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on phase error in phase-shifting algorithms

Joanna Schmit and Katherine Creath

We present five different eight-point phase-shifting algorithms, each with a different window function.
The window function plays a crucial role in determining the phase ~wavefront! because it significantly
influences phase error. We begin with a simple eight-point algorithm that uses a rectangular window
function. We then present alternative algorithms with triangular and bell-shaped window functions
that were derived from a new error-reducing multiple-averaging technique. The algorithms with simple
~rectangular and triangular! window functions show a large phase error, whereas the algorithms with
bell-shaped window functions are considerably less sensitive to different phase-error sources. We dem-
onstrate that the shape of the window function significantly influences phase error. © 1996 Optical
Society of America
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1. Introduction

The phase-shifting technique is a powerful tool for
retrieving information about the phase ~wavefront!
encoded in a fringe pattern. The temporal phase-
shifting technique1,2 requires that at least three
fringe patterns be captured sequentially in time by a
CCD camera. Each fringe pattern ~or frame, be-
cause the image is captured by the CCD camera! is
shifted by the same amount of phase with respect to
the previous one. Typically, the phase shift between
frames equals py2. The phase is then calculated
locally at each pixel from different frames. We pre-
viously referred to this method as the n-frame
method ~n refers to the number of registered frames!.
A spatial phase-shifting3 counterpart to the temporal
phase-shifting technique also exists that requires
only one fringe pattern with proper carrier frequency
fringes introduced so that the phase shift between
consecutive pixels is equivalent to the phase shift
between frames. Analogous to the n-frame tech-
nique, we call this the n-point, method but it is also
called the spatial carrier phase-shifting technique or
direct-phase interferometry.4
Both techniques can employ the same algorithms;
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the difference, however, is that in the n-frame tech-
nique samples are taken from consecutive frames,
whereas in the n-point technique samples are taken
from consecutive pixels. The peak-to-valley ~P–V!
phase error, which can be attributed to a number of
different sources such as phase-shift miscalibration
or detector nonlinearity, is exactly the same for both
techniques; however, the character of the error dif-
fers.5 For example, the number of ripples in the
phase error due to phase-shift miscalibration approx-
imately equals twice the number of fringes in the
interferogram. Thus in the n-frame technique only
a few ripples are noticeable in the phase error be-
cause the fringes in the interferogram are typically
nulled out in the n-frame technique. However, in
the n-point techniquemany ripples occur in the phase
error because of the large number of fringes intro-
duced into the interferogram. The choice of algo-
rithm used to calculate the phase greatly affects the
kinds and magnitudes of the different error values
and even the error characteristics ~see, for example,
Ref. 6!.
Not only is the number of algorithms from which to

choose fairly large, but the number of techniques
used to derive these algorithms is also quite large.
Initially, single algorithms were reported for a par-
ticular interferometric application; only later were
whole techniques described for the derivation of spe-
cific algorithms. Today most of the algorithms as-
sume a constant and known phase shift; there do
exist techniques to derive algorithms for nonconstant
but known phase shift or constant but unknown



phase shift, but these are not discussed here. Some
popular, early techniques used the least-squares fit to
a sinusoidal function proposed by Morgan.7
Greivenkamp8 presented a more general technique
based on the least-squares fit, not necessarily deriv-
ing new algorithms but bringing together many ex-
isting methods. Womack9 transferred a temporal
technique to spatial interferometry, that emphasized
the importance of the window function that the in-
tensity is multiplied by. Larkin and Oreb10 pre-
sented a technique for designing symmetrical
algorithms based on a Fourier description of phase-
shifting interferometry that was first presented by
Freischald and Koliopoulos.11 This elegant tech-
nique permits the derivation of algorithms that sup-
press a specific harmonic of the measured signal.
Surrel12 contributed a technique based on averaging
the first and last interferogram to reduce phase error.
The averaging technique introduced by Schwider13
was the basis for our work in deriving many algo-
rithms; following Schwider’s lead, we called our tech-
nique the extended averaging technique.14 The
importance of the window function in reducing phase
error was generally agreed on by many of the above
authors, and we used the extended averaging tech-
nique to derive the window function values explicit-
ly.14 Recently de Groot15 presented a technique in
which the algorithms are derived by integer approx-
imation to the analytical window function used in
signal processing resulting in algorithms that were
highly insensitive to sources of error. We emphasize
the importance of the window function in phase-
shifting interferometry by presenting and analyzing
a few algorithms with different window functions but
a constant number of samples, thereby confirming
the influence of the window function on phase error.
To illustrate the influence of the window function

