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Abstract. Several query languages have been proposed for managing
data streams in modern monitoring applications. Continuous queries ex-
pressed in these languages usually employ windowing constructs in order
to extract finite portions of the potentially unbounded stream. Explicitly
or not, window specifications rely on ordering. Usually, timestamps are
attached to all tuples flowing into the system as a means to provide or-
dered access to data items. Several window types have been implemented
in stream prototype systems, but a precise definition of their semantics
is still lacking. In this paper, we describe a formal framework for express-
ing windows in continuous queries over data streams. After classifying
windows according to their basic characteristics, we give algebraic ex-
pressions for the most significant window types commonly appearing in
applications. As an essential step towards a stream algebra, we then pro-
pose formal definitions for the windowed analogs of typical relational
operators, such as join, union or aggregation, and we identify several
properties useful to query optimization.

1 Introduction

Data streams have emerged as a modern paradigm for managing time-varying,
volatile, unpredicted and possibly unbounded information in various monitor-
ing applications. Typical examples include data generated from telecom calls,
financial tickers, sensor readings over large areas or traffic measurements. Such
information must be handled online as data items flow rapidly into the system
from multiple sources. Over this dynamic data, the system must provide timely
and incremental responses to multiple continuous queries, ideally keeping in pace
with the data arrival rate.

Compared to one-time queries in conventional DBMS’s, continuous queries
differ substantially in their semantics. Since the size of the stream is potentially
unbounded, the state of the data is not known in advance, so responses clearly
depend on the set of stream tuples available during query evaluation. Several
operations, such as aggregation or join between streams, may need special treat-
ment, e.g., previously arrived tuples must be maintained, at the expense of a sig-
nificant overhead. Obviously, since streaming data is usually retained in memory
and not physically stored on disk, it is not practically feasible to ”remember” the
entire history of rapidly accumulating stream elements due to resource limita-
tions. Besides, it is probably not worth maintaining stale tuples for long, as the
significance of each isolated item is time-decaying for most realistic applications.



To overcome such difficulties, windows have been introduced in query formu-
lation. Such constructs generally emphasize on the latest data by taking advan-
tage of an ordering among tuples, usually established through timestamp values
attached to every item. Intuitively, at any time instant, a window operator spec-
ifies a finite set of recent tuples from the unbounded stream; this finite portion of
the stream will be subsequently used to evaluate the query and produce results
corresponding to that time instant. As time advances, fresh items get included
in the window at the expense of older tuples that stop taking part in compu-
tations (and perhaps may get discarded altogether). In general, windows evolve
in a prescribed mode keeping up with the continuous arrival of data items. Cer-
tain variants have been suggested for effective stream processing, like sliding,
landmark or tuple-based windows, whereas several types have been successfully
implemented in prototype systems [1, 6, 8, 13]. However, most of these constructs
are described in an abstract manner or by giving motivating examples, without
paying particular attention to their subtle semantics.

The structure of a window clearly determines the snapshot of the dataset
over which the query will be evaluated each time. But how can the extent of
that window be defined in order to obtain a particular portion of the stream?
Should this extent be allowed to change over time and in which specific pattern?
Should window’s contents be overlapping between any two successive snapshots?
Finally, is it possible for windowing constructs to be intertwined with relational
operators and under what semantic interpretation for their results?

In this paper, we provide a foundation for window specification over data
streams with precise semantics. First, we sketch out a simple, yet quite robust
model for querying data streams that is capable enough to capture their volatile
nature. This model adheres to well-founded relational concepts and extends re-
cent approaches in data stream management. Our contributions are as follows:

• We identify certain generic properties of windows that offer a sound basis for
their taxonomy in several categories. Through these properties we can then
create a mechanism for expressing typical window variants over streams.

• We introduce a parameterized scope function as a building block that enables
effective specification of both the window’s extent and its progression across
time. Composite window types may then be defined by simply arranging
their basic features according to the semantics of the query at hand.

• We provide formal definitions of well-known relational operators combined
with windowing specifications that can be used to express queries on streams.
We further investigate characteristic properties that may prove useful to
query formulation and transformation.

The remainder of this paper is organized as follows: Section 2 presents a
framework for data stream modeling and explains the semantics of continuous
queries. In Section 3 a basic algebraic representation is introduced for windows
according to their taxonomy into distinct types. Section 4 proposes a combina-
tion of windowing constructs with certain relational operators outlining several
useful properties. Related work is briefly reviewed in Section 5. Finally, Section
6 offers conclusions and hints to future research directions.



2 A Framework for Querying Data Streams

2.1 Basic Notions on Data Streams

Items of a data stream are commonly represented as relational tuples [3], not
excluding a semistructured form [16]. Henceforth we opt for a specification of
stream items as relational tuples:

Definition 1 (Schema of tuples). The tuple schema E of streaming items is
represented as a set of elements 〈e1, e2, . . . , eN 〉 of finite arity N . Each element
ei is termed attribute with name Ai and its values are drawn from a possibly
infinite atomic data type domain Di. Every tuple is an instance of the schema
and it is described by its values at the respective attributes.

A timestamp value is attached to every streaming tuple as a means of providing
order among the data items that interminably flow into the system. It is often
convenient to represent time as an ordered sequence of distinct moments (like
clock ticks). Alternatively, simple sequence numbers may also serve as a means
for ordering tuples, i.e., a unique serial number is attached to each tuple upon
admission to the system. The following definition covers both interpretations:

Definition 2. Time Domain T is regarded as an ordered, infinite set of dis-
crete time instants τ ∈ T. A time interval [τ1, τ2] ∈ T consists of all distinct
time instants τ ∈ T for which τ1 ≤ τ ≤ τ2.

From the definition above, it follows that T may be considered similar to the
domain of natural numbers IN. The extent of each interval is also a natural
number, as it is simply the count of all distinct time instants occurring between
its bounds. At each timestamp τ ∈ T, a possibly large, but always finite number
of data elements of the stream arrive for processing [3]. Thus, multiset (bag)
semantics apply and duplicates are allowed, signifying that zero, one or multiple
identical tuples may arrive at any single instant:

Definition 3 (Data Stream). A Data Stream S is a mapping S : T → 2R that
at each instant τ ∈ T returns a finite subset from the set R of tuples with common
schema E. A supplementary attribute Aτ (not included in E) is designated as
the timestamp of tuples and takes its ever-increasing values from T.

