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Introduction
The starting point of this work was the classification of p-divisible groups

over a discrete valuation ring of characteristic 0 with perfect residue field of
characteristic p ≥ 3 obtained by C.Breuil in his note [B]. We will show that
such a classification holds under quite general circumstances. We prove this by
showing that the category used by Breuil to classify p-divisible groups is equiva-
lent to the category of Dieudonné displays, which we defined in [Z-DD]. Breuil
obtains his result by a very useful classification of finite flat group schemes
over a discrete valuation ring as above. We have no generalization of such a
classification.

Our results are much more general and easier to prove, if we exclude p-
divisible groups which have an étale part. Therefore this case is of independent
interest. We will describe it first.

We fix a prime number p. Let R be a commutative ring with 1, such that
p is nilpotent in R.

Definition 1 A frame for R consists of the following data:

1) A p-adic ring A which is torsion free as an abelian group.

2) An endomorphism σ of A.

3) A surjective ring homomorphism A → R, such that the kernel J is an
ideal with divided powers.

We require that σ induces the Frobenius endomorphism on A/pA.

The next objects we define give the possibility to operate a display.

Definition 2 Let (A, J, σ) be a frame over R. A Dieudonné A-window over R
consists of the following data:

1) A finitely generated projective A-module M .

2) A submodule M1 ⊂M which contains JM .

3) A σ-linear map Φ : M →M .
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The following conditions are satisfied:

(i) M/M1 is a projective R-module.

(ii)

ΦM1 ⊂ pM,

and M is generated by the union of ΦM and 1
pΦM1 as an A-module.

Let (M,M1,Φ) be a Dieudonné A-window. One can show that there is a unique
A-linear map Ψ : M → A⊗σ,AM such that Ψ(Φ(m)) = p⊗m for all m ∈M .

Definition 3 We will say that (M,M1,Φ) satisfies the nilpotence condition, if
there is a number N , such that ΨN (M) ⊂ J⊗σN ,AM . A Dieudonné A-window
which satisfies the nilpotence condition is called an A-window.

Theorem 4 Let R be an excellent ring. Then the category of A-windows over
R is equivalent to the category of formal p-divisible groups over R.

The proof of the theorem uses the classification of formal p-divisible groups
by displays given in [Z-DFG]. We will assume that the reader is acquainted with
the introduction of this paper. Notations and results in this introduction will
be freely used.

Let us again consider the case where R is an arbitrary ring with p nilpo-
tent. There is a Cartier morphism (compare [BAC] IX §1, 2 prop.2) δ : A →
W (A) which is characterized by the property:

wn(δ(a)) = σn(a).

Here wn denotes the n − th Witt polynomial. Let us denote the composite of
δ with the canonical map W (A) → W (R) by κ. Then we may associate to a
window (M,M1,Φ) a display P = (P,Q, F, V −1) over R as follows. We set:

P = W (R)⊗κ,AM.

We define Q as the kernel of the canonical map P → M/M1. Moreover F is
the F -linear extension of Φ to P . Finally V −1 is uniquely determined by the
following equations:

V −1(ξ ⊗m1) = F ξ ⊗ Φ1m1, for ξ ∈W (R), m1 ∈M1

V −1( V ξ ⊗m) = ξ ⊗ Φm, for m ∈M

In this way we obtain a functor Dsp from the category of A-windows over
R to the category of displays over R. The quasi inverse of this functor is defined

2



by the Dieudonné crystal DP which is associated to a display P. Indeed we find
the window associated to P if we set:

M = DP(A)

This shows that the functor Dsp is an equivalence of categories. Therefore the
theorem above follows from [Z-DFG].

As a typical example of a frame we can take for R the polynomial ring
k[T1, . . . , Td] over a field of characteristic p and for A the ring of restricted
power series Ck{T1, . . . , Td} over a Cohen ring for k. For σ we take an endo-
morphism which induces on Ck any lifting of the Frobenius on k, and which
acts on the indeterminates by σ(Ti) = T pi .

We consider now the case of an arbitrary p-divisible group. In this case
we restrict ourself to the category Z of rings R with the following property: R
is a local ring with maximal ideal m and perfect residue field k of characteristic
p ≥ 3. Moreover we assume that there is a number N such that xN = 0 for
each x ∈ m. The exact sequence:

0→W (m)→W (R)→W (k)→ 0,

has a unique F -equivariant section W (k) → W (R). We set Ŵ (R) = Ŵ (m) ⊕
W (k), where Ŵ (m) ⊂W (m) is the subring of Witt vectors whose components
are almost all zero. In the sense of the splitting of the sequence above Ŵ (R) is
a subring of W (R), which is stable by the Frobenius F and the Verschiebung
V . We note that the stability by V doesn’t hold in the case p = 2 (compare
[Z-DD] Lemma 2).

Consider a pd-thickening S → R in the category Z. This is a surjection
of rings, such that the kernel a is equipped with divided powers. The Witt
polynomials wn : W (a)→ a may be divided by pn in the sense of these divided
powers. These divided Witt polynomials provide an isomorphism of additive
groups:

log : W (a)→ aN.

The inverse image of the infinite direct sum a(N) ⊂ aN by this homomorphism
is denoted by W̃ (a). We have Ŵ (a) ⊂ W̃ (a). This last inclusion is an equality
if the divided powers on a are pointwise nilpotent. Let us denote by W̃ (S)
the subring of W (S) generated by Ŵ (S) and W̃ (a). Of course the ring W̃ (S)
depends of the divided powers, but we omit this in the notation.

We call a p-adic ring A a Ẑ-ring if for each number n the ring A/pnA is a
Z-ring. We set Ŵ (A) = lim←− Ŵ (A/pnA). If we have a pd-thickening A→ R we

set W̃ (A) = lim←− W̃ (A/pnA), where the last projective limit goes over numbers

n, such that pn is zero in R. The rings Ŵ (A) and W̃ (A) may be identified with
subrings of W (A).
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Definition 5 A Dieudonné frame (A, J, σ) for a Z-ring R consists of the fol-
lowing data:

1) A Ẑ-ring A which is torsion free as an abelian group.

2) An endomorphism σ of A.

3) A surjective ring homomorphism A → R, such that the kernel J is an
ideal with divided powers.

We require that σ induces the Frobenius endomorphism on A/pA, and that the
Cartier morphism A→W (A) factors through W̃ (A).

Let us denote by κ the composite of the morphisms A δ−→ W̃ (A) →
Ŵ (R). If we tensorize a Dieudonné A-window by κ we obtain a Dieudonné
display. Again this functor is an equivalence from the category of Dieudonné
A-windows over the Z-ring R to the category of Dieudonné displays over R.
As a consequence of [Z-DD] we obtain:

Theorem 6 Let R be a Z-ring such that its maximal ideal is nilpotent. Let
(A, J, σ) be a Dieudonné frame for R. Then the category of Dieudonné A-
windows over R is equivalent to the category of p-divisible groups over R.

We will now give some examples of Dieudonné frames.

Example 1: Let k be a perfect field of characteristic p ≥ 3. Let d and s
be arbitrary numbers. Then we consider the Z-ring:

R = k[T1, . . . , Td]/(T s1 , . . . , T
s
d )

We set A = W (k)[T1, . . . , Td]/(T s1 , . . . , T
s
d ). The obvious surjection A→ R has

as kernel the pd-ideal pA. We define σ as the F -linear endomorphism of A
such that σ(Ti) = T pi . Then we obtain a Dieudonné frame (A, J, σ).