on phase error we chose eight-point algorithms with
different window functions and a py2 phase shift.
~For convenience, in this paper we refer to eight-point
algorithms, even though these algorithms may be
used in the n-frame technique as well.! The eight-
point algorithms show ~more so than algorithms with
fewer intensity samples! the influence that the win-
dow function shape has on phase error. The five
separate algorithms we constructed are character-
ized by their window functions, which are either rect-
angular, triangular, or bell shaped. The triangular
and bell-shaped functions were derived based on a
new error-reducing multiple-averaging technique
that is related to the averaging12 and extended aver-
aging techniques.14 All of these averaging tech-
niques are presented in Section 2. In section 3 we
present two equivalent sets of five eight-point algo-
rithms, and in Section 4 we discuss the influence of
the shapes of the window functions on phase error.
Finally, Section 5 contains an analysis of phase error
based on both computer simulation and real data.
We show that not only does the number of samples
determine how efficient an algorithm is, but that the
choice of the sampling window also must be con-
sidered when selecting an appropriate error-reducing
algorithm. The algorithm with a rectangular win-
dow function is the most sensitive to phase-shift mis-
calibration; the algorithms with bell-shaped window
functions most effectively reduce the effects of phase-
shift miscalibration.

2. Averaging Techniques

Phase-shifting techniques are based on the synchro-
nous detection techniques introduced into optics from
the telecommunications discipline by Bruning.16
The general algorithm for calculating the phase w~x!
of measured signal I~x! in this technique can be rep-
resented as in Eq. ~1!:

tan@w~xi!# 5 2
(
i51

M

Ii~xi!sinS2p

K
xi 1 uDh~xi!

(
i51

M

Ii~xi!cosS2p

K
xi 1 uDh~xi!

. (1)

The measured signal I~x! is multiplied by the refer-
ence signal ~sine and cosine, respectively! and the
window function, where the window function is des-
ignated as h~x!. The combination of the reference
signal and the window function is the sampling func-
tion. M designates the number of measured inten-
sity samples ~either points or frames!, 2pyK is the
assumed phase shift between samples ~also the sam-
pling period!, whereK is an integer and u is the initial
phase. Note that the signal does not have to be sam-
pled over just one period, as most algorithms assume;
however, the sums of the sampling function values in
the numerator as well as the denominatormust equal
zero.10 A wise choice of reference signal frequency,
sampling period, and initial phase will yield quite
simple algorithms that are suitable for phase-shifting
interferometry.
Phase-shifting algorithms can be derived by many

different methods. For this article we review two of
them, the averaging technique13 and the extended
averaging technique,14 and present a new one, the
multiple averaging technique. All of these tech-
niques are closely related.

A. Conventional Averaging Technique

Any phase-shifting algorithm can be presented as

tan w 5 NyD, (2)

where N and D are the numerator and the denomi-
nator of Eq. ~1!. In the averaging technique13 two
data sets taken with a py2 shift in the initial phase
are combined into a new phase algorithm @see Eq.
~3a!#.

