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Executive Summary

The United States Department of Energy (DOE) through the National Renewable Energy
Laboratory (NREL) implemented the Wind Partnership for Advanced Component Technologies
(WindPACT) program.  As part of the WindPACT program, Global Energy Concepts, LLC
(GEC), was awarded contract number YAM-0-30203-01 to examine Technical Area 1�Blade
Scaling, Technical Area 2�Turbine Rotor and Blade Logistics, and Technical Area 3�Self-
Erecting Towers.  This report documents the results of GEC�s Technical Area 1�Blade Scaling.
The primary objectives of the Blade-Scaling Study are to assess the scaling of current materials
and manufacturing technologies for blades of 40 to 60 meters in length, and to develop scaling
curves of estimated cost and mass for rotor blades in that size range.

Approach

We investigated the scaling of current materials and manufacturing technologies for wind turbine
blades of 40 to 60 meters in length.  Direct design calculations were used to construct a
computational blade-scaling model, which was then used to calculate structural properties for a
wide range of aerodynamic designs and rotor sizes.  Industry manufacturing experience was used
to develop cost estimates based on blade mass, surface area, and the duration of the assumed
production run.

The structural design model was also used to perform a series of parametric analyses.  The results
quantify the mass and cost savings possible for specific modifications to the baseline blade
design, demonstrate the aerodynamic and structural trade-offs involved, and identify the
constraints and practical limits to each modification.

Conclusions and Results

The scaling-model results were compared with mass data for current commercial blades.  For a
given blade design, the scaling model indicates that blade mass and costs scale as a near-cubic of
rotor diameter.  In contrast, commercial blade designs have maintained a scaling exponent closer
to 2.4 for lengths ranging between 20 and 40 meters.  Results from the scaling study indicate that:

• To realize this lower scaling exponent on cost and mass has required significant evolution of
the aerodynamic and structural designs.

• Commercial blades at the upper end of the current size range are already pushing the limits of
what can be achieved using conventional manufacturing methods and materials.

• For even larger blades, avoiding a near-cubic mass increase will require basic changes in:
− Materials, such as carbon or glass/carbon hybrids.
− Manufacturing processes that can yield better mean properties and/or reduced property

scatter through improvements in fiber alignment, compaction, and void reduction.  The
extent to which such improvements would result in lower blade masses may be
constrained by blade stiffness requirements.

− Load-mitigating rotor designs.

For the scaling results presented in this report, the basic material and manufacturing process
remained unchanged.  As such, a reduction in mass will correspond to a reduction of production
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blade costs in the same proportion.  However, this will not hold true for mass savings realized
through changes in materials, process, and rotor design.  In evaluating each such change, the
implications on both mass and cost must be considered.

As part of the cost analysis, it was shown that the �learning curve� required to achieve a mature
production process has a meaningful effect on blade costs for the range of rotor sizes considered.
A production rate of 200 megawatts (MW) per year implies 800 blades at 750 kilowatts (kW), but
only 120 blades at 5 MW.  Therefore, the cost penalty for initial production cycles has an
increasing impact on the first-year production costs as rotor sizes increase, and a complete cost
assessment depends on both annual production rates and the extent (number of years) of sustained
production.

The results of the scaling analysis are shown in the table below.

Blade Mass and Cost for Rotors between 750 kW and 5 MW (5-year production)
Radius Rating Area* Mass (kg) Average Cost per Blade Rotor Costs

(m) (kW) (m2) Blade Root Fixed Prod. Total $/kW $/MWh/yr
23.3 750 66.3 1577 111 $115 $19,100 $19,215 $76.9 $25.1
32.9 1500 132.6 4292 243 $520 $51,850 $52,370 $104.7 $31.4
38.0 2000 176.8 6528 336 $970 $79,230 $80,200 $120.3 $34.9
40.8 2300 203.3 8010 388 $1,320 $97,495 $98,815 $128.9 $36.6
46.6 3000 265.2 11,783 515 $2,350 $144,910 $147,260 $147.3 $40.8
53.8 4000 353.6 17,961 681 $4,405 $224,395 $228,800 $171.6 $46.0
60.2 5000 442.0 24,869 851 $7,180 $316,590 $323,770 $194.3 $50.8

* Blade surface area

To assist with the interpretation of this table, scaling exponents as a function of rotor diameter
have been developed for several key parameters.  The results are presented in the following table.

Scaling Exponents:  2.3 kW to 5 MW
Parameter Scaling Exponent

Energy production 2.22
Blade mass 2.87
Blade costs 3.03
Rotor cost per kW capacity ($/kW) 1.04
Rotor cost per energy capture ($/MWh/yr) 0.82

Because of the assumed increase in hub height with rotor size and associated wind shear, the
energy capture scales more rapidly than the rotor swept area (exponent of 2.22).  Because the
scaling was performed for a fixed-blade design, the mass exponent is slightly less than cubic.
However, due to the impact of the learning-curve costs on the five-year production scenario, the
blade cost exponent is slightly greater than cubic.  The blade cost per installed kilowatt is shown
to increase in a near-linear fashion with diameter, and the cost per energy capture scales as the
diameter to an exponent of 0.82.

The cost estimates presented above are appropriate for the assumptions and design modeled.  It
should be noted that the same general trend would result for any fixed-blade design that is scaled
over the same range of ratings.  To realize lower exponents on blade cost and mass requires
evolution of the design and/or manufacturing process as the rotors become larger.
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1. Introduction
1.1 Background

The United States Department of Energy (DOE), through the National Renewable Energy
Laboratory (NREL) has implemented the Wind Partnership for Advanced Component
Technologies (WindPACT) program.  This program explores advanced technologies that
decrease the cost of energy (COE) from wind turbines.  The initial step in the WindPACT
program is a series of preliminary scaling studies intended to bound the optimum sizes for future
turbines, help define sizing limits for certain critical technologies, and explore the potential for
advanced technologies to contribute to reduced COE as turbine scales increase.  Four technical
areas were identified for examination in this initial phase.

Global Energy Concepts, LLC (GEC), was awarded contract number YAM-0-30203-01 to
examine Technical Area 1�Blade Scaling, Technical Area 2�Turbine Rotor and Blade
Logistics, and Technical Area 3�Self-Erecting Towers.  This report documents the results of
GEC�s Technical Area 1 study.  The primary objectives of the Blade-Scaling Study are to assess
the scaling of current materials and manufacturing technologies for blades of 40 to 60 meters (m)
in length, and to develop scaling curves of estimated cost and mass for rotor blades in that size
range.

To perform this scaling study, a computational modeling tool was developed.  The model was
then used to calculate structural properties for a wide range of aerodynamic designs and rotor
sizes, to quantify possible mass and cost reductions from modifications to the baseline design,
and to identify limitations to the economical scaling of the current commercial approach to blade
design and manufacture.

1.2 Project Specifications and Design Criteria

1.2.1 Original RFP Specifications

The original NREL Request for Proposals (RFP) included the following specifications for the
blade scaling study:

• three blades, upwind rotor with rigid hub and full-span pitch control
• blade flapwise natural frequency between 1.5 and 2.5 per revolution
• blade edgewise natural frequency greater than 1.5 times flapwise natural frequency
• rotor solidity between 2% and 5%
• variable speed operation with maximum power coefficient = 0.50
• maximum tip speed = 85 m/s
• air density = 1.225 kg/m3

• turbine hub height = 1.3 times rotor diameter
• annual mean wind speed at 10 m height = 5.8 m/s
• Rayleigh distribution of wind speed
• vertical wind shear power exponent = 0.143
• rated wind speed = 1.5 times annual average at hub height
• cut out wind speed = 3.5 times annual average at hub height
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These specifications were used to derive relationships between rotor size and rating.  From the
original WindPACT RFP:

143.0
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�
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�⋅= hub
mean

h
smV (Eqn. 1)

meanrated VV ⋅= 5.1 (Eqn. 2)
Dhhub ⋅= 3.1 (Eqn. 3)

where
Vmean ≡  annual average wind speed at hub height (m/s)
Vrated ≡  wind speed at turbine rated power (m/s)
hhub ≡  rotor hub height (m)
D ≡  rotor diameter (m).

The turbine system power output at rated wind speed is given by:
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where
ηDT ≡  drivetrain efficiency
CP ≡  rotor power coefficient
ρ ≡  air density (kg/m3).

