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Abstract. Using detailed upwind and nacelle-based measurements from a General Electric (GE) 1.5sle model

with a 77 m rotor diameter, we calculate power curves and annual energy production (AEP) and explore their

sensitivity to different atmospheric parameters to provide guidelines for the use of stability and turbulence filters

in segregating power curves. The wind measurements upwind of the turbine include anemometers mounted on

a 135 m meteorological tower as well as profiles from a lidar. We calculate power curves for different regimes

based on turbulence parameters such as turbulence intensity (TI) as well as atmospheric stability parameters

such as the bulk Richardson number (RB). We also calculate AEP with and without these atmospheric filters and

highlight differences between the results of these calculations. The power curves for different TI regimes reveal

that increased TI undermines power production at wind speeds near rated, but TI increases power production at

lower wind speeds at this site, the US Department of Energy (DOE) National Wind Technology Center (NWTC).

Similarly, power curves for different RB regimes reveal that periods of stable conditions produce more power at

wind speeds near rated and periods of unstable conditions produce more power at lower wind speeds. AEP results

suggest that calculations without filtering for these atmospheric regimes may overestimate the AEP. Because of

statistically significant differences between power curves and AEP calculated with these turbulence and stability

filters for this turbine at this site, we suggest implementing an additional step in analyzing power performance

data to incorporate effects of atmospheric stability and turbulence across the rotor disk.

1 Introduction

Power performance testing and annual energy produc-

tion (AEP) assessments rely on accurate calculations of wind

turbine power curves. Previous work on power performance

highlights the role of turbulence intensity (TI) and wind shear

in influencing power production (Elliot and Cadogan, 1990;

Hunter et al., 2001; Kaiser et al., 2003; Sumner and Masson,

2006; Gottschall and Peinke, 2008; Antoniou et al., 2009;

Rareshide et al., 2009; Wharton and Lundquist, 2012a, b;

Clifton et al., 2013a; Dörenkämper et al., 2014). Wharton

and Lundquist (2012b) also found that vertical TI and tur-

bulence kinetic energy (TKE) affect power performance and

Rareshide et al. (2009) found that veer affects power per-

formance. Atmospheric stability induces deviations of power

from the manufacturer power curve (MPC) (Motta et al.,

2005; van den Berg, 2008; Vanderwende and Lundquist,

2012; Wharton and Lundquist, 2012b), and atmospheric vari-

ations across the rotor disk can influence power performance

results (Sumner and Masson, 2006; Wagner et al., 2009;

Choukulkar et al., 2016).

Because the power curve so closely impacts AEP, factors

that influence power performance typically influence AEP

calculations as well. As suggested by the works mentioned

Published by Copernicus Publications on behalf of the European Academy of Wind Energy e.V.
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above, the two most closely explored atmospheric factors

with regard to AEP are TI and wind shear, but the existing

studies do not agree on the influence of TI and wind shear on

AEP. The simulation-based study of Antoniou et al. (2009)

found that low wind shear supported high AEP. For low wind

speeds, the highest AEP occurred during conditions of high

TI, but at higher wind speeds, the highest AEP occurred

when TI was low. In contrast, based on data from a number

of wind farms in the continental US, Rareshide et al. (2009)

also compared AEP calculated with different TI and shear

combinations, and found that AEP typically decreased with

increasing TI, but increased with increasing shear.

In this study, we also investigate the influence of different

atmospheric stability and turbulence regimes on wind turbine

power curves and AEP calculations, incorporating a broad set

of atmospheric parameters as well as different approaches to

measuring these parameters. In Sect. 2 we describe our data

set, which includes an upwind meteorological (met) tower

with measurements spanning the rotor disk as well as a wind-

profiling lidar. In Sect. 3 we present our data analysis meth-

ods, which include filtering the data by atmospheric param-

eters like shear, TI, and atmospheric stability. The effects of

atmospheric parameters on power curves and AEP are pre-

sented in Sect. 4, and in Sect. 5 we summarize conclusions

about the effects of atmospheric stability and inflow turbu-

lence on power curves and AEP calculations.

2 Data

2.1 Measurement site

The measurements used in this analysis were collected at

the US Department of Energy (DOE) National Wind Tech-

nology Center (NWTC, Fig. 1) at the National Renewable

Energy Laboratory (NREL), located just south of Boulder,

Colorado, and about 5 km east of the Colorado Front Range

(Clifton et al., 2013b; Aitken et al., 2014). The prevailing

wind direction at 80 m (hub height) at this site during this

campaign (29 November 2012–14 February 2013) was west-

northwesterly.

This wind direction also dominated a 14-year period

from a neighboring met tower at the NWTC (Clifton and

Lundquist, 2012). During the winter, the downslope flow

from the nearby Rocky Mountains is frequently channeled

through Eldorado Canyon, located just west-northwest of the

NWTC (Banta et al., 1996; Poulos et al., 2000, 2007; Clifton

et al., 2013b; Aitken et al., 2014). The NWTC site slopes up-

ward with about 20 m in elevation change toward the west for

about 1.5 km before dropping off 20 m towards the highway

on the western edge of the site. The surface is mostly short

grass.

Figure 1. Left panel: local map of the NWTC with instrument lo-

cations and topographic contours in meters above sea level. Right

panel: the regional setting of the NWTC between the greater Denver

metropolitan area and Boulder, with the Front Range of the Rocky

Mountains shown in the higher topography west of the site. (Cour-

tesy of Joshua Bauer and Billy Roberts at NREL.)

