
Windows Scheduling as a Restricted Version of Bin Packing

Amotz Bar-Noy∗ Richard E. Ladner† Tami Tamir†

Abstract

Given is a sequence of n positive integers

w1, w2, . . . , wn that are associated with the items

1, 2, . . . , n respectively. In the windows scheduling

problem, the goal is to schedule all the items (equal

length information pages) on broadcasting channels

such that the gap between two consecutive appear-

ances of page i on any of the channels is at most wi

slots (a slot is the transmission time of one page). In

the unit fractions bin packing problem, the goal is to

pack all the items in bins of unit size where the size

(width) of item i is 1/wi. The optimization objec-

tive is to minimize the number of channels or bins.

In the off-line setting the sequence is known in ad-

vance whereas in the on-line setting the items arrive

in order and assignment decisions are irrevocable.

Since a page requires at least 1/wi of the channel’s

bandwidth, it follows that windows scheduling with-

out migration (all broadcasts of a page must be from

the same channel) is a restricted version of unit frac-

tions bin packing.

Let H = d∑n

i=1(1/wi)e be the obvious band-

width lower bound on the required number of bins

(channels). Previously an H + O(ln H) off-line al-

gorithm for the windows scheduling problem was

known. This paper presents an H + 1 off-line al-

gorithm to the unit fractions bin packing prob-

lem. In the on-line setting, this paper presents an

H + O(
√

H) algorithm to both problems where the

one for the unit fractions bin packing problem is sim-

pler. On the other hand, this paper shows that al-

ready for the unit fractions bin packing problem, any

on-line algorithm must use at least H+Ω(ln H) bins.

∗Computer & Information Science Department, Brook-

lyn College, 2900 Bedford Ave., Brooklyn, NY 11210.

amotz@sci.brooklyn.cuny.edu
†Department of Computer Science and Engineering, Box

352350, University of Washington, Seattle, WA 98195.

{ladner, tami}@cs.washington.edu.

1 Introduction

The input for the well known bin packing problem

(BP) is a set of n item sizes s1, s2, . . . , sn where

0 < si < 1 for all 1 ≤ i ≤ n. The goal is to pack these

items in unit size bins using as minimum as possible

bins where the total size of items packed in one bin

does not exceed one. We study a variant of bin pack-

ing, called the unit fractions bin packing problem

(UFBP), in which all sizes are unit fractions, i.e, of

the form 1/w for some integer w ≥ 2. In particular,

we are interested in a packing that forms a solution

to the windows scheduling problem (WS): given a se-

quence of n positive integers w1, w2, . . . , wn, called

windows, that are associated with n equal length in-

formation pages (requests), the goal is to schedule

all the pages on broadcasting channels such that the

gap between two consecutive appearances of page i

on the channels is at most wi slots, where a slot is

the time to broadcast one page. For example, the se-

quence of windows (and page names) 〈2, 4, 5〉 can be

scheduled on one channel by repeatedly transmitting

the sequence [2, 4, 2, 5] and the sequence of windows

〈2, 3, . . . , 9〉 can be scheduled on two channels by re-

peatedly transmitting the sequence [2, 4, 2, 5] on the

first channel and the sequence [3, 6, 7, 3, 8, 9] on the

second channel.

The following example illustrates the difference

between UFBP and WS. Consider the set of windows

{2, 3, 6}. Since 1/2 + 1/3 + 1/6 = 1, the three

items can be packed in one bin. On the other

hand, there is no windows-schedule on one channel

of these pages since gcd(2, 3) = 1, and the only two

ways to schedule 2 and 3 on the same channel is

by repeatedly transmitting either the sequence [2, 3]

or the sequence [2, 2, 3], which leaves no slots for

scheduling the 6. In general, since a page requires

at least 1/wi of the channel bandwidth, it follows

that windows scheduling without migration (that is,

when all broadcasts of a page must be from the same

channel) is a restricted version of unit fractions bin

packing.



The goal of our work is to compare the hard-

ness of the two problems UFBP and WS in both

the on-line and the off-line settings. In particular,

we present the first off-line results for UFBP and

the first on-line results for both UFBP and WS. As

UFBP is a special case of BP, we expect algorithms

for UFBP to get better performance than the algo-

rithms known for BP. On the other hand because

WS without migrations is a restriction of UFBP, we

expect algorithms for WS to have worse performance

than those for UFBP.

There are two difficulties in solving WS. The

first is the assignment of requests to channels and

the second is determining the transmission times of

each request. The UFBP problem isolates the first

difficulty. In a way, UFBP is the fractional version of

WS that measures the power of unlimited preemp-

tions. That is, UFBP demonstrates what can be

achieved when a request is not necessarily transmit-

ted non-preemptively in one slot, but instead can be

partitioned into small segments as long as the total

length of these segments in any window of wi slots

is one.

1.1 Notations and Performance Analysis.

Given a sequence σ of item widths 〈1/w1, . . . , 1/wn〉
and an UFBP algorithm B, define NB(σ) to be the

number of bins of unit size used by the algorithm

to pack all the n items. Similarly, given a sequence

σ of request windows 〈w1, . . . , wn〉, and a WS algo-

rithm W , define NW(σ) to be the number of channels

used by the algorithm to schedule all the n requests.

Note that we use σ to denote both a sequence of

items width 〈1/w1, . . . , 1/wn〉 for the UFBP prob-

lem, and a sequence of windows 〈w1, . . . , wn〉 for the

WS problem. In both cases, for all i, wi is an integer.

