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Abstract
The windowed linear canonical transform is a natural extension of the classical
windowed Fourier transform using the linear canonical transform. In the current work,
we first remind the reader about the relation between the windowed linear canonical
transform and windowed Fourier transform. It is shown that useful relation enables us
to provide different proofs of some properties of the windowed linear canonical
transform, such as the orthogonality relation, inversion theorem, and complex
conjugation. Lastly, we demonstrate some new results concerning several
generalizations of the uncertainty principles associated with this transformation.
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1 Introduction
As it is well known, the classical windowed Fourier transform (WFT) is a useful mathe-
matical tool, which has been broadly studied in quantum physics, signal processing and
many other fields of science and engineering. In recent years, a number of efforts have
been made with an increasing interest in expanding various types of transformations in
the context of the linear canonical transform (LCT), we refer the reader to the papers [1–
4]. Some authors [5–7] have introduced an extension of the WFT in the LCT domain,
the so-called windowed linear canonical transform (WLCT). The generalized transform
is built by including the Fourier kernel with the LCT kernel in the definition of the win-
dowed Fourier transform. They also have investigated its essential properties like linearity,
orthogonality relation, inversion theorem, and the inequalities.

In [8], the author has discussed that the fractional Fourier transform is intimately related
to the Fourier transformation. According to this idea, some properties of the fractional
Fourier transform can be easily obtained using the basic connection between the frac-
tional Fourier transform and Fourier transform. In [9], the authors have investigated the
fundamental properties of the continuous shearlet transforms using the direct interaction
between the Fourier transform and shearlet transform. In this work, we developed this
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approach within the framework of the linear canonical transform. We have provided dif-
ferent proofs of the WLCT properties like the orthogonality relation, inversion theorem,
and complex conjugation using the direct interaction among the windowed linear canon-
ical transform, the windowed Fourier transform and the Fourier transform, the proofs of
which are simpler than those the authors proposed in [7]. As we know, the uncertainty
principle is one of the fundamental results of the WLCT, which explains how an original
function interacts with its WLCT. Therefore, we have proposed several versions of the
uncertainty principles associated with this transformation, which are quite different from
those investigated in [5, 7] as well as in [10].

The present work is structured in the following fashion. In Sect. 3, we provided a brief
review of the linear canonical transform and basic notations that will be useful later. Sec-
tion 4 is a part of the core of the article. This section presents the basic relation between
the windowed linear canonical transform and windowed Fourier transform. In it, some
famous properties for the windowed linear canonical transform are proved using this re-
lation. Section 5 is also a part of the core of the article. This section is devoted to some gen-
eralizations of the uncertainty principles related to the windowed linear canonical trans-
form. Lastly, the summary of this work is included in Sect. 6.

2 Generalities
In this segment, we state the definition of the linear canonical transform (LCT) and its
useful properties, as well as the basic notations, which will be used in the derivation of the
results of this work. For a detaled information on this transform, we refer to [11–15].

Definition 2.1 Let B = (a, b, c, d) =
[ a b

c d

] ∈ R
2×2 be a matrix parameter such that |B| = 1.

The LCT of a function f ∈ L1(R) is expressed as

CB{f }(w) =

⎧
⎨

⎩

∫
R

f (x)KB(w, x) dx, b �= 0,√
dei cd

2 w2 f (dw), b = 0,
(1)

where KB(w, x) is given by

KB(w, x) =
1√
2πb

e
i
2 ( a

b x2– 2
b xw+ d

b w2– π
2 ). (2)

It is evident that relation (2) above fulfills

KB–1 (x, w) = KB(w, x) =
1√
2πb

e– i
2 ( a

b x2– 2
b xw+ d

b w2– π
2 ).

From equation (1), it can be observed that for b = 0 the LCT of a signal is a chirp product.
Therefore, in the current work, we always consider the case b > 0.

It is worth noting that for B = (a, b, c, d) = (0, 1, –1, 0), equation (1) can be expressed as

F{f }(w) =
∫

R

f (x)e–ixw dx, (3)
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leading to the definition of the Fourier transform times 1√
2π i and providing that the infinite

integral exists. The inverse LCT is given by

f (x) =
∫

R

CB{f }(w)KB–1 (x, w) dw

=
∫

R

CB{f }(w)
1√
2πb

e– i
2 ( a

b x2– 2
b xw+ d

b w2– π
2 ) dw. (4)

The direct interaction between the LCT and the Fourier transform (FT) is described by

√
2πbei π

4 e– id
2b w2CB{f }(w) = F

{
e

ia
2b x2

f
}
(

w
b

)
. (5)

Definition 2.2 Given f a measurable function on R and 1 ≤ r < ∞, define

‖f ‖Lr (R) =
(∫

R

∣
∣f (x)

∣
∣r dx

)1/r

< ∞,

‖f ‖L∞(R) = ess sup
x∈R

∣
∣f (x)

∣
∣ < ∞. (6)

For r = 2, we get

〈f , g〉L2(R) =
∫

R

f (x)g(x) dx and ‖f ‖2
L2(R) = 〈f , f 〉L2(R).