We let s vary, and denote the objects just defined by Rs respectively
As. We set R = k[[T1, . . . , Td]] and A = W (k)[[T1, . . . , Td]]. Let us define the
endomorphism σ : A→ A in the same way as before. Then we obtain a frame
A→ R, which is not a Dieudonné frame. But it is a limit of Dieudonné frames.
Indeed, to give a Dieudonné A-window over R is the same thing as to give a
Dieudonné As-window Ms over the ring Rs for each number s together with
isomorphisms:

As ⊗As+1 Ms+1
∼=Ms

As a result we obtain that the category of p-divisible groups over the ring
R = k[[T1, . . . , Td]] is equivalent to the category of Dieudonné A-windows over
R.
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Example 2: Let k be as in the previous example. Let S be a flat and
finite local W (k)-algebra with residue field k. We set R = S/puS, where s is
some fixed number. We choose a presentation:

0→ c→W (k)[T1, . . . , Td]→ S → 0,

such that each Ti for i = 1, . . . d is mapped to the maximal ideal of S. Let
A0 ⊂W (k)[T1, . . . , Td]⊗Q be the subring generated over W (k)[T1, . . . , Td] by
all elements of the form cn/n! for c ∈ c, n ∈ N. We obtain an obvious surjection
A0 → S, whose kernel is a pd-ideal. Let us denote by A the p-adic completion
of A0. Then A → S is a pd-thickening. Consider the F -linear endomorphism
of σ of W (k)[T1, . . . , Td]⊗Q such that σ(Ti) = T pi for i = 1, . . . , d. It induces
an endomorphism of A0 and A. The pd-thickening A → R together with the
endomorphism σ of A is a Dieudonné frame. As in example 1 this may be used
to classify p-divisible groups by Dieudonné A-windows over S.

Example 3: Let k[[T1, . . . , Td]] be as in the last example. Let f1, . . . , fr
∈ k[[T1, . . . , Td]] be elements such that f1, . . . , fr, Tr+1. . . . , Td is a system of
parameters of this local ring. We set

R = k[[T1, . . . , Td]]/(f1, . . . , fr, T
s
r+1. . . . , T

s
d ),

where s is some fixed number.
We choose arbitrary liftings f̃1, . . . , f̃r ∈W (k)[[T1, . . . , Td]]. Consider the

following morphism of flat W (k)[[Tr+1, . . . , Td]]-algebras:

W (k)[[T1, . . . , Td]]→W (k)[[T1, . . . , Td]]/(f̃1, . . . , f̃r).

We denote by B the p-adic completion of the pd-hull of this morphism (compare
BBM lemme 2.3.3). We set A = B/(T sr+1, . . . , T

s
d ). This is a p-adic ring which

is a pd-thickening of R. The endomorphism σ of W (k)[[T1, . . . , Td]] used in the
last example extends to A. This gives a Dieudonné frame for R.

We may use Dieudonné windows over S = k[[T1, . . . , Td]]/(f1, . . . , fr)
with frame B̂ = lim←− sB/(T sr+1, . . . , T

s
d ) → S to classify p-divisible groups over

S as in the end of example 1.

The main part of this work was done during a visit at the University of
Minnesota. I would like to thank W. Messing who helped me with the definition
of a Dieudonné frame and also with technical points in the proofs.

1 The Case of a Formal p-Divisible Group

Definition 1.1 Let R be a ring such that p is nilpotent in R. A quasiframe
for R consists of the following data:
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1) A p-adic ring A, and a surjective ring homomorphism α : A→ R whose
kernel will be denoted by J .

2) A ring endomorphism σ : A → A and a σ-linear map σ1 : J → A, such
that σ

∣∣
J

= p · σ1.

3) A ring homomorphism κ : A→W (R)

We require that the following conditions are satisfied:

(i) The image of the ideal J in A/pA consists of nilpotent elements.

(ii) The following diagram is commutative:

A

α
��>>>>>>>>
κ // W (R)

w0
||yyyyyyyy

R

(iii) The following relations are satisfied:

κ(σ(a)) = F
κ(a) for a ∈ A

V
κ(σ1(u)) = κ(u) for u ∈ J

We are going to make some comments on this definition.

The ideal J is contained in the radical of A. This is clear.

The first relation of (iii) implies:

α(σ(a)) = α(a)p mod pR

Any finitely generated projective R-module L0 may be lifted to a finitely
generated projective A-module L.

Indeed, for big m the morphism α factors A → A/pm → R. Then (i) im-
plies that any element in the kernel of the second arrow is nilpotent. There-
fore finitely generated projective R-modules lift with respect to that surjection
(Compare e.g.H.Bass: Algebraic K-Theory, Benjamin 1968, Chapt.III, 2.10).
For the first arrow we obtain liftings by a limit argument.

Example: Let R be a complete discrete valuation ring of characteristic 0
with residue field k. Let Ck be a Cohen ring for k. We choose an endomorphism
σ of Ck which lifts the Frobenius endomorphism on k. By the structure theorem
for complete local rings R is an Eisenstein extension of Ck, i.e. we have an exact
sequence:
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0→ E(u)Ck[u]→ Ck[u]→ R→ 0,

where E(u) ∈ Ck[u] is an Eisenstein polynomial of degree e. We denote the
image of u in R by π.

We consider the ring A = Ck[u, u
ep

p ]. We extend σ to an endomorphism of
A by the rule σ(u) = up. Because E(u) = ue+pF (u) for some polynomial F (u)
the morphism Ck[u]→ R extends to a homomorphism A→ R. One checks that
σ maps the kernel of this homomorphism to pA. This allows to define σ1 as in
1.1. Finally we define a morphism

κ : A→W (R),

as follows. On the subring Ck this is the composite Ck → W (Ck) → W (R),
where the first arrow is the Cartier morphism associated to σ. To complete the
definition we set:

κ(u) = [π], κ(
uep

p
) =

[πep]
p

.

Here [π] denotes the Teichmüller representative in W (R). It is easy to check
that (A→ R, σ,κ) is a quasiframe.

If we use the fact that the Witt ring W (R) is p-adic ([Z-DFG] Prop.1.3),
we obtain that κ extends to the completion Â = Ck[[u, u

ep

p ]]. Hence we have

also a quasiframe if we replace A by Â. Breuil used this quasiframe to prove
Fontaines conjecture for p-divisible groups in the case, where k is a finite field
of characteristic p > 2.

Let P̃ be a finitely generated projective A-module, and set P = R⊗A P̃ .
Then any direct summand L of P may be lifted to a direct summand L̃ of
P̃ , and hence any direct decomposition P = L ⊕ T may be lifted to a direct
decomposition P̃ = L̃⊕ T̃ .

Definition 1.2 Let A be a quasiframe over R. An A-window over R consists
of the following data:

1) A finitely generated projective A-module M .

2) A submodule M1 ⊂M which contains JM .

3) Two σ-linear maps Φ : M →M and Φ1 : M1 →M .

The following conditions are satisfied:

(i) M/M1 is a projective R-module.
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(ii)

Φ(m1) = pΦ1(m1), for m1 ∈M1

Φ1(um) = σ1(u)Φ(m), for m ∈M,u ∈ J.

(iii) The union of Φ1(M1) and Φ(M) generates M as an A-module.

(iv) Let Ψ : M → A ⊗σ,A M be the unique A-linear map with the property
that Ψ(Φ1(m1)) = 1 ⊗m1, for m1 ∈ M1, and that Ψ(Φm) = p ⊗m for
m ∈M . Then there is an integer N , such that ΨN (M) ⊂ J ⊗σN ,AM .

We will refer to (iv) as the nilpotence condition. We have to show the existence
of Ψ in order to justify this definition. This is done exactly as in [Z-DFG]
Lemma 1.10:

We may lift the direct summand M1/JM ⊂ M/JM to a direct summ-
mand L of M , by the remark after the definition 1.1. Let T be a complement
to L. Then we obtain decompositions of A-modules:

M = L⊕ T M1 = L⊕ JT.

A decomposition of M which satisfies the last equation is called normal. We
consider the following σ-linear map:

Φ1 ⊕ Φ : L⊕ T →M.

It follows from (iii) and (ii) of definition 1.2 that this is a σ-linear isomorphism,
i.e. the linearization (Φ1 ⊕ Φ)] is an isomorphism. Then we set:

Ψ = (idL ⊕ p idT )((Φ1 ⊕ Φ)#)−1.

One verifies that with this definition Ψ has the property required by (iv) above.
Therefore this Ψ is independent of the chosen normal decomposition.