In the off-line setting, for either UFBP or WS,

the sequence σ is completely known to the algorithm

in advance. In the on-line setting, for either UFBP

or WS, the sequence σ is provided one element at

a time and the algorithm must augment its current

solution to accommodate a new element. That is,

a decision that is made about which bin to pack an

item in UFBP or how to schedule a request on the

channels in WS, cannot be revoked once done.

Let OPTB denote an optimal off-line algorithm

for UFBP and OPTW denote an optimal off-line

algorithm for WS. The quantity
∑n

i=1(1/wi) is the

total width of all the elements in σ. Since the

number of bins in UFBP and the number of channels

in WS must be an integer,

(1.1) H(σ) =

⌈

n
∑

i=1

(1/wi)

⌉

is a lower bound on the performance of any algo-

rithm for UFBP and WS on the sequence σ.

At present we do not know if the problem of

finding the minimum number of bins in UFBP is NP-

hard, but we do know that the associated restricted

form of WS is NP-hard as shown below. Thus, we

seek “good” approximation algorithms for the off-

line UFBP and WS problems and “good” competi-

tive algorithms for their on-line versions. Generally,

we express the bounds on the performance of an al-

gorithm A in the form

(1.2) H(σ) ≤ NA(σ) ≤ H(σ) + f(H(σ))

for all σ, where f is a non-decreasing function. These

bounds translate to upper bounds on approximation

and competitive ratios in a natural way: The ap-

proximation ratio for an off-line algorithm A or the

competitive ratio of an on-line algorithm A is

ρ(A) = sup
σ

{

NA(σ)

NOPT(σ)

}

.

Suppose that for algorithm A there exists a bound

of the form in inequality (1.2). Since f is non-

decreasing and H(σ) is a lower bound on NOPT(σ)

we have:

(1.3) NOPT(σ) ≤ NA(σ) ≤ NOPT(σ)+f(NOPT(σ)) .

Hence,

ρ(A) ≤ 1 + sup
σ

{f(NOPT(σ))/NOPT(σ)} .

This ratio can be interesting, but does not yield

as much information as inequalities (1.2) and (1.3).

Consequently, we will usually express the perfor-

mance of the algorithms in the paper in the form

of the right inequalities of (1.2) and (1.3).

1.2 Related Work. There is a wide literature on

the general bin packing problem, see the survey [9].

First, bin packing is an NP-hard problem [11]. For

the off-line problem, there exists an asymptotic

PTAS that uses (1 + ε)NOPT(σ) + 1 bins [21]. The

performance of the on-line algorithms first-fit (FF)

and best-fit (BF) is analyzed in [14], where it is



shown that ρ(FF), ρ(BF) ≤ 1.7. The best known

lower bound for any on-line bin packing algorithm

A, is ρ(A) ≥ 1.540 [20]. The best known on-

line bin packing algorithm is Harmonic++ whose

competitive ratio is 1.589 [18]. In [8], the special

case of BP with divisible item sizes (where in the

sorted sequence of sizes a1 < a2 < · · ·, for all i,

ai divides ai−1) is shown to be optimally solvable

with a polynomial time algorithm. Bin packing

with discrete item sizes, i.e., when items sizes are in

{1/k, 2/k, . . . , j/k} for some 1 ≤ j ≤ k is considered

in [7].

The windows scheduling problem was first de-

fined in [4]. That paper shows how to construct

schedules that use H(σ) + O(ln(H(σ)) channels.

This asymptotic result is complemented with a nat-

ural greedy algorithm that performs well in practice,

but does not have a provable approximation bound.

There are several interesting applications of win-

dows scheduling. The simplest is harmonic windows

scheduling where the requests represent segments of

popular movies. For 1 ≤ i ≤ n, the window of seg-

ment i is wi = i, where n is the number of equal

size segments the movie is partitioned into. If seg-

ment i appears in every window of i time slots, then

the maximum waiting time for any client who wishes

to view the movie with no interruptions is the time

it takes to broadcast one segment, or 1/n of the

movie length. Harmonic windows scheduling is the

basis of many popular media delivery schemes (e.g.,

[15, 13]). This concept of receiving from multiple

channels and buffering data for future playback was

first developed by [22]. A variant of harmonic WS

for popular movie delivery is where the movie is par-

titioned into n segments and the window of segment

i is wi = i+d−1 for a fixed constant d. As shown in

[5], for any number of channels h, this variant can be

used to construct schedules whose maximum delay

is asymptotically close to the information theoretic

lower bound of 1/(eh − 1) that follows from [10].

Windows scheduling can be thought of as a

scheduling problem for push broadcast systems. One

example is the Broadcast Disks environment (e.g.,

[1]) where satellites broadcast popular information

pages to clients. Another example is the TeleText

environment (e.g., [2]) in which running banners

appear in some television networks. In such a system

there are clients and servers where the servers choose

what information to push and in what frequency in

order to optimize the quality of service for the clients

(usually the response time). In a more generalized

model, the servers are not the information providers

(e.g., [12, 6]). They sell their service to various

providers who supply content and request that the

content be broadcast regularly. The regularity can

be defined by a window that translates to the

maximum delay until a client receives a particular

content.