Based on the above definition we state the following fact, which is known as Parseval’s
formula and Planchel’s formula, respectively.

Lemma 2.1 For every f , g ∈ L2(R), the following relation holds:

〈f , g〉L2(R) =
〈
CB{f },CB{g}〉L2(R), (7)

and

‖f ‖2
L2(R) =

∥
∥CB{f }∥∥2

L2(R). (8)

The next result will be useful in this paper.

Theorem 2.2 ([7]) Let 1 ≤ r ≤ 2 and s be such that 1
r + 1

s = 1. Then for all g ∈ Lr(R), it
holds

∥∥CB{g}∥∥Ls(R) ≤ ‖g‖Lr (R). (9)

It is straightforward to see that for r = 1, we get

∥∥CB{g}∥∥L∞(R) ≤ ‖g‖L1(R). (10)
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3 Windowed linear canonical transform (WLCT)
Below, we shortly introduce the windowed linear canonical transform (WLCT), which
was studied in [5–7, 16].

Definition 3.1 Let φ ∈ L2(R) be a non-zero window function. The WLCT of f ∈ L2(R)
with respect to φ denoted by GB

φ is given by

GB
φ f (w, v) =

1√
2πb

∫

R

f (x)φ(x – v)e
i
2 ( a

b x2– 2
b xw+ d

b w2– π
2 ) dx (11)

for (x, v) ∈R×R.

The relation of the WLCT to the Fourier transform takes the form

GB
φ f (w, v) =

e–i π
4√

2πb
ei d

2b w2
∫

R

f (x)φ(x – v)ei a
2b x2

e–i xw
b dx

=
e–i π

4√
2πb

ei d
2b w2

F
{

e
a
b x2

fTvφ̄
}
(

w
b

)
, (12)

where the shifting operator Tvφ̄ is expressed as

Tvφ̄(x) = φ̄(x – v).

The relation (12) above is equivalent to

√
2πbei π

4 e–i d
2b w2

GB
φ f (w, v) = F

{
e

a
b x2

fTvφ̄
}(w

b

)
. (13)

Some useful consequences of the above definition are collected as the following:
• Especially, for B = (a, b, c, d) = (0, 1, –1, 0), Definition 3.1 changes to the classical WFT

definition, namely,

GB
φ f (w, v) =

1√
2π i

Gφ f (w, v),

where

Gφ f (w, v) =
∫

R

f (x)φ(x – v)e–ixw dx, (14)

which means that

Gφ f (w, v) = F{fTvφ̄}(w). (15)

• If we take the Gaussian signal as φ in (11), it is often called the Gabor linear canonical
transformation.

• It is straightforward to verify that

GB
φ f (w, v) = CB{fTvφ̄}(w), (16)
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which describes the connection between the windowed linear canonical transform
and linear canonical transform.

4 Essential properties of windowed linear canonical transform
We need the following simple lemma, which will be useful in deriving results in this
work. It demonstrates the interaction between the windowed linear canonical transform
(WLCT) and windowed Fourier transform.

Lemma 4.1 ([7]) The WLCT of a signal f ∈ L2(R) with B = (a, b, c, d) can be changed to the
WFT via

e– id
2b w2

GB
φ f (w, v) = Gφ f̌

(
w
b

, v
)

, (17)

where

f̌ (x) =
e–i π

4√
2πb

e
ia
2b x2

f (x). (18)

Let us now build the orthogonality property and inversion theorem associated with the
WLCT by applying the direct connection among the WLCT, WFT, and FT (in comparison
with [7]).