Note that other temporal indications (e.g., attached at data sources) are still
allowed in the schema, although not explicitly considered as timestamps. In
contrast, timestamp is a distinctive attribute attached to every stream element.

From a historical perspective, a data stream may be regarded as an ordered
sequence of elements evolving in time, so its current contents are all tuples
accumulated so far. On the other hand, an instance of the stream at any distinct
time instant is a finite multiset of tuples with that specific timestamp value.

Definition 4. Current Stream Contents S(τi) of a Data Stream S at time
instant τi ∈ T is the set S(τi) = {s ∈ S : s.Aτ ≤ τi}.



Definition 5. Current Stream Instance SI(τi) of a Data Stream S at time
instant τi ∈ T is the set SI(τi) = {s ∈ S : s.Aτ = τi}.

Timestamps serve as a unique time indication for the entire tuple and also as a
common time reference for all incoming tuples. Each tuple maps to exactly one
timestamp, but multiple tuples can have identical timestamp values. Timestamps
cannot be assigned a NULL value. Hence, a total order of stream items may be
defined by taking advantage of properties inherent in Time Domain:

Definition 6. Temporal Ordering is defined as a many-to-one mapping fO :
DS → T from data type domain DS of the tuples belonging to a data stream S
to Time Domain T, with the following timestamp properties:
i) Existence: ∀ s ∈ S,∃ τ ∈ T, such that fO(s) = τ .
ii) Monotonicity: ∀ s1, s2 ∈ S, if s1.Aτ ≤ s2.Aτ , then fO(s1) ≤ fO(s2).

Temporal ordering is crucial in stream processing because data items must be
given for processing in accordance to their timestamps. As a general rule when
evaluating a continuous query at time τ , all stream tuples with timestamps upto
that particular τ must be available. Hence, no item should propagate for further
execution if its timestamp value is less than the latest tuple produced by the
system. Handling out-of-order tuples is beyond the scope of this paper.

2.2 Semantics of Continuous Queries

Intuitively, the results of a continuous query on a data stream may be considered
as a union of the sets of tuples returned from successive query evaluations over
the current stream contents at every distinct time instant. Similarly to [7, 19],
we may formally define:

Definition 7 (Continuous Query over Stream). Let Q a continuous query
submitted at time instant τ0 ∈ T on data stream S. The results Qc that would
be obtained at τi ∈ T are the union of the subsets Q(S(τ)) of qualifying tuples
produced from a series of one-time queries Q on successive stream contents S(τ):

∀ τi ∈ T, τi ≥ τ0, Qc(S(τi)) =
⋃

τ0≤τ≤τi
Q(S(τ))

The problem with this evaluation method is that it may not be practically feasi-
ble each time to compute query results by taking into account all stream contents
due to the overwhelming bulk of data that keep accumulating continuously. Peri-
odic evaluation is no better: if only intermediate stream contents are considered
in each evaluation, it may happen that newer results may cancel tuples included
in formerly given answers.

A conservative approach is to accept queries with append-only results, thus
not allowing any deletions or modifications at answers already produced. This
class of continuous queries is called monotonic [7]:

Definition 8 (Monotonic Continuous Query over Stream). A continuous
query Q applied over data stream S is characterized monotonic when

∀ τ1, τ2 ∈ T, τ1 ≤ τ2, if S(τ1) ⊆ S(τ2), then Q(S(τ1)) ⊆ Q(S(τ2)),



where Q(S(τi)) denotes results for query Q that have been produced from quali-
fying tuples of stream contents S(τi) at time instant τi.

Obviously, the above definitions can be generalized for multiple input streams.
It is important to note that monotonicity refers to query results and not to in-
coming stream items. As long as tuples may only be added to, but never dis-
carded from results, incremental evaluation of queries involving projections or
selections may be carried out as simple filters without particular complications.
However, joins or set-theoretic operations may involve stream items that have
arrived at previous time instants, so a state must be continuously maintained for
them [20]. Blocking operators, like aggregation or sorting, cannot produce even
a single tuple of their result before reading the entire input. Stateful operators,
like join or intersection, are equally problematic: in order to execute a join, all
tuples from both streams must be maintained, just in case a newly arriving data
item matches an older tuple from the other stream.

In order to bound the increasing memory requirements of query operators,
sliding windows are usually applied over the infinite streams and always return
a finite portion of the most recent data items. However, continuous queries spec-
ifying sliding windows over streams are non-monotonic, since new results are
produced but some older ones get expired due to window movement [10]. Re-
garding evaluation of sliding window queries, the interesting idea of negative
tuples [11] has been suggested as a way to cancel previously returned, but no
longer valid results. Certainly, this approach entails revision of typical query
operators to make them capable to handle positive and negative tuples alike.

The exact role of relational tables in continuous queries is another concern.
Whereas in Gigascope [13] there is no support for relations, other approaches
allow static tables (e.g., AURORA [1]) or even arbitrary updates in time-varying
relations (as in STREAM [3]). In the latter case, insertion and deletion tuples are
used to represent the changing state of such a relation. In [10] it is suggested the
notion of non-retroactive relations, whose updates affect only upcoming results
but do not alter any previously given query answers. In this work, our focus
is strictly on streams, setting aside for future research their interaction with
relations.

We think that our proposition for window semantics presented in the next
sections is flexible enough to be used under any of the aforementioned interpreta-
tions of continuous queries. Our main focus is on precise specification of windows,
i.e., stream portions that may be regarded as temporary relations where typical
operators may be applied under well-known relational semantics.