Windows scheduling belongs to the general class

of periodic scheduling problems that has applica-

tions in many disciplines (e.g., operations research,

networking). The traditional optimization goal in

periodic scheduling is an “average” type goal in

which a request should be scheduled 1/wi fraction of

the time. The quality of an algorithm is determined

by fairness issues. Among the most prominent ex-

amples are the hard real-time scheduling problem

[17] and the chairman assignment problem [19]. On

the other hand, the windows scheduling problem has

a “max” type optimization goal in which the gap

between two consecutive appearances of a request

must be smaller than wi. Both optimization goals

may be practical to the many applications of periodic

scheduling. Note that UFBP is a relaxed version of

both optimization goals.

1.3 Summary of Results. In Section 2, we

prove the NP-hardness of WS without migrations. A

previous known hardness result suits only the case

of one channel when the gap between consecutive

schedules of request i must be exactly wi. The off-

line WS problem has polynomial time algorithm [4]

that uses H(σ)+O(ln(H(σ)) channels. By contrast,

in Section 3, we show the any-fit decreasing is a poly-

nomial time algorithm for off-line UFBP that uses

H(σ) + 1 bins. So it appears that UFBP is “easier”

than WS in the off-line setting.

In Section 4 we consider on-line algorithms for

UFBP. We first show that for any value h0 there

exists a sequence of requests σ with H(σ) ≥ h0

such that any on-line UFBP algorithm requires

H(σ) + Ω(ln(H(σ))) bins. This demonstrates that

the on-line UFBP problem is “harder” than the off-

line problem. Next, we give a tight analysis of the

natural algorithms next-fit and any-fit. Finally, we

give a polynomial time algorithm that uses H(σ) +

O(
√

H(σ)) bins.

in Section 5 we consider on-line algorithms for

WS. First, we give a non-trivial algorithm that uses



Lower Bound UFBP upper bound WS upper bound

Off-line H(σ) H(σ) + 1 [?] H(σ) + O(ln(H(σ))) [4]

On-line H(σ) + Ω(ln(H(σ))) [?] H(σ) + O(
√

(H(σ))) [?] H(σ) + O(
√

(H(σ))) [?]

Table 1: Results for UFBP and WS in the off-line and the on-line settings.

the optimal number of channels H(σ) when the

windows form a divisible sequence (the equivalent

problem for UFBP has a simpler greedy optimal

algorithm [8]). Then, for general instances, we give

an on-line algorithm that uses H(σ) + O(
√

H(σ))

channels. We emphasize that although this bound is

the same as for on-line UFBP, the WS algorithm is

substantially more complicated.

Table 1 summarizes the results for UFBP and

WS in the off-line and on-line settings. Our results

are marked with [?]. Due to space limitations some

of the proofs are omitted and some are sketched.

2 NP-hardness

We show that window scheduling without migration

is NP-hard. That is, the problem is NP-Hard when

broadcasts of a page have to be from the same

channel. We do not know if the problem is still

NP-hard when migration is permitted. A previous

hardness proof for WS ([3]) works only for a single

channel for the restricted case where all the gaps

between two consecutive appearances of request i

must be exactly wi. Our proof is simpler, holds for

arbitrary number of channels, and covers the case in

which gaps between schedules of request i may vary.

Theorem 2.1. Windows scheduling without migra-

tion is NP-hard. 2

For the UFBP problem, migration makes the

problem trivial since it means that items can split

among several bins. In this case, the greedy packing

is clearly optimal. However, without splits, we only

know that it is NP-hard if the size of a bin is 1/k for

arbitrary k.

3 Off-line UFBP

We present a polynomial time algorithm for UFBP

which is optimal up to an additive term of 1.

Any Fit Decreasing (AFD): The items are pro-

cessed in a non-increasing order of their widths. The

current item is packed in any bin it fits if such ex-

ists. Otherwise, the current item is packed in a new

opened bin.

We are not specific about which bin to pack an

item because our analysis suits any bin selection (e.g,

first-fit or best-fit).

Theorem 3.1. For any sequence σ,

NAFD(σ) ≤ H(σ) + 1.

Proof. After being sorted in a non-increasing order,

the input sequence has the form

σ =

〈(

1

2

)n2

,

(

1

3

)n3

, . . . ,

(

1

w

)nw
〉

for some integers w ≥ 2 and ni ≥ 0 for 2 ≤ i ≤ w.

Assume that AFD uses h full bins (filled to capacity

1) and h′ non-full bins. Thus, NAFD(σ) = h′ + h .

Claim 3.1. After packing all the items of width at

least 1/k, there are at most k − 1 non-full bins.

Proof. The proof is by induction on k. The base case

is k = 2. Clearly, the items of width 1/2 are packed

in dn2/2e bins, where only the last one might be non-

full. Assume that the claim holds before packing the

items of width 1/k. That is, after packing the items

of width at least 1/(k − 1), there are at most k − 2

non-full bins. Since items of size 1/k are first added

to currently non-full bins that can accommodate

them, it follows that only one bin that contains only

items of size 1/k might be non-full after all the 1/k-

items are packed. 2

Suppose the last bin that AFD opened was

opened for an item of width 1/w′ where w′ ≤ w. By

Claim 3.1, at this stage, there are less than w′ non-

full bins. Since this is the last opened bin, it follows

that h′ < w′. Furthermore, each of the first h′ − 1

non-full bins must contain items whose total width

is greater than 1 − (1/w′), because otherwise AFD

would not open a new bin for 1/w′. By definition,

the last non-full bin contains one item of width 1/w′.

It follows that



H(σ) ≥ h + (h′ − 1)

(

1 − 1

w′

)

+
1

w′

= h + h′ − 1 − h′ − 2

w′
> h + h′ − 2 .