Theorem 4.2 Let φ,ψ be two window functions related to the LCT. For each f , g ∈ L2(R),
one has

∫

R

∫

R

GB
φ f (w, v)GB

ψg(w, v) dw dv = 〈φ̄, ψ̄〉L2(R)〈f , g〉L2(R). (19)

In particular,
∫

R

∫

R

∣
∣GB

φ f (w, v)
∣
∣2 dw dv = ‖φ‖2

L2(R)‖f ‖2
L2(R). (20)

Proof With the help of the orthogonality relation for the WFT (see [17]), we obtain

1
2π

∫

R

∫

R

Gφ f (w, v)Gψg(w, v) dw dv = 〈φ̄, ψ̄〉L2(R)〈f , g〉L2(R). (21)

With (15), the relation (21) may be expressed as

1
2π

∫

R

∫

R

F{fTvφ̄}(w)F{gTvψ̄}(w) dw dv = 〈φ̄, ψ̄〉L2(R)〈f , g〉L2(R). (22)

Equation (22) may be rewritten as

1
2π

∫

R

∫

R

F
{

e
ia
2b x2

fTvφ̄
}

(w)F
{

e
ia
2b x2 gTvψ̄

}
(w) dw dv = 〈φ̄, ψ̄〉L2(R)

〈
e

ia
2b x2

f , e
ia
2b x2

g
〉
L2(R).

Putting w = w
b , we can write the above identity in the form

1
2πb

∫

R

∫

R

F
{

e
ia
2b x2

fTvφ̄
}(w

b

)
F
{

e
ia
2b x2 gTvψ̄

}(w
b

)
dw dv = 〈φ̄, ψ̄〉L2(R)〈f , g〉L2(R). (23)
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By virtue of (13), the left-hand side of (23) takes the form

∫

R

∫

R

ei π
4 e–i d

2b w2
GB

φ f (w, v)ei π
4 e–i d

2b w2 GB
ψg(w, v) dw dv = 〈φ̄, ψ̄〉L2(R)〈f , g〉L2(R). (24)

Hence,

∫

R

∫

R

GB
φ f (w, v)GB

φ f (w, v) dw dv = 〈φ̄, ψ̄〉L2(R)〈f , g〉L2(R),

and the proof is complete. �

Let us implement Lemma 4.1 to derive a basic property of the WLCT.

Theorem 4.3 If a function f ∈ L2(R) and φ is real-valued, then we have

GB
φ f̄ (w, v) = GB–1

φ f (w, v). (25)

Proof By including f̌ into the complex conjugate theorem for the windowed Fourier trans-
form (see [17]) defined by (18), we see that

Gφ
ˇ̄f
(

w
b

, v
)

= Gφ f̌
(

w
–b

, v
)

. (26)

In view of (17), the expression on the left of (26) above can be expressed as

e– id
2b w2

GB
φ f̄ (w, v) = Gφ

ˇ̄f
(

w
b

, v
)

, (27)

and thus, we obtain

e– id
2b w2

GB
φ f̄ (w, v) = Gφ f̌

(
w
–b

, v
)

. (28)

From equations (14) and (28), we observe that

GB
φ f̄ (w, v) = e

id
2b w2

Gφ f̌
(

w
–b

, v
)

= e
id
2b w2

∫

R

e–i π
4√

–2πb
e– ia

2b x2 f (x)φ(x – v)ei xw
b dx

= e
id
2b w2

∫

R

ei π
4√

2πb
e– ia

2b x2 f (x)φ(x – v)ei xw
b dx

=
∫

R

f (x)φ(x – v)
1√
2πb

e– i
2 ( a

b x2– 2
b xw+ d

b w2– π
2 ) dx

= GB–1
φ f (w, v),

which was to be proved. �
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Theorem 4.4 Let φ,ψ be two window functions related to the LCT. For any f ∈ L2(R), one
has

f (x) =
1

〈φ,ψ〉L2(R)

∫

R

∫

R

GA
φ f (w, v)KB–1 (w, x)ψ(x – v) dw dv. (29)

Proof Due to the inversion theorem for the WFT, we obtain

f (x) =
1

2π〈φ,ψ〉L2(R)

∫

R

∫

R

Gφ f (w, v)eiwxψ(x – v) dw dv

=
1

2π〈φ,ψ〉L2(R)

∫

R

∫

R

F{fTvφ̄}(w)eiwxψ(x – v) dw dv. (30)

According to (13), we see that

e
ia
2b x2

f (x) =
1

2π〈φ,ψ〉L2(R)

∫

R

∫

R

F
{

e
ia
2b x2

fTvφ̄
}

(w)eiwxψ(x – v) dw dv

=
1

2πb〈φ,ψ〉L2(R)

∫

R

∫

R

F
{

e
ia
2b x2

fTvφ̄
}(w

b

)
ei wx

b ψ(x – v) dw dv

=
1

2πb〈φ,ψ〉L2(R)

∫

R

√
2πbei π

4 e–i d
2b w2

GB
φ f (w, v)ei wx

b ψ(x – v) dw dv. (31)

The above relation can be expressed in the form

f (x) =
1

〈φ,ψ〉L2(R)

∫

R

∫

R

GA
φ f (w, v)

1√
2πb

e– i
2 ( a

b x2– 2
b xw+ d

b w2– π
2 )ψ(x – v) dw dv

=
1

〈φ,ψ〉L2(R)

∫

R

∫

R

GA
φ f (w, v)KB–1 (w, x)ψ(x – v) dw dv. (32)

The proof is complete. �

5 Inequalities for windowed linear canonical transform
We first state the following result, which describes the Hausdorff–Young inequality related
to the WLCT.