2.2 Upwind measurements

Upwind measurements were taken using a Renewable NRG

Systems (NRG)/LEOSPHERE WINDCUBE v1 vertically

profiling Doppler lidar (Courtney et al., 2008; Rhodes and

Lundquist, 2013) and a 135 m met tower. The tower supports

several levels of cup anemometers, vanes, sonic anemome-

ters, and temperature sensors, along with precipitation and

air-pressure sensors (Fig. 2, Table 1) all on booms pointing

in the dominant wind direction (west-northwest). Data were

collected during the winter season, typically the season of

the strongest winds at the NWTC (from 29 November 2012

through 14 February 2013). The lidar is located about 216 m

(2.7 D) west of the General Electric (GE) 1.5sle turbine on

the NWTC site. The met tower is located approximately

160 m (2.0 D) west-northwest of the turbine (Fig. 1). Because

different instruments employ different averaging methods,

Fig. 3 demonstrates that all wind speed data sets were syn-

chronized and illustrates how the power output responds to

changes in wind speed.

2.2.1 Lidar

The NRG/LEOSPHERE WINDCUBE v1 lidar measures

volumetric-averaged wind speeds and directions every 20 m

from 40 to 220 m, thereby spanning the entire vertical extent

of the turbine rotor disk. The wind speeds are measured with

an accuracy of 0.2 m s−1 and the wind directions are mea-

sured with an accuracy of 1.5◦ (Courtney et al., 2008). First,

we filtered the nominally 1 Hz measurements of the horizon-

tal wind speeds and directions for suitable carrier-to-noise

ratio (CNR). Next, we averaged these 1 Hz data to 10 min av-
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Table 1. 135 m met tower instrument information.

Type Instrument Mounting heights (m) Accuracy

Cup anemometer Met One SS-201 3, 10, 38, 87, 122 0.5 m s−1

Cup anemometer Thies 4.3351.10.0000 30, 55, 80, 105, 130 0.2 m s−1

Wind vane Met One SD-201 3, 10, 38, 87, 122 3.6◦

Air temperature sensor Met One T-200A platinum RTD 3, 38, 87 0.1 ◦C

Differential temperature sensor Met One T-200A 38, 87, 122 0.1 ◦C

Sonic anemometer ATI “K” type 15, 41, 61, 74, 100, 119 0.01 m s−1

Boom triaxial acceleration sensor Summit 34201A 15, 41, 61, 74, 100, 119

Sonic temperature ATI “K” type 15, 41, 61, 74, 100, 119 0.1 ◦C

Barometric pressure sensor AIR AB-2AX 3

Dew point temperature sensor Therm-x 9400ASTD 3, 38, 87, 122

Precipitation sensor Vaisala DRD11A 3

Figure 2. Configuration of 135 m meteorological tower with some

key heights labeled. This tower varies slightly from the M4 tower

described in Clifton et al. (2013b), but data are available online

(NWTC, 2016).

erages for comparison with the tower and turbine data. The

lidar takes a volumetric measurement, assuming homogene-

ity over the entire volume it is measuring. This process in-

troduces an uncertainty in the lidar measurements in inho-

mogeneous flow (Bingöl et al., 2009; Rhodes and Lundquist,

2013; Lundquist et al., 2015); this possible source of error is

discussed in further detail in the Supplement (Sect. S1).

2.2.2 Meteorological tower

The M5 met tower (NWTC, 2016, similar to the M4 tower at

the site, which was studied by Rinker et al., 2016) is instru-

mented with cup anemometers at 3, 10, 30, 38, 55, 80, 87,

105, 122, and 130 m, and vanes at 3, 10, 38, 87, and 122 m

(Fig. 2 and Table 1). Barometric pressure and precipitation

sensors are located at 3 m and temperature sensors at 3, 38,

and 87 m (Table 1). Sonic anemometers are mounted at 15,

41, 61, 74, 100, and 119 m (Fig. 2 and Table 1). The tower

booms are directed at 278◦, into the prevailing wind direc-

tion, slightly north of west. Measurements from the sonic

anemometers at 15 and 74 m are used to calculate turbulent

fluxes of momentum and heat for assessment of atmospheric

stability and turbulence as discussed in the following sec-

tions.

2.3 Wind turbine data

A GE 1.5 MW turbine (GE 1.5/77 sle) with an 80 m hub

height was chosen for this study. The GE 1.5 MW is the

most widely deployed utility-scale turbine in the world with

more than 12 000 turbines deployed around the globe as

of 2009 (GE Energy, 2009). The supervisory control and

data acquisition (SCADA) system of the turbine provides

10 min averages of nacelle wind speed, nacelle orientation,

turbine power, blade pitch angles, and generator speed set

point. These measurements can be compared with the up-

wind measurements to quantify power curves and AEP. The

cup anemometer mounted on the nacelle of the turbine is a

NRG IceFree Hybrid XT turbine control anemometer. The

GE 1.5sle reaches its nameplate capacity, 1.5 MW, at a wind

speed of 14 m s−1 (GE Energy, 2009). We refer to this wind

speed as the rated wind speed for the rest of this article.

The lower and upper extremes of the swept area of the

GE 1.5sle in this study are approximately 41.5 and 118.5 m

above ground. More details on this turbine and power perfor-

mance testing results as well as instrument and site calibra-

tion information can be found in Mendoza et al. (2015).
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Figure 3. Time series from 11 January 2013 from 08:00 to 17:00 MST (Mountain Standard Time): (a) is a time series of 80 m wind speeds

measured by the cup on the tower, (b) is a time series of 80 m wind speeds measured by the lidar, (c) is a time series of the hub-height wind

speeds measured by the cup anemometer on the nacelle, and (d) is a time series of the power output from the turbine.

3 Analysis methods

Before calculating atmospheric parameters, all meteorologi-

cal and turbine data are checked for data quality as described

in Sect. 3.1.

3.1 Data quality control

3.1.1 Lidar

All lidar-measured wind speed measurements are filtered by

CNR: only measurements with a CNR greater than −18 dB

are retained. Lower CNR results from clean-air conditions

(Aitken et al., 2012), which occur frequently on Colorado’s

Front Range in the winter. After additional filtering for

quality-control purposes (such as removing bad data as de-

fined by the manufacturer’s wind speed and temperature lim-

its), the data recovery rate is approximately 33.5 % for hori-

zontal wind speeds and directions at 40 m, 40 % for horizon-

tal wind speeds and directions at 60 and 120 m, and 45 % for

horizontal wind speeds and directions at 80 and 100 m.

