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INTRODUCTION

The fruit fly, Drosophila melanogaster has emerged as one of the

most important model genetic organisms used in modern biology.

Although their nervous system contains only 300,000 neurons,

Drosophila exhibit an array of complex behaviors and offer an

ever-increasing and widely accessible set of methods for altering

genes and controlling their temporal and spatial expression. One

limitation in the use of Drosophila as a model system linking genes

to behavior is the difficulty in rapidly quantifying body kinematics.

Flight behaviors, in particular, pose many problems for any

attempts at automated digitization of movement and behavior.

First, wing motion during flight is very rapid, which necessitates

the use of high-speed imaging and thus large data streams.

Second, flight is intrinsically three-dimensional, which necessitates

the coordination of data from two or more cameras. Previous

studies of Drosophila flight maneuvers have required laborious

manual methods to capture the body and wing kinematics

(Altshuler et al., 2005; Card and Dickinson, 2008; Fry et al., 2003;

Fry et al., 2005). The time-consuming nature of this approach limits

a researcher’s ability to thoroughly characterize individual

components of flight behavior such as take-off and landing. Thus,

development of an automated tracking technique that estimates

the complete wing and body posture during flight would greatly

facilitate future research on flight control in flies and other

organisms.

To address the concerns above, we developed an automated

model-based tracking technique that can capture the 3D body and

wing motion of Drosophila from a high-speed multi-camera video

sequence. Previously, many studies in Drosophila flight control

measured the relative wing motion during tethered flight by

shining an infrared light upon the fly and measuring the resulting

shadow with a photodiode receptor (Dickinson et al., 1993; Gotz,

1987). In that approach, 3D wing motion is reduced to a 1D

photodiode voltage signal. Recently, Graetzel and colleagues

developed a real-time computer vision system to measure the wing

motion of a tethered fly (Graetzel et al., 2006). A single camera

view was used to track the angular position of the wing’s leading

and trailing edge in the projected camera view. Zanker and

colleagues measured the full 3D motion of flies during tethered

flight using stroboscopic video and mirrors to capture multiple

views (Zanker, 1990). However, the 3D reconstruction of the fly’s

geometry relied on manual digitization of six key points on the

wing in each camera view. More recently, Fry developed

customized software to simplify the manual fit of 3D wing models

to free-flight Drosophila in multiple camera views (Fry et al.,

2003). This technique was expanded to analyze hovering and take-

off behaviors in fruit flies and honey bees (Altshuler et al., 2005;

Card and Dickinson, 2008; Fry et al., 2005). The algorithm

proposed in this paper extends the work of Fry and colleagues
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SUMMARY

The fruit fly Drosophila melanogaster is a widely used model organism in studies of genetics, developmental biology and

biomechanics. One limitation for exploiting Drosophila as a model system for behavioral neurobiology is that measuring body

kinematics during behavior is labor intensive and subjective. In order to quantify flight kinematics during different types of

maneuvers, we have developed a visual tracking system that estimates the posture of the fly from multiple calibrated cameras. An

accurate geometric fly model is designed using unit quaternions to capture complex body and wing rotations, which are

automatically fitted to the images in each time frame. Our approach works across a range of flight behaviors, while also being

robust to common environmental clutter. The tracking system is used in this paper to compare wing and body motion during both

voluntary and escape take-offs. Using our automated algorithms, we are able to measure stroke amplitude, geometric angle of

attack and other parameters important to a mechanistic understanding of flapping flight. When compared with manual tracking

methods, the algorithm estimates body position within 4.4±1.3% of the body length, while body orientation is measured within

6.5±1.9deg. (roll), 3.2±1.3deg. (pitch) and 3.4±1.6deg. (yaw) on average across six videos. Similarly, stroke amplitude and

deviation are estimated within 3.3deg. and 2.1deg., while angle of attack is typically measured within 8.8deg. comparing against

a human digitizer. Using our automated tracker, we analyzed a total of eight voluntary and two escape take-offs. These sequences

show that Drosophila melanogaster do not utilize clap and fling during take-off and are able to modify their wing kinematics from

one wingstroke to the next. Our approach should enable biomechanists and ethologists to process much larger datasets than

possible at present and, therefore, accelerate insight into the mechanisms of free-flight maneuvers of flying insects.
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(Fry et al., 2003) by developing visual tracking techniques to

automatically fit a 3D fly model to images captured from multiple

calibrated camera views.

Our approach is motivated by and builds upon computer vision

techniques that estimate the 3D rigid motion of a human from

multiple calibrated camera views (Moeslund et al., 2006). In model-

based approaches, a 3D human model containing kinematic chains

is given, and the goal is to estimate the body posture and joint angles

using image measurements (e.g. silhouettes, appearance textures,

optical flow). Another complementary approach involves the direct

reconstruction of the model shape and motion without use of a prior

model (Ristroph et al., 2009). The best choice of approach will be

dictated by the governing experimental conditions and aims. Model-

based approaches facilitate accurate tracking in videos containing

occlusions and environmental clutter. Model-based techniques are

also better suited to image sequences with poor contrast and low

lighting. Conversely, reconstruction-based approaches may not

accurately estimate an organism’s shape and motion unless the

voxels (i.e. 3D pixels) are labeled correctly, which can prove difficult

when images have low contrast or contain occlusions and clutter.