Theorem 5.1 (WLCT Hausdorff–Young) For any 1 ≤ r ≤ 2 such that 1
r + 1

s = 1. Suppose
that φ in Ls(R) and f in Lr(R), then we have

∥∥GB
φ f (w, v)

∥∥
Ls(R) ≤ ‖φ‖Ls(R)‖f ‖Lr (R). (33)

Proof We assume that ‖φ‖Ls(R) = 1. An application of the identity (10) together with the
identity (16) will lead to

∥∥GB
φ f (w, v)

∥∥
L∞(R) =

∥∥CB{fTvφ̄}∥∥L∞(R)

≤ ‖fTvφ̄‖L1(R)

≤ ‖f ‖L1(R)‖φ‖L∞(R)

= ‖f ‖L1(R). (34)
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For r = 2, we obtain

∥∥GB
φ f (w, v)

∥∥
L2(R) = ‖φ‖L2(R)‖f ‖L2(R) ≤ ‖f ‖L2(R), (35)

and applying Riesz–Thorin interpolation theorem yields

∥
∥GB

φ f (w, v)
∥
∥

Ls(R) ≤ ‖f ‖Lr (R). (36)

Let φ ∈ Lr(R) be a window function and putting ψ = φ

‖φ‖Ls(R)
, then we immediately get

GB
ψ f =

1
‖φ‖Ls(R)

GB
φ f . (37)

From (36), we conclude that

∥∥GB
ψ f (w, v)

∥∥
Ls(R) ≤ ‖f ‖Lr (R). (38)

This implies that

∥
∥GB

φ f (w, v)
∥
∥

Ls(R) ≤ ‖φ‖Ls(R)‖f ‖Lr (R), (39)

and the proof is complete. �

We derive the following theorem, which is little different from those proposed in the
paper [5].

Theorem 5.2 Let φ be a window function belonging to L2(R) such that ‖φ‖L2(R) = 1. Let
f ∈ L2(R) be a function with ‖f ‖L2(R) = 1. If

∫ ∫

V

∣
∣GB

φ f (w, v)
∣
∣2 dw dv ≥ 1 – ε, (40)

then for every ε ≥ 0 one has

μ(V ) ≥ √
2πb(1 – ε). (41)

Here V ⊆ R×R is a measurable subset, and μ(V ) is the Lebesgue measure of V .

Proof Applying the Cauchy–Schwarz inequality results in

∣∣GB
φ f (w, v)

∣∣ =
∣
∣∣
∣

1√
2πb

∫

R

f (x)φ(x – v)e
i
2 ( a

b x2– 2
b xw+ d

b w2– π
2 ) dx

∣
∣∣
∣

≤ 1√
2πb

(∫

R

∣∣f (x)
∣∣2 dx

) 1
2
(∫

R

∣∣φ(x – v)
∣∣2 dx

) 1
2

=
1√
2πb

‖f ‖L2(R)‖φ‖L2(R), (42)
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which implies that

1 – ε ≤
∫ ∫

V

∣
∣GB

φ f (w, v)
∣
∣2 dw dv ≤ ∥

∥GB
φ f

∥
∥2

L∞(R)μ(V ) ≤ 1√
2πb

μ(V ), (43)

This is the desired result. �

Theorem 5.3 Let φ,ψ be two window functions, and f ∈ L2(R), then for all r ∈ [1,∞), we
have

(∫

R

∫

R

∣
∣GB

φ f (w, v)GB
ψg(w, v)

∣
∣r dw dv

) 1
r

≤
(

1
2πb

) r–1
r

‖f ‖L2(R)‖g‖L2(R)‖φ‖L2(R)‖ψ‖L2(R). (44)

Proof According to the Cauchy–Schwarz inequality, we obtain

∫

R

∫

R

∣
∣GB

φ f (w, v)GB
ψg(w, v)

∣
∣dw dv

≤
(∫

R

∫

R

∣
∣GB

φ f (w, v)
∣
∣2 dw dv

) 1
2
(∫

R

∫

R

∣
∣GB

ψg(w, v)
∣
∣2 dw dv

) 1
2

. (45)