Since H(σ) is an integer, it must be at least

h′ + h − 1. Thus, NAFD(σ) = h′ + h ≤ H(σ) + 1. 2

Since H(σ) ≤ NOPTB(σ), it follows that

NAFD(σ) ≤ NOPTB(σ) + 1. The above analysis is

tight, as demonstrated by the non-increasing se-

quence σ =
〈

1
2 , 1

3 , 1
3 , 1

4 , 1
4 , 1

4

〉

. The optimal solution

uses two bins, the first contains
{

1
2 , 1

4 , 1
4

}

and the

second contains
{

1
3 , 1

3 , 1
4

}

. On the other hand, AFD

packs the first two items in one bin, the next three

items in another bin, and then it is forced to pack

the last item of width 1/4 in a third bin since the

available free space in each of the first two bins is

1/6. Hence, NAFD(σ) ≥ NOPTB(σ) + 1.

The above theorem gives a clear distinction

between BP and UFBP. This is because in BP,

NOPT(σ) can be arbitrarily close to 2H(σ) (when

σ consists of items of width 1/2 + ε).

4 On-line UFBP

In this section we address the on-line UFBP prob-

lem. We first show a non-trivial lower bound. Next,

we analyze “fit” greedy algorithms. Finally, we show

a better algorithm that sometimes opens a new bin

for an item even if a bin with enough free space to

accommodate this item exists.

4.1 An H(σ) + Ω(ln H(σ)) Lower Bound for

On-line UFBP. We prove that no on-line algo-

rithm for UFBP can guarantee a solution with

H(σ) + o(ln(H(σ))) bins for any sequence σ. Since

there exists an upper bound of H(σ) + 1 for the off-

line UFBP, this result shows a significant gap be-

tween what can be achieved off-line and what can

be achieved on-line for UFBP.

Theorem 4.1. For any on-line algorithm B for

UFBP and for any integer h0 > 0, there exists

a sequence σ such that H(σ) ≥ h0 and NB(σ) =

H(σ) + Ω(ln(H(σ))).

Proof. Let w be the smallest integer such that
∑w

i=2 1/i ≥ h0. It follows that h0 = Θ(ln w) . We

describe an adversary strategy that constructs a non-

decreasing sequence σ of the type

〈(

1

w

)xw

,

(

1

w − 1

)xw−1

, . . . ,

(

1

2

)x2
〉

for integers xi ≥ 0 for 2 ≤ i ≤ w. The adversary

sets the values of xw, xw−1, . . . , x2 as follows. Let

2 ≤ i ≤ w and assume xw, . . . , xi+1 have been

already set. The adversary requests items of width

1/i until one of the following two conditions holds

for the bins used by Algorithm B:

1. There is a bin containing exactly i − 1 items of

width 1/i and no other items.

2. There are at least ih0 bins which are filled only

with items of width 1/i but no more than i− 2

such items.

Note that if xi is large enough then one of the two

conditions must hold (for i = 2 the first condition

must hold). If the first condition holds and i > 2,

then the adversary starts requesting items of width

1/(i−1). If the second condition holds the adversary

stops (formally, it sets xi−1 = · · · = x3 = x2 = 0).

The Theorem is proved using the following

claims.

Claim 4.1. H(σ) ≥ h0. 2

Claim 4.2. The total free space in all of the bins of

B is at least Θ(ln(w)). 2

Claim 4.3. NB(σ) < w2 ln(w). 2

Consequently, for this sequence, the total item

width is at most NB(σ) − Θ(ln(w)) ≤ w2 ln(w) −
Θ(ln(w)), and thus, H(σ) ≤ w2 ln(w) − Θ(ln(w)).

Since ln(NB(σ)) ≤ ln(w2 ln(w)) = Θ(ln(w)), it

follows that NB(σ) ≥ H(σ) + Ω(ln(H(σ))). 2

By Theorem 3.1, NOPTB(σ) ≤ H(σ) + 1. Com-

bined with the above, we have

Corollary 4.1. For any on-line algorithm B for

UFBP and for any constant h0, there exists a se-

quence σ such that H(σ) ≥ h0 and NB(σ) =

NOPTB(σ) + Ω(ln(NOPTB(σ))).

4.2 Any-fit and Next-Fit. In this section we

consider simple on-line algorithms for UFBP. In

particular, we analyze the performance of the Next-

fit and the Any-fit algorithms defined as follows:



Next Fit (NF): An item is packed in the last

opened bin if this bin has enough free space for it.

Otherwise, a new bin is opened.

Any Fit (AF): An item is packed in any one of the

bins that has enough free space for it.

In fact, Any fit is a class of algorithms, differ by

the way the actual bin in which the item is packed

is selected. In First-fit the item is packed in the first

bin that has enough free space for its width. Other

Any-fit algorithms might prefer the fullest or the

emptiest bin that can accommodate the new item.

Our analysis shows that for the UFBP problem all

AF algorithms have the same worst-case performance

regardless of the selection rule.

The following results state the exact competitive

ratios of NF and AF. That is, for A ∈ {NF, AF}, (i)

for any sequence σ, NA(σ) ≤ ρ(A)NOPTB(σ), and,

(ii) for any n there exists a sequence σ of size Θ(n)

for which NA(σ) = ρ(A)NOPTB(σ).

Theorem 4.2. ρ(NF) = 2. 2

Theorem 4.3. ρ(AF) = 6
5 .

Proof. We first show ρ(AF) ≥ 6
5 . Consider the

following sequence of 12x item width for x ≥ 1:

1

2
,
1

3
,
1

2
,
1

3
, . . . ,

1

2
,
1

3
.