Assuming ηDT = 0.925, CP = 0.5, and ρ = 1.225 kg/m3, combining equations 1 through 4, and
solving for D yields:
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Table 1 provides a summary of the turbine parameters implied by the original WindPACT
specifications, for system power ratings ranging from 750 kW to 5 MW.

Table 1.  Turbine Parameters as Implied by Original RFP Specifications
System
Rating
(kW)

Vmean
(m/s)

Vrated
(m/s)

Vcut-out
(m/s)

Rotor
Diameter

(m)

Rotor
Radius

(m)

Specific
Rating

(kW/m2)

Tower
Height

(m)
750 7.54 11.31 26.40 48.3 24.2 0.410 62.8
1500 7.86 11.78 27.50 64.2 32.1 0.464 83.5
3000 8.18 12.27 28.64 85.4 42.7 0.524 111.0
5000 8.43 12.65 29.51 105.3 52.6 0.574 136.9
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1.2.2 Deviations from Original RFP Specifications

Prior to conducting the Blade-Scaling Study, the parameters in Table 1 were compared with
current commercial turbine designs. As a result, some deviations from the original RFP
specifications were made.

Figure 1 shows a scatter plot of turbine specific rating for existing rotor designs in the 40 to 80 m
diameter range.1  The solid line in the figure is a linear regression of the commercial blade data,
and the dashed line indicates the specific rating trends implied by the original RFP specifications.
The trend shown by the linear regression is one of increasing specific rating with rotor size, but
with a lower slope than is implied by the criteria of Equations 1 through 4.
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Data)

Figure 1.  Comparison of specific rating trends

The linear trend line should be interpreted with some caution.  The three data points just below
50 m diameter represent rotors of 660-750 kW rating that were "stretched" to as large a size as
possible, with the target sites having relatively low wind speeds.  Just above 50 m diameter, the
data show a step-jump up to rotors of about 1 MW, and although there is some scatter, the
specific ratings are all close to 0.44 kW/m2.  At the other end of the size range, current rotors near
80 m diameter show a wide spread in specific rating.  The highest specific ratings are targeted for
offshore applications, and the lowest specific rating is designed for lower wind speed sites.

Based on this review, GEC concluded that increasing specific rating is not inherently linked to
larger rotor sizes, but that the specific rating for each design is determined based on a number of
factors, including the target wind regime, terrain, and marketing strategy.  As such, the blade-
scaling calculations were performed assuming a fixed specific rating fixed of 0.44 kW/m2.
Equations 1 and 3 were applied as given in the original RFP specifications, but the use of a
constant specific rating effectively held the rated wind speed as a constant.
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Other deviations from the original WindPACT RFP specifications include:

1. The maximum power coefficient (CPmax) was calculated for each blade design, rather than
assumed to be 0.50.

2. During assessment of the turbine power performance:
a) the maximum tip speed was assumed to be 65 m/s, and
b) the cut-out wind speed was assumed constant at 22.5 m/s

3. Flapwise natural frequencies in excess of 4.0 per revolution were found to be typical of
the blade structural designs developed for this study.  A review of available data
indicated that these values are representative of existing commercial designs, and as such
no attempt was made to constrain blade flapwise natural frequencies to below 2.5 per
revolution.

1.2.3 Summary of Design Criteria used for Study

The design criteria and specifications used for this study are summarized in the following bullets,
and the resulting turbine sizes and operational parameters are given in Table 2.

• three blades, upwind rotor with rigid hub and full-span pitch control
• blade flapwise natural frequency as calculated, typically greater than 4.0 per revolution
• blade edgewise natural frequency greater than 1.5 times flapwise natural frequency
• rotor solidity between 2% and 5%
• variable speed operation with maximum power coefficient as calculated for each

aerodynamic design
• maximum tip speed = 65 m/s (only used in power performance assessment)
• air density = 1.225 kg/m3

• turbine hub height = 1.3 times rotor diameter
• annual mean wind speed at 10 m height = 5.8 m/s
• Rayleigh distribution of wind speed
• vertical wind shear power exponent = 0.143
• constant specific rating of 0.44 kW/m2

Table 2.  Turbine Parameters used for Scaling Study
System
Rating
(kW)

Vmean
(m/s)

Vrated
(m/s)

Vcut-out
(m/s)

Rotor
Diameter

(m)

Rotor
Radius

(m)

Specific
Rating

(kW/m2)

Tower
Height

(m)
750 7.50 12.5 22.5 46.6 23.3 0.44 60.6
1500 7.89 12.5 22.5 65.9 32.9 0.44 85.6
3000 8.29 12.5 22.5 93.2 46.6 0.44 121.1
5000 8.59 12.5 22.5 120.4 60.2 0.44 156.4

It should be noted that the tower height, Vmean, Vrated, and Vcut-out were only used during the
assessment of turbine power performance.  Blade production costs were estimated assuming a
production level of 200 MW rated capacity per year.  All structural design calculations were
performed assuming a Class 1 50-year extreme wind speed per the International Electrotechnical
Commission (IEC) 61400-1 standard.2
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2. Modeling Approach

2.1 Overview

The scaling model was constructed on the basis of direct aerodynamic and structural-design
calculations.  A baseline set of design parameters (airfoil shapes, structural arrangement,
materials, and manufacturing method) was selected to be consistent with current commercial
designs.  Using the baseline configuration, a matrix of aerodynamic and structural designs were
developed and analyzed.  The results were used to construct a model that can be used in an
inverse fashion�solving for the required structure when given geometry, loads, and structural-
design criteria as input.  Industry manufacturing experience was used to develop cost estimates
based on blade mass, surface area, and the duration of the assumed production run.

Often, a blade structural model may be based on a greatly simplified sectional representation,
so that a closed-form solution is obtained and/or computational complexity is minimized.3,4

A simplified sectional representation is particularly useful if structural calculations are
desired at a large number of blade spanwise stations.

A distinctly different modeling approach was taken.  Using a series of detailed structural analyses
performed at relatively coarse spacing in the spanwise direction (5, 7, 25, 50, 75 and 100% span),
the results of those analyses were used to infer the blade properties at intermediate stations.  This
approach provided a tool that can be used to parametrically examine the impact of detailed design
features changes on blade mass and cost.  The following sections describe the elements of the
model and how those elements are integrated in the computational modeling tool.

2.2 Aerodynamic Designs

As described in Section 1.2.3, the turbine configuration selected for this study is a three-bladed,
upwind rotor with a rigid hub, full-span pitch control, and full variable-speed operation.
Aerodynamic performance for each design is indicated by the rotor CP-TSR curve, maximum
rotor power coefficient (CPmax), and calculated energy production.  Rotor dimensions are
described in terms of radius, R, and sizing assumes a constant specific power rating of
0.44 kW/m2.  The resulting relationship between the rotor radius and rating was summarized in
Table 2.

Figure 2 is a graph of a typical planform, with a linear taper from the maximum chord location
(25% r/R) to the blade tip.  The circular blade root is located at 5% r/R.  The blade shape is
assumed to remain circular to 7% r/R, before transitioning to a pure airfoil shape located at
25% r/R.



6

0.00

0.05

0.10

0.15

0.20

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

r/R

c/
R

Root

Tip

Maximum chord 
location

Figure 2.  Typical blade planform

Several of the National Renewable Energy Laboratory (NREL) S-series airfoils were considered
for use in this study.5  The S818/S825/S826 family was identified as having desirable
aerodynamic properties, but the airfoils were deemed to be too thin for efficient application to
large blades (assuming current commercial materials are used).  A more structurally suitable set
of airfoil shapes was therefore derived by scaling the S818/S825/S826 foils, and by the addition
of a finite-thickness trailing edge.  The shape modifications, and locations of airfoils along the
blade, are summarized in Table 3; the resulting shapes are shown in Figure 3.  Aerodynamic
properties for the modified shapes were calculated using the Eppler Design and Analysis code.6

Table 3.  Airfoil Shape Modifications (baseline blade)

Airfoil R
(%)

Orig.
t/c (%)

Scaled
t/c (%)

Trailing-edge
thickness (% c)

S818 25 24 27 1.3
S825 75 17 21 1.0
S826 95 14 16 0.75
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NREL S-series airfoils 
(scaled) with finite 
thickness trailing edge

Figure 3.  Airfoils used for baseline blade model



7

The PROPID Design and Analysis code was used to develop aerodynamic designs for a wide
range of rotor ratings and planforms.7  In each case, the PROPID code was used to determine a
near-optimal schedule of blade chord and twist.  Note that aerodynamic design calculations did
not include the optimization of blade stations inboard of 25% r/R.  For aerodynamic analysis
purposes, the blade was assumed to taper from the 25% r/R section to a circular root located at
5% r/R.