By virtue of (20), we see that

∫

R

∫

R

∣∣GB
φ f (w, v)GB

ψg(w, v)
∣∣dw dv ≤ ‖f ‖L2(R)‖g‖L2(R)‖φ‖L2(R)‖ψ‖L2(R). (46)

Thus,

(∫

R

∫

R

|GB
φ f (w, v)

∣∣GB
ψg(w, v)

∣∣r dw dv
) 1

r

≤ ∥
∥GB

φ fGB
ψg

∥
∥

r–1
r

L∞(R×R)

(∫

R

∫

R

∣
∣GB

φ f (w, v)GB
ψg(w, v)

∣
∣dw dv

) 1
r

≤
(

1
2πb

‖f ‖L2(R)‖φ‖L2(R)‖g‖L2(R)‖ψ‖L2(R)

) r–1
r (‖f ‖L2(R)‖g‖L2(R)‖φ‖L2(R)‖ψ‖L2(R)

) 1
r

=
(

1
2πb

) r–1
r

‖f ‖L2(R)‖g‖L2(R)‖φ‖L2(R)‖ψ‖L2(R), (47)

which completes the proof of Theorem 5.3 as desired. �

As an easy consequence of Theorem 5.3 mentioned above, we get the following result.

Corollary 5.4 Let φ,ψ be two window functions. Then for every f ∈ L2(R) with r ∈ [2,∞),
one has

(∫

R

∫

R

∣∣GB
φ f (w, v)

∣∣r dw dv
) 1

r
≤

(
1

2πb

) r
2 –1

r
‖f ‖L2(R)‖φ‖L2(R). (48)
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Proof For r = ∞, we have

∣∣GB
φ f (w, v)

∣∣ ≤ 1
2πb

‖f ‖L2(R)‖φ‖L2(R). (49)

For all r ∈ [1,∞), it holds

(∫

R

∫

R

∣∣GB
φ f (w, v)

∣∣2r dw dv
) 1

r
≤

(
1

2πb

) r–1
r

‖f ‖2
L2(R)‖φ‖2

L2(R). (50)

Now putting s = 2r ∈ [2,∞) yields

(∫

R

∫

R

∣
∣GB

φ f (w, v)
∣
∣s dw dv

) 2
s
≤

(
1

2πb

) s–2
s

‖f ‖2
L2(R)‖φ‖2

L2(R). (51)

Hence,

(∫

R

∫

R

∣∣GB
φ f (w, v)

∣∣s dw dv
) 1

s
≤

(
1

2πb

) s
2 –1

s
‖f ‖L2(R)‖φ‖L2(R). (52)

We thus finish the proof. �

Below, we obtain an immediate generalization of Theorem 5.2 in the following form.

Theorem 5.5 With the notations of Theorem 5.2. For all r > 2, the following inequality
holds

μ(V ) ≥ (1 – ε)
r

(r–2) (2πb). (53)

Proof Applying the Hölder inequality, we easily obtain

1 – ε ≤
∫ ∫

V

∣∣GB
φ f (w, v)

∣∣2 dw dv

≤
(∫

R

∫

R

∣∣GB
φ f (w, v)

∣∣2. r
2 dw dv

) 2
r
(∫

R

∫

R

χV (w, v)
r

r–2 dw dv
) r–2

r
, (54)

where χV denotes the indicator function of the set V . Substituting relation (48) into the
first term in the right-hand side of the equation (54), we see that

1 – ε ≤
((

1
2πb

) r
2 –1

r
‖f ‖L2(R)‖φ‖L2(R)

)2(
μ(V )

) r–2
r . (55)

For all r > 2, we get

1 – ε ≤
(

1
2πb

) r–2
r (

μ(V )
) r–2

r . (56)

After simplifying the above relation, we get

μ(V ) ≥ (1 – ε)
r

(r–2) (2πb). (57)

This proves the claim. �
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Definition 5.1 A function f ∈ L2(R) is said to be the ε-concentrated on a measurable set
X ⊆R if for any ε > 0, it holds

(∫

R\X

∣
∣f (x)

∣
∣r dx

)1/r

≤ ε‖f ‖Lr (R), 0 < r ≤ ∞. (58)

Below, based on Definition 5.1 above, we immediately obtain the alternative form of
Theorem 5.5.