3.1.2 Meteorological tower

Quality control filtering methods performed on the met tower

data discard data that are flagged for a number of reasons,

including irregular timing (the time between measurements

is inconsistent), insufficient percentage of data points within

an averaging period (less than 95 %), low standard deviation

(less than 0.01 % of the mean) or constant values during the

measurement interval (which indicate icing events), empty

data channels, bad values as defined by manufacturer lim-

its, or when an instrument records a “NaN” in place of a real

measurement. After filtering for quality-control purposes, the

met tower provides horizontal wind speeds and directions

and temperatures about 90 % of the time at all levels during

this study.

Several spikes in wind speed occur in the raw sonic

anemometer data. Therefore, a de-spiking filter is applied

based on the change in wind speed from each data point

to the next. Data points are removed if they are preceded

and followed by changes exceeding the lowest 99 % of all

changes. After filtering the spikes in the sonic anemometers

as well as the previously discussed quality-control procedure,

the sonic anemometers provide wind speed and temperature

about 90 % of the time at 15 m and about 60 % at 74 m during

this study.

3.2 Wind speed and direction subselection

Although the dominant wind direction at the site is west-

northwesterly, other wind directions do occur. To ensure the

lidar and met tower measurements are upwind of the tur-

bine, we consider only data from time periods of hub-height

wind from the 235–315◦ wind direction sector. This sector

includes the most frequent and highest wind speeds as mea-

sured by both upwind instruments (Fig. 4). Only wind speeds

between cut-in (3.5 m s−1) and cut-out (25 m s−1) are consid-

ered to ensure that the turbine is operating.

Wind Energ. Sci., 1, 221–236, 2016 www.wind-energ-sci.net/1/221/2016/



C. M. St. Martin et al.: Wind turbine power production and annual energy production 225

Figure 4. Wind roses for (a) lidar 80 m altitude and (b) met tower 87 m altitude, the closest to hub-height with both a cup and vane. Wind

speed bins are 2 m s−1 and wind directions bins are 10◦. The black outline highlights the chosen wind direction sector.

Figure 5. (a) Scatter power curve based on the tower 80 m wind speed. Blue dots show points that are outside of the median absolute

deviation (MAD) envelope in (b) and the red dots represent points that are within the MAD envelope in (b). The vertical grey dashed line

marks rated speed. (b) Blade pitch angle from a single blade vs. tower 80 m wind speed. Red envelope represents ±4.5 MAD of the blade

pitch angle within wind speed bins 0.5 m s−1 wide.

3.3 Filtering turbine underperformance

After filtering for quality control as well as wind speed and

direction, a large number of times occur when the turbine is

producing significantly less power than expected – underper-

forming – as seen in Fig. 5a. We test two methods to isolate

and discard the cases where the turbine is producing signif-

icantly lower power, inconsistent with “normal operation”.

The first approach relies on blade pitch angle to segregate

data and flag most of these underperforming periods; this ap-

proach could be used by wind plant owner-operators with

access to limited SCADA parameters. When more SCADA

parameters are available, such as generator speed set point,

these values may be used in a more rigorous way to filter on

curtailment and to define normal turbine operation.

3.3.1 Filtering based on blade pitch angle

Without access to the turbine control system or data more re-

fined than 10 min averages, typical blade pitch angles can be

quantified as a function of wind speed (Fig. 5b). The median

value for blade pitch angle for each wind speed bin as well

as ±4.5 MAD (median absolute deviation), equivalent to 3σ ,

are shown by the red envelope in Fig. 5b. (We use MAD here

instead of mean absolute deviation so that the calculation

is not biased by a few outliers.) When plotted on a power

curve using the tower 80 m cup anemometer for wind speed

(Fig. 5a), the majority of the points outside of the ±4.5 MAD

envelope and between 5 and 17 m s−1 show underperfor-

mance. To identify underperformance, then, we calculate

MAD blade pitch angles from each blade for each wind speed

bin between 5 and 17 m s−1. Time periods with blade pitch

angles outside of ±4.5 MAD are discarded. While variability
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on timescales shorter than 10 min may affect turbine opera-

tion, the effective filtering seen in the red scatter in Fig. 5a

suggests that this approach is sufficient. This filtering by

blade pitch angle also has the advantage of using only data to

which a typical wind plant operator would have access.

After filtering for hub-height wind speed and direction,

positive power production, and blade pitch angle, 1240 out

of 7949 lidar 80 m wind speed data points remain (16 %),

and 2235 out of 9918 met tower 80 m wind speed data points

remain (23 %). Concurrent lidar, met tower, and turbine data

that fulfill the various screening criteria occur during 1107

10 min periods.

3.3.2 Filtering based on extensive SCADA turbine

operational parameters

Access to a number of turbine control parameters from the

SCADA on the DOE GE 1.5sle allows for a more accurate

definition of normal turbine operation, mostly based on gen-

erator speed set point filtered on curtailment. However, from

cut-in wind speed until around 5.5 m s−1, using generator

speed set point to filter the data results in discarding too many

data points. Therefore, between cut-in wind speed and about

5.5 m s−1, the generator speed set point is not used; rather,

data points are discarded only when the turbine is not grid

connected and is faulted. Above 5.5 m s−1, only generator

speed set point is used to filter on curtailment and for nor-

mal operation. The data points filtered using this method are

represented in Fig. 6 in blue, while the red points in Fig. 6

represent the data points that pass this filtering method.

After filtering for hub-height wind speed and direction,

positive power production, and normal turbine operation,

1227 out of 7949 lidar 80 m wind speed data points remain

(15 %), and 2249 out of 9918 met tower 80 m wind speed

data points remain (23 %). Concurrent lidar, met tower, and

turbine data that fulfill the various screening criteria occur

during 1127 10 min periods.