B. Extended Averaging Technique

A sequential application of the averaging technique
to each previously derived algorithm yields a new
algorithm with reduced phase errors. This sequen-
tial application of the averaging technique we call the
extended averaging technique.14 The resulting al-
gorithms are very simple in form if the technique is
applied to algorithms with a py2 phase shift between
1 October 1996 y Vol. 35, No. 28 y APPLIED OPTICS 5643



intensity samples, because then the number of inten-
sity samples for phase calculation increases only by
one with each subsequent application of the tech-
nique. For example, if the averaging technique is
applied twice and started with theM-point algorithm
~designated Mp!, we obtain M 1 1- and then M 1
2-point algorithms in the form

~M 1 1!pu 5 Mpu 1 Mpu1py2 5
N1 1 N2

D1 1 D2
5
N9

D9
, (3a)

~M 1 2!pu 5 ~M 1 1!pu 1 ~M 1 1!pu1py2

5
N9 1 N0

D9 1 D0
5
N1 1 2N2 1 N3

D1 1 2D2 1 D3
. (3b)

The u designates an arbitrary initial phase in the
reference signal of the algorithms, and the indices 1,
2, and 3 by numerators and denominators represent
the first, second, and third sets of data.
This technique was used to derive five-point, six-

point, and seven-point algorithms,14 Eqs. ~4b!, ~4c!,
and ~4d!, from the four-point algorithm, Eq. ~4a!, with
the initial phase py4 in the reference signal. The
algorithms are given below:

4ppy4 5
I1 1 I2 2 I3 2 I4
I1 2 I2 2 I3 1 I4

, (4a)

5ppy4 5
I1 1 2I2 2 2I3 2 2I4 1 I5
I1 2 2I2 2 2I3 1 2I4 1 I5

5 4ppy4 1 4p3py4,

(4b)

6ppy4 5
I1 1 3I2 2 4I3 2 4I4 1 3I5 1 I6
I1 2 3I2 2 4I3 1 4I4 1 3I5 2 I6

5 5ppy4 1 5p3py4,

(4c)

7ppy4 5
I1 1 4I2 2 7I3 2 8I4 1 7I5 1 4I6 2 I7
I1 2 4I2 2 7I3 1 8I4 1 7I5 2 4I6 2 I7

5 6ppy4 1 6p3py4. (4d)

C. Multiple-Averaging Technique

The eight-point algorithms we present in this paper
are derived from the above algorithms by a technique
similar to the averaging technique, which we call the
multiple-averaging technique. In this technique the
algorithms are derived from averaging not two but
three ~or more! sets of algorithms for data sets shifted
by py2 as shown below:

~M 1 2!pu 5 Mpu 1 Mpu1py2 1 Mpu1p

5
N1 1 N2 1 N3

D1 1 D2 1 D3
5
N9

D9
, (5a)

~M 1 3!pu 5 Mpu 1 Mpu1py2 1 Mpu1p 1 Mpu13py2

5
N1 1 N2 1 N3 1 N4

D1 1 D2 1 D3 1 D4
5
N0

D0
. (5b)
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Note that the extended averaging technique results
in algorithms that are less sensitive to phase-shift
miscalibration than does the multiple-averaging
technique, a fact that we demonstrate in next sec-
tions. However, for our purposes in this article the
multiple-averaging technique enables us to derive
eight-point algorithms with characteristic window
functions to study the effects of the shape of window
functions on the phase error.

3. Eight-Point Algorithms

The first example of the eight-point algorithm sim-
ply employs a rectangular window function of value
1, as do most of the common algorithms ~for exam-
ple, three- and four-point algorithms!. The phase
shift between pixels ~frames! is assumed to be py2,
and the initial phase py4. With the general syn-
chronous detection algorithm given by Eq. ~1! in
which N 5 8, we obtain the eight-point algorithm
given in Eq. ~6a!, which is referred to here as the
8-RECT algorithm:

8-RECT 5
I1 1 I2 2 I3 2 I4 1 I5 1 I6 2 I7 2 I8
I1 2 I2 2 I3 1 I4 1 I5 2 I6 2 I7 1 I8

. (6a)