Theorem 5.6 Let φ be a complex window function, and f ∈ L2(R). If GB
φ f is the ε-

concentrated on L2-norm on measurable set X of R, then for all r > 2, one has

μ(V ) ≥ (
1 – ε2) r

(r–2) (2πb). (59)

Proof For simplicity, we first assume that ‖f ‖2
L2(R) = ‖φ‖2

L2(R) = 1. Invoking (58), we get

∫

R\X

∫

R\X

∣∣GB
φ f (ω, u)

∣∣2 dω du ≤ ε2
∫

R

∫

R

∣∣GB
φ f (ω, u)

∣∣2 dω du. (60)

An application of relation (8) together with relation (16) will lead to

∫

R\X

∫

R\X

∣∣GB
φ f (ω, u)

∣∣2 dω du ≤ ε2
∫

R

∫

R

∣∣CB{fTuφ̄}∣∣2 dω du

= ε2‖f ‖2
L2(R)‖φ‖2

L2(R)

= ε2.

Hence,

∫

R

∫

R

∣
∣GB

φ f (ω, u)
∣
∣2 dω du ≤

∫

X

∫

X

∣
∣GA

φ f (ω, u)
∣
∣2 dω du + ε2. (61)

Applying equation (20) and the Hölder inequality, we obtain

1 – ε2 ≤
∫

X

∫

X

∣
∣GB

φ f (ω, u)
∣
∣2 dω du

≤
(∫

R

∫

R

∣
∣GB

φ f (ω, u)
∣
∣2 r

2 dω du
) 2

r (
μ(X)

) r–2
r

≤
(

1
2πb

) r–2
r (

μ(X)
) r–2

r ,

which completes the proof of the theorem. �

Next, we present a lemma, which describes the basic concept of Nazarovs’s uncertainty
principle for the Fourier transform (see [18]).
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Lemma 5.7 Suppose that X1 and X2 are two finite, measurable subsets of R. Then for every
f ∈ L2(R) there exists a constant C > 0 such that

∫

R

∣
∣f (x)

∣
∣2 dx ≤ CeCμ(X1)μ(X2)

(∫

R\X1

∣
∣f (x)

∣
∣2 dx +

∫

R\X2

∣
∣F{f }(w)

∣
∣2 dw

)
. (62)

We are ready to obtain a straightforward generalization of Nazarovs’s uncertainty prin-
ciple in the framework of the WLCT.

Theorem 5.8 With the notations of Lemma 5.7 above, if φ ∈ L2(R), then

‖φ‖2
L2(R)

∫

R

∣
∣f (x)

∣
∣2 dx

≤ CeCμ(X1)μ(X2)

×
(

‖φ‖2
L2(R)

∫

R\X1

∣
∣f (x)

∣
∣2 dx + 2π

∫

R

∫

R\bX2

∣
∣GB

φ f (w, v)
∣
∣2 dw dv

)
. (63)

Proof Replacing f (x) by e
ia
2b x2

fTvφ̄(x) on both sides of (62), we obtain

∫

R

∣
∣e

ia
2b x2

fTvφ̄(x)
∣
∣2 dx

≤ CeCμ(X1)μ(X2)

×
(∫

R\X1

∣∣e
ia
2b x2

fTvφ̄(x)
∣∣2 dx +

∫

R\X2

∣∣F
{

e
ia
2b x2

fTvφ̄
}

(w)
∣∣2 dw

)
. (64)

Hence,

‖φ‖2
L2(R)

∫

R

∣
∣f (x)

∣
∣2 dx

≤ CeCμ(X1)μ(X2)

×
(

‖φ‖2
L2(R)

∫

R\X1

∣∣f (x)
∣∣2 dx +

∫

R

∫

R\X2

∣∣F
{

e
ia
2b x2

fTvφ̄
}

(w)
∣∣2 dw dv

)
. (65)

This further leads to

‖φ‖2
L2(R)

∫

R

∣
∣f (x)

∣
∣2 dx

≤ CeCμ(X1)μ(X2)

×
(

‖φ‖2
L2(R)

∫

R\X1

∣∣f (x)
∣∣2 dx +

1
b

∫

R

∫

R\bX2

∣∣∣
∣F

{
e

ia
2b x2

fTvφ̄
}(w

b

)∣∣∣
∣

2

dw dv
)

. (66)

Applying relation (13), we see that

‖φ‖2
L2(R)

∫

R

∣
∣f (x)

∣
∣2 dx

≤ CeCμ(X1)μ(X2)
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×
(

‖φ‖2
L2(R)

∫

R\X1

∣
∣f (x)

∣
∣2 dx

+
1
b

∫

R

∫

R\bX2

∣
∣
√

2πbei π
4 e–i d

2b w2
GB

φ f (w, v)
∣
∣2 dw dv

)
, (67)

and the required result follows. �

The following results concern some consequences of Nazarov’s uncertainty principles
described by equation (62).

Corollary 5.9 Using the notations as in Lemma 5.7, we have

∫

R

∣
∣f (x)

∣
∣2 dx ≤ CeCμ(X1)μ(X2)

(∫

R\X1

∣
∣f (x)

∣
∣2 dx + 2π

∫

R\bX2

∣
∣CB{f }(w)

∣
∣2 dw

)
, (68)

which is Nazarovs’s uncertainty principle in the context of the LCT.

