (ηe). Each of these measures analyzes

a different aspect of the retained dataset [13].

B. Hoteling’s T2 Method

The Hoteling’s T2 statistic is often used in process control and

monitoring [20], [21]. In addition, the T2 statistic has been ap-

plied to detect faults in wind turbine gearboxes and pitch motors

[22], [23]. In ref. [23], fault identification was performed by re-

lying on the relative contribution index of the original measure-

ment to the overall T2 statistic through decomposition. However,

the variables used in ref. [23] are based on prior knowledge of

the measurements and the investigation of alarm logs. In this pa-

per, two improvements are made for the Hotelling’s T2 method.

Firstly, the dataset used for anomaly detection and identifica-

tion is obtained from the T selection algorithm, as described

in the preceding subsection. Secondly, a PC energy-based

method is used to decompose the T2 statistic to perform fault

identification.

As can be shown, the original dataset X is estimated using

the first q PCs,

X = ZqU
T
q + E (6)

where E is the residual matrix signifying the amount of infor-

mation not explained by the PCA model. In the perspective of

statistical monitoring, Hotelling’s T2 is commonly found by,

T
2 = X

T
U qL

−1
q U

T
q X = Z

T
q L

−1
q Z q (7)

where U q and Lq are the eigenvectors and eigenvalues of the

first q PCs, respectively. The T2 statistic is monitored continu-

ously, and the process is considered abnormal if the statistic is

above a threshold as defined below,

T 2
α =

q (n − 1)

n − q
Fq ,n−q ,α (8)

where Fq ,n−q ,α is the critical point of the F distribution with

n and n − q degree of freedom. The significance level α varies

depending on the data, and is typically between 90% and 95%.

For the period where anomalies have been identified, the

relative contribution of ith PC, i.e., the TCi , to the T2

statistic can be decomposed by calculating the instantaneous

energy,

TCi = (|zi |)
2

(9)

where zi is the ith unscaled PC.

Fig. 1 shows the process of anomaly detection and identifica-

tion. During the training stage, a dataset from a healthy turbine,

that has a mean value of x̄, is normalized to zero mean and

unit variance. Variables are selected via the above T selection

algorithm for a predefined fault signal. Then the PCA model is

created; its T2 statistic and threshold value T 2
α are calculated

using (7) and (8) respectively. During the testing stage, the data

are normalized using the data from the healthy turbine. The

PCA model and the T2 statistics are also calculated for the tur-

bine data being evaluated. If any of the T2 statistics exceed the

threshold value T 2
α , as calculated from the normal operational

Fig. 1. Block diagram of the Hotelling’s T2 based fault detection and identi-
fication algorithm.

data, the measurement is considered to be an anomaly. For the

period where anomalies are present, the T2 statistics are decom-

posed using (9) to determine which variables have the highest

contribution to the anomalies.

C. Feature Based Fault Severity Estimation

In this section, an empirical model is proposed to detect a

specific fault, and then to estimate its severity under various

operation conditions. This is achieved using retained variables

from the T selection algorithm. Suppose there is a set of vari-

ables X with dimension (n × q) obtained from the T selection

algorithm and related to a specific type of fault. To build the

detection model, measurement data for these variables are col-

lected multiple times X
d at different fault severities, where

d indicates the index for each severity. PCA is carried out for

all these datasets, where d eigenvector matrices U (q × q) and

d eigenvalue vectors L (q × 1) are obtained. It can be shown

that there is a relationship between the fault severity Sv and

eigenvalues L and eigenvectors U , described as,

Sv = f (ui,j , Lj ) , 1 < i < q, 1 < j < q (10)

The relationship function f is fault dependent, by which the

fault can be identified even at an incipient stage.
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III. CASE STUDY - MONITORING DATA

A. Wind Turbine Simulation Data

A 2 MW doubly-fed induction generator (DFIG) wind turbine

model with grid connection is simulated in PSCAD/EMTDC.