2.3 Baseline Structural Model

A baseline structural arrangement was selected as being representative of current commercial
blade designs.  The primary structural member is a box-spar, with webs at 15% and 50% chord
and a substantial build-up of spar cap material between the webs.  The exterior skins and internal
shear webs are both sandwich construction with triaxial fiberglass laminate separated by balsa
core.  This arrangement is depicted in Figure 4, where the thickest airfoil section (25% span
station) is shown.

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.0 0.2 0.4 0.6 0.8 1.0

x/c

y/
c

spar caps

aft shear web
  forward 
shear web

balsa-core skins NREL S818 airfoil 
scaled to 27% t/c

trailing-edge
     spline

Figure 4.  Arrangement of baseline structural model

As seen in the figure, the assumed placement of the shear webs results in a relatively wide spar.
As a result, the spar cap material provides a significant contribution to the edgewise bending
strength.  Also note that due to the deep contour on the lower airfoil surface, the aft portion of the
shear web will be less effective in flap bending than if it were concentrated in the deepest part of
the foil (farther from the neutral bending axis).  These aspects of the baseline structural
configuration are addressed further in Section 4.2.  Figure 4 also shows a �trailing-edge spline.�
This represents material added, as needed, for reinforcement in edge-bending strength.

Table 4 lists the layers in the baseline structural shell, and describes the material contained in
each.  The dimensions given in Table 4 were used in structural calculations for 750-kW rotor
blades.  The shear web cores (balsa) were assumed to be 1% c thick for all rotor sizes, however,
the thickness of the shear-web skins (triaxial fiberglass) was increased for larger blade sizes.
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Table 4.  Structural-Shell Definition (750 kW)
Layer # Material Thickness

1 gel coat 0.51 mm
2 random mat 0.38 mm
3 triaxial fabric 0.89 mm
4

0%-15% c
15%-50% c
50%-85% c

balsa
spar cap mixture

balsa

0.5% c
specified % t/c

1.0% c
5 triaxial fabric 0.89 mm

The skins and spar cap are E-glass/epoxy laminate.  The triaxial fabric is designated CDB340,
and has a 25%, 25%, and 50% distribution of +45°, -45°, and 0° fibers, respectively.  The spar
cap is composed of alternating layers of triaxial and uniaxial (A260) fabric.  This stacking
sequence results in spar cap laminate with 70% uniaxial and 30% off-axis fibers by weight.

Characteristic material properties for these lamina were derived based on a combination of test
data and laminate theory calculations.8,9  Table 5 summarizes the mass and stiffness properties for
each material.  Strength properties are addressed in Section 2.7.

Table 5.  Summary of Material Properties

Property A260 CDB340 Spar Cap
Mixture

Random
Mat Balsa Gel

Coat
Fill

Epoxy
Ex (GPa) 31.0 24.2 27.1 9.65 2.07 3.44 2.76
Ey (GPa) 7.59 8.97 8.35 9.65 2.07 3.44 2.76
Gxy (GPa) 3.52 4.97 4.70 3.86 0.14 1.38 1.10

ννννxy 0.31 0.39 0.37 0.30 0.22 0.3 0.3
υυυυf 0.40 0.40 0.40 - N/A N/A N/A
wf 0.61 0.61 0.61 - N/A N/A N/A

ρρρρ (g/cm3) 1.70 1.70 1.70 1.67 0.l44 1.23 1.15

Note that in performing the blade structural calculations, it was not required that the skin
thickness and spar cap dimensions be integer multiples of the selected material lamina thickness.
This was done to reduce the complexity of the calculations, and to avoid the need for step-jumps
in the model definition and results.  It was assumed that a suitable fabric (or combination of
fabrics) could be identified that would be a near-match to the dimensions and fiber content
modeled for each blade.
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2.4 Calculation of Section Structural Properties

Once the baseline model parameters were established, a series of direct point-designs were
performed, each design providing a �base case� for developing the computational modeling tool.
Table 6 provides a summary of the preliminary structural base cases; the ratings indicated are
related to the physical dimensions used for corresponding section analyses.  As indicated by the
table, the section mechanical properties were computed for each spanwise station using spar caps
that were 0%, 5%, and 10% of the local maximum section thickness.

Table 6.  Matrix of Structural Base Cases
Spanwise
Stations

Airfoil
t/c (%)

Spar Cap
(% t)

Rating
(MW)

25%

27
27
30
33
36

0, 5, 10
0, 5, 10
0, 5, 10
0, 5, 10
0, 5, 10

0.75
5.0

0.75
0.75
0.75

50% 24
24

0, 5, 10
0, 5, 10

0.75
5.0

75% 21
21

0, 5, 10
0, 5, 10

0.75
5.0

100% 16
16

0, 5, 10
0, 5, 10

0.75
5.0

Second-order curves were then generated for mass per unit length, and bending stiffness (flapwise
and edgewise ) as a function of spar cap thickness.  Figure 5 shows an example curve-fit to the
flapwise bending stiffness (EIFlap) for the 25% span blade station.
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 (N
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'Base Case' Points 2nd-Order Curve Fit

25% span station 
1.97 m chord, 27% t/c

Figure 5.  Example curve-fit of flapwise bending stiffness
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An inverse curve-fit of the flapwise strength curves was then performed.  With user-specified
values of design load (flapwise bending moment) and design limits on material strain, the
resulting curves allow calculation of the spar cap thickness required to support the given load.

To allow investigation of the blade thickness variations at the 25% r/R location, where the impact
on mass and cost is the most significant, additional structural base cases were computed for airfoil
shapes scaled to 30% and 36% t/c (as presented in the matrix of Table 6).  These results were
similarly fit with second-order curves as a function of spar cap thickness.  A secondary curve-fit
was then developed to allow modeling of variations in both spar cap thickness and airfoil section
thickness at the 25% r/R station.

To provide accurate size scaling, structural base cases were also created for a blade size that
represented a 5-MW turbine.  By comparison to the 750-kW data, curve-fits were developed to
model the substantial differences that were shown in the underlying base cases.  In developing the
5-MW section models, the spar caps, skins, and shear webs were each treated independently, and
scaled as appropriate.  This treatment of the 5-MW base cases resulted in the designs departing
from pure self-similarity as they scaled in size.  For example, the gel coat and skin thickness did
not increase in direct proportion to the blade chord.

An important clarification must be made in the use of �flapwise� and �edgewise� structural
properties.  Although the terminology of flapwise and edgewise is used throughout this work, the
associated properties (calculated and used in the structural scaling model) are more properly
termed �out-of-plane� and �in-plane,� respectively.  For each airfoil station, a twist angle was
assumed, and the loads were applied and structural analyses performed in the rotated orientation.
Figure 6 illustrates this approach for the 25% span station, for which the analyses were performed
with a 10° rotation of the blade section.  In determining the structural properties, moments were
applied parallel to the original (untwisted) x-y axes.  The structural-analysis code determines the
location of the neutral axis for the rotated section, and calculates bending properties relative to
those axes.

-0.2

-0.1

0.0

0.1

0.2

0.3

0.0 0.2 0.4 0.6 0.8 1.0

x/c

y/
c

chordal coordinates 10 deg. rotation (as analyzed)

NREL S818 airfoil 
(scaled) with finite 
thickness trailing edge

neutral axes

 YC (compression)

 YT (tension)

Figure 6.  Orientation of blade section for "flapwise" and "edgewise" properties
(used at 25% r/R for all rotor sizes)
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As indicated in Figure 6, the critical fiber distances (tension and compression) are taken as the
farthest material, in a perpendicular direction, from the out-of-plane neutral bending axis.
Because of the rotated geometry, the critical tension and compression fibers will not occur at the
same airfoil chord location, and will be separated by a vertical distance greater than the maximum
airfoil thickness.

Although the approach taken adds some complexity to the analysis and subsequent interpretation,
it is intended to realistically portray the loading condition for the blade in service.  Table 7
summarizes the twist angles used at each section for the base case calculations, and also presents
the near-optimal blade twist angles as determined by the PROPID aerodynamic code for two
different values of design tip-speed ratio.  The data indicate that the twist angles assumed for the
structural analysis are a close approximation to the near-optimal blade twist.  Also note that the
distinction between the flap/edge and in/out-of-plane properties is the greatest at the 25% span
station, and vanishes entirely at the 75% span station (where the twist is taken to be zero by
definition).