3.3.3 Comparison of different turbine operation filters

The turbine operation filters described in Sect. 3.3.2 not only

filter out all of the times when the turbine is producing sig-

nificantly less power than expected but also allow the use

of about 2 % more data points deemed “bad” by the blade

pitch angle filtering method described in Sect. 3.3.1. Many

of the data points that would be discarded using the blade

pitch angle filtering method are between cut-in wind speed

and 10 m s−1 and lie reasonably within the expected power

curve, on top of data points that passed through the filter.

Therefore, the remaining analysis is based on data filtered

using the methodology described in Sect. 3.3.2.

Figure 6. Scatter power curve using the tower 80 m wind speed.

Blue dots show points filtered out using turbine control parameters

described in Sect. 3.3.2. Red dots show data points that passed this

filtering process. The grey dashed line marks rated speed.

3.4 Power curves

Power curves based on wind speeds normalized by air den-

sity following the International Electrotechnical Commis-

sion (IEC 61400-12-1, 2015) can be used to evaluate turbine

performance. The observed power curves, comparing power

production to 80 m tower anemometer wind speeds (Fig. 7a),

80 m lidar wind speeds (Fig. 7b), and nacelle anemometer

wind speeds (Fig. 7c), generally show good agreement with

an approximation of the MPC (GE Energy, 2009). This ap-

proximated MPC is determined by placing the publicly avail-

able MPC for the GE 1.5sle on a grid (with dimensions of

0.5 m s−1 by 50 kW) and estimating expected power pro-

duced at each wind bin.

The nacelle-mounted anemometer does not observe the

ambient wind speed that the rotor disk experiences because

the wind that flows through the rotor disk and along the na-

celle during operation is modified by the blades and nacelle

(Antoniou and Pedersen, 1997; Smith et al., 2002; Frand-

sen et al., 2009; Zahle and Sørensen, 2011). However, power

curves calculated using nacelle wind speeds are shown here

along with power curves calculated using upwind measure-

ments in order to compare the different methods. In many

cases, operators calculate these nacelle-based power curves

due to lack of other data.

The power curves created from 10 min tower and nacelle-

mounted anemometer measurements (Fig. 7a and c, re-

spectively) show less variability than the lidar power curve

(Fig. 7b). It is especially apparent from the power curve cre-

ated from 10 min lidar measurements (Fig. 7b) that the lidar

variability at this particular site is vulnerable to inhomogene-

ity in the flow. Although lidars are widely available and used

in the field (Clifton, 2015), the variability between the lidar

and tower measurements (Fig. 8) indicates sufficient inho-

mogeneity in the flow at this particular site (as observed by

Wind Energ. Sci., 1, 221–236, 2016 www.wind-energ-sci.net/1/221/2016/



C. M. St. Martin et al.: Wind turbine power production and annual energy production 227

Figure 7. Power curves after filtering for wind speeds between 3.5 and 25 m s−1, wind directions between 235 and 315◦, and for normal

turbine operation: (a) turbine power production vs. 80 m cup anemometer wind speed from the met tower, (b) turbine power production

vs. 80 m wind speed from the lidar, and (c) turbine power production vs. hub-height wind speed from the anemometer on the nacelle. The

black line represents an approximation of the manufacturer power curve for the GE 1.5sle (GE Energy, 2009). Wind speed is normalized for

density following IEC 61400-12-1 (2015). The grey dashed line marks rated speed.

Figure 8. Lidar 80 m wind speeds compared to tower 80 m wind

speeds filtered for wind speeds between 3.5 and 25.0 m s−1, wind

directions between 235 and 315◦, and for normal turbine operation.

Black dashed line represents a 1 : 1 relationship.

Aitken et al., 2014) to cause us to discuss and show only the

upwind data from the tower from this point forward. Note,

however, that not all sites are subject to the inhomogeneity

seen at the NWTC, and all instruments available for wind

measurement should be considered. Concurrent met tower

and turbine data that fulfill the screening criteria occurred

during 2240 10 min periods, equivalent to about 373 h of

data, which is more than twice the 180 h of data that the

IEC 61400-12-1 (2015) standard recommends for power per-

formance testing.

3.5 Atmospheric stability regimes

Numerous approaches are available for classifying the at-

mospheric stability of a given 10 or 30 min time period.

Bulk Richardson number (RB) calculations use temperature

and wind speed differences from the lowest met tower mea-

surement to the height of the top of the rotor disk to com-

pare the buoyant production of turbulence to the wind-shear-

generated mechanical production of turbulence (Stull, 1988)

as

RB =
g1T 1z

T 1U2
, (1)

where g is the gravitational constant 9.81 m s−2, 1z is the

change in height, 1T is the change in 10 min averages of

temperature across 1z, T is the mean temperature across 1z,

and 1U is the change in the 10 min averages of horizontal

wind speed across 1z. Note that Eq. (1) does not consider

wind direction variability because cup anemometer measure-

ments provide only information about horizontal wind speed.

Typical stability classifications based on RB calculations are

as follows: turbulent flow in unstable conditions when RB

is less than 0, laminar flow in stable conditions when RB

is greater than 0.25, and neutral conditions when RB is be-

tween 0 and 0.25 (Stull, 1988). These stability classifications

are similar to those used in previous work on stability ef-

fects on wind turbine fatigue and loading in Kelley (2011),

and slightly different from the stability classifications used in

Vanderwende and Lundquist (2012). The distribution of RB

calculated from the tower measurements for this campaign

(Fig. 9), however, suggests that slightly different regimes,

shown in Table 2, could be used to better represent the data at

this site. Similar to the approach used in Aitken et al. (2014),

the RB distribution is split roughly into thirds to allow for

less overlap between stable and unstable regimes. The un-

certainty in RB for these instruments over the measurement

period is about 0.01; therefore, the RB classifications used

are larger than the uncertainty.