An optimal solution packs all the items with width

1/2 in 3x bins and all the items with width 1/3 in

2x bins for a total of 5x bins. AF allocates a bin

for any pair of adjacent items one of width 1/2 and

one of width 1/3 for a total of 6x bins. Thus, the

competitive ratio of AF is at least 6x
5x

= 6
5 . For the

upper bound, assume that there exists a sequence

σ of items for which ρσ(AF) > (6/5). Then there

exists a bin whose capacity is less than 5/6 and a

point in the sequence after which the width of any

item is greater than 1/6. That is, after this point, a

width could have only the values: 1/2, 1/3, 1/4, 1/5.

Since no linear combination of these 4 values totals

a value that is less than 5/6 and greater than 4/5,

it follows that there is no additional bin whose

capacity is less than 5/6. Therefore, AF allocates at

most (6/5)H(S) + 1 bins to the sequence σ. Thus,

for any ε > 0 and for any long enough sequences

ρ(AF) ≤ 6
5 + ε . 2

4.3 An H(σ) + O(
√

H(σ)) algorithm. The pre-

vious section demonstrated the limitation of “must

fit” type algorithms. In order to get a better result,

we develop algorithms that sometimes open a new

bin for an item even if this item fits into one of the

previously opened bins.

Definition 4.1. A bin is i-dedicated if only items

of size 1/i are packed in it.

We define a set of on-line algorithms {B∗
k} for

k = 1, 2, . . . such that for any sequence σ, NB∗

k
(σ) ≤

k+1
k

H(σ)+k. Algorithm B∗
1 is the first-fit algorithm.

Algorithm B∗
2 dedicates bins to items of width 1/2

and packs all other items according to first-fit rule.

That is, an item of width 1/2 is either packed in

an open 2-dedicated bin or in a new 2-dedicated

bin and any item with a smaller width is packed in

the first non-dedicated bin that can accommodate it.

In general, Algorithm B∗
k dedicates bins to items of

width 1/2, 1/3, . . . , 1/k and packs all the items with

smaller width according to first-fit rule. That is, an

item of width 1/j, for 2 ≤ j ≤ k, is either packed in

an open j-dedicated bin or in a new j-dedicated bin

and any item with a smaller width is packed in the

first non-dedicated bin that can accommodate it.

Lemma 4.1. For any sequence σ and k > 0,

NB∗

k
(σ) ≤ k + 1

k
H(σ) + k .

Proof. For all j = 2, . . . , k, all j-dedicated bins, ex-

cept maybe for the last one, are full (each containing

j items of size 1/j). Thus, there are at most k − 1

non-full dedicated bins. The other bins are filled ac-

cording to first-fit rule with items whose width is at

most 1/(k + 1). Hence, a new non-dedicated bin is

opened only if all previously opened non-dedicated

bins are at least k/(k + 1)-full. Thus, all the non-

dedicated bins except maybe for the last one are at

least k/(k + 1)-full. Adding the last non-dedicated

bin to the k − 1 non-full dedicated bins, we get that

there are at most k bins whose capacity could be

small, and the total number of bins used is

NB∗

k
(σ) ≤ k + 1

k

(

∑

i∈σ

1/wi

)

+ k ≤ k + 1

k
H(σ) + k .

2

Let h =
√

H(σ). For simplicity, we assume

that h is an integer. Otherwise, we round h to

the nearest integer, the analysis is similar. Assume

first that H(σ) is known in advance. The expression
k+1

k
H(σ) + k is minimized for k = h. The following

lemma gives the bound for B∗
h.



Lemma 4.2. For any sequence σ,

NB∗

h
(σ) ≤ H(σ) + 2

√

H(σ).

When H(σ) is not known in advance, we dynami-

cally increase the parameter k for which dedicated

bins exist for 1/2, 1/3, . . . , 1/k. Algorithm B∗
dyn is

defined as follows: Let H ′ denote the total width of

the already packed items. As long as H ′ ≤ 1, use B∗
1

(regular first-fit), when 1 < H ′ ≤ 4, shift to B∗
2 , and

in general, when (k − 1)2 < H ′ ≤ k2, use Algorithm

B∗
k. Note that when B∗

dyn shifts to Algorithm B∗
k, it

continues to use the bins that were used for B∗
k−1, it

just adds a new (initially empty) k-dedicated bin.

Theorem 4.4. For any sequence σ,

NB∗

dyn
(σ) ≤ H(σ) + 4

√

H(σ).

Proof. Let sk denote the subset of σ of items that

were packed while executing B∗
k. It follows that the

total width of items in s1 is less than 1+ 1
2 , the total

width of items in s2 is less than 22 + 1
2 − 12 = 3,

and in general, the total size of items in sk is less

than k2 + 1
2 − (k − 1)2 < 2k. The additive term 1

2

exists since there might be an overflow of 1
2 beyond

(k − 1)2 before the algorithm shifts to B∗
k.

As in the proof of Lemma 4.1, it follows that

while B∗
k is executed, the algorithm opens a new bin

only if all the current opened bins (including non-

dedicated bins that have been opened during the

execution of B∗
k−1) are at least k/(k + 1)-full. In

addition, during the execution of B∗
k, there might be

at most k − 1 non-full dedicated bins and only one

non-dedicated bin with small capacity (the last one).