3 An Algebraic Representation for Windows

3.1 Window Semantics and Properties

In all data stream prototype systems, submission of continuous queries is always
accompanied by –mostly sliding– window specifications on any stream involved
in the query. A window is generally considered as a mechanism for adjusting



flexible bounds on the unbounded stream in order to fetch a finite, yet ever-
changing set of tuples, which may be regarded as a temporary relation.

Definition 9 (Window over Data Stream). Let WE a window with con-
junctive condition E applied at time instant τ0 ∈ T over the items of a data
stream S, i.e., over its current contents S(τ0). Then:

∀ τi ∈ T, τi ≥ τ0, WE(S(τi)) = {s ∈ S(τi) : E(s, τi) holds}

provided that | WE(S(τi)) |≤ n, for any large, but always finite n ∈ IN.

Therefore, each window is applied over the items of a single data stream S
and at every τi returns a concrete finite set of tuples WE(S(τi)) ⊂ S(τi) which is
called the window state at this time instant. When a continuous query involves
multiple streams (e.g., joins), a separate window must be specified for each one,
even if identical semantics are applied to all of them (i.e., similar expressions E).

Window specification is achieved by means of a windowing attribute [16] that
helps in establishing order among stream items. We adhere to timestamps for
ordering stream elements, so in the discussion below we designate timestamp
attribute as the one used for obtaining tuples qualifying for condition E. Con-
junctive condition E clearly depends on the windowing attribute and in our
framework it takes the form of a scope function. This condition determines the
exact structure of the window through its distinctive properties:

• upper bound: the timestamp of the most recent data item of the window,
i.e., the greatest time indication or sequence number. Note that this is not
necessarily the current timestamp, as the window may be delayed by an
offset with regard to the most recent stream tuple.

• lower bound: the timestamp of the oldest data item within the window.
• extent: the ”size” of the window, that may be expressed either as the number

of tuples included in it or as the temporal interval spanning its contents.
•mode of adjustment as time advances. This crucial property determines whether

and in what way a window changes state over time.

These properties are useful for classifying windows into distinct types accord-
ing to the following criteria that prescribe their evolution with time:

Measurement Unit. Provided that one of its bounds is specified (e.g., the
current time instant) a window can be described through its size, such that its
contents may be obtained indirectly through their relative position to the known
bound. Therefore, the scope of the window can be measured in:

• logical units, usually in timestamp values. Hence, a time-based window is
derived from the time interval spanning its contents.

• physical units, implying the number of tuples falling within window’s bounds.
Typical variants include count-based (Fig. 1a) and partitioned windows.

Most often, the upper bound is known, as it can be derived easily either from
the current timestamp value (under the logical interpretation) or the most recent
tuple of the stream (physical interpretation) [6].



Fig. 1. Typical window variants illustrated for three consecutive states at time instants
τk, τk +1, τk +2. New data items are piling up on top of previously arrived ones. Boxes
depicted with the same fill style represent tuples with identical timestamps. (a) Count-
based sliding window of size N = 6. (b) Landmark window with lower bound fixed at
τk. (c) Sliding time-based window of temporal extent ω = 2 and progression step δ = 1.
(d) Tumbling window of temporal extent ω = 2 and progression step δ = 2.

Edge Shift. Alternatively, a window can be explicitly defined by its two bounds
(or edges), which are commonly expressed as specific timestamp values for each
state. Depending on whether edges can change over time, we distinguish between:

• fixed-bound windows, where at least one of the bounds remains anchored at
a specific time instant. The other edge of the window is allowed to move
freely. It is the upper bound that is usually shifted forward in pace with
time progression, as occurs in landmark windows [8] (Fig. 1b).

• variable-bound windows, where both bounds change over time. For instance,
in sliding windows both edges proceed in tandem at the same pace such that
the window size (expressed either in time units or in tuple count) stays fixed.

Progression Step. Except for the case its bounds remain fixed, a window
changes progressively its contents either due to the arrival of new streaming
tuples or because of the advancement of time1. Therefore, transition between
any two successive states of a window may be carried out at:

• Unit step. In that case, window’s bounds advance smoothly one tuple-at-a-
time or at every discrete time instant (assuming that a global clock exists).
Overlaps should be expected between successive states of a window: when
progression step is expressed in time units (time-based sliding windows), tu-
ples with the oldest timestamp are discarded and those with the most recent

1 In general, windows may be allowed to move not only forward in time, but also
backwards. However, this approach is of little practical importance for applications
that need to process data streams online. In this paper, we assume that windows
move along the direction of increase in timestamp values.



timestamp get inserted; in general, the number of expired tuples is not neces-
sarily equal to those appended (Fig. 1c). As for count-based sliding windows,
each incoming tuple throws away the oldest one. In both cases, window’s
contents get modified only across its bounds, retaining all tuples in between.

• Hops that span multiple time instants or a specific number of tuples. De-
pending on whether this hop size is smaller or larger than the window size,
overlapping or non-overlapping window extents may be created, respectively.
For example, non-overlapping tumbling windows [1, 13] are used to get dif-
ferent portions of the stream, so that no data item takes part in calculations
twice (Fig. 1d).

Many window variants can be specified on the basis of the aforementioned
classification criteria, depending on the semantics of the respective continuous
queries. For instance, a sliding time-based window (Fig. 1c) may be needed so
that the time interval covered by its contents remains fixed, although the number
of tuples within the window might be varying over time. Besides, conjunctive
condition E that identifies qualifying tuples may be extended with additional
filtering predicates on other attributes apart from the windowing one, in a way
that value-based windows may be expressed [6]. However, the main motivation
behind windowing constructs is their combination with typical relational opera-
tors (join, aggregation, etc.), so that their windowed analogs can be specified in
continuous queries over data streams.

In the next subsections, we attempt a rigorous algebraic description of the
principal window types that have been proposed in the context of data streams,
assuming that timestamps are used as windowing attributes. We adopt from [6]
the basic discrimination in physical and logical windows, according to the unit
in which window contents are determined.