If the n-point technique is used, the indices refer to
the number of consecutive pixels in each set of eight
pixels; if the n-frame technique is used, the indices
refer to the number of sequentially captured
frames. Although this algorithm has no real ap-
plication, since there are many other algorithms
that require a smaller number of intensity samples
and yield better results ~for example, the Schwider–
Hariharan17,18 five-point algorithm!, we show this
window function shape as a point of reference for
the other window function choices. All the other
algorithms were derived based on the multiple-
averaging technique described briefly in Section
2.
Our next two examples of algorithms employ tri-

angular window functions. The first algorithm, the
8-TRI4 algorithm given in Eq. ~6b!, is the sum of five
four-point algorithms as in Eq. ~4a!, with shifted ini-
tial phase; the second, the 8-TRI5 algorithm given in
Eq. ~6c!, is the sum of four five-point algorithms as in
Eq. ~4b!, with shifted initial phase:

8-TRI4 5
I1 1 2I2 2 3I3 2 4I4 1 4I5 1 3I6 2 2I7 2 I8
I1 2 2I2 2 3I3 1 4I4 1 4I5 2 3I6 2 2I7 1 I8

5 4ppy4 1 4p3py4 1 4p5py4 1 4p7py4 1 4p9py4,

(6b)

8-TRI5 5
I1 1 3I2 2 5I3 2 7I4 1 7I5 1 5I6 2 3I7 2 I8
I1 2 3I2 2 5I3 1 7I4 1 7I5 2 5I6 2 3I7 1 I8

5 5ppy4 1 5p3py4 1 5p5py4 1 5p7py4. (6c)

The window functions result in the following values



at the sampling points @1, 2, 3, 4, 4, 3, 2, 1# and @1, 3,
5, 7, 7, 5, 3, 1#, respectively. The values at the sam-
pling points of these and other window functions pre-
sented in this paper are shown in Fig. 1.
The next two algorithms have bell-shaped window

functions, the 8-BELL6 algorithm in Eq. ~6d! and the
8-BELL7 algorithm in Eq. ~6e!:

Fig. 1. Window function shapes.
8-BELL6 5
I1 1 4I2 2 8I3 2 11I4 1 11I5 1 8I6 2 4I7 2 I8
I1 2 4I2 2 8I3 1 11I4 1 11I5 2 8I6 2 4I7 1 I8

5 6ppy4 1 6p3py4 1 6p5py4, (6d)

8-BELL7 5
I1 1 5I2 2 11I3 2 15I4 1 15I5 1 11I6 2 5I7 2 I8
I1 2 5I2 2 11I3 1 15I4 1 15I5 2 11I6 2 5I7 1 I8

5 7ppy4 1 7p3py4. (6e)
The values of the window functions equal @1, 4, 8, 11,
11, 8, 4, 1# and @1, 5, 11, 15, 15, 11, 5, 1#, respectively,
and are represented in Fig. 1. Worth noticing is that
the 8-BELL7 algorithm @Eq. ~6e!# belongs to the
group of algorithms derived from the four-point algo-
rithm @Eq. ~4a!# by use of the extended averaging
technique. Further application of this technique
would yield algorithms of higher-number samples,
i.e., 9, 10, and so on.
It is certainly possible to derive other eight-point

algorithms in a similar way by using a different base
algorithm, such as the one given below19:

49p0 5
2~I2 2 I3!

I1 2 I2 2 I3 1 I4
. (7)

These algorithms would show an even smaller phase
error due to phase-shift miscalibration; however,
they would be more sensitive to the second harmonic
in fringes, such as the second-order detector nonlin-
earity.13 It is especially challenging to derive algo-
rithms that are insensitive to one or more of the
higher harmonics,20 and they involve more compli-
cated window functions.
The eight-point algorithms described by Eqs.
~6a!–~6e! can be constructed in a much shorter form,
giving exactly the same phase results and saving a
bit of computational time, if they are derived from
the four-point algorithm with an initial phase of 0
@Eq. ~8!# instead of from the four-point algorithm
with an initial phase of py4 @Eq. ~4a!#:

4p0 5
I2 2 I4
I1 2 I3

. (8)

The only difference between these shorter algorithms
and the ones we presented above is in the initial
phase of the reference sine and cosine signals. If the
initial phase in the reference signals is py4, then at
each sampling point the cosine and sine functions
take an absolute value of =2y2 ~which is not visible
in the algorithms because it cancels out in the nu-
merator and denominator!. If we choose an initial
phase of zero, then every other intensity sample co-
efficient vanishes because at these points the sine or
cosine equals zero.
Figure 2 presents the reference signals of the

initial phase of 0 and py4, clearly marking their
values at the sampling points. Even though it ap-
pears that every other value of the window func-
tions vanishes for the reference signals with initial
phase 0, the window functions for both the shorter
form and the longer form presented above are the
same ~see Fig. 1!. The longer versions of the algo-
rithms were constructed simply to show in the
clearest way the shape of the window functions.
What follows below are these shorter forms of the

Fig. 2. Values of the reference signals ~designated by circles! at
the sampling points for reference signals with initial phases equal
to 0 and py4. The corresponding sample numbers are given below
each reference signal.
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eight-point algorithms:

8-RECT9 5
I2 2 I4 1 I6 2 I8
I1 2 I3 1 I5 2 I7

, (9a)

8-TRI49 5
2I2 2 4I4 1 3I6 2 I8
I1 2 3I3 1 4I5 2 2I7

5 4p0 1 4ppy2 1 4pp 1 4p3py2 1 4p0, (9b)

8-TRI59 5
3I2 2 7I4 1 5I6 2 I8
I1 2 7I3 1 5I5 2 3I7

5 5p0 1 5ppy2 1 5pp 1 5p3py2, (9c)

8-BELL69 5
4I2 2 11I4 1 8I6 2 I8
I1 2 8I3 1 11I5 2 4I7

5 6p0 1 6ppy2 1 6pp, (9d)

8-BELL79 5
5I2 2 15I4 1 11I6 2 I8
I1 2 11I3 1 15I5 2 5I7

5 7p0 1 7ppy2.

(9e)

The 8-BELL79 algorithm was derived in the same
way as the algorithm in Eq. ~6e!, namely, from the
average of two seven-point algorithms, but with ini-
tial phase 0. This seven-point algorithm was also
presented by de Groot and Deck.21 The window
function in 8-BELL7 algorithms @Eq. ~6e! and ~9e!# is
an approximation to the Hanning window as it was
shown by de Groot.15

4. Window Functions

From a mathematical point of view, the convolution
in the space domain of themeasured quasi-sinusoidal
signal with the reference sine and cosine signals can
be thought of as the Fourier transform of the mea-
sured signal. The popular fast Fourier transform
~FFT! technique introduced by Takeda22 uses the
Fourier transformation of the measured signal and
filters the spectrum to find the phase. Both the
n-point and the FFT techniques usually require only
one fringe pattern with carrier frequency fringes in-
troduced; however, the n-point technique operates in
the space domain and the FFT works in the spectrum
domain of the fringe pattern. In both techniques the
fringe pattern is not an unlimited quasi-sinusoidal
signal; the truncation of the signal results in the
convolution of the unlimited signal spectrumwith the
truncating function spectrum. The truncating func-
tion is referred to as the window function in this
paper. This convolution widens the spectrum of si-
nusoidal signals and may introduce additional high-
frequency components ~the leakage problem!. The
Fourier transform technique uses a wide window
function that is limited only by the size of the CCD
array or the aperture of the fringe pattern ~see Fig. 3!.
In contrast, the n-point technique uses a window
function equivalent in width to a few pixels or, spe-
cifically in our case, to eight pixels. As the width of
the rectangular window function increases, its spec-
5646 APPLIED OPTICS y Vol. 35, No. 28 y 1 October 1996
trum narrows and the measured signal spectrum is
represented more accurately. Therefore, the Fou-
rier transform technique may result in a higher level
of accuracy4,23 in the center of the interferogram than
the n-point technique, and this technique may be
useful in testing elements in which the outer area of
an element does not play an important role during
use. The large phase errors found at the edges of
interferograms in the FFT technique are related to
the Gibbs phenomena at the discontinuities of the
tested signal.23 However, the advantage of the
n-point technique can be its fairly uniform phase er-
ror over the entire area of the interferogram, which
avoids the large phase errors at the edges and can be
important in testing elements up to their edges. An-
other advantage of the n-point technique is its rela-
tively short computational time, which makes it
especially attractive for real-time applications.
Because the phase error depends on the character-