Recall that h =
√

H(σ). Thus, B∗
h is the last

algorithm executed by B∗
dyn. The total number of

bins used by B∗
dyn is at most

h +
h
∑

k=1

k + 1

k

∑

i∈sk

1

wi

< h +
h
∑

k=1

k + 1

k
2k

= h +

h
∑

k=1

2k +

h
∑

k=1

2 = h2 + 4h = H + 4
√

H.

2

5 On-line WS

In this Section we consider on-line algorithms for

the WS problem. We start with a set of optimal

algorithms for specific instances. These algorithms

form the building blocks of our concluding algo-

rithm, W∗
dyn that has the same performance as Al-

gorithm B∗
dyn for UFBP.

5.1 An Optimal Algorithm for Powers of 2

Windows. Assume that the sequence σ contains

only windows that are powers of 2. That is, wi = 2vi

for an integer vi ≥ 1 for 1 ≤ i ≤ n.

A

C D

B

Figure 1: Tree representation of the cyclic schedule

[A, B, A,C, A, B, A, D].

We represent each channel schedule by a binary

tree, in which all the internal nodes have degree

2. The tree leaves represent the scheduled items.

To construct the schedule from a tree, alternate

between scheduling an item from the left and the

right subtrees. The item selected from each subtree

is selected by alternating recursively between the left

and right subtree in each subtree. For example, the

tree in Figure 1 represents a schedule that alternates

between ’A’ (the only item in the left subtree) and

an item from the right subtree. In selecting this

right-subtree item, the schedule alternates between

’B’ and an item from the right subtree, and so on.

It follows that a leaf, `, whose depth in the tree is

d(`) represents an item scheduled with window size

2d(`). The whole schedule is represented by a forest

of binary trees, each representing one channel.

We denote by open a leaf that is not assigned

yet to any request, and by active a tree that is not

fully utilized yet, that is, a tree with at least one

open leaf, representing a channel schedule with idle

slots. Let the label of a leaf ` of depth d(`) be 2d(`).

Definition 5.1. A lace binary tree of height h is a

binary tree of height h in which there is a single leaf

in each of the depths 1, 2, . . . , h − 1, and two leaves

in depth h. For example, the tree in Figure 1 is a

lace binary tree of height 3.

Algorithm W1: Let wi = 2vi be the next request in

σ. If there is an open leaf whose label is 2vi , schedule

the request on that leaf. Otherwise, let ui < vi be

the minimal such that an open leaf whose label is

2ui exists. If no such ui exists, open a new active

tree with one open leaf whose label is 20 = 1. Let `



(iii)

4

8

44

8

(i) (ii)

4

2

44
8

2

4

8

44

(v)(iv)

Figure 2: Algorithm evolution for σ = 〈4, 8, 4, 2, 4〉. White circles denote open leaves

be the selected leaf and let T be the tree containing

the leaf `. Append to T a lace binary sub-tree of

depth vi − ui whose root is ` and schedule request i

on one of the two leaves with depth vi in T . See an

example in Figure 2.

Lemma 5.1. During the execution of W1, the forest

contains at most one open leaf in each depth.

Proof. The proof is by induction on the number of

requests scheduled by the algorithm. Initially, there

is only one open leaf in depth zero (the root of the

first tree). When scheduling a new request, W1

either closes an open leaf or replaces an open leaf

with a lace tree. Since this replacement is performed

on the lowest open leaf, there are no open leaves in

lower depths. By the definition of a lace binary tree,

each added leaf is the single one in its depth. Finally,

there are two leaves in the lowest level but one of

them is allocated to the new request. 2

Lemma 5.2. For any sequence σ in which for all

i, wi = 2vi we have NW1
(σ) = H(σ).

Proof. We show that when the forest contains h

trees and a new tree is opened by W1, then the

total bandwidth of requests in σ (including the new

one)
∑

i∈σ 1/wi is greater than h. Assume that

the request that caused W1 to open a new tree

has a window 2vi . According to the algorithm,

there is no open leaf whose label is less than 2vi .

Also, by Lemma 5.1, there is at most one open leaf

whose label is 2vi+j for all j > 0. Let d denote

the maximum depth of any active tree. Then the

total bandwidth of the open leaves in all the first h

opened trees is at most
∑d

j=1 1/2vi+j which is less

than 1/2vi . Therefore, the total bandwidth required

by the new 1/2vi request and the requests already

scheduled is more than h. 2

5.2 An Optimal Algorithm for Windows of

the form c2vi. We generalize algorithm W1 to work

for instances in which there exists an integer c such

that all the wi’s are of the form c2vi for an integer

vi ≥ 0 for 1 ≤ i ≤ n. We note that in a similar way,

we can construct optimal algorithms for any instance

with divisible window sizes. In such sequences, there

exists constants c1, c2, such that for all 1 ≤ i ≤ n,

window i is of size c1c
vi

2 for some integer vi. Details

are omitted since we do not use this fact in the rest

of the paper.

Let c ≥ 1 be an odd number. In Algorithm

Wc, each channel schedule is represented by a tree

whose root degree is c, and each of the c subtrees

is a binary tree. To construct the schedule from a

tree, in a round-robin fashion, schedule a request

from each of the c binary subtrees. In each binary

subtree the selection of the next request is done as

described in Section 5.1. It follows that a leaf, `,

whose depth in the tree is d(`) represents an item

scheduled with window size c2d(`)−1. The whole

schedule is represented by a forest of such trees, each

representing one channel. Let the label of a leaf ` of

depth d(`) be c2d(`)−1.