3.2 Physical Window Types

Since these windowing constructs are determined by a predefined number of
tuples, they are sliding by default, so naturally, their extent spans the most recent
stream elements (”backward”). We are not aware of any practical application
that might ask for the N data items that will be arriving after the k-th element
(”forward”), because it cannot be known in advance whether or even when this
specific tuple will be observed in the flow of the unbounded stream. In the
following, window states are determined only at single-tuple units, as it seems
unlikely to specify a slide parameter of multiple tuples in most cases.

Count-based Windows. At every time instant τ ∈ T a typical count-based
window covers the most recent N tuples of stream S:

Wn(S, τ, N) = {s ∈ S(τ) : ∃ τ1 ∈ T (τ1 ≤ τ ∧ | {s ∈ S(τ) : τ1 ≤ s.Aτ ≤ τ} |≤ N)
∧ ∀ τ2 ∈ T (τ2 < τ1 ∧ | {s ∈ S(τ) : τ2 ≤ s.Aτ ≤ τ} |> N)}

The above formula implies the method utilized to identify qualifying tuples:
intuitively, starting from the current time instant τ and going steadily backwards



in time, tuples are being obtained until their total count exceeds threshold N (cf.
Fig. 1a for a graphical representation of such a window with size N = 6 tuples).
Nevertheless, subtle issues may arise with this policy. When the contents of
count-based windows are derived through their sequence numbers [3], it must be
clear how many times possible duplicates are counted and how ties are broken
for the N -th element. A similar case, but concerning timestamped tuples, arises
in our definition above: ties may still occur when only k elements need be chosen
out of a batch of m > k tuples corresponding to the lower bound of the window,
in order to reach the predefined total count N . As a convenient workaround to
resolve both subtleties, tuples may be selected in a non-deterministic fashion, as
suggested for ROW-based windows in CQL [3].

Partitioned Windows. The semantics of this window type are applied to
the streaming tuples by first partitioning them according to a subset L =
{A1, A2, . . . , Ak} of grouping attributes, as in extended relational algebra. There-
fore, several substreams are derived, each one corresponding to an existing combi-
nation of values 〈a1, a2, . . . , ak〉 on the grouping attributes. From each resulting
partition the most recent N elements are taken and the union of these sub-
sets provides the final set of window tuples. Note that the windowing attribute
(timestamp) is not allowed to participate in the list of grouping attributes. For-
mally, this operation may be defined as follows:

Wp(S, τ, L, N) = {s ∈ S(τ) : ∀Ak ∈ L, s.Ak = ak ∧ ak ∈ Dk ∧
∧ ∃ τ1 ∈ T (τ1 ≤ τ ∧ | {s ∈ S(τ) : s.Ak = ak ∧ τ1 ≤ s.Aτ ≤ τ} |≤ N) ∧
∧ ∀ τ2 ∈ T (τ2 < τ1 ∧ | {s ∈ S(τ) : s.Ak = ak ∧ τ2 ≤ s.Aτ ≤ τ} |> N)}

In contrast to usual relational semantics, aggregate functions (like SUM, AVG,
etc.) are not applied to the partitions formed after grouping stream elements.
Instead, a subset of N tuples is obtained from each partition and not just a
single value expressing their total count. Observe that count-based windows may
be regarded as a special case of partitioned windows where all tuples of the
stream get assigned to a single partition with no grouping attributes specified.

3.3 Logical Window Types

In logical windows, the timestamp values of streaming tuples are checked for
inclusion within a prespecified temporal interval. We conveniently express this
requirement by means of a scope function that may be defined for each window
type as a mapping from Time Domain T to the domain of possible time intervals:

scope : T → {[τ1, τ2] : τ1, τ2 ∈ T, τ1 ≤ τ2}

Essentially, at every time instant the scope function returns the window bounds
(and not its actual contents), taking as parameters the properties of the respec-
tive window type (extent, progression step, etc.).

Due to lack of space, in the following we present the most representative
variants of logical windows that have been implemented for several stream pro-
totypes, although the expressiveness of this approach has a broader applicability.



Landmark Windows maintain one of their bounds fixed at a specific time
instant, letting the other follow the evolution of time. We distinguish two cases:

Lower-bounded landmark window. The lower bound (i.e., the starting time τl)
of the window is permanent, whereas the upper bound proceeds with time. If
this construct is applied at time τ0, then at any subsequent time τ ≥ τ0 ∈ T the
scope function takes the form:

scopel(τ) =
{
∅ if τ0 ≤ τ < τl

[τl, τ ] if τ0 ≤ τl ≤ τ

Therefore, streaming tuples of S with timestamps that qualify for the scope
of this landmark window are returned as its state at every time instant:

Wl(S, τ, τ0, τl) = {s ∈ S(τ) : s.Aτ ∈ scopel(τ)}

Note that this window type will keep appending new tuples indefinitely, un-
less either the query is explicitly revoked (and hence the window is cancelled) or
the stream is exhausted and no tuples enter into the system anymore.

Upper-bounded landmark window. Here it is the upper edge that has been fixed
to a future time instant, which might not yet have occurred, but it will eventually
occur due to time monotonicity. Assuming that such a window is applied at time
τ0, the scope function is as follows:

scopeu(τ) =
{

[τ0, τ ] if τ0 ≤ τ < τu

[τ0, τu] if τ0 ≤ τu ≤ τ

and the upper-bounded landmark window is defined accordingly:

Wu(S, τ, τ0, τu) = {s ∈ S(τ) : s.Aτ ∈ scopeu(τ)}

Of course, there is no point in specifying upper bounds in the past (τu < τ0).
Intuitively, as long as the upper bound has not been reached yet, the scope of
window keeps expanding. After time instant τ = τu, the scope will no longer
change, so the window will ”close” and its bounds will be fixed. For append-only
streams, this means that the contents of the upper-bounded window will there-
after be ”frozen”, like a materialized snapshot of a particular stream portion.