Obukhov length (L) is also a useful measure of atmo-

spheric stability, relying on surface stresses as well as heat

fluxes to estimate the height in the surface layer at which
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Table 2. Defined stability regimes.

Stability class RB L (m) α

Unstable conditions RB < −0.03 −1000 < L≤ 0 α < 0.11

Neutral conditions −0.03 < RB < 0.03 |L| ≥ 1000 0.11 < α < 0.17

Stable conditions RB > 0.03 0 ≤ L < 1000 α > 0.17

Figure 9. RB distribution using thresholds in Table 2, includ-

ing data filtered for tower 80 m wind speeds between 3.5 and

25.0 m s−1, 87 m wind directions between 235 and 315◦, and for

normal turbine operation.

the buoyant production of turbulence dominates wind-shear-

generated mechanical production of turbulence (Stull, 1988)

as

L = −
u3

∗

kg

Tv

w′T ′
s

, (2)

where u∗ is the friction velocity, k is the von Kármán con-

stant 0.41, Tv is the virtual temperature, w′ is the vertical

wind speed fluctuation in the 30 min averaging period, and

T ′
s is the sonic temperature fluctuation in the 30 min aver-

aging period. L calculations are based on sonic anemometer

measurements at 15 m and temperature measurements inter-

polated to 15 m to ensure L is calculated using measurements

within the surface layer. Typical stability classifications are

used in this work and are based on L calculations as defined

by Muñoz-Esparza et al. (2012), shown in Table 2. These

classifications are slightly different from those used in Whar-

ton and Lundquist (2012b). The distributions of L are shown

in Fig. 10.

When the RB and L stability approaches are compared

against one another and against time of day, as in Fig. 11, the

stability parameters differ slightly in their definitions of un-

stable and stable. Because of differences in stability classes

due to varying approaches to defining atmospheric stabil-

ity, we treat RB-defined stability classes separately from L-

defined stability classes in the power curves.

Figure 10. L distribution using thresholds in Table 2. Note that

some neutral cases are outside of these axes. Includes data filtered

for tower 80 m wind speeds between 3.5 and 25.0 m s−1, 87 m wind

directions between 235 and 315◦, and for normal turbine operation.

3.6 Turbulence regimes

TI can also be used to describe atmospheric conditions,

as demonstrated by Rareshide et al. (2009), Wagenaar and

Eecen (2011), and Wharton and Lundquist (2012a). TI is typ-

ically defined as

TI =
σ80 m

U80 m
· 100, (3)

where σ80 m is the 10 min standard deviation of the horizon-

tal wind speed at 80 m and U80 m is the 10 min mean hor-

izontal wind speed at 80 m. Although the TI approach has

been used successfully at other locations, the NWTC con-

sistently features strong turbulence likely resulting from the

terrain characteristics of the site (Figs. 12 and 13), making it

difficult to distinguish typical stability classes from TI calcu-

lations. This strong ambient turbulence has led to the choice

of site-specific turbulence classification defined in Table 3.

When the atmospheric stability regimes are compared to

the TI regimes defined here (Fig. 14), the RB and TI regime

percentages also differ slightly in their definitions of unsta-

ble atmospheric conditions and highly turbulent conditions.

Most of the daytime points are within the unstable regime

as defined by RB; however, only about 17 % of the data fall

within unstable conditions with higher TI. This comparison,

again, emphasizes the highly turbulent characteristics of the

NWTC.
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Figure 11. L vs. RB. The blue box represents where both L and RB agree on the stable conditions; the percentage (24 %) represents the

percentage of data points in this box. The red box represents where both L and RB agree on the unstable conditions; the percentage (11 %)

represents the percentage of data points in this box. Includes data filtered for tower 80 m wind speeds between 3.5 and 25 m s−1, 87 m wind

directions between 235 and 315◦, and for normal turbine operation.

Figure 12. TI (a) and TKE (c) calculated with near-hub-height tower measurements vs. time of day, where hour 0 and hour 24 represent

local midnight. The blue line represents the mean TI in the corresponding hour and the error bar represents the standard deviation. The blue

rectangle represents nighttime hours and the red rectangle represents daytime hours. Mean and standard deviation of TI (b) and TKE (d)

calculated with near-hub-height tower measurements in each wind speed bin. Includes data filtered for tower 80 m wind speeds between

3.5 and 25.0 m s−1, 87 m wind directions between 235 and 315◦, and for normal turbine operation.

To further understand the turbulence characteristics

demonstrated during this campaign, we also calculate TKE

using the 74 m 3-D sonic anemometer mounted on the

M5 met tower. Although TI is a parameter typically calcu-

lated and analyzed in the wind industry, TKE has the advan-

tage of including the vertical component of the wind:
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Figure 13. TI distribution using thresholds in Table 3. Includes data

filtered for tower 80 m wind speeds between 3.5 and 25 m s−1, 87 m

wind directions between 235 and 315◦, and for normal turbine op-

eration.

Figure 14. TI vs. RB. The blue box represents where both TI and

RB agree on the stable conditions; the percentage (15 %) represents

the percentage of data points in this box. The red box represents

where both TI and RB agree on the unstable conditions; the per-

centage (17 %) represents the percentage of data points in this box.

Includes data filtered for tower 80 m wind speeds between 3.5 and

25 m s−1, 87 m wind directions between 235 and 315◦, and for nor-

mal turbine operation.

TKE =
1

2

(

u′2 + v′2 + w′2
)

, (4)

where we calculate TKE per unit mass, u′ is the perturbation

from a 30 min average of the zonal component of the wind,

v′ is the perturbation from a 30 min average of the merid-

ional component of the wind, and w′ is the perturbation from

a 30 min average of the vertical component of the wind. Us-

ing this TKE approach also reveals the strong turbulence at

the NWTC, which is only slightly affected by the diurnal cy-

cle during this wintertime campaign (Figs. 12 and 15). Tur-

bulence classifications based on TKE are determined by the

distribution in Fig. 15 and are listed in Table 3.