Table 7.  Summary of Blade Section Twist Angles (independent of rotor size)
Station Assumed PROPID Near-Optimal Twist (deg.)
(%R) Twist (Deg.) Design TSR = 7 Design TSR = 8

25 10 10.5 9.3
50 2.5 2.5 2.1
75 0.0 0.0 0.0

100 -0.5 -0.6 -0.4

2.5 Load Cases

After examining multiple different load cases to determine those which would likely govern the
blade design, two primary load cases were selected for the purposes of developing structural
designs.  Peak bending loads were derived using a 50-year extreme gust of 70 m/s (IEC Class 1).2

The gust was assumed to occur with the blades in a fully feathered position, with a ± 15°
variation in wind direction.  To simplify the loads development, it was assumed that this load case
resulted in each blade section simultaneously reaching its local maximum-lift coefficient, and that
the bending loads were entirely in the flapwise direction.  The resulting loads were summed over
the blade, to define characteristic peak bending moments at each blade station.

For edge bending, the designs were assumed to be governed by fatigue loading.  A simplified
loading spectrum was developed by combining the peak of gravity plus torque at rated power and
assuming the loading is fully reversed.  This load case was further simplified by assuming the
rotor operated for 5000 hours per year at rated power, over a 20-year design life.

In addition to the two load cases described above, methods were investigated for defining a
simplified flap-fatigue spectrum.  However, no suitable flap fatigue model was identified that had
the combination of reliability and computational simplicity desired for this scaling study.
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2.6 Partial Safety Factors

Per the IEC 61400-1 standard, a series of partial safety factors must be used to adjust from
�characteristic� to �design� values of material properties and loads.  To be consistent with other
WindPACT studies, the original intent for this project was to use IEC partial safety factors
throughout.  However, it was found that IEC did not always provide sufficient guidance in the
selection of factors.  Specifically, the IEC 61400-1 requires a �general� material factor of 1.1.
The IEC standard further states that material factors will be applied to account for ��scale
effects, tolerances degradation due to external actions, i.e., ultraviolet radiation, humidity and
defects that would not normally be detected�; however, the IEC document provides no specific
guidance on appropriate values for these additional factors.  Conversely, the Germanischer Lloyd
(GL) standard provides an explicit list of partial safety factors for composite materials.10  For a
static-strength evaluation of glass-reinforced plastic, the GL factors are:

γM0 = 1.35 (general material factor)
C2a = 1.50 (influence of aging)
C3a = 1.10 (temperature effect)
C4a = 1.20 (hand lay-up laminate)
C5a = 1.10 (non-post-cured laminate)

The GL standard further states that γM0 is to be used in all cases, but that the Cia may be adjusted
if demonstrated by experimental verification.  Applying the GL factors as specified implies a
combined material factor of 2.94 for static-strength analyses.  For fatigue verification, the GL
standard states that the same partial material factors will be used, with the exception of the 1.5
factor for �aging.�  In the absence of IEC guidance in this area, the GL material factors were used
for these scaling-study calculations.

The GL partial load factor for an extreme 50-year event is 1.50, whereas the corresponding IEC
load factor is 1.35.  The IEC load factor of 1.35 was chosen for these scaling-study calculations.

2.7 Material Design Strength

Strain-based characteristic-strength values were derived for the baseline E-glass/epoxy laminate
using a combination of test data and laminate theory.8,9,11  As described in the previous section,
partial material factors were developed based on the values specified by GL.  For static
calculations, a combined material factor of 2.9 was typically used.  For fatigue calculations, the
material partial safety factor was 2.9/1.5 = 1.93.  Table 8 summarizes the values for characteristic
and design laminate strength that were used to develop the baseline blade designs.

Table 8.  Design Values for Laminate Strength
Strength (µµµµεεεε)

Loading Characteristic Design (static) Design (fatigue, single cycle)
Tension 22,000 7586 11,379
Compression 10,500 3620 5431
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For fully reversed loading, a fatigue curve was developed of the form:11

m

o

N
1

0.1 −⋅=
ε
ε

(Eqn. 6)

where
εo ≡  single-cycle design fatigue strain for compression
N ≡  number of loading cycles
m ≡  13.

2.8 Full-Blade Calculation

A full-blade calculation ties together all the model elements described above.  User input to the
spreadsheet-based calculation includes:

1) Rotor radius and rated power.
2) Chord dimensions and flapwise design bending moments at 25%, 50%, and 75% span

stations.
3) Diameter and design bending loads for the circular root connection.
4) Diameter of root studs and factors for scaling of laminate required for root/stud interface.
5) Factor to account for �parasitic� mass due to excess material and bonds.
6) Design values for peak laminate strain, and ε-N parameters for the edge-bending fatigue

calculation.

The following sections provide a summary of the process used in a full-blade calculation.

2.8.1 Root Design

For the purposes of this study, a circular root bolt pattern was assumed.  As indicated by
Figures 7 and 8, several root design parameters were inferred from commercial blade designs.1
Although root connection bolts are available in discrete size increments, the scaling calculations
use continuous non-integer functions to model the root connection and associated mass.  The
laminate at the root is sized according to stud-bonding requirements, with user-input scaling
parameters.  Preliminary calculations showed that typical commercial root designs exceed the
strength requirement implied by quasi-static strength verification, so the empirical (conservative)
relationships were used throughout the study to determine root designs.

To minimize the impact of the root-design assumptions on the total calculated blade mass and
cost, a second calculation is performed near the root, where the required blade structure is
determined on the basis of the design loads.  This �inboard root design� calculation is described
in the following section.
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2.8.2 Inboard Root Section

The buildup of laminate required for stud bonding is assumed to taper away within a user-
specified distance from the root.  The typical assumption used was that the drop-off of excess
laminate occurs within a distance of 2% R from the root plane.  It is further assumed that the
blade cross section at this station remains circular, and is composed of a thick-laminate shell with
the same composition as the spar cap material.  Shell thickness at this station is determined by
bending-strength requirements, based on a direct calculation within the structural design
spreadsheet.

2.8.3 Remaining Blade Stations

At 25%, 50% and 75% span, the blade section structure is determined using the design bending
loads and material strain limits.  However, rather than using a direct calculation, the input is used
in an inverse-process (via the curve-fits described in Section 2.4) to determine the spar cap
thickness required to meet the design criteria.  Once the spar cap has been sized according to the
design load, section structural properties (EIFlap, EIEdge and mass per unit length) are directly
calculated at each section based on chord length and spar cap thickness.

The design bending moments necessarily vanish at the tip section.  Here, the blade section
properties are calculated based only on chord, with the assumption that the spar cap has entirely
tapered away.

Following the initial structural sizing of the blade, additional verifications and/or adjustments are
performed:
1) Fatigue life is verified for edgewise bending, assuming 5000 hours per year for a 20-year

design life at an assumed constant-amplitude loading.  If 20-year fatigue life is not achieved,
then additional structure is added at 95% span (trailing-edge spline) until the edge-fatigue
criterion is met.

2) Tip deflections are calculated for the 50-year extreme loads.  For the purposes of this work, a
guideline was used that the maximum tip deflection should not exceed 10% of the rotor
radius.  However, this guideline was not used to determine the required blade structure; rather
it was used to comparatively assess blade design variations.

3) The option for a constant multiplier on the blade section mass is included to account for
�parasitic� mass due to bonding material and inevitable inefficiencies in material usage.  For
this report, the parasitic-mass adjustment was assumed to be a constant 10% of the total blade
mass.  In commercial practice, the amount of non-structural material in a blade will be
determined by a trade-off between labor and material costs.  Although the manufacturing
economics at large scales are likely to favor additional labor expenditures to save material, no
attempt was made in this study to quantify that effect.

Table 9 provides an example of the model output for a 750-kW blade with a design tip-speed
ratio of 7 and a maximum chord of 9% R.  Moving from the root towards the tip section, the
values for EIFlap show a decline that is approximately exponential; the mass decline is
approximately linear from the 25% span station outward.  For each design, the total blade mass
is calculated by a summation over the entire span, assuming a linear variation in unit mass
between stations.
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In the absence of a parasitic-mass adjustment, each calculated mass is a theoretical minimum for
the configuration and materials modeled; in practice, other design considerations such as flap
fatigue, damage tolerance, and/or load paths requirements may result in higher mass values.