Proof Including f (x) as e
ia
2b x2

f (x) on both sides of (62) and then implementing (5) will lead
to the desired result. �

The above corollary is consistent with the result studied in [19], where, in this case, the
LCT is a particular case of the offset linear canonical transform.

Corollary 5.10 Under the assumptions of Lemma 5.7, if φ ∈ L2(R), then one has

‖φ‖2
L2(R)

∫

R

∣∣f (x)
∣∣2 dx

≤ CeCμ(X1)μ(X2)

×
(

‖φ‖2
L2(R)

∫

R\X1

∣∣f (x)
∣∣2 dx + 2π

∫

R

∫

R\X2

∣∣Gφ f (w, v)
∣∣2 dw dv

)
, (69)

which is Nazarovs’s uncertainty principle associated with the WFT defined by (14).

Proof By (15), the proof is straightforward. �

Theorem 5.11 (WLCT local uncertainty principle) Let φ ∈ L2(R) be a window function.
If 0 < α < 1

2 , then there exists some constant Cα such that for any f ∈ L2(R) and X ⊆ R

measurable, one has

∫

R

∫

bX

∣∣GB
φ f (w, v)

∣∣2 dw dv ≤
Cα‖φ‖2

L2(R)

2π

[
μ(X)

]2α
∫

R

|x|2α
∣∣f (x)

∣∣2 dx, (70)

and for α > 1
2 , it holds

2π

∫

R

∫

bX

∣
∣GB

φ f (w, v)
∣
∣2 dw dv ≤ Cαμ(X)‖φ‖ 2α–1

α

L2(R)

(∫

R

∣
∣f (x)

∣
∣2 dx

) 2α–1
2α

× ‖φ‖ 1
α

L2(R)

(∫

R

∣∣|x|αf (x)
∣∣2 dx

) 1
2α

, (71)
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Proof Let a set X ⊆R with finite measure. The local uncertainty principle for the Fourier
transform is expressed as (see [20])

∫

X

∣∣F{f }(w)
∣∣2 dw ≤ Cα

[
μ(X)

]2α∥∥|x|αf
∥∥2

L2(R). (72)

In fact, by inserting f (x) as fTvφ̄(x) on both sides of the relation (72) above, we get

∫

X

∣∣F{fTvφ̄}(w)
∣∣2 dw ≤ Cα

[
μ(X)

]2α∥∥|x|αfTvφ̄
∥∥2

L2(R). (73)

Furthermore,

∫

R

∫

X

∣∣F
{

e
ia
2b x2

fTvφ̄
}

(w)
∣∣2 dw dv

≤ Cα

[
μ(X)

]2α

∫

R

∫

R

∣
∣|x|αe

ia
2b x2

f (x)φ(x – v)
∣
∣2 dx dv. (74)

Setting w = w
b , we obtain

1
b

∫

R

∫

bX

∣∣
∣∣F

{
e

ia
2b x2

fTvφ̄
}(w

b

)∣∣
∣∣

2

dw dv

≤ Cα

[
μ(X)

]2α

∫

R

∫

R

∣
∣|x|αf (x)φ(x – v)

∣
∣2 dx dv. (75)

It follows from the expression (13) that

2π

∫

R

∫

bX

∣∣GB
φ f (w, v)

∣∣2 dw dv ≤ Cα

[
μ(X)

]2α‖φ‖2
L2(R)

∫

R

|x|2α
∣∣f (x)

∣∣2 dx, (76)

which gives the proof of (70). Based on the local uncertainty principle for the Fourier
transform

∫

X

∣
∣F{f }(w)

∣
∣2 dw ≤ Cαμ(X)‖f ‖2– 1

α

L2(R)

∥
∥|x|αf

∥
∥

1
α

L2(R), (77)

we apply the same arguments to get equation (71). �

Recently, Kubo et al. [21] have proposed the logarithmic Sobolev-type uncertainty prin-
ciple for the Fourier transform. Below, we search this uncertainty principle in the setting
of the WLCT. For this purpose, we present the following.

Definition 5.2 For 1 ≤ r < ∞ and s > 0 define the weighted Lebesgue space as

W r
s (R) =

{
f ∈ Lr(R) : 〈x〉s ∈ Lr(R)

}
, (78)

where 〈x〉 = (1 + x2) 1
2 is the weight function.