istics of the window function spectrum, the usual
technique is to introduce the apodization in a window
function. The Hamming or Hanning apodizations
are the most popular in the FFT technique.24,25
They significantly change the shape of the window
function, and their spectrum has a relatively narrow
major lobe and low side lobes. Similar apodizations
of the window function should certainly reduce the
errors in the n-point technique. The subject of the
importance of the window function in phase-shifting
algorithms has been raised previously.9–11 Some of
the algorithms with explicitly given values of error-
reducing window functions were presented in our
previous work.14 Recently de Groot15 presented a
method for deriving new algorithms from an integer
approximation of analytical window functions used in
signal processing. The examples he used varied not
only in the shape of the window function but also in
the number of intensity samples. Because it is
known that a larger number of intensity samples
very often results in a smaller phase error, the spe-
cific influence of the window function could not be
isolated as the only factor in reducing the phase error.
By keeping the number of samples constant and sim-
ply changing the window function, it is possible to
avoid this ambiguity and thus document the impor-
tance of the shape of the window function. Thus in
this paper we provide the algorithms for the same
number of samples, but with different window func-
tions, and analyze some of their errors.
We now look at the Fourier spectrum of the mea-

sured signal for two eight-point algorithms. The
measured sinusoidal signals are truncated, the first
by the rectangular window function ~8-RECT! and

Fig. 3. Intensity signal truncated by the rectangular window
functions in FFT and n-point techniques.



the second by the Hanning window function ~8-
BELL7!. Signals are sampled at eight points with
spatial spacing s. Two full periods of sinusoidal sig-
nal are enclosed within the window function, giving
an exact py2 change in phase from point to point as
assumed in the algorithms. The Fourier spectra of
those two modified signals, shown in Fig. 4, result in
the convolution of the window function spectra with
two delta functions at the frequency of the input si-
nusoidal signal. Because of the discrete sampling of
the input signal, the spectrum is also calculated at
discrete points, designated dots. When the ideal
phase change py2 between pixels is introduced, the
spectrum consists of a single pair of delta functions at
the frequency of the input signal ~because the rest of
the values at the discrete points of the spectrum are
at the zeros of the window function spectra!. Thus a
discrete spectrum perfectly represents an unlimited
input signal spectrum. However, when the phase
change between pixels is something other than py2,
the frequency of the measured signal changes, and no
longer are there two complete cycles of signal within
a window. In the spectrum domain the two lobes
~one in the positive and the other in the negative
frequency domain! are shifted with respect to the
discrete points of the spectrum domain, thereby in-
troducing some higher-order harmonics to the main
harmonic of the signal. The spectrum of the Han-
ning window has smaller side lobes than the spec-
trum of the rectangular window function; thus the
magnitude of unwanted higher-order harmonics will
be smaller. The small side lobes in the spectrum are
more important than its narrow main lobe because a
continuously changing phase from point to point,
which is inherent in the n-point method, will always
introduce higher harmonics.
In Section 5 we analyze the sensitivity of the eight-

point algorithms to phase-shift miscalibration in
computer simulation and show that algorithms with
bell-like window functions ~i.e., the Hanning func-

Fig. 4. Fourier spectra of signals multiplied by the 8-RECT and
8-BELL7 window functions, shown only for positive frequencies up
to the Nyquist frequency. Signals are sampled with spacing s.
The period of the measured sinusoidal signal equals 4s, and the
width of the window equals 8s. Dots represent sampling points in
each spectrum.
tion! are the least sensitive to phase-shift miscalibra-
tion. The influence of the window function shape on
phase error could be investigated in other ways, for
example, either by computer simulation6,14 or a Fou-
rier analysis of sampling functions.10,11,14 However,
regardless of the method, the same conclusions about
the algorithms’ sensitivities to different error sources
would be reached.