Table 3. Defined turbulence regimes.

Turbulence regime TI (%) TKE (m2 s−2)

High turbulence TI > 20 TKE > 6.5

Medium turbulence 15 < TI < 20 3.0 < TKE < 6.5

Low turbulence TI < 15 TKE < 3.0

Figure 15. TKE distribution using thresholds in Table 3. In-

cludes data filtered for tower 80 m wind speeds between 3.5 and

25.0 m s−1, 87 m wind directions between 235 and 315◦, and for

normal turbine operation.

Many cases with relatively high TI or TKE are considered

neutral and stable according to our stability definitions in Ta-

ble 3. Depending on whether TI, TKE, RB, or L is considered

as a measure of atmospheric stability, a particular time period

may be classified differently. In other words, different results

are found depending on the metric selected.

3.7 Wind shear regimes

To estimate the effect of the wind speed vertical profile across

the rotor disk, the wind shear exponent or power law expo-

nent parameter, α, is typically used in the wind energy indus-

try:

α =
log

(

U2
U1

)

log
(

z2
z1

) , (5)

where z1 is the reference height, z2 is the height above

ground level, U2 is the wind speed at height z2, and U1 is the

wind speed at height z1. At the NWTC during this study, the

average wind shear exponent using the 122 and 38 m tower

wind speeds as z2 and z1, respectively, is 0.15. The stan-

dard deviation is 0.14 and the maximum wind shear exponent

is 1.10.

For this period of time at this site, however, it was rare

for the rotor equivalent wind speed (REWS) to deviate sig-

nificantly from the hub-height wind speed (Sect. S2). There-
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fore, shear exponents are separated into regimes simply by

splitting the shear exponent distribution into thirds (Table 2,

Fig. 16). Other approaches to classify stability regimes using

shear exponents such as combining with other stability mea-

sures such as L and RB (Vanderwende and Lundquist, 2012),

or using a REWS in the power curves (Elliott and Cadogan,

1990), may work at other sites.

4 Results

To explore the variability in the power curves, we apply fil-

ters to the power curves based on factors such as atmospheric

stability and TI. We apply a new method to calculate AEP us-

ing these classifications. We can consider periods with low TI

to be approximately “stable” by RB and L; “unstable” con-

ditions would generally have high TI. Our results show that,

generally, at this site with little veer, stable conditions (with

varying degrees of significance) lead to over-performance at

wind speeds just below rated power. At lower wind speeds,

however, unstable conditions lead to over-performance.

4.1 Power curves

The NWTC site generally exhibits high TI throughout this

data collection period. Even so, some differences in power

produced emerge at wind speeds between 5 and 7 m s−1 and

at wind speeds between 10 and 14 m s−1 after separating

the TI into relative classes of low, medium, and high TI

(Figs. 17a, c and 18a, c, Table 3). Statistically distinct dif-

ferences within each wind speed bin between the TI classes

defined in Table 3 are determined by the Wilcoxon rank sum

test with a 1 % significance level. These statistically distinct

bins are denoted by closed circles in Figs. 17a, c and 18a, c.

This statistical test shows that, for the power curves using

nacelle winds, periods of relatively high TI produce signifi-

cantly more power than periods of relatively low TI at wind

speeds between 5 and 9 m s−1 (Figs. 17a and 18a). For the

power curves using upwind tower winds, periods of rela-

tively high TI produce significantly more power than pe-

riods of relatively low TI at wind speeds between 6.0 and

6.5 m s−1 (Figs. 17c and 18c). Conversely, power curves us-

ing nacelle winds show that, at wind speeds between 10.5 and

13.5 m s−1, periods of relatively low TI produce significantly

more power than periods of relatively high TI. Power curves

using upwind tower winds show that, at wind speeds be-

tween 9.5 and 15.5 m s−1, periods of relatively low TI pro-

duce significantly more power than periods of relatively high

TI. Rareshide et al. (2009) found similar behavior.

On the other hand, power curves separated by RB-defined

stability class show only a few bins that are statistically dis-

tinct in power produced (Figs. 17b, d and 18b, d). Power

curves using nacelle winds show that, at most wind speeds

between 6.5 and 9.0 m s−1, periods of unstable conditions

produce significantly more power than periods of stable con-

ditions. Power curves using upwind tower winds show that,

Figure 16. Shear exponent distribution using thresholds in Table 2.

Includes data filtered for tower 80 m wind speeds between 3.5 and

25.0 m s−1, 87 m wind directions between 235 and 315◦, and for

normal turbine operation.

at wind speeds around 7 m s−1, periods of unstable condi-

tions produce significantly more power than periods of sta-

ble conditions. Power curves using both nacelle winds and

tower winds show that, at wind speeds around 12 m s−1, pe-

riods of stable conditions produce significantly more power

than periods of unstable conditions.

Distinct differences between power curves calculated from

nacelle winds and power curves calculated from upwind

tower winds occur in the power curves of both of these atmo-

spheric parameters. Statistically distinct wind speed bins in

power curves calculated from nacelle winds tend to be simi-

lar to those in power curves calculated from tower winds near

rated speed. At lower wind speeds, however, between about

5 and 9 m s−1, many more statistically distinct differences

emerge between nacelle power curves than between tower

power curves, most notably in the power curves segregated

by TI regimes. Turbine operations are especially variable in

this region of rapid increase in power with wind speed. The

turbine reacts directly to the conditions as measured by in-

struments on the turbine. The nacelle-mounted anemometer

observes winds that flow through the rotor disk and along the

nacelle during turbine operation, and therefore likely mea-

sures different wind speeds than the upwind met tower. The

nacelle anemometer observes complex flows behind the rotor

disk that are strongly influenced by ambient turbulence, lead-

ing to more statistically significant differences in the nacelle

power curves for TI regimes.