We have the following.
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Theorem 5.12 Let φ ∈ L2(R) be a window function. For every f ∈ S(R) ∩W2
1 (R), we have

‖φ‖2
L2(R)

∫

R

∣∣f (x)
∣∣2

ln

(
1 + |x|2

2

)
dx + 2π

∫

R

∫

R

ln |w|∣∣GB
φ f (w, v)

∣∣2 dw dv

≥
(

	′(1/2)
	(1/2)

+ 2π ln b
)

‖φ‖2
L2(R)

∫

R

∣
∣f (x)

∣
∣2 dx. (79)

In this case, S(R) is the Sobolev space on R defined by

S(R) =
{

f ∈ L2(R) : Df ∈ L2(R)
}

,

where D stands for the differential operator, and 	 indicates the Gamma function.

Proof From the logarithmic Sobolev-type uncertainty principle for the Fourier transform,
we obtain that (see [21])

∫

R

∣
∣f (x)

∣
∣2

ln

(
1 + |x|2

2

)
dx +

∫

R

ln |w|∣∣F{f }(w)
∣
∣2 dw ≥

(
	′(1/2)
	(1/2)

)∫

R

∣
∣f (x)

∣
∣2 dx. (80)

Now replacing f (x) by e
ia
2b x2

fTvφ̄(x) on both sides of identity (80) yields

∫

R

∣
∣e

ia
2b x2

fTvφ̄(x)
∣
∣2

ln

(
1 + |x|2

2

)
dx +

∫

R

ln |w|∣∣F{
e

ia
2b x2

fTvφ̄
}

(w)
∣
∣2 dw

≥
(

	′(1/2)
	(1/2)

)∫

R

∣
∣e

ia
2b x2

fTvφ̄(x)
∣
∣2 dx. (81)

Hence,

∫

R

∫

R

∣∣fTvφ̄(x)
∣∣2

ln

(
1 + |x|2

2

)
dx dv +

∫

R

∫

R

ln |w|∣∣F{
e

ia
2b x2

fTvφ̄
}

(w)
∣∣2 dw dv

≥
(

	′(1/2)
	(1/2)

)∫

R

∫

R

∣∣fTvφ̄(x)
∣∣2 dx dv. (82)

This implies that

‖φ‖2
L2(R)

∫

R

∣∣f (x)
∣∣2

ln

(
1 + |x|2

2

)
dx +

1
b

∫

R

∫

R

ln

∣∣∣
∣
w
b

∣∣∣
∣

∣∣∣
∣F

{
e

ia
2b x2

fTvφ̄
}
(

w
b

)∣∣∣
∣

2

dw dv

≥
(

	′(1/2)
	(1/2)

)
‖φ‖2

L2(R)

∫

R

∣
∣f (x)

∣
∣2 dx. (83)

Applying (13) gives

‖φ‖2
L2(R)

∫

R

∣∣f (x)
∣∣2

ln

(
1 + |x|2

2

)
dx + 2π

∫

R

∫

R

ln

∣
∣∣∣
w
b

∣
∣∣∣
∣∣GB

φ f (w, v)
∣∣2 dw dv

≥
(

	′(1/2)
	(1/2)

)
‖φ‖2

L2(R)

∫

R

∣∣f (x)
∣∣2 dx. (84)
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According to (20), we deduce that

‖φ‖2
L2(R)

∫

R

∣
∣f (x)

∣
∣2

ln

(
1 + |x|2

2

)
dx + 2π

∫

R

∫

R

ln |w|∣∣GB
φ f (w, v)

∣
∣2 dw dv

≥
(

	′(1/2)
	(1/2)

+ 2π ln b
)

‖φ‖2
L2(R)

∫

R

∣
∣f (x)

∣
∣2 dx,

and the proof is complete. �

As an immediate consequence of the above theorem, we obtain the following (see [7]).

Corollary 5.13 Let φ ∈ L2(R) be a window function. For every f ∈ S(R), we have

‖φ‖2
L2(R)

∫

R

ln |x|∣∣f (x)
∣∣2 dx +

∫

R

∫

R

ln |w|∣∣GB
φ f (w, v)

∣∣2 dw dv

≥ (D + ln b)‖φ‖2
L2(R)

∫

R

∣
∣f (x)

∣
∣2 dx, (85)

where D = 
( 1
2 ) – lnπ ,
(x) = d

dx ln[	(x)].

6 Conclusion
In this paper, we have investigated some properties of the windowed linear canonical
transform like the orthogonality relation, inversion theorem, and conjugate function by
utilizing the direct interaction among the windowed linear canonical transform, win-
dowed Fourier transform and the Fourier transform. We have also discussed several gen-
eralizations of the uncertainty principles in the setting of the windowed linear canonical
transform.
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