The obvious example of a quasiframe is A = W (R), α = w0,κ = id. The
pd-ideal J is IR = VW (R) with the natural divided powers ([Z-DFG] §2.3).
The operators Φ,Φ1, resp. Ψ are in this case denoted by F, V −1, resp V ].

Next we define a functor from the category of A-windows to the category
of displays over R. Let us start with an A-window (M,M1,Φ,Φ1). Then we
obtain a display (P,Q, F, V −1) as follows:

We set P = W (R)⊗κ,AM . The kernel of the map

W (R)⊗κ,AM
w0⊗id−→ R⊗α,AM →M/M1

is by definition Q. The map F : W (R)⊗κ,AM →W (R)⊗κ,AM is defined by

F (ξ ⊗m) = F ξ ⊗ Φm.
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Finally we claim that there is a unique F -linear map V −1 : Q → P , which
satisfies the following relations:

V −1(ξ ⊗m1) = F ξ ⊗ Φ1m1, for ξ ∈W (R),m1 ∈M1

V −1(V ξ ⊗m) = ξ ⊗ Φm, for m ∈M (1)

If we show that V −1 exists it is obvious that (P,Q, F, V −1) is a display. For
the existence of V −1 we choose a normal decomposition M = L ⊕ T and
M1 = L ⊕ JT . Then we obtain P = W (R) ⊗κ,A L ⊕W (R) ⊗κ,A T and Q =
W (R)⊗κ,AL⊕ IR⊗κ,A T . We define V −1 on the first direct summand of Q by
the first equation of (1) and on the second direct summand by second equation
of (1).

The first equation of (ii) shows that this definition is possible. We have
to verify that with this definition the properties (1) are satisfied. For this it is
enough to show that the first equation of (1) holds for m1 ∈ JT and the second
equation of (1) holds for m ∈ L. Indeed, let u ∈ J and t ∈ T . Then we obtain
using (ii):

V −1(ξ ⊗ ut) = V −1(ξκ(u)⊗ t) = V −1(ξV κ(σ1(u))⊗ t)
=V −1(V (F ξκ(σ1(u)))⊗ t) = F ξκ(σ1(u))⊗ Φt

=F ξ ⊗ σ1(u)Φt = F ξ ⊗ Φ1(ut).

Finally we check the second equation (1) for m = l ∈ L:

V −1(V ξ ⊗ l) = FV ξ ⊗ Φ1(l) = pξ ⊗ Φ1(l) = ξ ⊗ Φ(l).

Proposition 1.3 The construction above provides a functor from the category
of A-windows over R to the category of displays over R.

Hence we have also a functor from the category of A-windows to the category
of formal p-divisible groups.

We will now give conditions for the quasiframe A, which assure that the
functor from A-windows to displays is an equivalence of categories.

Definition 1.4 A frame over R consists of the following data:

1) A torsion free (as an abelian group) p-adic ring A.

2) A surjective homomorphism A
α→R, whose kernel will be denoted by J .

3) An endomorphism σ : A→ A.

We require the following properties

(i) σ lifts the Frobenius on A/pA.
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(ii) The ideal J has divided powers.

We associate to any A-frame a A-quasiframe as follows. According to Cartier
there is a morphism:

δ : A→W (A),

which is uniquely determined by the property that

wn(δ(a)) = σn(a).n

The divided powers on J define an inclusion (see (17) below) J → W (A),
whose image will be denoted by J̆ ⊂ W (A). Clearly J̆ is a pd-ideal and so is
J̆ ⊕ IA ⊂ W (A). The ideal c = J̆ ⊕ IA is the kernel of W (A) → R. It follows
that δ is a morphism of pd-extensions (since we have no p-torsion):

A

��>>>>>>>>
// W (A)

||yyyyyyyy

R

We extend the F -linear homomorphism V −1
: IA → W (A) to an F -linear

homomorphism V −1
: c→W (A), by setting V −1

J̆ = 0.
We also introduce the σ-linear map:

σ1 =
1
p
σ : J → A.

Then we have the relation:

δ(σ1(a)) = V −1
δ(a) a ∈ J (2)

Since W (A) has no p-torsion we may multiply the equation (2) by p to verify
it. Since p V −1

= F holds on the ideal c, we obtain:

δ(σ(a)) = F δ(a) (3)

But this follows directly from the definition of the Cartier morphism.
We define κ as the composition

κ : A δ−→W (A)
W (α)−→ W (R)

Since W (α)(J̆) = 0 it follows that W (α) is a morphism of pd-thickenings of R.

W (α) : W (A)

%%LLLLLLLLLLL
// W (R)

||yyyyyyyy

R
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Proposition 1.5 The data α : A→ R, σ, σ1, κ define a quasiframe over R.

Proof: Since J has divided powers we have up = pαp(u) ≡ 0 mod pA for
u ∈ J and therefore (i) is satisfied. The next condition (ii) is trivially satisfied.
The first relation of (iii) is satisfied because of (3). From (2) we conclude:

κ(σ1(u)) = V −1
κ(u) for u ∈ J

We note here that V V −1 6= id on the ideal c, so that the desired relation
doesn’t follow immediately. But since κ(u) ∈ W (α)(c) ⊂ IR we have indeed
V V −1

κ(u) = κ(u). This proves the proposition. Q.E.D.
We note that the definition of a window greatly simplifies if A is a frame.

Indeed, since A has no p-torsion the operator Φ1 is uniquely determined by
pΦ1 = Φ. The second relation (ii) of definition 1.2 follows automatically from
the fact that Φ is σ-linear. Hence the definition 3 of an A-window over R is
equivalent to the definition 1.2.

In practice we have frames which satisfy the additional condition that
σ(J) generates pA as an A-module. With this assumption the condition (ii) of
definition 2 is equivalent to the requirement that Φ(M1) generates pM as an
A-module.

We can also define a frame for a p-adic ring R. If (A, J, σ) is such a
frame then (A, J +pmA, σ) is a frame for R/pmR for each number m. Then we
define a window exactly as above, but we require the nilpotence condition (iii)
only modulo pR or equivalently modulo pmR for any m. With this definition
a window over R is the same thing a compatible system of windows {Mm},
where Mm is a window over R/pmR, such that Mm is obtained from Mm+1

by base change.
Let us consider an A-window M = (M,M1,Φ). On M1 we will set Φ1 =

1
pΦ. We have associated a display to M by setting:

P = W (R)⊗κ,AM
Q = Ker W (R)⊗κ,AM →M/M1

F (ξ ⊗ x) = F ξ ⊗ Φ(x), for ξ ∈W (R), x ∈M
(4)

Finally the operator V −1 : Q→ P is uniquely determined by the relations:

V −1(ξ ⊗m1) = F ξ ⊗ Φ1m1, for m1 ∈M1

V −1(V ξ ⊗m) = ξ ⊗ Φm, for m ∈M (5)

Hence we have functors:

(A-windows)
Dsp−→ (displays/R) BT−→ (formal p-divisible groups /R)

Here BT is the functor from [Z-DFG] chapt. 3. The composition with Dsp will
be also denoted by BT.
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Theorem 1.6 If A is a frame the functor Dsp is an equivalence of categories.

Proof: We construct a quasiinverse functor. Let P = (P,Q, F, V −1) be a dis-
play over R. We set R = R/pR and we denote by P = PR the display obtained
by base change. Then we will associate an A-window as follows:

In [Z-DFG] Definition 2.6 we have associated to the display P a crystal
DP which was called the Dieudonné crystal. It is defined for pd-thickenings
S → R, such that p is nilpotent in S. For the pd-thickening A→ R we set:

DP(A) = lim
←
DP(A/pnA)

This makes sense because for big n we have a pd-thickening A/pnA→ R.
We define the finitely generated projective A-module M :

M = DP(A) = DP(A)

Then the maps F# : P(p) → P respectively V # : P → P(p)
induce A-linear

maps by evaluating the Dieudonné crystal:

Φ# = D(F#) : A⊗σ,AM →M
Ψ# = D(V #) : M → A⊗σ,AM,

(6)

such that Φ# ◦Ψ# = p and Ψ# ◦ Φ# = p.
Since κ is a morphism of pd-extensions we obtain a canonical isomor-

phism:

W (R)⊗κ,AM ∼= P ∼= DP(W (R)). (7)

The last isomorphism follows from [Z-DFG] Proposition 2.12. Here again we
set:

DP(W (R)) = lim
←
DP(W (R)/pnW (R)).