The simulation is based on the benchmark model developed

by PSCAD [24]. The model comprises a mechanical model of

a turbine, which simulates the blades’ aerodynamic behavior,

a mechanical shaft, a generator, an AC-DC-AC converter,

and a grid network. This simulation is primarily used for

investigating the performance of wind turbine’s transient and

steady state conditions. The behavior of the turbine during

normal and faulty operations can also be analyzed. Simulations

are performed using wind speed data collected at the Hazelrigg

site near Lancaster University, where a 2.1 MW wind turbine

is installed and operating. Measurements are taken from both

internal and external nodes of the simulated system under

different operational conditions. Computer simulations of a

wind turbine incorporating a permanent magnetic synchronous

generator (PMSG) with a grid connection have also been

created. It is worth mentioning that, in this paper, simulation

data are used for severity estimation of the faults in the turbine

using the proposed feature-based fault detection method.

B. SCADA Data

SCADA data contains a large amount of information regard-

ing the operational and performance status of WTs. Although

SCADA data generally have low sampling rates, they can pro-

vide an overview of a turbine’s operational and performance

status and condition, and have been employed widely by re-

searchers as the basis for CM systems. The SCADA data used

in this paper are taken from an operational wind farm with 24

turbines in total. The condition of each turbine is described by

128 variables, including temperatures, vibrations, electrical pa-

rameters, wind speed, and digital control signals. The data are

sampled at an interval of one second, but are averaged over

10 minutes and then stored on a database for 15 months. Pre-

processing of the data is performed to eliminate digital signals,

constant readings, and error signals due to faulty sensors, which

are ineffective to the PCA analysis. Fault-free data are needed

to train the model with the proposed detection and identification

algorithm. For SCADA data, the active power versus wind speed

curve, i.e., the S-curve, can be adopted to identify if the data are

fault-free, as concluded by S. Gill et al. [25]. The turbine that

yields an ideal S-curve after pre-processing is selected as the

reference healthy turbine.

C. Experimental Wind Turbine Test Rig

Experimental data from a WT test rig have also been collected

and used for further evaluation of the proposed algorithm. The

rig allows specific faults, such as phase-to-phase short circuit

faults, to be applied. The physical layout and overall schematic

of the test rig is shown in Fig. 2 and Fig. 3, respectively. The

rotation of the turbine and the aerodynamics of the blade are

simulated by a computer and emulated with an ABB 11 kW

squirrel-cage induction motor controlled by a frequency drive.

Fig. 2. Layout of the wind turbine test rig developed at Lancaster University.

The induction motor is directly coupled to a 3 kW PMSG gen-

erator from Mecc Alte. The use of this induction motor incor-

porating the variable frequency drive can ensure it provides the

required torque to operate the generator at different speeds. The

AC-DC-AC converter consists of an uncontrollable AC-DC rec-

tifier, a DC-link capacitor and a DC-AC inverter. The rectifier

converts the mains voltage to a DC voltage of 540 V for DC-

filtering and energy buffering via the DC-Link capacitor. The

IGBT inverter then converts the DC power into an AC power

at the desired output voltage and frequency via the filter (Lf

and Cf in Fig. 3). A DC-link capacitor discharging circuit (R
and Sd ) is also added to discharge the capacitor after the tests.

The test rig operates in an island mode, where all the gener-

ated power from the AC-DC-AC converter is dissipated to an

off-the-shelf resistive load bank via a variable transformer. A

number of transducers and sensors are installed in the test rig

to collect data for control and monitoring purposes, including

AC currents and voltages before and after the converter, and the

DC-link current and voltage. All signals are interfaced to a data

acquisition card (NI USB-6229) through signal condition mod-

ules for measurement data logging. The test rig is controlled by

a computer running LabVIEW, allowing real time operation and

measurements.

Peripheral components such as circuit breakers (CB) and

switches are also used in the test rig to assist the components

operation and for safety purposes. Due to safety issues, short cir-

cuit faults are simulated under a controlled environment where

a resistance is added between phases to limit the current. A

switch is used to activate the fault for a given time duration

during operation of the test rig. Experiments are also performed

at a low-voltage level with constant wind speeds.

IV. RESULTS AND ANALYSIS

A. Targeted Variable Selection

1) SCADA Data: Considering initially the SCADA data, two

types of fault have been studied: a gearbox fault and a generator-

related fault. These faults were found by examining the SCADA
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Fig. 3. Schematic block diagram of the wind turbine test rig.