Fixed-band Windows. Combining the aforementioned landmark window vari-
ants, a band window function with fixed upper and lower bounds is constructed:

scopeb(τ) =

∅ if τ < τl

[τl, τ ] if τl ≤ τ ≤ τu

[τl, τu] if τu < τ

and Wb(S, τ, τl, τu) = {s ∈ S(τ) : τl ≤ τu ∧ s.Aτ ∈ scopeb(τ)}
Note that the state is not related to the moment τ0 this window is initially

applied, hence even arbitrary time intervals (”bands”) in the past may be ex-
pressed. From a semantics point of view, as soon as the current stream timestamp
τ exceeds the upper bound (third branch), window’s contents will remain un-
changed, assuming that they can be maintained in memory indefinitely.



Fig. 2. Two successive states of a sliding window at time instants τ and τ + β. This
window obtains tuples delayed by δ time units with regard to current time (i.e., lagged
elements). Since β < ω, window states (ω) may have overlapping tuples. In case β ≥ ω,
there is no longer smooth state transition, thus a tumbling window is actually applied.

Time-based Sliding Windows. This is probably the most common class of
windows over data streams, defined by means of time units (recall that physical
windows also slide as new tuples arrive). Let τ0 ∈ T be the time instant that
a continuous query is initially submitted specifying a sliding window Ws. Let
ω denote the invariable temporal extent of this window, β its progression step
and suppose that the upper bound of the window has a delay (or lag) δ with
regard to the current time instant τ . Then the scope of this sliding window may
be defined as a function of time:

scopes(τ) =


∅ if τ0 ≤ τ < τ0 + δ
[τ0, τ − δ] if τ0 ≤ τ − δ < τ0 + ω ∧ mod((τ − τ0), β) = 0
[τ − δ − ω + 1, τ − δ] if τ ≥ τ0 + δ + ω ∧ mod((τ − τ0), β) = 0
scopes(τ − 1) if mod((τ − τ0), β) 6= 0

In the most common case, the upper bound of the sliding window coincides with
the current timestamp of the stream (i.e., δ = 0), so the previous scope function
may be simplified as follows:

scopes(τ) =

 [τ0, τ ] if τ0 ≤ τ < τ0 + ω ∧ mod((τ − τ0), β) = 0
[τ − ω + 1, τ ] if τ ≥ τ0 + ω ∧ mod((τ − τ0), β) = 0
scopes(τ − 1) if mod((τ − τ0), β) 6= 0

Note that τ0, τ ∈ T are expressed in timestamp values, whereas parameters
ω, δ, β are actually sizes of time intervals (hence ω, δ, β > 0). For the sake of
clarity, all parameters may be considered as natural numbers according to the
definition of the Time Domain T, so the scope function is evaluated at discrete
time instants of T. For every time instant τ ∈ T, the qualifying tuples are
included in the window state:

Ws(S, τ, τ0, ω, β, δ) = {s ∈ S(τ) : s.Aτ ∈ scopes(τ)}

In the most general case where β < ω, overlaps are observed between the extents
of any two successive states of a sliding window, thus a subset of their contents
remains intact across states (common tuples in both ω in Fig. 2). In the mean-
time of any two successive evaluations that are β units apart, no change occurs



to the qualifying tuples. That is exactly the meaning of the recursive expression
at the last branch of the function, which provides a warranty that window’s
bounds change discontinuously at time instants that depend strictly on the pat-
tern stipulated by the progression step β. The definition allows for the existence
of ”half-filled” windows with extent less than ω at early evaluation stages, so the
window may be considered as being gradually filled with tuples. As soon as the
extent reaches its capacity, the window starts exchanging some older tuples with
newly arriving ones. Since time evolution implies an analogous change of time
intervals derived from scope, this function is by definition monotonic. Function
scope holds even for time instants in the future, thus covering all forthcoming
stream elements, no matter when they will actually arrive for processing.

Progression step β is usually set equal to the granularity of time (e.g., sec-
onds), so that the window slides smoothly in pace with the advancement of time.
In that case, the recursive branch in the above definition for the scope function
is redundant, as window’s contents are modified at every time instant.

Finally, by setting τ = NOW, ω = 1, δ = 0 and β = 1 in the definition of the
scope function, it is very easy to express an important class of sliding windows
that obtain the current instance SI(τ) of the stream, i.e., all its tuples with the
current timestamp value (in [3] the shortcut S [NOW] is used for this purpose).

Time-based Tumbling Windows. The scope function defined for sliding win-
dows is generic enough to express windows with arbitrary progression step (even
β ≥ ω). Intuitively, tumbling windows accept streaming tuples in ”batches” that
span a fixed time interval. This is particularly useful when aggregates must be
computed over successive, yet non-overlapping portions of the stream, in a way
that no tuple takes part in computations more than once [13]. Usually, a new
window state is created as soon as the previous one has ceased to exist: the
lower bound of the current state and the upper bound of its preceding one are
consecutive time instants. This variant can be derived by simply setting β = ω
at the scope function scopes of a sliding window, assuming a standard extent ω
is used. At each evaluation, disjoint stream portions of equal extent are returned
and thus window contents are obtained in a discontinuous fashion:

Wt(S, τ, τ0, ω, ω, δ) = {s ∈ S(τ) : s.Aτ ∈ scopes(τ)}

Alternatively, for several applications (e.g., traffic monitoring), different window
sizes might be needed (e.g., for peak or night hours, weekends etc.). In that case,
function scopes is still valid by replacing fixed extent ω with a time-varying ω(τ).
In [1] tumbling windows may be accompanied with user-defined predicates so as
to determine the end of temporary states, but this approach is mainly geared
towards implementation efficiency rather than query semantics.

3.4 Monotonicity of Window Types

From the discussion above, it is apparent that monotonicity varies according
to the characteristics of window types, since edge shift and progression step



clearly determine containment and expiration of timestamped tuples with regard
to the window specified. In [10] a characterization on monotonicity has been
introduced for query operators with respect to sliding windows. More specifically,
sliding windows are described as weakest non-monotonic: although new tuples
are appended to a window state pushing older ones out of it, order is always
preserved, since tuples are included into and excluded from a sliding window
(either time- or count-based) in a FIFO fashion.