The isomorphism (7) takes the maps Φ# respectively Ψ# to the maps
F# : W (R) ⊗F,W (R) P → P respectively V # : P → W (R) ⊗F,W (R) P , which
are associated to the display P by [Z-DFG] Corollary 2.17.

We define Φ to be the σ-linear map associated to Φ#. We define M1 as
the kernel of the natural map:

M → P/Q,

which is induced from the map DP(A)→ DP(R) ∼= P/IRP .
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Our next aim is to show that Φ(M1) ⊂ pM . We note that for any display
P there is an exact sequence:

P
V #

−→W (R)⊗F,W (R) P →W (R)⊗F,W (R) P/Q→ 0 (8)

Indeed, P is generated by elements of the form ξ · V −1y, where y ∈ Q. Hence
the image of V # is generated by V #(ξV −1y) = ξ ⊗ y, for y ∈ Q. This shows
the exactness of (8).

We consider the R-module:

H = R⊗AM = R⊗W (R) P

The image of Q or equivalently M1 is a direct summand H1 ⊂ H. If we tensor
the exact sequence (8) with R⊗W (R) we obtain an exact sequence:

H
V

#

−→R⊗Frob,R H → R⊗Frob,R H/H1 → 0

The map V
#

is also obtained if we tensorize Ψ# : M → A⊗σ,AM with R⊗A.
Since the kernel of the map A→ R is J + pA it follows that

Image (A⊗σ,AM1) ⊂ Ψ#M + J ⊗σ,AM + pA⊗σ,AM, (9)

where the inclusion takes place in A⊗σ,AM . Since Φ#Ψ# = p idM , and since
σ(J) ⊂ pA, we obtain

Φ(M1) ⊂ pM,

if we apply Φ# to (9). Hence we have defined a map Φ1 : M1 → M . We note
that

Φ1(um) = σ1(u)Φm, for u ∈ J.
This equation is verified by multiplying it with p.

Next we describe the P-triple over the pd-extension A → R in terms of
M = (M,M1,Φ,Φ1). Let us denote this triple by (P̃ , F, V −1). Because P̃ is the
value of the Dieudonné crystal DP evaluated at the pd-thickening W (A)→ R,
and since more over δ is a morphism of pd-thickenings of R, we find a canonical
isomorphism:

W (A)⊗δ,AM ' P̃ (10)

The maps Φ on M and F on P̃ are induced by applying the Dieudonné crystal
to F# : P(p) → P. Since (10) is canonical this shows that

F ξ ⊗ Φm = F (ξ ⊗m), for m ∈M, ξ ∈W (A). (11)

The map F : P̃ → P̃ already determines V −1 uniquely because W (A) has no
p-torsion. The domain of definition Q̂ of V −1 is the kernel of the map:

W (A)⊗δ,AM →M/M1,
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induced by W (A) w0−→A
α−→R on the first factor. The operator V −1 is deter-

mined on this kernel by the following equations:

V −1(u⊗m) = V −1
u⊗ Φm, for u ∈ c, m ∈M

V −1(ξ ⊗m1) = F ξ ⊗ Φ1m1, for ξ ∈W (A), m1 ∈M1.
(12)

These equations are verified by multiplying them with p. Hence we have ob-
tained a full description of the triple (P̃ , F, V −1) in terms of (M,M1,Φ,Φ1).

We are now able to show the commutativity of the diagram:

M1

��

Φ1 // M

��
Q

V −1
// P,

(13)

where M → P is induced by (7) and M1 → Q is its restriction to M1. Indeed,
this diagram is the composition of two commutative diagrams

M1

��

Φ1 // M

��
Q̂

��

V −1
// ∼
P

��
Q

V −1
// P.

The commutativity of the upper square was just proved. The point was that
there is no p-torsion in this diagram, and therefore we could multiply the upper
and lower horizontal arrow by p to verify it. The lower square is commutative
by the definition of a triple.

Now we will show that (M,M1,Φ,Φ1) is a window. The only condition
we have to verify is that the union of Φ1M1 and ΦM generates the A-module
M . For this we choose a normal decomposition of M :

M = L0 ⊕ T0 M1 = L0 ⊕ JT0.

We consider the A-linear map:

U#
0 = Φ#

1 ⊕ Φ# : A⊗σ,A L0 ⊕A⊗σ,A T0 →M. (14)

It suffices to show that this is an isomorphism. This is in fact equivalent to the
condition (ii) of definition 2.

We set L = W (R)⊗κ,A L0 and T = W (R)⊗κ,A T . By the commutative
diagram (13) we see that U# = W (R)⊗κ,A U#

0 is the map:

(V −1)# ⊕ F# : W (R)⊗F,W (R) L⊕W (R)⊗F,W (R) T → P. (15)

14



Since P = L ⊕ T is a normal decomposition the map (15) is an isomorphism
by the definition of a display. The equality of determinants of endomorphisms
of R⊗w0,W (R) P = R⊗AM :

det(R⊗w0,W (R) U
#) = det(R⊗α,A U#

0 ),

shows that the right hand side is a unit in R. From the assumption that J is in
the radical of A it follows that det U#

0 is a unit too. HenceM = (M,M1,Φ,Φ1)
is an A-window.

Therefore we have defined a functor:

Win : (displays/R)→ (A-windows).

It is obvious from our considerations that this functor is quasiinverse to Dsp.
Indeed assume that either P = DspM or that M = WinP. Then we have
defined a canonical isomorphism P 'W (R)⊗κ,AM , which is compatible with
F and Φ resp. V −1 and Φ1. Q.E.D.

Example: Let R be a ring, such that pR = 0, and assume that R admits
a p-basis in the sense of [BM]. This means that R regarded as an R-module via
the Frobenius Frob : R→ R is a free R-module. It is shown in [BM] that there
is a torsion free p-adic ring A, such that A/pA is isomorphic to R. Moreover
the Frobenius endomorphism of R lifts to an endomorphism σ of A. If we set
J = pA we obtain a frame (A, J, σ) over R. Clearly (A, pmA, σ) is also a frame
over A/pmA for any number m. By [Z-DFG] we obtain:

Corollary 1.7 Let R be an excellent ring. Then the category of formal p-
divisible groups over R is equivalent to the category of A-windows over R.

Example: Let S be a torsion free p-adic ring. We set R = S/pmS for
some number m. Then we construct a frame for R as follows:

Let I be an index set. We denote by C = Zp{Xi}i∈I the ring of restricted
power series, i.e. the p-adic completion of the polynomial ring Zp[Xi]i∈I . We
consider the endomorphism σ of C given by σ(Xi) = Xp

i . Assume we are given
an epimorphism of rings:

C → S,

whose kernel will be denoted by c. We define B0 as the subring of C⊗Q which
is generated by C and by the elements cn

n! for c ∈ c. We obtain a surjection
B0 → S whose kernel J0 is generated by the elements cn

n! for c ∈ c. Then J0 is
a pd-ideal and consequently J0 + pB0 is a pd-ideal too. Since σ(c) ⊂ J0 + pB0,
we obtain σ(J0) ⊂ J0 + pB0. Therefore σ induces an endomorphism of B0. We
claim that σ(b) = bp mod pB0 for b ∈ B0. It is enough to verify this for
generators of B0. For b ∈ C the congruence is trivial. For c ∈ c we have to
verify that:

σ(
cn

n!
) =

(
cn

n!

)p
= 0 mod pB0,

15



where the last congruence follows since we have divided powers on J0. We set
σ(c) = cp + pu for u ∈ C. Then we obtain:

σ(
cn

n!
) =

∑
i+j=n

cpi

i!
pj

j!
uj = 0 mod pB0.