5. Phase Errors

In Fig. 5 we present a diagram of the P–V error due
to linear phase-shift miscalibration, which is the
most common error source in phase-shifting inter-
ferometry. The 8-RECT algorithm is really the sum
of two four-point algorithms shifted in phase by 2p;
thus it results in the same phase-error values as the
common four-point algorithm for linear phase-shift
miscalibration. These errors are very large when
compared with any eight-point algorithm with a bell-
shaped window function. The 8-BELL6 and
8-BELL7 algorithms are all less sensitive to phase-
shift miscalibration than is the Schwider–Hariha-
ran17,18 five-point algorithm. The 8-BELL7
algorithm is the least sensitive of all of the eight-
point algorithms, which indicates that the extended
averaging technique is a better way to derive error-
reducing algorithms than a multiple-averaging tech-
nique. For a phase-shift miscalibration of 20%, the
P–V phase error equals only 0.00003 of the wave-
length when the 8-BELL7 algorithm is used as shown
in Fig. 5. An error of this small scale is hardly com-
parable with the magnitude of the phase error due to
the noise encoded in the fringe pattern. Figure 6
represents the phase errors for the three least sensi-
tive eight-point ~not eight-frame! algorithms. The
errors are due to phase-shift miscalibration by 6.25%,
which is equivalent to a 2-fringe tilt miscalibration
per 128 pixels.
Figure 7 shows the phase retrieved from the real

interferogram with 8-RECT and 8-BELL7 algo-
rithms. The algorithmwith the rectangular window
function produces a phase with clearly noticeable rip-
ples owing to a phase-shifter miscalibration, but in
the phase produced by the algorithm with the bell-
like window function the ripples are not noticeable

Fig. 5. P–V phase error versus percent of phase-shift miscali-
bration.
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because they blend in with the errors due to some
kind of noise in the interferogram. If the main
source of error is noise in the interferogram, then no
regular ripples are noticeable; however, even then
the error in phase is reduced when the 8-BELL7 al-
gorithm is used. When severe phase-shift miscali-
bration occurs ~owing to any error source!, the phase
error may be so significant that the phase unwrap-
ping procedure may fail if a poor error-reducing al-
gorithm is used for phase calculation.

6. Conclusions

We presented five eight-point algorithms that differ
only in the shape of their window function. The al-

Fig. 6. Phase errors for three eight-point algorithms, due to
6.25% phase-shift miscalibration ~2-fringe tilt miscalibration!.

Fig. 7. Phase retrieved from real data with 8-RECT and 8-BELL7
algorithms.
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gorithms that use either a rectangular or a triangular
window function result in large phase errors while
the algorithms with bell-shaped window functions
are quite insensitive to phase-shift miscalibration.
The shape of the window function in the n-point al-
gorithms plays an important role in reducing phase
error. The algorithm called 8-BELL7 shows the
smallest sensitivity to different error sources. This
algorithm was derived by use of the extended aver-
aging technique,14 which indicates that this tech-
nique is an excellent method for constructing an
error-compensating algorithm. The compensation
for phase-shift miscalibration or other nonlinear er-
rors could be performed by first measuring the phase
shift at each point and then introducing the mea-
sured phase shift into an algorithm in an iterative
way26; however, this method seems to be quite time
consuming. The importance of our algorithms lies
in their high insensitivity to phase-shift miscalibra-
tion along with efficient computation. This insensi-
tivity is a significant factor in interferometers with
Fizeau cavities in which the phase shift varies with
the distance away from the axis.27–29
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