Table 9.  Output from Full-Blade Calculation (750-kW Rotor at TSRDesign = 7, cmax = 9% R)
Blade Station Spar Cap Section EI (N-m2) Mass

r/R (%) (m) Thickness (% t) Flap Edge (kg/m)
5 1.2 N/A 1.91E+09 1.91E+09 662.4
7 1.6 N/A 3.13E+08 3.13E+08 109.8

25 5.8 4.97 8.41E+07 2.12E+08 116.0
50 11.6 5.92 1.90E+07 7.48E+07 69.3
75 17.5 5.45 2.14E+06 1.54E+07 28.4
100 23.3 0.0 3.48E+04 1.18E+06 5.7

Blade structure = 1577 kg
Root connection = 111 kg

Total blade = 1688 kg

2.9 Cost Modeling

Cost functions were developed, based on current industry experience, for blade masters, mold
sets, tooling, and production blades.12  The cost models assume the baseline structural
configuration and materials as described above.

Costs for master blades and mold sets scale approximately as the blade surface area, with the cost
per square meter depending on the tolerances required.  Tooling also scales with the blade area,
but carries an additional cost escalation due to reinforcement requirements as blade sizes increase.
The cost functions used for these items are:

S⋅=1880  ($) molds andMaster (Eqn. 7)

SR ⋅�
�

�
�
�

�⋅=
5.0

m 35
4300  ($) Tooling (Eqn. 8)

where
S ≡  total blade surface area (m2).

For a mature process, production costs (material and labor) are directly proportional to the blade
mass.  However, there is a �learning curve� required to develop a mature process. The learning
curve is cycle-dominated, and will require approximately 100 cycles before the long-term
production rate is realized.  A mature production cost of $10.45 /kg blade mass was used for this
study.  However, the production costs were escalated according to the schedule of Table 10 to
account for process development.

Table 10.  Cost Multipliers for Developing Mature Production Process
Blade Quantity Multiplier on Production Cost

1�20 4.0
21�60 1.5
61�100 1.15
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Complete cost results are given in Section 4.5, where it is shown that the process learning curve
has a meaningful effect on blade costs for the range of rotor sizes considered.  A production rate
of 200 MW per year implies 800 blades at 750 kW, but only 120 blades at 5 MW.  Therefore, the
cost penalty for initial production cycles has an increasing impact on the first-year production
costs as rotor sizes increase, and a complete cost assessment depends on both annual production
rates and the extent (number of years) of sustained production.

Relationships for bonded-stud geometry, mass, and cost were developed.  The cost function used
for the bonded studs is $20/kg of stud material.
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3. Evaluation of Aerodynamic Designs

The selection of blade airfoils and the development of their aerodynamic properties is described
in Section 2.2.  With those design parameters fixed, the remaining aerodynamic-design variables
are the planform (chord schedule) and twist distribution.  PROPID calculations were performed
for a wide range of ratings and design tip-speed ratios (TSRDesign).  The design tip-speed ratio is
the tip-speed ratio at which optimum aerodynamic performance (CPmax) is realized, and during
variable-speed operation to rotor speed will be controlled to maintain the TSRDesign until either the
maximum allowable blade tip speed or the maximum system power point is reached.

The calculation procedure used for the aerodynamic designs is generally the same as that
described in Reference 13.  For each design, the PROPID calculations were used to determine a
near-optimal planform and twist schedule.  Figure 9 shows near-optimal planforms, as determined
using PROPID, for blades with design tip-speed ratios of 7 and 8.  When described in non-
dimensional terms, the near-optimal blade shapes were found to be independent of rotor size in
the 750 kW to 5 MW range.  Both planforms  are nearly linear in the outboard region, with a
pronounced flare in the chord distribution near 25% span.

The planform will effect both the aerodynamic and structural properties, with the inner portion of
the blade having the largest effect on structural mass.  As seen in Figure 9, the near-optimal chord
size in the outer region of the blade is strongly dependent on the design tip-speed ratio, with a
higher tip-speed ratio favoring a more slender planform.  However, in the inboard region of the
blade, the chord schedule will have a relatively small effect on the aerodynamic performance.

       Linear Fit
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Figure 9.  Near-optimal blade planform for design tip-speed ratios of 7 and 8

The majority of commercial blade designs have a linear- or near-linear taper in planform from the
tip to the maximum chord location.  Although the aerodynamic and structural performance will
theoretically improve for blades with a planform that flares toward the maximum chord, the
observed trend for commercial blades reflects the facts that; (1) the aerodynamic performance
gains from large inboard chord dimensions are small, (2) significant non-linearity in the planform
adds cost and complexity to the blade manufacturing, and (3) increased chord inboard is not the
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most effective way to improve structural performance in flap bending, which governs most
current blade designs.

To systematically investigate the effect of planform variations on aerodynamic and structural
performance, a series of linear planforms was constructed.  The choice of an identically linear
planform is one of computational convenience; similar trends concerning the trade-off between
aerodynamic and structural performance would be found for blade designs that have slight-to-
moderate deviations from a linear planform.  At the 75% span station, each planform was
constrained to pass through the original PROPID chord point, and a varying schedule of cmax was
specified at 25% span.  Figure 10 shows a resulting family of linear planforms, where cmax/R is
varied between 6% and 10%, in 1% increments.  By inspection, it can be seen that small values of
cmax result in the best fit of the PROPID points for the outer 50% of the blade.  The linear
planform with cmax = 7% R (shown as a dashed line in Figure 10) is a particularly good match to
the PROPID data points for the outer blade.
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Figure 10.  PROPID near-optimal planform (at TSRDesign = 7), with linear variations

Planform families were similarly developed for a range of design tip-speed ratios, and each design
analyzed for CP-TSR and CPmax.  In all cases, the PROPID near-optimal twist distribution was used
in the analyses.  Figure 11 shows a plot of the resulting CPmax variation with cmax.  For design
tip-speed ratios of 6 and 7, the CPmax curves are relatively flat.  Consistent with the trends seen in
Figure 10, the TSRDesign = 7 curve shows a flat optimum at cmax = 7% R.  The TSRDesign = 8 curve
is significantly steeper, and favors small values of cmax.

In addition to CPmax, energy production from a variable-speed, active power control turbine will
depend on the entire CP-TSR curve and other parameters such as maximum tip speed, rotor
diameter, air density, hub-height wind speed distribution, drivetrain efficiency, and turbine
availability.  Complete calculations of power performance and energy production will be
presented in Section 4.4.  For this discussion, the CPmax for each design will be used as an
indicator of aerodynamic performance.
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Figure 11.  Effect of planform variations on rotor CPmax

To investigate the structural implications of these planform variations, a matrix of blade structural
designs was developed.  Design output is given in Table 11, with a summary of both aerodynamic
and structural properties.  The results shown in the table illustrate several trends concerning the
trade-off between efficient aerodynamic and structural design. Although the designs were
performed for a 750-kW rating (with diameter fixed at 23.3 m), the indicated trends generalize to
larger rotor designs.

Table 11.  Summary of Blade Designs at 750-kW Rating
Design Cmax Solidity Blade Mass Spar Cap Thickness (% t) Max. Tip
TSR (% R)

CPmax (%) (kg) at 25% R at 75% R Deflection (% R)
7 10 0.487 5.84 1582 3.2 4.5 11.9
7 9 0.498 5.56 1688 5.0 5.4 12.4
7 8 0.504 5.28 1852 8.3 6.5 13.1
7 7 0.506 5.01 2120 15.0* 13.6* 14.3
8 9 0.456 5.04 1347 3.4 6.6 14.0
8 8 0.480 4.76 1469 5.6 9.0 14.6
8 7 0.496 4.49 1664 10.2 11.6 15.7
8 6 0.505 4.21 2013 20.1* 14.4* 18.4

* Spar caps above 12% exceed the bounds of high-confidence curve fitting.

For both TSRDesign = 7 and TSRDesign = 8, a general trend of increasing mass with decreasing cmax
is seen.  This is not surprising.  With a fixed t/c at the 25% span station, shorter chord lengths
mean that the physical blade thickness is also decreasing, resulting in less efficient structural
sections.  This trend is also apparent in the spar cap thickness.  At 25% r/R, a near-doubling of
required spar cap is seen with each 1% decrease in cmax/R.  This trend is the result of two
compounding effects: (1) the thickness of the structural section is decreasing, and (2) as spar caps
become thicker, new material is placed further towards the shell interior (closer to the neutral
bending axis).
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The aerodynamic performance trends run contrary to those for structural properties.  The best
(linear) fit to the near-optimal chord distribution favors narrow inboard chords, and CPmax
increases as cmax decreases.  For both TSRDesign = 7 and 8, blades which are slender enough to
reach the optimal CPmax are also relatively heavy due to the structural inefficiency discussed
above.