We denote by B the p-adic completion of B0. By continuity σ extends to
an endomorphism of B, and the morphism B0 → S gives a pd-thickening of
B → S, whose kernel will be denoted by J . Then (B, pm + J, σ) is a frame for
S/pmS, and (B, J, σ) is a frame for the p-adic ring S (Compare the remarks
after proposition 1.5). Then we obtain:

Proposition 1.8 Let S/pS be an excellent ring. The category of p-divisible
groups over S whose reduction modulo p has no étale part is equivalent to the
category of B-windows over S.

2 Variants of the Witt Ring

As a preparation to the next section we will make some comments on the Witt
ring and in particular on the Cartier morphism.

In [Z-DFG] §1.4 we applied the Witt ring functor W to a pd-thickening
S → R of Z(p)-algebras, whose kernel will be denoted by a. The divided powers
are uniquely determined by a function αp : a→ a, which defines ap divided by
p. The divided Witt polynomials wn/p

n make sense on W (a) and they define
an isomorphism of additive groups:

log : W (a)→
∏
N

a. (16)

An element of the right hand side is denoted by [a0, a1, . . . , an, . . . ]. We call
this the logarithmic coordinates on W (a). For a ∈ a we set:

exp a = log−1[a, 0, . . . , 0, . . . ]. (17)

Then exp : a → W (a) is an injective ring homomorphism. If we regard a as
a W (S)-module via restriction of scalars w0 : W (S) → S the morphism exp
becomes a W (S)-module homomorphism. We often say that the divided powers
define a as an ideal of W (S). We write a ⊂ W (S), without mentioninig that
this inclusion is defined by exp. A basic property is that F a = 0.

We will consider commutative rings without unit. These are often denoted
by N ,M e.t.c..

Definition 2.1 We call N pointwise nilpotent, if each element n ∈ N is nilpo-
tent. We call N bounded nilpotent, if there is a number k ∈ N, such that nk = 0
for all n ∈ N . If there is a number k such that N k = 0, we call N nilpotent.

16



Let Ŵ (N ) ⊂ W (N ) be the subset of Witt vectors with only finitely many
non-zero components. If N is pointwise nilpotent Ŵ (N ) is an ideal in W (N ).
Moreover Ŵ (N ) is again pointwise nilpotent.

Lemma 2.2 Assume that N is bounded nilpotent and annihilated by some
power of p. Then W (N ) is bounded nilpotent and annihilated by some power
of p.

Proof: By considering the ideals pkN one reduces to the case where pN = 0.
Then one finds a number M , such that FMW (N ) = 0.

Let us consider the set S of all Witt vectors in W (N ), which have the
form:

[n0] + V [n1] + . . .+ VM−1
[nM−1],

where ni ∈ N for i = 1, . . .M − 1 are arbitrary elements. It is clear that there
is a number N , such that ξN = 0 for each ξ ∈ S.

Next we note that each ξ ∈W (N ) has a unique expression:

ξ = ξ0 + VM ξ1 + . . .+ V kM ξk + . . . ,

where ξk ∈ S. It follows from the definition of M that the summands in the
last sum are pairwise orthogonal. Hence we obtain ξN = 0. Q.E.D.

We call N modulo p bounded nilpotent, if N/pN is bounded nilpotent.
In this case N/pkN is bounded nilpotent too.

Proposition 2.3 Assume that N is modulo p bounded nilpotent. Then the
p-adic topology on W (N ) coincides with the linear topology, which has as a
fundamental system of neighbourhoods of zero the subgroups W (pkN ), where k
runs through the natural numbers.

Proof: Fix a number n. Then by the last lemma there is a number r, such that
pr annihilates W (N/pnN ). This shows:

prW (N ) ⊂W (pnN ).

Hence the p-adic topology is finer. On the other hand the natural divided powers
on prN , for some number r ≥ 1 induce an isomorphism of additive groups:

W (prN )
log−→
∼

∏
prN

This implies pmW (pN ) = W (pm+1N ). Therefore we obtain:

W (pnN ) = pn−1W (pN ) ⊂ pn−1W (N ).

Q.E.D.
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If R is a p-adic ring then the ring W (R) is p-adic too (see: [Z-DFG]
Prop.1.3). Hence W (N ) is a p-adic ring in the situation of the last proposition.

We extend the functor Ŵ to rings N which are p-adic and modulo p
bounded nilpotent.

Ŵ (N ) = lim←−
r

Ŵ (N/prN ) ⊂W (N )

Since this may contradict our old definition of Ŵ , we say that we take Ŵ in the
topological sense. Obviously Ŵ (N ) is a closed subgroup for the topology on
W (N ) given by the subgroups W (prN ) and hence also for the p-adic topology.
By definition we have:

Ŵ (N ) ∩W (prN ) = Ŵ (prN )

Let 1 ≤ u < r be number. Then the divided powers on puN/prN provide a
homomorphism:

log : Ŵ (puN/prN )→ ⊕puN/prN .
This is an isomorphism, if the divided powers are nilpotent in the sense of [Z-
DFG] (3.4) (i.e. pointwise), which is the case if p ≥ 3 or if u ≥ 2. Hence with
these assumptions we obtain an isomorphism:

log : Ŵ (puN )→ ⊕̂puN ,

where the right hand side denotes the set of those elements of
∏
puN , whose

components converge p-adically to zero. Using this we can modify the proof of
the last proposition to obtain:

Proposition 2.4 Assume that N is p-adic and modulo p bounded nilpotent.
Let us consider Ŵ (N ) in the topological sense. Then the p-adic topology on
Ŵ (N ) coincides with the linear topology which has as a fundamental system of
neighbourhoods of zero the subgroups Ŵ (prN ).

Moreover Ŵ (N ) ⊂W (N ) is a closed subgroup for the p-adic topology on
W (N ), and the p-adic topology on Ŵ (N ) is induced by the p-adic topology on
W (N ). In particular the group Ŵ (N ) is p-adic.

Next we consider the Cartier morphism:

∆ : W (N )→W (W (N )). (18)

It is the unique functorial ring homomorphism, such that:

wn(∆ξ) = Fnξ, for ξ ∈W (N ).

Assume that N is pointwise nilpotent. Then Ŵ (N ) is pointwise nilpotent too.
Therefore Ŵ (Ŵ (N )) makes sense. We have inclusions

Ŵ (Ŵ (N )) ⊂W (Ŵ (N )) ⊂W (W (N )).

18



Lemma 2.5 : Assume that N is pointwise nilpotent. Then the Cartier mor-
phism (18) induces a morphism

∆ : Ŵ (N )→ Ŵ (Ŵ (N ))

Proof: We begin to verify, that ∆(Ŵ (N )) ⊂ W (Ŵ (N )). By functoriality it
suffices to prove this if N and hence W (N ) has no p-torsion. Indeed consider
any element n = (n0, n1, . . . ) ∈ Ŵ (N ). Then we have for suitable numbers r
and s a homomorhism of pointwise nilpotent algebras:

a = (Z[X0, . . . , Xs]/(Xr
0 , . . . X

r
s ))+ → N ,

such that Xi is mapped to ni and ni = 0 for i > s. Here the index + denotes
the polynomials without constant term. This reduces our assertion to the case,
where N is the torsion free algebra a.

The Frobenius endomorphism on Ŵ (N ) satisfies the congruence:

F ξ = ξp mod pŴ (N )

Hence there is a Cartier morphism:

Ŵ (N )→W (Ŵ (N )).

Since this coincides with ∆ our claim above is shown.
Let ÎN = V Ŵ (N ). This ideal is equipped with divided powers:

αp(V ξ) = pp−2 V(ξp)

These divided powers are pointwise nilpotent in the sense of [Z-DFG] (3.4)
because Ŵ (N ) is pointwise nilpotent. Hence they define an isomorphism:

log : Ŵ (ÎN )→
⊕
N

ÎN . (19)

Let us consider an element ξ ∈ Ŵ (N ), such that ∆(ξ) ∈ Ŵ (Ŵ (N )). We claim
that this implies ∆(V ξ) ∈ Ŵ (Ŵ (N )).