Here, we will briefly comment upon monotonicity of the remaining window
variants. In particular, partitioned windows are weak non-monotonic. Although
the contents of each of its constituent substreams change in FIFO order, some
partitions may be modified more often than others. In fact, depending on the
pattern of incoming tuples, some combinations of values on the grouping at-
tributes may be observed more frequently. As a result, the expiration order of
tuples does not generally coincide to their insertion order into the window.

However, lower- and upper-bounded landmark windows are monotonic. In
either case, no tuple is ever removed from window state. Therefore, at any time
instant the window state subsumes all previous ones. Accordingly, fixed-band
windows are also monotonic, as their bounds remain intact over time.

The case appears more intricate for tumbling windows. At a first glance,
each window state has no overlapping tuples with its predecessor, so this type is
clearly non-monotonic. However, every state ceases to exist in its entirety as soon
as the new one is initiated, so it may be assumed that each participating tuple
is removed from that window at the same order it was inserted, emulating some
kind of deferred elimination. Therefore, tumbling windows may be considered as
weakest non-monotonic, exactly like their sliding counterparts.

4 Windowed Queries over Data Streams

As already pointed out, the main motivation behind the introduction of win-
dows is the necessity to unblock query operators in stream processing. In fact,
the combination of windows with relational operators creates their windowed
analogs that accept streams of timestamped tuples as input and generate tem-
porary relations as answers. If resulting tuples must be reassembled as a stream
for further processing, a converse Streamline operator (like ISTREAM, DSTREAM,
RSTREAM proposed in [3]) is needed to progressively make up the derived stream.
However, this transformation does not affect window semantics and it will not be
further examined here. Derived items are always given suitable time indications,
whose value is operation dependent. Next, we describe these windowed opera-
tors and briefly present some of their properties, but a meticulous investigation
regarding the minimal set of operators for a stream algebra is left for future
work.

4.1 Windowed Operators

Since projection and selection are neither blocking nor stateful operators, ap-
plication of windows is not strictly necessary, because both operators act like



filters over each streaming tuple. However, in many circumstances query seman-
tics either include window specification (e.g., maintain all sensor readings over
the past hour) or even impose a suitable one to facilitate query execution [3].

Windowed Projection. We define windowed projection πW

L as an operator that
applies a window2 W over the contents of a stream S and returns all qualifying
tuples retaining a restricted set of chosen attributes L = {A1, A2, . . . , Ak}:

πW

L (S(τ)) = πL (W (S(τ))) = {〈s.A1, s.A2, . . . , s.Ak, s.Aτ 〉 : s ∈ W (S(τ))}

This ”vertical” operator treats the contents of each window state as a typical
relation and it simply projects out any unnecessary attributes. Note that the
timestamp values from attribute Aτ of input tuples are attached to the resulting
ones as well.

This operation can be further extended to generalized projection, in which
expressions involving attributes, constants or arithmetic operators may be com-
puted by considering each tuple of S in turn. Occasionally, a renaming operator
may be utilized to control the names of composite expressions that appear as
attributes in derived streams, in the same sense as in relational algebra [2].

Windowed Selection. Assuming that a condition F will be applied to each
state of a window W over stream S, the selection operator can be defined as

σW

F (S(τ)) = σF (W (S(τ))) = {s ∈ W (S(τ)) : F (s) holds}

Condition F may be an atomic one, that is, either s.Ai = ai or s.Ai = s.Aj . In
the former case, the value of an attribute Ai is checked for equality to an atomic
value ai ∈ Di from its data type domain. In the latter case, Ai, Aj can be any two
distinct attributes (apart from the timestamp) in the schema of stream tuples.
Further, a generalized condition F may be defined with comparison operators
θ ∈ {=, 6=, <,≤, >,≥} or as a conjunction of atomic selections, exactly as in
relational algebra [2], since each predicate is applied over the temporary relation
derived from its respective window state. Note that the schema of each tuple is
left intact by this ”horizontal” operator, hence the original timestamp value is
retained in attribute s.Aτ for each item s at the output.

Windowed Duplicate Elimination. This operator applies a window W over
the contents of a stream S and returns the most recent appearance of each tuple,
eliminating any other identical tuple within the current extent of W :

δW(S(τ)) = δ (W (S(τ))) =
{s ∈ W (S(τ)) :6 ∃ s′ ∈ W (S(τ)),∀ Ai ∈ E, s′.Ai = s.Ai ∧ s′.Aτ ≥ s.Aτ}

Note that a more conservative strategy can be adopted, which maintains each
distinct tuple as long as its timestamp falls within window’s extent. Only when
this tuple expires, is it replaced by a more recent identical tuple [10].
2 For clarity, we henceforth eliminate conjunctive condition E in window notation.



Fig. 3. Join operation between two streams S1 and S2 with different windows specified
over each one. Each incoming tuple from either stream is tested for possible match
with every tuple in the window applied to the other stream such that potential matches
(pointed to with arrows) are returned.

Windowed Join. This symmetric binary operator may be applied between two
streams (and easily generalized for multi-way joins), but there is no restriction
that windows of the same type or the same scope must be specified over each
stream3. At each time instant τ ∈ T, the windowed join between two streams
returns the concatenation of pairs of matching tuples taken from either window
state. In particular:

S1(τ) 1
W S2(τ) = W1(S1(τ)) 1 W2(S2(τ)) = {〈s1, s2, τm〉 :

s1 ∈ W1(S1(τ)), s2 ∈ W2(S2(τ)) ∧ J(s1, s2) ∧ τm = min(s1.Aτ , s2.Aτ )}

As illustrated in Fig. 3, each newly arriving tuple within window W1 of
stream S1 is checked for possible matches against the current state of window
W2 of stream S2, and vice versa. Matching is performed according to the join
condition J involving attributes from both streams (e.g., S1.Ai = S2.Aj). If
matching tuples are found, the resulting joined element must be assigned a new
timestamp value. Several policies have been suggested: in [10] the minimum of
the two original timestamp values is given to the new tuple, with the natural
interpretation that the concatenated tuple should expire from window as soon
as one of the original tuples expire. Although this rule is acceptable from a
semantics point of view (hence we adopt it in the definition above), it can lead
to disorder among the joined tuples and to complications on further processing.
Alternatively [4], the most recent from the pair of timestamp values attached
to its constituent tuples can be chosen, as a means to preserve ordering in the
derived stream. It has also been suggested that each resulting tuple may be

3 In this paper we do not examine interaction of streams with static relational tables
(e.g., in joins), as we consider that windows are applied solely over streams.



assigned to the time instant it was produced from the join operator [6], but
this approach might be troublesome for successive joins in complex execution
plans. In all cases, the chosen timestamp value substitutes existing ones at the
concatenated tuple, so that only one timestamp attribute is retained.