Algorithm Wc: Let wi = 2vi be the next request

in σ. If there is an open leaf whose label is c2vi ,

schedule the request on that leaf. Otherwise, let

ui < vi be the minimal such that an open leaf whose

label is c2ui exists. If no such ui exists, open a new

active tree with c open leaves each with a label c. Let

` be the selected leaf and let T be the tree containing

the leaf `. Append to T a lace binary sub-tree of

depth vi − ui whose root is ` and schedule request i

on one of the two leaves with depth vi + 1 in T .

The proof of the next lemma is a generalization

of the proof of Lemma 5.2.

Lemma 5.3. For any sequence σ in which for all

i, wi = c2vi we have NWc
(σ) = H(σ). 2

5.3 An H(σ)+O(
√

H(σ)) Algorithm for Arbi-

trary Windows. For arbitrary windows, we define

a parameterized family of on-line algorithms W∗
k for

k = 1, 2, . . . such that NW∗

k
(σ) ≤ k+1

k
H(σ) + k for

any request sequence σ.



Algorithm W∗
1 : Let wi be the window of the next

request to be scheduled. Round down wi to the

nearest power of 2 and apply algorithm W1 on the

resulting request.

Algorithm W∗
k : Maintain k sets of channels:

C1, . . . , Ck. On the channel-set Cj , schedule requests

whose window is rounded down to (2j−1)2vi . Let wi

be the window of the next request to be scheduled.

Round down wi to the nearest number of the form

c2vi where c ∈ {1, 3, . . . , 2k − 1} and use algorithm

Wc to schedule the rounded request on C c+1

2

.

Lemma 5.4. For any sequence σ and k > 0,

NW∗

k
(σ) ≤ k + 1

k
H(σ) + k .

Proof. We first show that when Algorithm W∗
k is

applied, a request with window w is rounded to a

request with window w′ such that w′ is “close” to

w. Then we analyze the performance of W∗
k on the

rounded windows.

Claim 5.1. For any integer w and any k ≥ 0, there

exists an integer w′ < w such that (i) w
w′

≤ k+1
k

,

and (ii) ∃c ∈ {1, 3, . . . , 2k − 1} and ∃v such that

w′ = c2v. 2

Let w′
i denote the rounded window of request

i. Let σ′ denote the sequence of the rounded

windows, and let σ′
c denote the subset of σ′ of the

requests whose windows are rounded to c2v for some

integer v ≥ 0. By Lemma 5.3, Algorithms Wc uses

H(σ′
c) =

⌈

∑

i∈σ′

c
1/w′

i

⌉

≤ 1 +
∑

i∈σ′

c
1/w′

i channels

to schedule all the requests in σ′
c. Summing over

all the k channel-sets, we get that all the requests

are scheduled on at most
∑

i∈σ′ 1/w′
i + k channels.

By Claim 5.1
∑

i∈σ′ 1/w′
i ≤ k+1

k

∑

i∈σ 1/wi. Thus,

NW∗

k
(σ) ≤ k

k+1H(σ) + k. 2

Let h =
√

H(σ). Assume first that H(σ) is

known in advance. The expression k+1
k

H(σ) + k is

minimized for k = h. The following lemma gives the

bound for W∗
h.

Lemma 5.5. For any sequence σ,

NW∗

h
(σ) ≤ H(σ) + 2

√

H(σ).

When H(σ) is not known in advance, we dy-

namically increase the number of channel-sets (the

parameter k). Algorithm W∗
dyn is defined as follows:

Let H ′ denote the total bandwidth requirement of

the already scheduled requests. As long as H ′ ≤ 1,

use W∗
1 . That is, all the windows are rounded down

to the closest power of 2. When 1 < H ′ ≤ 4, shift to

W∗
2 . That is, the windows are rounded down to the

closest number of the form either 2vi or 3 · 2vj . In

general, when (k−1)2 < H ′ ≤ k2, use algorithm W∗
k .

That is, a window wi is rounded down to the closest

number of the form c2vi where c ∈ {1, 3, . . . , 2k − 1},
Note that when the algorithm shifts to Algorithm

W∗
k , it continues to use the channel-sets that were

used for W∗
k−1, it just adds a new (initially empty)

channel-set Ck.

Theorem 5.1. For any sequence σ,

NW∗

dyn
(σ) ≤ H(σ) + 4

√

H(σ).

Proof. Recall that h =
√

H(σ). That is, Algorithm

W∗
h is the last algorithm executed by W∗

dyn. Let

w′
i denote the rounded window of request i. Let σ′

denote the sequence of the rounded windows. As in

the proof of Lemma 5.4, we have that W∗
dyn uses at

most h +
∑

i∈σ′ 1/w′
i channels. We now bound the

bandwidth lost due to rounding. The idea is that,

indeed, prefixes of σ has a smaller range of rounding

possibilities, however, this loss is proportional to the

total bandwidth request of the prefix. In particular,

the bulk of the requests has all the h rounding

possibilities .

Let sc denote the subset of σ of requests arriving

while executing W∗
c . As in the proof of Theorem 4.4,

we have that the total bandwidth request of sk is

at most 2k. By Claim 5.1, when executing W∗
k , we

round the requests such that w′
i ≥ k

k+1wi. Thus,

∑

i∈sk

1

w′
i

≤
∑

i∈sk

k + 1

kwi

=
k + 1

k

∑

i∈sk

1

wi

=
k + 1

k
(2k) = 2(k + 1).