Indeed by [DFG] Lemma 2.11 we have the formula in Ŵ (Ŵ (N )):

∆(V ξ) = V ∆(ξ) + exp V ξ

in the notation of (16). This shows our claim. Finally we know that ∆ acts on
a Teichmüller representative [n] ∈W (N ) as follows:

∆([n]) = [[n]] ∈ Ŵ (N ).
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Hence we have ∆(V
r

[n]) ∈ Ŵ (N ) by our claim above. This finishes the proof.
Q.E.D.

Let us consider a ring N which is p-adic, and modulo p bounded nilpo-
tent. Then the ring Ŵ (N ) taken in the topological sense has exactly the same
properties. By proposition 2.4 we obtain:

Ŵ (Ŵ (N )) = lim←−
m

Ŵ (Ŵ (N )/pmŴ (N ))

= lim←−
m

Ŵ (Ŵ (N/pmN ))

Again we find that Ŵ (Ŵ (N )) ⊂ W (W (N )) and that the Cartier morphism
induces a ring homomorphism:

∆ : Ŵ (N )→ Ŵ (Ŵ (N )). (20)

Let R be a local ring with maximal ideal m and with perfect residue field
of characteristic p ≥ 3. We assume that there is a number M , such that xM = 0
for any x ∈ m. Let us denote the category of these rings R by Z.

Let k be the residue field of R. The natural map W (R) → W (k) has a
Teichmüller section [Z-DD] §2. Therefore we may write canonically:

W (R) = W (m)⊕W (k)

We note that Ŵ (m) is a W (R)-submodule of W (m).
We define a subring Ŵ (R) ⊂W (R):

Ŵ (R) = W (k)⊕ Ŵ (m). (21)

We will also consider p-adic local rings A, such that A/pnA is in Z for any
number n. We call them Ẑ-rings. The ring Ŵ (R) is an example of a Ẑ-ring.

We define:
Ŵ (A) = lim←−

n

Ŵ (A/pnA)

The maximal ideal n of A is modulo p bounded nilpotent. We have a decom-
position which is similar to (21):

Ŵ (A) = W (A/n)⊕ Ŵ (a) (22)

The ring Ŵ (A) is a closed subring of W (A) for the p-adic topology, and more-
over the p-adic topology on Ŵ (A) coincides with the topology induced by the
p-adic topology on W (A). The ring Ŵ (A) is again a Ẑ-ring. From (20) we
deduce that the Cartier morphism induces a map:

∆ : Ŵ (A)→ Ŵ (Ŵ (A)) (23)
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Consider a surjection S → R in Z, and assume that its kernel a is equipped
with divided powers, which are compatible with the natural divided powers
on pS. We will denote the inverse image of

⊕
N

a by the homomorphism (16)

by W̃ (a). By [Z-DFG] (3.4) we have Ŵ (a) ⊂ W̃ (a), and this inclusion is an
equality, if the divided powers are pointwise nilpotent. We will denote by W̃ (S)
the subring of W (S) generated by W̃ (a) and Ŵ (S). We note that Ŵ (S) =
W̃ (S) if the divided powers are pointwisw nilpotent. In general we have an
exact sequence:

0→ W̃ (a)→ W̃ (S)→ Ŵ (R)→ 0

The composite W̃ (S)→ Ŵ (R) w0−→R is again a pd-thickening, if we define the
pd-structure on the kernel c of W̃ (S)→ R as follows:

If we embed a ⊂ W̃ (S) by exp (16), we find a direct decomposition:

c = a⊕ V W̃ (S) (24)

Since there are divided powers defined on each direct summand of (24), we
obtain divided powers on c. If the natural number n is big enough we obtain a
pd-thickening in Z:

W̃ (S)/pnW̃ (S)→ R. (25)

Remark: We verify that the divided powers on c and on pW̃ (S) are compatible.
We will even show that the same is true if we replace W̃ (S) by W (S). Let us
denote by exp a the image of an element a ∈ a by the embedding a ⊂ W (S).
Assume we are given an equation:

pξ = exp a+ V η, a ∈ a, ξ, η ∈W (S) (26)

Let αp : a → a be the function given by the divided powers (see above (16)).
Since exp a V η = 0 our assertion says exactly that:

pp−1ξp = expαp(a) + pp−2 V (ηp) (27)

We set ξ0 = w0(ξ). From (26) we obtain pξ0 = a and therefore αp(a) = ξ0a
p−1,

since the divided powers on a are compatible with those on pS. The left hand
side of (27) is:

ξ(exp a+ V η)p−1 = ξ exp ap−1 + ξpp−2 V (ηp−1)
= exp ξ0ap−1 + pp−2 V ( F ξηp−1)

Hence it is sufficient to show that F ξ = η. This is a consequence of the following
general assertion:
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Let S be a ring, and let exp : pS → W (S) be the map defined by the
natural divided powers of pS. Then we have for ξ ∈W (S) the identity:

FV ξ − V F ξ = exp pξ0 (28)

We obtain this by multiplying the equation p − V 1 = exp p with ξ. The last
equation may be verified in W (Z) by applying the Witt polynomials. Compar-
ing the equation (28) to (26) we obtain V F ξ = V η as desired.

Consider a Ẑ-ring A. Then a pd-thickening A → R is supposed to be
compatible with the natural divided powers on pA. It induces pd-thickenings
in Z:

A/pmA→ R,

if m is large. In this case we define:

W̃ (A) = lim←−
m

W̃ (A/pmA). (29)

This is a subring of W (A) because A is p-adic.
Consider again the pd-thickening S → R. W̃ (S) is a Ẑ-ring and W̃ (S)→

R a pd-thickening. Therefore we may form W̃ (W̃ (S)). This is a subring of
W (W (S)).

Lemma 2.6 The Cartier morphism induces a map:

W̃ (S)→ W̃ (W̃ (S))

Proof: By (23) it is enough to show that the Cartier morphism induces a map
W̃ (a) → W̃ (W̃ (a)). In [Z-DFG] Lemma 2.14 we expressed the map W (a) →
W (W (a)) in terms of logarithmic coordinates. From this the assertion about
W̃ is obvious. Q.E.D.

This lemma has also a version if we replace S by a Ẑ-ring A. Then the
ring W̃ (A) defined by (29) is again a Ẑ-ring and the kernel of the composition:

W̃ (A) w0−→A→ R,

has a natural pd-structure (compare (24)).
Let us verify that W̃ (A) is indeed a Ẑ-ring. We denote by n ⊂ A the

maximal ideal and by k = A/n the residue field. With the obvious notation we
have a direct decomposition:

W̃ (A) = W (k)⊕ W̃ (n). (30)

Let u ≥ 2 be a number such that pun ⊂ a. Then we have pnW̃ (pun) =
W̃ (pn+un) for each number n. As in the proof of proposition 2.4 we conclude
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that the p-adic topology on W̃ (n) coincides with the topology of projective
limit used to define W̃ (n):

W̃ (n) = lim←−
m

W̃ (n/pmn). (31)

In particular W̃ (A) is a p-adic ring. Then we may apply W̃ to the pd-thickening
W̃ (A)→ R in Ẑ.

From the fact that the p-adic topology on W̃ (n) is given by (31) and from
the decomposition (30) we deduce:

W̃ (W̃ (A)) := lim←− W̃ (W̃ (A)/pmW̃ (A)) =

lim←− W̃ (W̃ (A/pmA))

For each m the lemma 2.6 gives a Cartier morphism:

W̃ (A/pmA)→ W̃ (W̃ (A/pmA))

If we pass to the projective limit we obtain a Cartier morphism for a pd-
thickening A→ R where A is a Ẑ-ring:

W̃ (A)→ W̃ (W̃ (A)). (32)

3 The Case of a General p-Divisible Group

Definition 3.1 Let R be a Z-ring. A Dieudonné frame over R is a frame
(A α−→R, J, σ), such that A is a Ẑ-ring and such that the Cartier morphism
given by σ:

δ : A→W (A),

factors through the subring W̃ (A) ⊂W (A).