Windowed Aggregation. Similarly to the respective operator in extended
relational algebra, at first a grouping of window’s tuples takes place according to
their values for those attributes specified in grouping list L = {Ai, Aj , . . . , An}.
Next, for each combination of values 〈ai, aj , . . . , an〉, an aggregation function f
(like COUNT, SUM, MIN, MAX or AVG) is applied. If no attributes are specified, then
all tuples in the window are regarded as belonging to a single group. Formally:

γfW

L (S, τ) = γf
L (W (S(τ))) = { 〈ai, aj , . . . , an, f(ai, aj , . . . , an), τm〉 : τm = τ ∧

∀ Ak ∈ L, ak ∈ Dk, s ∈ W (S(τ)) ∧ ak = s.Ak}

Note that the current time instant (assuming a global system clock exists) is
attached to the resulting tuple as its timestamp. Alternatively, the most recent
timestamp among all window state elements may be used, so that ordering can
be achieved for the operator’s output. More adequately, the min(s.Aτ ) among
all current tuples s ∈ W (S(τ)) participating in a group may be assigned as the
timestamp τm for this group, but that may cause disorder to the derived stream.

Windowed Set-theoretic Operations. As it will become obvious from the
following algebraic expressions, set-theoretic operations on data streams adhere
to bag semantics as in relational algebra [9]. Therefore, we extent tuple schema
with a positive integer value k that counts the number of duplicate stream el-
ements within each window state. In the following, we denote as 〈s, k〉 a bag
(multiset) where tuple s appears k times. Operations like Windowed Union, Win-
dowed Intersection, and Windowed Difference are applied at each instant τ ∈ T
over the respective window states (even of diverse specifications), provided that
both streams involved in these operations must have identical schemata:

S1(τ)
⋃
W

S2(τ) = W1(S1(τ))
⋃

W2(S2(τ)) = {〈s, τ, k〉 : ∃ k1, k2 ∈ IN,

( 〈s, k1〉 ∈ W1(S1(τ)) ∨ 〈s, k2〉 ∈ W2(S2(τ)) ) ∧ k = k1 + k2 ∧ k 6= 0}

S1(τ)
⋂
W

S2(τ) = W1(S1(τ))
⋂

W2(S2(τ)) = {〈s, τ, k〉 : ∃ k1, k2 ∈ IN,

〈s, k1〉 ∈ W1(S1(τ)) ∧ 〈s, k2〉 ∈ W2(S2(τ)) ∧ k = min(k1, k2) ∧ k 6= 0}

S1(τ) W S2(τ) = W1(S1(τ))−W2(S2(τ)) = {〈s, τ, k〉 : ∃ k1, k2 ∈ IN,
〈s, k1〉 ∈ W1(S1(τ)) ∧ 〈s, k2〉 ∈ W2(S2(τ)) ∧ k = max(0, k1 − k2) ∧ k 6= 0}

Observe that these operators essentially treat all copies of a tuple as being
distinct to each other, so they simply manipulate their number of occurrences.



Also note that the timestamp attached to resulting tuples is the time instant
of their evaluation, as existing timestamps are not taken into account when
checking for duplicates. This might be reasonable since window contents are
treated as transitory multisets. Alternatively, the k most recent (or the k older)
tuples of each multiset may be returned each time, with the drawback of un-
synchronized results produced from successive window states. Generalization of
windowed union and intersection for more than two stream inputs is trivial.

4.2 Properties of Windowed Operators

Due to lack of space, we present just some indicative properties of the windowed
operators defined previously, so as to emphasize their usefulness in query rewrit-
ing. First, it is obvious that projection is commutative with both logical and
physical windows, that is, πL (WE(S(τ))) = WE(πL(S(τ))).

Selection commutes with logical time-based windows only, i.e., σF (WE(S(τ)))
= WE(σF (S(τ))), but not physical ones [3]. Evidently, the state of a count-based
window may contain different items if selection has formerly been applied to the
stream. Similarly, duplicate elimination also commutes solely with logical win-
dows, i.e., δ (WE(S(τ))) = WE(δ(S(τ))).

On the other hand, stateful operators like joins, intersections or aggregates,
generally do not commute with any type of windows. Still, windowed analogs of
binary operators have some interesting properties:
Rewriting Rules for Windowed Joins.

i) Commutative: S1(τ) 1
W S2(τ) = S2(τ) 1

W S1(τ)

ii) Associative: (S1(τ) 1
W S2(τ)) 1

W S3(τ) = S1(τ) 1
W (S2(τ) 1

W S3(τ))

iii) Distributive over selection: σF (S1(τ) 1
W S2(τ)) = σF (S1(τ)) 1

W σF (S2(τ))
Similarly to selections, this property holds for logical windows only.

iv) Distributive over projection: πL(S1(τ) 1
W S2(τ)) = πL(πL1(S1(τ)) 1

W πL2(S2(τ)))
Attribute lists L1 and L2 used for the separate projections over each stream
must include attributes in list L and attributes involved in join conditions.

As for Windowed Union and Windowed Intersection, commutativity and as-
sociativity hold, but not distribution over selection. Note that union is not a
blocking operator for streams, since its result may be produced in an incremen-
tal fashion by simply merging the current instances SI(τ) of incoming streams.