Given the same value of cmax, the tip deflections increase with increasing design tip-speed ratio.
This is because the blade structure has been determined on the basis of design strain values for
the laminate.  Increasing TSRDesign results in a more slender outboard planform, and the thickness
of the blade sections decreases accordingly.  Maintaining a constant value of strain in the outer
laminate will therefore result in greater curvature and higher deflections.

Between mass, aerodynamic performance, and tip deflections, it is difficult to find a suitable
design combination for TSRDesign = 8.  As an example, at cmax = 8% R, the blade designed for
TSRDesign = 8 has a relatively low mass of 1469 kg, and an acceptable CPmax of 0.48.  However,
this design also has a relatively high tip deflection of 14.6% R.  If additional structure is added to
reduce the tip deflection by 2.2% R (i.e., to match the deflection of the TSRDesign = 7, cmax = 9% R
design), the blade mass would increase by 15% to 1694 kg.  A review of the data in Table 11
shows that moving to higher or lower values of cmax at TSRDesign = 8 results in either a significant
increase in mass and deflection or a rapid decrease in aerodynamic performance.  This trend
clearly illustrates the challenge of designing efficient blades at high TSRDesign using the baseline
configuration and fiberglass/epoxy materials.

At TSRDesign = 7, the blade with cmax = 9% R is a good compromise between mass, CPmax and
stiffness.  As such, this planform was selected as the baseline aerodynamic design for the
remainder of this scaling study.  In making this selection, trends in commercial designs were
reviewed.  Figure 12 shows a plot of cmax/R for current commercial designs.1  Although there is
significant scatter, there appears to be a trend towards decreasing cmax/R as rotors sizes increase.
Among other factors, this may be due to size considerations in handling and transportation costs,
issues which will be of increasing importance as rotors continue to grow in size.  However, as the
data of Table 11 indicate, restraining maximum chord size will come at the expense of increased
mass or other modifications to the design and/or materials.
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4. Scaling Results

4.1 Initial Scaling of Baseline Design

Using the aerodynamic design identified in the previous section, blade structures were modeled
for the range of 750 kW to 5 MW.

4.1.1 Edgewise Fatigue Considerations

The ratio of gravity to torque load for the baseline blade design is plotted in Figure 13, which
shows an increasing contribution of gravity loads to the total edge-bending moment as rotors
become larger.  Figure 13 also shows the edge fatigue �capacity,� which is the ratio of actual
edge-fatigue strength to that required for 20-year life under the assumed loading.  For the blade
modeled, the edge-fatigue capacity drops below unity just above R = 55 m, which corresponds to
a rotor of approximately 4 MW.
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Figure 13.  Gravity effects on blade edge-bending loads and fatigue strength

The absolute point at which the blades become edge-critical must be understood within the
context of the blade configuration modeled.  The choice of cmax = 9% R results in significant
edge-bending capability relative to planforms with smaller inboard chord size.  In similar fashion,
the assumption of spar cap location (from 15% to 50% chord) also favors edge-bending strength.
For a different planform and/or internal configuration, the general trend shown in Figure 13
would still hold, but the size at which blades become edge-critical would shift.

Although edge-bending calculations were performed along the entire blade, the only station at
which edge-fatigue loading exceeded the section capability was at 25% span.  When this occurs,
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a secondary calculation is performed to determine how much additional material must be added at
95% chord to match the loading requirement.  This calculation of trailing edge spline was
automated within the spreadsheet-based modeling tool, and the blade scaling results presented
herein contain mass contributions due to edge reinforcement (as needed).

4.1.2 Comparison with Commercial Blade Masses

Figure 14 presents a comparison of scaling-model results with available mass data for current
commercial blades.1  The solid line represents modeling calculations for the baseline blade
configuration (t/c = 27% at cmax).
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Figure 14.  Comparison of modeled mass with commercial blade data

The modeled blade mass scales as approximately R2.9 over the range between 23 and 60 m.  For
pure similarity-scaling of a given blade structure, the mass would grow as a cubic of radius.
However, in these calculations, the scaling of blade skins was treated independently of the
structural spar, resulting in the lower mass-growth exponent.  The general modeling trend
depicted in Figure 14 held throughout this study�for a fixed set of design conditions (loads,
planform, section thickness distribution, and materials), the calculated blade mass scaled as a 2.9
exponent over the range of interest.

The commercial blade data in Figure 14 show significant scatter; however, the average mass
values scale approximately as R2.4 over the range between 23 and 40 m.  This discrepancy
between the commercial blade trend and the 2.9 exponent of the modeling results is apparent in
the comparisons shown in Figure 14.  At the low end of the scaling range, the modeled results
(solid line) fall at the lower bound of the commercial blade mass data.  However, at the largest
rotor sizes, the modeled results begin to overshoot the commercial blade masses.
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After reviewing these results, it was concluded that the structural-scaling model is accurately
characterizing the mass growth for scaling up a fixed-blade design, and that the lower mass-
scaling exponent implied by the commercial blade data embodies significant design evolution
over the range considered.  In the following sections, the structural-modeling tool is used to
investigate variations on the baseline blade design, to quantify the mass reductions possible, and
to identify practical limits to mass reduction from each modification.

4.2 Parametric Variations on Baseline Blade Design

4.2.1 Design Wind Speed Class

Assuming that overall design is held fixed (same airfoils, chord and thickness distribution,
structural layout and materials), the blade structural mass is directly proportional to the design
load.  For the current study, the defining bending loads are proportional to the square of the
design (extreme gust) wind speed.  If the design criterion was shifted from Class 1 to Class 2, and
assuming that the extreme wind load still governed the design, the blade mass would scale as
(70/59.5)2, or a 38% reduction.

The actual wind speed design criteria were not available for the complete set of commercial blade
masses shown in Figure 14.  However, the majority of blades shown appear to have been
designed for Class 1 or a near equivalent.  As such, all structural calculations presented in this
report have been based on Class 1 design conditions.

4.2.2 Thickness Distribution

As discussed previously, for a given airfoil t/c, increased chord will also increase the physical
thickness and the structural efficiency of the section.  A more direct way to improve the flap-
bending efficiency of a section is to increase t/c. Again, structural efficiency is competing with
aerodynamic considerations, which favor thin airfoils.  However, as rotors become larger,
Reynolds number effects may allow the use of thicker airfoils, while still maintaining desirable
aerodynamic performance.

The effect of increasing thickness on blade mass is illustrated in Figure 14, where the dashed line
indicates calculated blade masses for the baseline blade with the thickness at cmax increased to
t/c = 33%.  The figure indicates a significant decrease in blade mass for the thicker inboard
section, and the agreement between the commercial blade data and the calculated results is
improved in the 35-to-40 meter range.

Figure 15 plots the fractional decrease in total blade mass as a function of t/c at maximum chord.
The figure shows that significant mass reductions may be realized by increasing the section above
27%, but that the mass reduction increments diminish with increasing values of t/c.
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Airfoil design is integral to realizing the desired aerodynamic performance from thicker airfoil
sections.  Unfortunately, airfoil design and analysis codes have difficulty modeling the
aerodynamic behavior of such sections.  Wind tunnel data, and ultimately field-test results, will
be required to determine the extent to which airfoil thickness can be increased in large wind
turbine applications.  However, there will clearly be a practical limit to maintaining efficient
aerodynamic performance.

4.2.3 Material Partial Safety Factors

The blade mass will be directly proportional to the partial safety factors applied to the design.
Therefore, if a 10% reduction in material factors can be justified (i.e., by increased confidence
due to material testing), then that would result in a 10% decrease in blade mass.  However,
allowing a lower factor on the material properties is equivalent to allowing higher strain values at
the design load, and for a given blade shape the maximum tip deflections would increase by the
same proportion.