The map α : A → R induces a map W̃ (A) → Ŵ (R). We define κ to be the
composite of the following maps:

κ : A δ−→ W̃ (A)→ Ŵ (R) (33)

Let us assume thatM = (M,M1,Φ) is a Dieudonné A-window over R in
the sense of definition 2. We may replace in the equations (4) the ring W (R)
by Ŵ (R) we obtain a Dieudonné display since for such objects no nilpotence
condition is required. Therefore we obtain a functor:

DD : (Dieudonné A-windows)→ (Dieudonné displays) (34)
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Theorem 3.2 Let R be a Z-ring and let A→ R be a Dieudonné frame. Then
the functor DD is an equivalence of categories.

From this theorem we may prove our main theorem 6 of the introduction: For
an artinian ring R we may simply refer to theorem 20 of [Z-DD], which says that
in this case the category of Dieudonné displays is equivalent to the category
of p-divisible groups. Now let R be any Z-ring with nilpotent maximal ideal
and residue class field k. Then for any p-divisible group X over R, we find an
artinian local subring R′ ⊂ R, with the same residue class field k, such that
X is defined over R′. Indeed, this follows from the existence of the universal
deformation of Xk over a power series ring over W (k) proved by Grothendieck
and Messing. Moreover let X ′ and Y ′ be p-divisible groups over R′. We denote
by X and Y the objects obtained by base change over R. Then the base change
map is bijective

Hom(X ′, Y ′)→ Hom(X,Y ). (35)

Indeed, let m be the maximal ideal of R and consider the commutative diagram:

R′/R′ ∩mn −−−−→ R/mny y
R′/R′ ∩mn−1 −−−−→ R/mn−1

The vertical arrows are pd-extension. Hence to lift a homomorphism of p-
divisible groups from downstairs is the same as to lift the Hodge filtration of
the crystal ([M] Chapt. V Thm. 1.6). Using this it follows this one shows easily
that (35) is a bijection for the upper horizontal monomorphism, if it is bijective
for the lower one.

We note that Theorem 3 and Theorem 4 of [Z-DD] hold for any Z-ring
with nilpotent maximal ideal (see theorem 3.4 below). Then we may apply the
arguments for p-divisible groups above to Dieudonné displays. This reduces the
general case of theorem 6 to the case where R is artinian. Hence the proof of
theorem 6 is finished.

The proof of theorem 3.2 is based on the construction of a crystal asso-
ciated to a Dieudonné display. In [Z-DD] we have constructed such a crystal
on the nilpotent crystalline site. We will now extend this crystal to the whole
crystalline site, without assuming that the divided powers are nilpotent.

We consider a pd-thickening S → R in the category Z. Let us denote by
a ⊂ S the kernel. Using exp we consider a ⊂W (S) also as an ideal of W (S).

Definition 3.3 Let P be a Dieudonné display over R. A P-triple over S is a
triple (P̃ , F, V −1) such that:

1) P̃ is a finitely generated free W̃ (S)-module, equipped with an isomorphism

Ŵ (R)⊗
W̃ (S)

P̃
∼−→P.
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2) An F -linear operator F : P̃ → P̃ which lifts F : P → P .

3) An F -linear operator V −1 : Q̂→ P̃ , which is defined on the inverse image
Q̂ of Q by the map P̃ → P , and which lifts V −1 : Q→ P .

The following properties hold:

(i) V −1( V ξ̃x̃) = ξ̃F x̃, for x̃ ∈ P̃ , ξ̃ ∈ W̃ (S)

(ii) V −1(aP̃ ) = 0

We could obviously define a “display” with coefficients in W̃ (S). Then [Z-DD]
theorem 3 and its proof holds for any pd-thickening S → R (and not just
nilpotent ones), if we replace W̃ (S) by Ŵ (S). The essential point is that an
extension of V −1 to Q̂ may be defined over W̃ (S) but not over Ŵ (S). From
this we obtain the following result:

Theorem 3.4 Let α : P1 → P2 be a morphism of Dieudonné displays over R.
Let Ti be a Pi-triple over S for i = 1, 2. Then there exists a unique morphism
of triples α̃ : T1 → T2 which lifts α.

We associate to a Dieudonné display P over R a crystal as follows: Let S → R
be a pd-thickening in Z. Then we find a P-triple T = (P̃ , F, V −1) over S. This
is done by writing down structural equations for P (see [Z-DD] (3)) and lifting
them to S. By the last theorem T is unique up to canonical isomorphism.
Therefore the following definition makes sense:

DP(S) = S ⊗
w0,W̃ (S)

P̃ .

We call DP the Dieudonné crystal of P. If S → R is a nilpotent pd-thickening,
we have W̃ (S) = Ŵ (S), and therefore DP(S) coincides with the Dieudonné
crystal defined in [Z-DD] in this case.

We note that DP commutes with base change in the following sense: As-
sume we are given a morphism of pd-thickenings in the category Z:

S

����

// S′

����
R // R′

The vertical arrows are pd-thickenings with kernels a ⊂ S resp. a′ ⊂ S′. Assume
we are given a Dieudonné display P over R, and let P ′ = PR′ be the Dieudonné
display obtained by base change. Let T = (P̃ , F, V −1) be a P-triple over S.
Then we define a P ′-triple T ′ = (P̃ ′, F, V −1) over S′ with coefficients in W̃ (S′)
as follows:

P̃ ′ = W̃ (S′)⊗
W̃ (S)

P̃
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The operator F : P̃ ′ → P̃ ′ is the obvious F -linear extension of F : P → P .
Finally the F -linear operator V −1 : Q̂′ → P̃ ′ is uniquely determined by the
formulas:

V −1(ξ ⊗ y) = F ξ ⊗ V −1y, for ξ ∈ W̃ (S′), y ∈ Q̂

V −1(V ξ ⊗ x) = ξ ⊗ Fx, for x ∈ P̃

V −1(a′ ⊗ x) = 0 for a′ ∈ a′ ⊂ W̃ (S′).

This construction of the triple T ′ provides a canonical isomorphism:

DP′(S′) ∼= S′ ⊗S DP(S). (36)

If A is a Ẑ-ring and A→ R is a pd-thickening we set

DP(A) = lim←−
n

DP(A/pnA),

where n is large, such that A/pnA→ R is a pd-thickening.
Proof of theorem 3.2: We are going to repeat the arguments of the

proof of theorem 1.6 in the new context.
Let us begin with the construction of a quasiinverse functor:

Win : (Dieudonné displays)→ (Dieudonné A-windows) (37)

We consider a Dieudonné display P over R. Then we have to associate an
A-window (M,M1,Φ). We set:

M = DP(A).

We define M1 as the kernel of the canonical map:

M = A⊗
W̃ (A)

P̃ → R⊗Ŵ (R) P → P/Q,

where (P̃ , F, V −1) is the P-triple over A.
Finally we define Φ. To do this we consider the ring R = R/pR. Then

A→ R is again a pd-thickening with kernel a + pA ⊂A.
If we apply base change to the morphisms of pd-thickenings

A

��

id // A

��
R // R′,

we obtain a canonical isomorphism:

DP(A) ' DP̃ (A)
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We note that the last diagram involves a priori two different rings W̃ (A), one
with respect to A→ R and the second with respect A→ R. In fact these two
rings coincide, but this fact is irrelevant for us.

The same considerations as in the proof of theorem 1.6 lead to homomor-
phisms:

Φ# : A⊗σ,AM →M

Ψ# : M → A⊗σ,AM.

The argument following equation (8) shows:

ΦM1 ⊂ pM.

We set Φ1 = 1
pΦ : M1 →M . To show that (M,M1,Φ) is a Dieudonné window,

we still have to verify that the union of ΦM and Φ1M1 generate M as an
A-module.

Before we prove this we will describe the P-triple (P̃ , F, V −1) over A in
terms of (M,M1,Φ). We will describe a canonical isomorphism:

P̃ ∼= DP(W̃ (A)), (38)

in the manner of [Z-DFG] Proposition 2.12. Let us postpone the proof of (38).
From this we may finish the proof of the theorem as follows: The morphism

of pd-thickenings

A

��========
δ // W̃ (A),

||yyyyyyyy

R

provides a canonical isomorphism:

W̃ (A)⊗δ,AM ∼= DP(W̃ (A)) ∼= P̃ . (39)

Since the isomorphisms are functorial they commute with the Frobenius:

F (ξ ⊗m) = F ξ ⊗ Φm, for m ∈M, ξ ∈ W̃ (A).