Agreement between the TI and RB methods means that

at wind speeds around rated, low TI and high stability re-

sult in over-performance relative to high TI and low stability.

Both methods also agree that somewhere in between cut-in

and rated, sometimes called “region 2”, high TI and low sta-

bility result in over-performance relative to low TI and high

stability. Power curves separated by L-defined stability class

as well as power curves separated by shear class do not show
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Figure 17. Nacelle anemometer power curves with (a) TI regimes and (b) RB regimes. Eighty-meter tower anemometer power curves with

(c) TI regimes and (d) RB regimes. Median statistics are used to avoid outlier effects. Statistically distinct differences within each wind speed

bin between the regimes are determined by the Wilcoxon rank sum test with a 1 % significance level and denoted by closed circles. Includes

data filtered for tower 80 m wind speeds between 3.5 and 25.0 m s−1, 87 m wind directions between 235 and 315◦, and for normal turbine

operation. Envelopes represent ±1 MAD for each wind speed bin. The grey dashed line marks rated speed.

Figure 18. Nacelle anemometer power curves shown as the anomaly from the neutral or medium power curve of the (a) TI regimes and

(b) RB regimes. Eighty-meter tower anemometer power curves shown as the anomaly from the neutral or medium power curve of the (c) TI

regimes and (d) RB regimes. Median statistics are used to avoid outlier effects. Statistically distinct differences within each wind speed bin

between the regimes are determined by the Wilcoxon rank sum test with a 1 % significance level and denoted by closed circles. Includes

data filtered for tower 80 m wind speeds between 3.5 and 25.0 m s−1, 87 m wind directions between 235 and 315◦, and for normal turbine

operation. Envelopes represent ±1 MAD for each wind speed bin. The grey dashed line marks rated speed.
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any statistically significant differences in power produced be-

tween unstable and stable periods (not shown). Power curves

separated by TKE class show few statistically significant dif-

ferences in power produced between high and low TKE pe-

riods, likely because of the few data points available for the

30 min averaging period; therefore, these results are shown

in the Supplement (Sect. S4).

The large variability reported in the literature (and herein)

regarding power production can be understood by recogniz-

ing the interactions between a pitch-controlled turbine and

the atmosphere: the operation of control algorithms changes

with wind speed, with varying effects depending on the am-

bient turbulence.

Sensitivity to atmospheric turbulence occurs at low wind

speeds, near cut-in wind speed. In these conditions, the

turbine generator speed (revolutions per minute, RPM) in-

creases, as does the generator torque. As a result, the blades

will often pitch backward, changing the angle of attack to

generate more lift, and the power production ramps up. At

low wind speeds and higher turbulence, the turbine can re-

act to the higher variation in wind speed and can capitalize

on the variation seen in the wind flow because of the ad-

ditional lift resulting from the blade pitch, and the turbine

produces more power. Conversely, at low wind speeds with

lower turbulence, the variation in wind speed is lower, and so

the turbine experiences more consistent wind than in highly

turbulent conditions and therefore produces less power.

At higher wind speeds, closer to or just below rated

speed, control mechanisms seek to maintain rated genera-

tor speed, rather than continuing to increase generator speed.

The blades will pitch forward (or “feather”), allowing the

power production to maintain rated power. This process ef-

fectively decreases the amount of lift when compared to lift

generated by a non-feathered blade. At these wind speeds

during periods of high TI, a turbine reacts to the high varia-

tion in wind speed with subtle changes in blade pitch. For

example, if the turbine detects a drop in wind speed, the

blades may pitch back to generate more lift, but then if the

wind speed increases quickly after, the blades will pitch for-

ward again. If the blade pitch cannot immediately respond

to increases in wind speed, then power losses occur. At

these higher wind speeds, lower turbulence enables consis-

tent blade pitch to match atmospheric conditions, and so the

turbine can capture more power.

It is also important to mention the strong connection be-

tween turbulence and shear: high shear will eventually erode

turbulence (Wharton and Lundquist, 2012a). Periods of high

shear generally coincide with periods of low turbulence and

vice versa. With low shear, the mean wind speed is more con-

sistent over the height of the rotor disk. However, since we

did not see significant differences in power curves for differ-

ent shear regimes here, we cannot speculate further on this in

this analysis. Finally, if veer occurs in the wind profile (as in

Vanderwende and Lundquist, 2012, and Dörenkamper et al.,

2014), which usually occurs only in stable or low turbulence

Table 4. Weibull parameters for the case of no stability or turbu-

lence filter as well as for each turbulence and stability class.

Scale Shape Mean

parameter parameter

No filter 10.04 2.63 8.90

Low TI regime 10.83 2.59 9.60

Med TI regime 10.81 2.90 9.63

High TI regime 8.52 2.81 7.57

Low RB regime 10.12 3.09 9.05

Med RB regime 13.29 3.45 11.96

High RB regime 7.64 3.10 6.83

atmospheric conditions, that veer will generally undermine

power production as the turbine blades are not oriented per-

pendicular to the flow at all vertical levels.

4.2 Annual energy production

AEP allows developers and operators to quantify the pro-

jected energy production of a turbine. To quantify the impact

on AEP of these stability- and turbulence-driven differences

in power curves, we use a Weibull distribution for wind speed

and calculate AEP with no filter, as well as with TI and stabil-

ity filters. These turbulence and stability filters for the AEP

calculations can be further explained as AEP calculated us-

ing the power curves calculated from nacelle winds (Fig. 17a

and b) as well as the power curves calculated from upwind

tower winds (Fig. 17c and d). These power curves are used

together with a sample wind distribution using Weibull dis-

tribution parameters based on wind speed data separated into

each stability class (Table 4) as suggested by IEC 61400 12-

1 (2015) for a site-specific AEP. For each of these filters, sep-

arate AEP calculations are made for each regime, weighted

by the number of data points in that regime, and then added

together to compare with the AEP calculated with no atmo-

spheric filter. Note that although data are collected only dur-

ing 2.5 months in the winter of 2012, AEP is calculated for

an entire year to show values closer to a representative AEP

value.