Therefore, the total number of channels used by

W∗
dyn is at most

h+
∑

i∈σ′

1

w′
i

= h+

h
∑

k=1

2(k +1) = h2 +4h = H +4
√

H

2

6 Open Problems

In this paper we addressed the Unit Fractions Bin

Packing (UFBP) problem and the Windows Schedul-

ing (WS) problem in the off-line and the on-line set-

tings. A summary of the results can be found in



Table 1 in Section 1.3. The following problems re-

main open.

1. For off-line UFBP, we know a solution which

is optimal up to an additive term of 1. Is this

problem NP-hard?

2. Is there an off-line algorithm for WS that out-

performs the solution of [4]? Also, does there

exist a non-trivial lower bound, larger than

H(σ) + 1, for the off-line WS problem that sep-

arates it from the off-line UFBP problem?

3. The upper bounds for on-line UFBP and WS

are the same. Is there a better upper bound

for on-line UFBP as is the case in the off-line

setting?

4. The only lower bound we have for on-line WS

is the one for UFBP. Is there a larger lower

bound for on-line WS, one that takes advantage

of the additional restriction imposed by the WS

problem?

5. All of our algorithm for WS do not migrate

requests from channel to another channel. Can

migration help in the off-line or the on-line

setting? Furthermore, if migration is permitted,

is WS an NP-Hard problem?

References

[1] S. Acharya, M. J. Franklin, and S. Zdonik.

Dissemination-based data delivery using broadcast

disks. IEEE Personal Comm., 2(6):50–60, 1995.

[2] M. H. Ammar and J. W. Wong. The design of

teletext broadcast cycles. Performance Evaluation,

5(4):235–242, 1985.

[3] A. Bar-Noy, R. Bhatia, J. Naor, and B. Schieber.

Minimizing service and operation costs of periodic

scheduling. Mathematics of Operations Research

(MOR), 27(3):518–544, 2002.

[4] A. Bar-Noy and R. E. Ladner. Windows scheduling

problems for broadcast systems. In Proc. of the

13-th Annual ACM-SIAM Symposium on Discrete

Algorithms (SODA), 433–442, 2002.

[5] A. Bar-Noy, R. E. Ladner, and T. Tamir. Schedul-

ing techniques for media-on-demand. In Proc. of

the 14-th Annual ACM-SIAM Symposium on Dis-

crete Algorithms (SODA), 791–800, 2002.

[6] A. Bar-Noy, J. Naor, and B. Schieber. Pushing

dependent data in clients-providers-servers systems.

Wireless Networks journal, 9(5):175–186, 2003.

[7] E. G. Coffman, C .A. Courcoubetis, M .R. Garey,

D .S. Johnson, P .W. Shor, R .R. Weber, and

M. Yannakakis. Bin packing with discrete item

sizes, part I: perfect packing theorems and the

average case behavior of optimal packings. SIAM

J. Discrete Math., 13:384–402, 2000.

[8] E. G. Coffman, M .R. Garey, and D .S. Johnson.

Bin packing with divisible item sizes. J. of Com-

plexity, 3:406–428, 1987.

[9] E. G. Coffman, M .R. Garey, and D .S. Johnson.

Approximation Algorithms for Bin Packing: A

Survey. Approximation Algorithms for NP-Hard

Problems, D. Hochbaum (editor), PWS Publishing,

Boston (1996), 46–93.

[10] L. Engebretsen and M. Sudan. Harmonic broad-

casting is optimal. In Proc. of the 13-th Annual

ACM-SIAM Symposium on Discrete Algorithms

(SODA), 431–432, 2002.

[11] M .R. Garey and D .S. Johnson. Computers

and intractability: a guide to the theory of NP-

completeness. W.H. Freeman, 1979.

[12] V. Gondhalekar, R. Jain, and J. Werth. Scheduling

on airdisks: efficient access to personalized infor-

mation services via periodic wireless data broad-

cast. IEEE International Conference on Commu-

nications (ICC), 3:1276–1280, 1997.

[13] K. A. Hua and S. Sheu. An Efficient Periodic

Broadcast Technique for Digital Video Libraries.

Multimedia Tools and Applications, 10(2/3):157–

177, 2000.

[14] D .S. Johnson, A. Demers, J .D. Ullman,

M .R. Garey, and R.L. Graham. Worst-case perfor-

mance bounds for simple one-dimensional packing

algorithm. SIAM J. of Comput., 3:256–278, 1974.

[15] L. Juhn and L. Tseng. Harmonic broadcasting for

video-on-demand service. IEEE Transactions on

Broadcasting, 43(3):268–271, 1997.

[16] V. Kann. Maximum bounded 3-dimensional match-

ing is max SNP-complete. Information Processing

Letters, 37:27–35, 1991.

[17] C. L. Liu and W. Laylend. Scheduling algorithms

for multiprogramming in a hard real-time environ-

ment. Journal of the ACM, 20(1):46–61, 1973.

[18] S. Seiden. On the online bin-packing problem.

Journal of the ACM, 49(5):640-671, 2002.

[19] R. Tijdeman. The chairman assignment problem.

Discrete Mathematics, 32:323–330, 1980.

[20] A. van Vliet. On the asymptotic worst case behav-

ior of harmonic fit. J. of Algs., 20:113–136, 1996.

[21] W .F. Vega and G .S. Leuker. Bin packing can be

solved within 1 + ε in linear time. Combinatorica,

1:349–355, 1981.

[22] S. Viswanathan and T. Imielinski. Metropoli-

tan area video-on-demand service using pyramid

broadcasting. ACM Multimedia Systems Journal,

4(3):197–208, 1996.