Here F is from the triple (P̃ , F, V −1). Since W̃ (A) is p-torsion free the isomor-
phism (39) is also compatible with V −1. From (39) we deduce an isomorphism:

Ŵ (R)⊗κ,AM ' P.

It follows that this isomorphism is compatible with F and V −1 too. From this
isomorphism we deduce as in the last part of theorem 1.6 that the union of
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ΦM and Φ1M1 generates M as an A-module. This shows that we have an
isomorphism of functors:

DD ◦Win ∼= id.

On the other hand let us start with a Dieudonné window (M,M1,Φ). We denote
by P the Dieudonné display associated by the functor DD. Then it is clear that
(P̃ , F, V −1) described above in terms of (M,M1,Φ) is a P-triple over A. From
this we deduce an isomorphism:

DP(A) 'M,

which is compatible with the Frobenius. Hence the functors DD and Win are
indeed quasi inverse. Q.E.D.

Finally we give a precise definition of the isomorphism (38). Let us con-
sider a pd-thickening S → R in Z.

Proposition 3.5 Let P be a Dieudonné display over R. Consider a P-triple
T = (P̃ , F, V −1) over S. We have defined a pd-thickening in the category Ẑ
(compare (24)) :

W̃ (S)→ R

We denote the associated Cartier morphism by ∆: W̃ (S) → W̃ (W̃ (S)) which
is defined by lemma 2.6. Then a P-triple over W̃ (S) is obtained as follows:

T̃ = (W̃ (W̃ (S))⊗
∆,W̃ (S)

P̃ , F, V −1)

Here F : W̃ (W̃ (S)) ⊗
∆,W̃ (S)

P̃ → W̃ (W̃ (S)) ⊗
∆,W̃ (S)

P̃ denotes the F -linear

extension of F : P̃ → P̃ .
The operator V −1, which is defined on the inverse image of Q by the

canonical map W̃ (W̃ (S))⊗
∆,W̃ (S)

P̃ → P is uniquely determined by the follow-
ing equations:

V −1(V ξ̂ ⊗ x) = ξ̂ ⊗ Fx, for x ∈ (W̃ (W̃ (S))

V −1(ξ̂ ⊗ y) = F ξ̂ ⊗ V −1y, for y ∈ Q̂ ⊂ P̃ .

Proof: The proof is the repetition of the proof of proposition 2.12 in [Z-DFG],
which we omit. Q.E.D.

As a corollary we obtain the canonical isomorphism (38).
We will now discuss the examples of Dieudonné frames in the introduction in
more detail.

Example : Let k be a perfect field of characteristic p ≥ 3. We fix numbers
d and s and consider the ring

R = k[T1, . . . , Td]/(T s1 . . . T
s
d ) (40)
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We set A = W (k)[T1, . . . , Td]/T s1 , . . . , T
s
d ). Then the canonical map:

A→ R,

is a pd-thickening with nilpotent divided powers on pA. We define σ : A → A
by the equations:

σ(ξ) = F ξ, for ξ ∈W (k), (41)
(42)

σ(Ti) = T pi , for i = 1, . . . , d. (43)

We claim that A is a Dieudonné frame. For this we have to show that the
Cartier morphism associated to σ:

δ : A→W (A),

factors through W̃ (A). We note that W̃ (A) = Ŵ (A) in this example because
the divided powers are nilpotent. Clearly δ(Ti) is the Teichmüller representative
of Ti and therefore

δ(Ti) = [Ti] ∈ Ŵ (A)

It remains to be shown that δ(ξ) ∈ Ŵ (A) for ξ ∈W (k). But δ : W (k)→W (A)
is the Teichmüller section of the homomorphism W (A) → W (k) induced by
the canonical map A → k. Since this Teichmüller section takes by definition
values in Ŵ (A), we have proved that A is a Dieudonné frame.

Let us change the notation: Let R = k[[T1 . . . Td]] be the power series ring
and A = W (k)[[T1, . . . , Td]]. We define σ : A → A as before. Then A becomes
a frame over R. Then we obtain as explained in example 1 of the introduction:

Proposition 3.6 The category of p-divisible groups over k[[T1 . . . Td]] is equiv-
alent to the category of Dieudonné A-windows.

Example : Let k be as above. Let S be a local finite flat W (k)-algebra,
with residue field k. We set R = S/puS, where u is some fixed number. We
choose a presentation:

0→ c→W (k)[T1, . . . , Td]→ S → 0,

such that each Ti is mapped to the maximal ideal of S. We consider the subring
A0 ⊂ W (k)[T1, . . . , Td] ⊗ Q which is generated over W (k)[T1, . . . , Td] by all
elements of the form cn

n! , for c ∈ c, n ∈ N. The natural map A0 ⊗ Q → S ⊗ Q
induces a map A0 → S, whose kernel J0 is generated by the element cn

n! as an
ideal.

Let σ be the F -linearW (k)-algebra endomorphism ofW (k)[T1 . . . Td], such
that σ(Ti) = T pi . Then σ leaves the ideal c + pW (k)[T1, . . . , Td] stable. Since
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J0 + pA0 ⊂ A0 is a pd-ideal, it follows that σ extends to an endomorphism of
A0. As in the example of proposition 1.8 one verifies:

σ(a) ≡ ap mod pA0 a ∈ A0.

Let A be the p-adic completion of A0. Then we obtain a pd-thickening A→ S,
and hence also a pd-thickening A→ R. The endomorphism σ extends to A.

We claim that (A, σ) is a frame for R. Again all we need to show is that
the Cartier morphism

δ : A→W (A)

factors through W̃ (A). Since δ(Ti) = [Ti] ∈ Ŵ (A) it follows that

δ(h) ∈ Ŵ (A), (44)

for h ∈W (k)[T1 . . . Td].
Taking into account that W (A) is p-adic, it suffices to show that δ(J0) ⊂

W̃ (A). By (44) we know that δ(c) ⊂ W̃ (A). Clearly δ(c) is in the kernel of
W̃ (A)→ A→ S. The divided power structure on J ⊂ A defines an embedding
J ⊂ W̃ (A). Hence the kernel of the map W̃ (A)→ S is J⊕V W̃ (A). This kernel
is a pd-ideal because each direct summand is. Hence δ(c) ∈ J⊕V W̃ (A) for c ∈ c

implies δ
(
cn

n!

)
∈ J ⊕ V W̃ (A). Since J0 is generated over W (k)[T1, . . . , Td] by

products of elements of the form cn

n! , for c ∈ c we conclude that δ(J0) ⊂ W̃ (A).
This concludes the proof that (A, σ) is a Dieudonné frame for R = S/puS.
Hence A-windows for the ring R classify p-divisible groups over R.

As in the last example we obtain the same result for the frame A → S
which is not a Dieudonné frame.

Proposition 3.7 The category of Dieudonné A-windows is equivalent to the
category of p-divisible groups over S.

This result was proved by Breuil in the case where S is a discrete valuation
ring by using the crystalline Dieudonné theory of Berthelot, Breen, and Messing
[BBM].

Example : Consider the example 3 of the introduction. We are given
elements f1, . . . fr ∈ k[[T1, . . . Td]], such that f1, . . . fr, Tr+1, . . . Td is a system
of parameters in k[[T1, . . . Td]]. We set R = k[[T1, . . . Td]]/(f1, . . . , fr). Then we
have defined in the introduction a pd-thickening B̂ → R. Moreover we have
defined an endomorphism σ of B̂. With this structure B̂ becomes a frame over
R. This is a frame but not a Dieudonné frame. Nevertheless we obtain by the
limit argument given in the introduction:

Proposition 3.8 The category of Dieudonné B̂-windows over R is equivalent
to the category of formal p-divisible groups over R.
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