TABLE I
PERFORMANCE MEASURES OF T SELECTION ALGORITHM WITH SCADA DATA

Type of data Original
data

Gearbox fault Generator fault

Target signal Gearbox bearing
temperature

Generator winding
temperature

Cumulative variance, cppv 100% 97.11% 97.42%
Average correlation, r̄ 0.3412 0.0677 0.0588
Percentage entropy, ηe 100% 75.91% 78.09%

data together with the alarm log. A total of 77 variables were

obtained after pre-processing, consisting of electrical variables,

mechanical variables (angular speeds and vibrations), and tem-

peratures. Of these, 35 variables were chosen to be the threshold

for the selection algorithm, based on SCREE plot analysis. The

target variables, and the respective performance measures for

both fault-free data and data from the faulty turbines are given

in Table I.

It can be seen that both datasets have a cppv above 97%, indi-

cating the retained variables accommodate a high percentage of

the variance seen in the original dataset. Moreover, there are sig-

nificant reductions in the average correlation for both datasets

(0.0677 and 0.0588), compared to the original data (0.3412).

This implies a very low redundancy amongst the retained vari-

ables. Finally, reasonable percentage entropies are also obtained,

with approximately 75.91% and 78.09% of the baseline value

respectively.

In general, parameters such as wind speed, pitch angle, en-

vironmental conditions (e.g., pressure, wind direction), and

vibrations are selected. It should be noted that the variables

selected by the T selection algorithm should share common

features with the targeting variable in the reduced dimensional

space; but this does not necessary mean the selected variables

must be physically close to it. For example, for a gearbox fault,

the gearbox bearing temperature is used as the targeting vari-

able; this does not mean that all variables relating to the gearbox

should be retained. In fact, if that was the case, the retained vari-

ables could have very high redundancy.

2) ANN Validation: This section addresses the problem in

which the fault feature is present in the retained variables. By

adopting a NARX (nonlinear autoregressive exogenous) ANN

(Artificial Neural Network) model, predictions between differ-

ent input variable sets can be compared. Three different input

variable sets are considered: the original dataset (without any

reduction), the first q PCs with a cumulative variance greater

than 0.95 [16], and the retained variables from the T selection

method.

The selection of input variables can greatly affect the perfor-

mance of the ANN model. With regards to fault detection, it is

preferable if the inputs are independent to the output variable;

thus, anomalies can be identified by comparing the predicted

and the actual outputs. If the input variables share common fea-

tures with the fault signal (targeting variable), this could mean

the model will match the actual data, even during the period of

a fault. Consequently, the ANN model is used to further evalu-

ate the retained variables from the T selection algorithm, and to

demonstrate whether the fault features of interest are still present

in the retained variables. A good model match is expected to

be obtained, especially during the period of the fault. The ANN

model established using the original dataset is used here as a

benchmark, with the squared correlation coefficient, R2, and the

root mean squared error (RMSE) are used to quantify the model

accuracy.

As an example, SCADA data with a gearbox-related fault

are used for evaluation. Fig. 4 shows the actual (red) and pre-

dicted (blue) gearbox bearing temperature using different input

datasets. The anomaly occurs at approximately 720 hours, where
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Fig. 4. Actual and predicted gearbox bearing temperatures from the ANN
model for three input SCADA datasets. Top: original dataset; middle: PCA
reduced dataset; bottom: dataset obtained from T selection algorithm.

the gearbox bearing temperature starts to increase to an abnor-

mal level. It can be seen that the prediction using all of the

data is very close to the actual value, with RMSE and R2 of

[0.276, 99.5%]. Similarly, in the case of the targeted selection

data, a high model prediction is also obtained [0.397, 99.2%].

As for the PCA reduced data, it has the worst performance of

[1.793, 82.3%], where there is an obvious difference between

the actual and predicted gearbox bearing temperature. It is worth

mentioning that, for all cases, the predictions during the fault-

free period are very similar. The difference between the actual

and the predicted value becomes clear when the fault begins.

Based on these results, it is straightforward to conclude that the

dataset retained by the T selection algorithm has captured the

fault signatures from the original dataset.

B. Hoteling’s T2 Method

In this section, SCADA data are used to validate the proposed

Hoteling’s T2 detection and identification algorithm. One of the

assumptions made for T2 statistics is that the original data should

be approximately normally distributed. Therefore, an additional

pre-processing step is carried out to normalize the data by means

of a Box-cox transformation.

x
(λ)
i =

{

xλ

i −1
λ

if λ �= 0

ln (xi) if λ = 0
(11)

where x is the original data and λ is the coefficient optimized

through the maximum likelihood function such that the resulting

data is approximately normally distributed. The distribution of

wind speed before and after this transformation is shown in

Fig. 5.