Results in Table 5 show a higher AEP when using no fil-

ter, followed by an AEP calculated with a TI filter and then a

stability filter. The lower AEP calculated when separating by

stability and turbulence regimes suggests that the AEP calcu-

lated using no filters may be overestimating the production,

perhaps because the higher and lower extremes of the param-

eter ranges bias the averages in each bin.

AEP results in Table 5 also show that the AEP calculated

using nacelle winds underestimates the AEP when compared

with an AEP calculated using upwind tower measurements.

This underestimation of the nacelle anemometer-calculated

AEP is true for both the AEP calculated for the entire data set

as well as with each stability or turbulence filter and is likely

because the nacelle anemometer underestimates the ambient
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Table 5. AEP in megawatt-hours per year calculated for different at-

mospheric and turbulence regimes using a Weibull distribution with

a scale and shape parameter associated with the corresponding wind

speed distribution.

No filter TI filter RB filter

AEP using tower data 7479.3 7409.6 7278.7

AEP using nacelle data 7430.6 7388.9 7266.7

wind speed due to flow interference of the rotor disk and na-

celle.

When the AEP’s low and high regimes are compared to

the medium regimes of their respective atmospheric param-

eters, the AEP for medium-TI periods is higher than that for

low-TI periods and for high-TI periods for both the nacelle

anemometer-calculated AEP and the tower-calculated AEP

(Table 6). Using low- and high-TI power curves results in

an AEP smaller than that calculated using the medium-TI

power curve. These results are likely obtained because the

low-TI power curve loses production at lower wind speeds

and the high-TI power curve loses production around rated

speed. When using a stability filter, the AEP calculated with

the low-RB power curve is higher than that with the high-

RB power curve (Table 6). This contrast between AEP cal-

culated for the low-stability regime and AEP calculated for

the high-stability regimes suggests that the unstable power

curve (Fig. 17b and d) gains enough production at lower wind

speeds to surpass the production gain by the stable power

curve (Fig. 17b and d) near rated wind speed.

5 Conclusions

Using 2.5 months of data from upwind and nacelle-based in-

struments, we calculate power curves for different regimes of

atmospheric stability and turbulence as well as AEP with and

without these atmospheric filters. This work not only focuses

on the idea of calculating different power curves for different

atmospheric conditions for power performance testing but

also highlights the differences in AEP that can emerge from

the application of stability- or turbulence-dependent power

curves. We also summarize extensive data quality-control

methods, including two approaches for filtering out turbine

underperformance or curtailments.

Statistically significant differences emerge among power

curves segregated by TI and RB. At wind speeds between

5 and 7 m s−1, during periods of high TI, significantly more

power is produced than during periods of low TI. From about

10 to 14 m s−1 (near rated wind speed), during periods of

low TI, significantly more power is produced than during pe-

riods of high TI. During periods of stable conditions, sig-

nificantly more power is produced than during periods of

unstable conditions around 12 m s−1, and significantly less

power is produced than during periods of unstable condi-

Table 6. AEP in percentage calculated for different filter regimes

using a Weibull distribution with a scale factor and a shape fac-

tor representative of the corresponding wind speed distribution.

Medium regime is set at 100 % and low and high regimes are per-

centages compared to the medium regime. The highest value within

each row is italicized.

Filter Low Medium High

regime regime regime

TI using tower data 85.03 100.00 68.20

RB using tower data 116.28 100.00 71.33

TI using nacelle data 84.76 100.00 68.32

RB using nacelle data 115.86 100.00 70.52

tions at some wind speeds between 6.5 and 9.0 m s−1. Statis-

tically significant distinctions in power curves did not occur

when filtering for TKE, L, yaw error, wind shear, or wind

veer for this data set at this site, perhaps explaining why sta-

ble conditions promote overperformance here, as in Whar-

ton and Lundquist (2012b). A site with veer, however, ex-

hibits underperformance in stable conditions (Vanderwende

and Lundquist, 2012).

After calculating an AEP for each regime and comparing

the high and low regimes with the medium regime, differ-

ences between AEP calculated using different atmospheric

filters are revealed. An AEP calculated with no atmospheric

or turbulence filter is higher than any AEP calculated with

these filters. In addition, the AEP calculated using a TI filter

shows that the AEP calculated with the medium TI regime

is greater than the AEP calculated with the low or high TI

regimes. The AEP calculated with the RB filter shows that

the low-regime AEP is much larger than the AEP in the high

and medium regimes.

As a small percent difference in AEP leads to a large devia-

tion in cost for both operators and manufacturers, calculating

different power curves for different atmospheric conditions

may not only be a practical approach but may also lower the

financial risks for both operators and manufacturers.

As discussed by Rareshide et al. (2009), manufacturers in-

creasingly filter out data that represent what they consider

anomalous or extreme atmospheric conditions for power per-

formance testing. The IEC-61400-12-1 (2015) standard calls

for at least 180 h of data to be used in a power performance

test. Consequently, if manufacturers filter out data based on

higher TI values, for instance, this means that more data

must be gathered to make up for the discarded data. We see

this discarding of data as unnecessary and potentially more

costly. We suggest that instead of discarding these data, dif-

ferent power curves be calculated for different conditions.

This approach can allow for a more nuanced understanding

of how a turbine operates in different atmospheric conditions,

and may lead to a more accurate and reliable performance re-

sult and AEP calculation.
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6 Data availability

Data from the M5 tower are available for download at http:

//wind.nrel.gov/MetData/135mData/M5Twr/.

The Supplement related to this article is available online

at doi:10.5194/wes-1-221-2016-supplement.
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