As shown in the earlier analyses (see Table 11), the blade designs under consideration already
exceed the estimated maximum deflection of 10% R.  This criterion was not rigorously
developed, but is considered a realistic estimate of deflection limits for common turbine
configurations.  The implication of the modeling results is that the blade designs under
consideration are near a crossover point where they become stiffness governed.  As such, the
mass reductions possible purely by a reduction in material factors (for the baseline composite
materials and structural configuration) would be constrained.
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4.2.4 Spar Cap Composition and Arrangement

The baseline spar cap modeled in this study is composed of 70% unidirectional and 30% off-axis
fibers (by mass), spanning from 15% to 50% chord, with constant thickness.  To investigate the
effect of these assumptions on the calculated blade masses, parametric analyses were performed
for the 25% r/R blade section.  The results of these parametric studies are summarized in
Table 12.

Table 12.  Parametric Analysis of Spar Design
Mass Reduction (%)

Case 5% thick spar cap 10% thick spar cap
Increased 0° fibers 3.5 4.7
Shift spar material 2.2 3.3

The first parametric analysis considered a stacking sequence of two layers of uniaxial A260 fabric
for each layer of triaxial CBD340, resulting in a modified spar cap composition of 80%
unidirectional and 20% off-axis fibers.  An iterative structural calculation was performed to
determine the amount of spar cap material  required to achieve bending strength equal to the
baseline section.

Table 12 shows the mass reductions achieved by this modification, at 5% and 10% (original
section) spar cap thickness.  For a section with large spar caps, the 10% increase in unidirectional
fibers results in a mass reduction of 4.7%.  As a percentage of section mass, this result would be
of similar magnitude at all blade stations.  This modification would also have a negligible effect
on edgewise-bending capability.  However, off-axis fibers are needed in the spar cap to inhibit
crack propagation.  Designers may generally consider a 70%-to-30% mixture of on- and off-axis
fibers as appropriate;  although the unidirectional content may be increased somewhat, robust-
design considerations will dictate a practical limit.

The second parametric analysis performed for the 25% r/R section concerns the location of the
spar cap material within the blade shell.  The baseline section design assumes constant-thickness
spar caps spanning between 15% and 50% chord.  Inspection of Figure 4 shows that (for flap
bending) a more structurally efficient structure would be realized by a tapered spar cap, with
maximum thickness in the deepest part of the blade contour, and diminishing thickness towards
the shear webs.

Analyses were performed to evaluate the effect of tapered spar caps, again using iteration to
match the baseline bending strength.  Table 12 shows that for thick spar caps, a 3.3% mass
reduction may be realized for the 25% blade station.  Although concentrating the spar cap
material in the deepest part of the foil will increase the structural efficiency in flap bending,
it will, however, reduce the capability in edge bending.  For the case indicated in Table 12
(10% spar cap), tapered spar caps resulted in a 12% reduction in edge-bending strength.
Therefore, the trade-off between flap- and edge-bending capability must be evaluated
(along with manufacturing considerations) in determining the optimal location of spar cap
material.  Also, the outboard airfoils have less section curvature than the 25% blade station, and
as such, the percentage mass reductions possible from the use of tapered spar caps would
decrease in the outer portions of the blade.
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4.3 Discussion of Scaling Results

Of the variations on the baseline design, the greatest reductions would be realized by the use of a
lower design wind speed class.  However, this decision depends primarily on markets targeted by
the manufacturer, and it is expected that Class 1 design regimes will continue to be of interest for
large wind turbines.

A reduction in material partial safety factors can also lead to significant mass reductions, but
require justification by laminate and/or blade tests, and result in larger tip deflections under
design load conditions.  Modeled results indicate that (at minimum mass) the baseline blade
designs are near to the point of being stiffness governed.  As rotors grow in size and mass, there
will be additional motivation to decrease rotor overhang.  This will, in turn, reduce the magnitude
of allowable tip deflections, and constrain the mass reductions made possible by reduced partial
material factors.

Increasing the blade section t/c was shown to significantly reduce mass.  For large turbines,
Reynolds number effects increase the thickness for which airfoils will maintain efficient
aerodynamic performance.  Due to the limitations of aerodynamic analysis codes, the extent to
which the thickness envelope may be pushed will likely require near-scale or full-scale field
testing to determine.  However, there will clearly be a practical limit to economic mass reductions
from increasing section thickness.

It was shown that the spar cap composition and details of the material placement can result in
mass reductions that are meaningful, but more subtle than the effects discussed above.  Mass
reductions due to increased unidirectional fiber content must be balanced against considerations
of structural robustness, and the placement of the spar cap material within the section contour
requires a trade-off between flap- and edge-bending strength requirements.

Recalling Figure 14, the masses modeled for blades with 33% t/c at maximum chord showed
good agreement with data for commercial blades in the 35-to-40 m range.  At this point, it is
important to recognize that:

1. In the absence of an adjustment for parasitic mass, the current method calculates the
theoretical minimum mass for the blade design modeled�any other considerations, such as
load path requirements, damage tolerance, and flap fatigue can only increase the masses
above those modeled.

2. The extent to which actual blade designs carry parasitic mass depends on a trade-off between
labor and material costs, and will vary somewhat from manufacturer to manufacturer.  The
10% adjustment for parasitic mass applied to the results presented herein is considered to be a
good approximation to blade-manufacturing reality for the hand lay-up process under
consideration.  Although the economics of large blades may shift the emphasis towards
saving material, there will be a practical limit to minimizing the parasitic mass.

3. All of the blade scaling results shown were generated for a maximum chord of 9% R.  This is
towards the upper end of cmax values for large commercial designs.  As blade lengths continue
to increase, transportation considerations will favor decreased values of cmax.  However, the
trends illustrated in Table 11 indicate that decreases in cmax must be traded against loss of
structural efficiency and an associated increase in blade mass.

4. As the baseline blade configurations are scaled up, design modifications to reduce mass are
constrained by considerations of aerodynamic performance, edge-bending fatigue, and tip
deflections.
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5. Once a design is essentially fixed, blade length increases will result in a mass-scaling
exponent that is slightly lower than cubic.

Taken together, these results and trends indicate that commercial blades at the upper end of the
current size range are already pushing the limit of what can be achieved with conventional
materials and design.  For even larger blades, avoiding a near-cubic mass increase may require
basic changes in:

• Materials, such as carbon or glass/carbon hybrids
• Manufacturing processes that can yield better mean properties and/or reduced property scatter

through improvements in fiber alignment, compaction, and void reduction
• Load-mitigating rotor designs.

The following section presents cost calculations for the baseline blade design, scaled over the
range of 750 kW to 5 MW.  For the scaling results presented in this report, the basic material and
manufacturing process remained unchanged.  As such, a reduction in mass will correspond to a
reduction of production blade costs in the same proportion.  This would not hold true for mass
savings realized through changes in materials, process, and rotor design.  In evaluating each such
change, the implications on both mass and cost must be considered.

4.4 Power Performance and Energy Production Calculations

As discussed in Section 3, energy production from a variable-speed, active power control turbine
will depend on the entire CP-TSR curve and other parameters such as maximum tip speed, rotor
diameter, air density, hub-height wind speed distribution, drivetrain efficiency, and turbine
availability.  To account for these variables, spreadsheet-based power performance and energy
production calculations were performed.

Power performance calculations were performed for the baseline rotor planform (TSRDesign = 7,
cmax = 9% R), assuming sea-level air density, a maximum tip speed of 65 m/s, and a specific
rating of 0.44 kW/m2.  An efficiency curve was constructed to account for drivetrain losses in
converting rotor to system power.  Figure 16 shows the calculated power performance and rotor
speed curves for a 5-MW rotor.  Between cut-in wind speed and 9 m/s, the rotor speed is varied
linearly to track the optimal rotor CP.  At 9 m/s, the tip speed reaches the maximum value of
65 m/s.  For wind speeds between 9 m/s and rated power, the rotor speed is held constant and the
rotor CP deviates from its optimum value.  At 12.5 m/s, the rotor reaches its rated (system) power,
and it is assumed that pitch control is used to maintain constant power above this wind speed.
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Figure 16.  Power performance curve for 5-MW rotor

Annual energy production (AEP) calculations were performed by assuming Rayleigh wind speed
distributions, with annual average wind speeds of 5.8 m/s at a height of 10 m.  Hub height wind
speed distributions were derived using a shear exponent of 1/7, and assuming that the turbine hub
height scaled as 1.3 times the rotor diameter.  The AEP calculations neglect array losses and
assume 100% availability.