1) SCADA Data With Gearbox Fault: The T2 statistic and

the threshold of the normal operating (top) and the test data

with gearbox fault (bottom) are shown in Fig. 6. As can be

seen in the bottom plot, between sample points 1400 to 1450

and 1510 to 1545, the T2 statistic is well above the threshold.

The SCADA data has a sampling rate of 10 minutes, which

implies the detected anomalies lasted for a period of 8 hours. By

decomposing the T2 statistic, PC1 has the highest contribution

index (Fig. 7, top). The loading values for PC1 are then shown

Fig. 5. Example of histogram of wind speed from SCADA data before (top)
and after (bottom) the Cox-box transformation.

Fig. 6. T2 statistic from the SCADA data with a gearbox fault. Top plot:
normal operation data; bottom plot: data with a gearbox fault.

Fig. 7. Fault identification of the SCADA data with a gearbox fault. Top plot:
T2 contribution; bottom plot: PC loadings showing the highest contribution.

in the bottom plot of Fig. 7. Any loading, which is greater than

the threshold value of 0.3, is considered significant [17].

Fig. 7 shows that the active power (Var3), gearbox bearing

temperature (Var18) and gearbox oil sump temperature (Var16)

have the top three loading values. Other variables with signif-

icant loadings are the generator bearing temperature (Var15),

power factor (Var5) and pitch motor 1 RPM (Var11). This re-

sult indicates that the root cause of the fault might occur at the

cooling system of the gearbox; hence, the gearbox bearing tem-

perature is also increased. Furthermore, the turbine data show

a reduced active power output during the faulty period, and

a warning of a high gearbox temperature is also found in the

alarm log. The turbine was intentionally controlled to operate at
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Fig. 8. T2 statistic from the SCADA data with a generator fault. Top plot:
normal operation data; bottom plot: data with a generator fault.

Fig. 9. Fault identification of the SCADA data with a generator fault. Top
plot: T2 contribution; bottom plot: loadings showing the highest contribution.

a lowered power rating in order to avoid damaging the turbine.

Evidently, the anomaly is related to the gearbox.

2) SCADA Data With Generator Fault: Considering the

SCADA data obtained from the turbine with a generator fault,

the T2 statistic and the corresponding decomposition are shown

in Figs. 8 and 9 respectively. An anomaly is detected between

sampling point 1610 and 1630, lasting for a period of 3.3 hours.

It was found that the first PC is the most significant. Parameters

such as the temperature of the generator cooling water (Var13),

the generator bearing temperature (Var15), vibration in the z di-

rection (Var12), and the temperature of the main bearing (Var11)

have significant loading values above 0.3. The result shows that

the anomaly is caused by abnormal temperature changes, which

are localized in the generator. This result corresponds to findings

from the analysis of data and the alarm log, where a warning

of a high generator bearing temperature has been flagged. As

both the main bearing and the generator bearing temperature

are high, along with increased vibration, the main contributor to

this anomaly is likely to be wear of the generator bearing.

Consequently, the proposed method can detect anomalies in

the dataset and highlight variables contributing to it, thereby

identifying and locating the fault based on the highest loading

values corresponding to the most significant PC.

C. Feature Based Fault Detection

Because the feature-based detection method requires datasets

of faults at different severity levels, this section firstly considers

Fig. 10. Fault severity plot of simulation data with capacitor ageing fault
through PCA. Top: plot of actual and fitted model of rl/u ratio; bottom: esti-
mation of unknown fault severity from the established model.

simulation data with a DC-link capacitor ageing fault. The fault

is simulated as a loss of capacitance at various severities, from

the normal operation condition of 7800 µF at a reduction step of

−5% until −50%. An empirical model has been created using

these data and variables obtained from the T selection algorithm.

It was found that there is a clear relationship to the rl/u ratio

between L
r
1 (the first eigenvalue) and U

r
1,1 (the first element of

the first eigenvector), as shown in Fig. 10 (top). The following

nonlinear function has been fitted to the data,

rl/u =
lr1

ur
1,1

= a tanh (bSv + c) + d (12)

where tanh is the hyperbolic function; the coefficients a, b, c, and

d are estimated through nonlinear least squares by minimizing

the residual, found to be 3.234, 0.9597, −5.7903 and 19.06,

respectively. The fitted curve has a R2 of 94.49%, indicating

an accurate fit. It can be seen that the rl/u has an increasing

trend when the capacitance losses increase, with the largest rise

between −15% to −35%.