5 Related Work

Stream processing has become a very fertile topic for database researchers over
the past few years, but here we review issues mostly relative to continuous queries
and window semantics. The first notion of continuous queries over append-only
databases appeared in Tapestry [19] as a means to provide timely responses by



utilizing periodic query execution and identifying several rewriting rules for in-
cremental evaluation. In [7], this approach was extended such that continuous
semantics could deal with more involved cases, i.e., when deletions or modifi-
cations are allowed in the database, and not just insertions. Previous work in
sequence databases [18] has provided useful semantics and a declarative language
for managing ordered relations, but it is not too expressive for continuous queries
over infinite streams. Besides, issues such as temporal modeling, ordering and
indexing have been extensively studied in the context of temporal databases [12].
In [14] a temporal foundation for a stream algebra is attempted, which makes a
distinction between logical and physical operator levels. Transformation rules are
provided between a logical level that refers to query specification and a physical
level that covers implementation issues. In terms of windows, only sliding and
fixed variants are supported.

There have been several proposals for a query language over data streams.
The declarative Continuous Query Language (CQL), which is being developed
for the STREAM prototype [3], supports management of both dynamic streams
and updatable relations and introduced mappings between them. CQL adopts
semantics for queries and windows that are closest in spirit to ours. A more
detailed approach on stream and query semantics is provided in [5], but win-
dowing issues are covered briefly for tuple-based and time-based sliding win-
dows only. StreaQuel is a SQL-like query language that is being developed for
the TelegraphCQ project [8], although a subset of its functionality has been im-
plemented so far. At present, continuous queries in TelegraphCQ may only be
specified through time-based sliding windows, but there are plans to support
more window variants (landmark, fixed, band). Several window types have also
been implemented in Aurora [1], a prototype system that assumes a work-flow
paradigm for data streams, instead of a relational one. Apart from windowed
versions of join and sort operations, the main focus is on computing aggregates
through sliding and tumbling windows. Gigascope [13] is a system for managing
network flow in large data communication networks, where all stream tuples in-
clude an ordering attribute, exactly as in sequence databases. No windows are
explicitly defined in its stream-only language GSQL, but their semantics can
be indirectly expressed into constraints by analyzing the timestamps of input
streams and query properties.

Most recently, window semantics are briefly touched in [16] in a more general
setting for data stream representation, whereas a more detailed examination of
window aggregates is proposed by the same authors in [15]. In brief, they at-
tach explicit identifiers to all window states created during processing and they
maintain the window states where each tuple actually participates in. This is per-
formed by means of a special function that is the inverse of the one returning the
extent. In essence, an additional attribute is attached to the grouping list used
for aggregation; hence, windowed aggregation reduces to a simple relational one.
One of their goals is to deal with disorder in incoming stream elements, hence
they accept as windowing attribute any one with a totally ordered domain, i.e.,
not only timestamps or sequence numbers. Further, their view focuses mostly on



aggregates, and it covers only sliding, landmark and partitioned windows. The
authors in [10] distinguish time-evolving streams from relational tables in order
to derive update patterns for continuous queries. These patterns are classified
according to monotonicity, in order to develop suitable physical query plans for
processing and data structures for state maintenance. However, that insightful
framework is limited to time-based sliding windows only, with no formal founda-
tions. Although we set out with a similar overall approach on window semantics,
we differ substantially in the development of window formalization. We avoid to
assign identifiers to transient window states, since we think that it relates mostly
to optimization issues rather than query semantics. We do not focus strictly on
window interaction with aggregates, but we tackle all main relational opera-
tions. Further, we provide a detailed description of windows’ properties and rich
semantics for the most typical variants.

6 Conclusions and Future Work

In this paper we developed a foundation with clear semantics for specifying win-
dows over data streams. To the best of our knowledge, our approach is the first to
determine several common properties for windows, presenting a sound taxonomy
of the most significant variants proposed in the literature. In order to overcome
subtle intricacies, we introduced a generic scope function as a building block
for effective specification of both the window’s extent and its progression across
time. More composite window types can then be defined by simply arranging
their basic characteristics in consistency with query semantics. Further, our al-
gebraic formulation for the windowed analogs of principal relational operators
is of particular importance as a mechanism for expressing queries on streams
and checking for syntactic equivalences. Overall, we believe that this approach
is an essential step towards creating an algebra and a query language for man-
aging data streams. Of course, several demanding topics remain open for future
research, such as inclusion of relations or completeness of stream operators.

We are currently implementing (in C++) several operators to verify feasibil-
ity of our semantic foundations. We have begun developing a simplified stream
processing engine for submitting continuous queries, which, of course, is far from
a full-fledged DSMS. As of the time of writing this paper, all window variants
have been successfully constructed, as well as windowed implementations for se-
lection, projection and join in order to support typical SPJ continuous queries.
Encouraged by these positive indications, we are in the process of gradually in-
corporating more operations, particularly aggregation and duplicate elimination.

We also believe that this framework is a promising area for research con-
cerning multidimensional streams. In connection to our preliminary work [17],
we further plan to investigate modeling of moving objects, introducing alge-
braic constructs for space-based windows and developing operators for typical
spatiotemporal queries, such as range or nearest-neighbor search. Finally, shared
execution of various spatiotemporal predicates and window subsumption in mul-
tiple dimensions are considered most challenging issues in such a dynamic setting.
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[1] D.J. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee, M. Stone-
braker, N. Tatbul, and S. Zdonik. Aurora: a New Model and Architecture for Data
Stream Management. VLDB Journal, 12(2):120-139, August 2003.

[2] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,
1995.

[3] A. Arasu, S. Babu, and J. Widom. The CQL Continuous Query Language: Seman-
tic Foundations and Query Execution. VLDB Journal, 2006 (to appear).

[4] A. Ayad and J. Naughton. Static Optimization of Conjunctive Queries with Sliding
Windows over Data Streams. In ACM SIGMOD, pp. 419-430, June 2004.

[5] A. Arasu and J. Widom. A Denotational Semantics for Continuous Queries over
Streams and Relations. ACM SIGMOD Record, 33(3):6-12, September 2004.

[6] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and Issues in
Data Stream Systems. In ACM PODS, pp. 1-16, May 2002.
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