Figure 17 shows the calculated annual energy production, where the AEP values have been
normalized to the swept area for each rotor.  Over the range of sizes considered (750 kW to
5 MW), the mean hub height wind speed increases from 7.5 m/s to 8.6 m/s.  Although the
maximum theoretical energy available (per unit area) increases by 50% over this range, the
calculated specific energy capture only increases by about 25% (primarily due to constrained
peak power).
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Figure 17.  Calculated annual energy production for range of rotor sizes modeled

4.5 Cost Calculations

Cost calculations were performed using the equation set described in Section 2.9, with the
structural scaling model output for rotors with TSRDesign = 7 and cmax = 9% R.  As was discussed
in that section, attaining a mature production rate requires a learning curve that is cycle-
dominated.  To illustrate the importance of this issue, cost estimates were made for rotors of
750 kW and 5 MW, using three different scenarios for the duration of the production runs.

The results of these estimates are summarized in Table 13.  For all cases, a production rate of 200
MW/yr installed capacity was assumed.  In the case of the 750-kW rotor, this equates to 800
blades per year, whereas, for the 5-MW rotor, 120 blades per year are produced.  Table 13
indicates the average cost per blade, assuming production runs of varying duration.  In all cases,
fixed costs have been adjusted assuming a 10% interest rate over the period of production.
Production rates are $10.45/kg, with the learning curve multipliers (as shown in Table 10) applied
to the first 100 units.  Simple averaging is then used to estimate the cost for each item over the
assumed production run (total cost divided by total number of units).

Table 13.  Cost Estimate for Varying Production-Run Scenarios
750 kW Rotor 5 MW Rotor

Cost Item 1 Year 3 Year 5 Year 3 Year 5 Year 10 Year
Total number of blades 800 2400 4000 360 600 1200

Average factor on prod. rate 1.11 1.04 1.02 1.24 1.14 1.07
Fixed cost per blade $470 $170 $115 $10,730 $7,180 $4,370

Recurring cost per blade $20,710 $19,370 $19,100 $343,050 $316,590 $296,750
Total cost per blade $21,180 $19,540 $19,215 $353,780 $323,770 $301,140

Rotor (3 blades only) $/kW $84.70 $78.20 $76.90 $212.30 $194.30 $180.70
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As seen in Table 13, the impact of the learning curve on the 750-kW blade costs is fairly subtle.
For a one-year production run, the cost increase due to this effect is about 11%, and if averaged
over three years of production, would drop to 4%.  However, as a result of the lower number of
production cycles, the learning curve effect has a much greater impact on the costs for the 5-MW
rotor.  For an assumed production run of three years, the cost increase for 5-MW blades is 24%,
and drops to 14% and 7%, respectively, for production runs of 5 and 10 years.

The fixed costs are generally a minor fraction of the total blade costs, and, as expected, this
fraction decreases with increased number of items produced.  There is also a moderate escalation
in fixed costs as the rotors grow larger.  For the five-year production scenario, the fixed-costs
fractions are 0.6% and 2.2% of the total blade costs, respectively, for the 750-kW and 5-MW
rotors.

A five-year production scenario was selected for estimating blade costs over the full range of
ratings between 750 kW and 5 MW.  The results are summarized in Table 14.  The rotor radius
and rating are input to both the structural design and cost models.  The blade surface area is
calculated for the blade geometry being modeled (TSRDesign = 7, cmax = 9% R).  The mass values
are output from the structural design model, and in turn, serve as input to the cost model.  The
AEP values indicated by Figure 17 were used to calculate the cost per MWh.  In all of the
following tables, figures, and discussion, the term �rotor costs� refers to a set of three blades,
including the root connection but excluding costs for the other hub hardware.

Table 14.  Blade Mass and Cost for Rotors between 750 kW and 5 MW (5-year production)
Radius Rating Area* Mass (kg) Average Cost per Blade Rotor Costs

(m) (kW) (m2) Blade Root Fixed Prod. Total $/kW $/MWh/yr
23.3 750 66.3 1577 111 $115 $19,100 $19,215 $76.9 $25.1
32.9 1500 132.6 4292 243 $520 $51,850 $52,370 $104.7 $31.4
38.0 2000 176.8 6528 336 $970 $79,230 $80,200 $120.3 $34.9
40.8 2300 203.3 8010 388 $1,320 $97,495 $98,815 $128.9 $36.6
46.6 3000 265.2 11,783 515 $2,350 $144,910 $147,260 $147.3 $40.8
53.8 4000 353.6 17,961 681 $4,405 $224,395 $228,800 $171.6 $46.0
60.2 5000 442.0 24,869 851 $7,180 $316,590 $323,770 $194.3 $50.8

  * Blade surface area
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To assist with the interpretation of Table 14, scaling exponents were developed for several key
cost and performance parameters.  The exponents were developed for the range between
approximately 2.3 and 5.0 MW (radius ranging from 40.8 to 60.2 m).  The results are presented in
Table 15; the scaling function for each parameter is given by Equation 9.
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Parameter

��
�

�
��
�

�
= (Eqn. 9)

where
Parameter/Parametero ≡  ratio of each parameter to its value at R = 40.8 m
R/Ro ≡  ratio of rotor radius to R = 40.8 m
EXP ≡  scaling exponent.

Table 15.  Scaling Exponents for Range of 2.3 to 5.0 MW
Parameter Scaling Exponent

Energy production 2.22
Blade mass 2.87
Blade costs 3.03
Rotor cost per kW capacity ($/kW) 1.04
Rotor cost per energy capture ($/MWh/yr) 0.82

Due to the assumed increase in hub height with rotor size and associated wind shear, the energy
capture scales more rapidly than the rotor swept area (exponent of 2.22).  Because the scaling was
performed for a fixed-blade design, the mass exponent is slightly less than cubic.  However, due
to the impact of the learning-curve costs on the five-year production scenario, the blade cost
exponent is slightly greater than cubic.  The blade cost per installed kilowatt is shown to increase
in a near-linear fashion with radius, and the cost per energy capture scales as the radius to an
exponent of 0.82.

The cost estimates presented above are appropriate for the assumptions and design modeled.
Indeed, the same general trend would result for any fixed-blade design that is scaled over the
same range of ratings.  To realize lower exponents on blade cost and mass would require
evolution of the design and/or manufacturing process as the rotors become larger.



34

5. Conclusions

In this report, the scaling of current materials and manufacturing technologies for blades of 40 to
60 meters in length was investigated.  Direct design calculations were used as a basis for
constructing a computational blade-scaling model.  The model was then used to calculate
structural properties for a wide range of aerodynamic designs and rotor sizes.  Industry
manufacturing experience was used to develop cost estimates, based on blade mass, surface area,
and the duration of the assumed production run.

The structural design model was used to perform a series of parametric analyses.  The results
quantify the mass and cost savings possible for specific modifications to the baseline blade
design, demonstrate the aerodynamic and structural trade-offs involved, and identify the
constraints and practical limits to each modification.

Scaling results were compared with mass data for current commercial blades.  For a given blade
design, the modeled blade mass and costs scale as a near-cubic of rotor diameter.  In contrast,
commercial blade designs have maintained a scaling exponent closer to 2.4 for lengths ranging
between 20 and 40 meters.  Results from the scaling study indicate that:

• To realize this lower scaling exponent on cost and mass has required significant evolution of
the aerodynamic and structural designs.

• Commercial blades at the upper end of the current size range are already pushing the limits of
what can be achieved using conventional manufacturing methods and materials.

• For even larger blades, avoiding a near-cubic mass increase may require fundamental changes
in:
− Materials, such as carbon or glass/carbon hybrids.
− Manufacturing processes that can yield better mean properties and/or reduced property

scatter through improvements in fiber alignment, compaction, and void reduction.  The
extent to which improved material properties can reduce blade mass and cost may be
limited by stiffness requirements for the blade structure.

− Load-mitigating rotor designs.

For the scaling results presented in this report, the basic material and manufacturing process
remained unchanged.  As such, a reduction in mass will correspond to a reduction of production
blade costs in the same proportion.  However, this will not hold true for mass savings realized
through changes in materials, process, and rotor design.  In evaluating each such change, the
implications on both mass and cost must be considered.

The learning curve required to achieve a mature production process has a meaningful effect on
blade costs for the range of rotor sizes considered.  A production rate of 200 MW per year implies
800 blades at 750 kW, but only 120 blades at 5 MW.  Therefore, the cost penalty for initial
production cycles has an increasing impact on the first-year production costs as rotor sizes
increase; a complete cost assessment depends on both annual production rates and the extent
(number of years) of sustained production.
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