To test the empirical model, additional data have been ob-

tained with a different fault severity compared to those used to

train the model. The rl/u ratio for the dataset with an unknown

fault level is 19.7805. Using the inverse relationship function,

as described in (13), the estimated severity Sv is found to be

−26.362%. The actual fault level is −27%, as shown in the

bottom plot of Fig. 10, an error of 2.4%, implying an accurate

detection and severity estimation.

Sv =
arctanh

(

r l / u −d

a

)

− c

b
(13)

Data obtained from the WT test rig with a phase-to-phase

short circuit fault have been used to evaluate further the feature-

based detection and severity estimation algorithm. Fig. 11 shows

the root mean square (rms) value of the current (top) and

voltage (bottom) under different fault severities emulated by

short circuit resistance values ranging from no-fault (1 MΩ),
to 2000 Ω, 351 Ω, 135 Ω, and 27 Ω respectively. Results show

that, although performed with a low power rating, the experi-

ments still reflect the transient behavior of the fault. Thus, the

data have been considered to be adequate for evaluating the

proposed detection method.
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Fig. 11. Measured rms voltages and currents under the phase-to-phase fault
with different fault severities.

Fig. 12. Fault severity plot of the test rig data with phase-to-phase fault through
PCA. Top: plot of actual and fitted model of rl/u ratio; bottom: estimation of
unknown fault severity from the established model.

An empirical model has been obtained following the PCA

of the measured line-voltages and phase-currents. The red dots

in the top plot of Fig. 12 show the rl/u ratio of L
r
1 and U

r
2,2

(the second element of the second eigenvector) from measure-

ments at different fault severities Sv . The relationship function

fitted is,

rl/u =
lr1

ur
2,2

= a × e
b

S v (14)

where the coefficients a and b are 0.2857 and 8.685, respec-

tively. The fitted curve has an R2 of 97.41%. It can be seen that

the rl/u ratio increases exponentially when the fault resistance

decreases, implying a more severe fault.

To test the model, additional data with an unknown fault

severity is used, and the rl/u ratio is 10.8789. Using the inverse

relationship function, as given in (15), the estimated severity Sv

is found to be 2.3863, as shown in the bottom of Fig. 12.

Sv = b × ln
(rl/u

a

)−1

(15)

This corresponds to a fault resistance of 243.4 Ω with an

error of only 0.2%, compared to the actual value of 243 Ω. The

results show that the fault can be identified and its severity can

be estimated accurately.

V. CONCLUSION

In this paper, a PCA-based variable selection algorithm tar-

geting specific fault signals is proposed for condition monitor-

ing of wind turbines. Three performance measures (cumulative

percentage variance, average correlation, and percentage en-

tropy) have been employed to evaluate different aspects of the

algorithm regarding variable selection. SCADA data exhibiting

different types of fault have been used to evaluate the T selec-

tion algorithm. A dimension reduction of 45.5% is achieved for

SCADA data. The retained variables also have a high cppv and

percentage entropy, and a very low average correlation coeffi-

cient. This implies that the proposed algorithm can identify a

set of variables containing sufficient information and minimum

inter-correlation to diagnose the fault signals.

By adopting an ANN model, predictions between different

input variable sets are compared. Results show that the model

with these retained variables has a very high prediction accu-

racy. This has been attributed to the removal of irrelevant signals

and information redundancy during the selection process, min-

imizing overfitting of the model.

Using the retained variables, two anomaly detection methods

have been proposed: the first is capable of identifying anomalies,

and the second can estimate the severity of the fault through an

empirical model. Both methods have been tested with simulation

data, SCADA data, and experimental data, each with different

types of fault. Results have shown that the algorithms allow

accurate detection, identification, and estimation of the severity

of the faults. Moreover, the proposed methods require minimal

human interaction once the model is built. Consequently, the

method possesses great potential in developing an autonomous

condition monitoring system. In future studies, the development

of the algorithms in real-time for online monitoring purposes

will be investigated, and selection methods based on nonlinear

algorithms will be analyzed.
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