Model-based approaches also allow the experimentalist to include

those degrees of freedom in the model that are most relevant to

experimental goals so that the state estimation process performs

inference on relevant physical quantities. However, model-based

approaches require an extra step (either manual or automated) to

initialize the model on the first frame of the image sequence.

While we adopt the model-based idea from the human motion-

tracking literature, there are several challenges peculiar to the

problem of Drosophila tracking that require special attention. The

large body and wing rotations exhibited by Drosophila during

take-off require the use of unit quaternions to continuously

parameterize the rotations. We present the first velocity-invariant

motion prediction model that uses a quaternion parameterization

[extending the approach of Rosenhahn and colleagues (Rosenhahn

et al., 2007a)]. The near-cylindrical shape of the Drosophila body

makes it difficult to estimate the roll angle about the body’s highly

symmetric central axis. The human tracking literature has

considered such unobservable states (e.g. due to depth ambiguities

and rotations about axes of symmetry in limbs) primarily within

the context of monocular video (Sminchisescu and Triggs, 2003a;

Sminchisescu and Triggs, 2003b), and these techniques are not

applicable to our multi-camera setup. Recently, Kyrki and Kragic

demonstrated tracking of the rotations of spherical objects and

solids of revolution by integrating texture features into their CAD

model (Kyrki and Kragic, 2006). Unfortunately, due to the low

luminance associated with the high frame rate (6000 frames s–1)

that is needed to capture Drosophila wing kinematics, our video

is void of any robust surface texture features except the silhouette

(e.g. see Fig. 1). Instead, we rely upon the gross symmetrical

motion of the wing beats to provide cues to the location of the

body’s dorsal edge.

We apply our method to flight initiation, a behavior that offers

particular challenges for an automated tracking algorithm. During

take-off, wingbeat frequency is high (Lehmann and Dickinson,

1998), the body may undergo large rotational movements (Card and

Dickinson, 2008), and images of the body may be occluded by the

substratum from which the fly launches itself. Flies are known to

initiate flight in at least two ways: voluntary take-offs, which are

elicited by attractive odors or unknown internal triggers, and escape

take-offs, which are elicited by looming visual stimuli (Trimarchi

and Schneiderman, 1995; Hammond and O’Shea, 2007; Card and

Dickinson, 2008). Analysis of body motion indicates that during

voluntary take-offs animals jump slowly, but stably, into the air. In

contrast, escape take-offs are characterized by both high translational

and high rotational velocity (Card and Dickinson, 2008). In

particular, escaping flies often begin flight with an elevated rotational

velocity around the roll axis from which they must quickly recover

or else crash into the ground. Presumably, flies are able to recover

through feedback mediated by their eyes, ocelli, as well as

mechanoreceptors on their wings and halteres. Although prior studies

show that flies are indeed able to rapidly recover from extreme

perturbations at the onset of flight, the means by which they modify

wing kinematics to reach a stable equilibrium are unknown. Prior

analyses using human-based digitization methods have provided a

picture of Drosophila wing and body motion during stable hovering

(Fry et al., 2005). Using an automated model-based algorithm for

tracking wing and body motion we are able to provide the first

picture of how flies transition from the highly unstable conditions

at flight initiation to a stable pattern of motion.

The methods section first summarizes the model-based visual

tracking approach. Next, a detailed Drosophila model is developed,

including a velocity-invariant motion prediction model. Thereafter,

we describe the technique for fitting the geometric model to the

images while incorporating biomechanical constraints. We also test

the results of our method against manually tracked and simulated

data. The final section presents results obtained by applying this

method to voluntary and escape take-offs.

MATERIALS AND METHODS

The video subjects consist of 3 day old female Drosophila

melanogaster (Meigen) filmed at 6000framess–1 with a shutter speed

of 50 μs. The video sequence was filmed by Card and Dickinson

(Card and Dickinson, 2008) in a previous study that analyzed flight

initiation using high-speed cameras (Photron Ultima APX, San

Diego, CA, USA) to capture orthogonal views at a resolution of

512 pixels�512 pixels. Flies entered the recording volume by

crawling up a glass pipette, and the cameras were focused on the

pipette tip to maximize the resolution at take-off. After ascending

a few body lengths, the airborne flies typically became out of focus

in one or more camera views (Fig.1).

Foreground segmentation

Nearly all conceivable approaches to automated tracking will rely

upon accurate foreground segmentation, the process whereby the

image pixels belonging to the organism and those belonging to the

background are differentiated. Typical laboratory environments

provide nearly constant background illumination during flight

maneuvers. Hence, background subtraction is used to segment the

pixels belonging to the fly. In addition, the appearance of Drosophila

is very consistent during the video sequences. Fig.2D shows a

histogram of fly pixel intensity values over 200 frames from three

different camera views. The characteristic bimodal shape is due to

the opaque nature of the body cuticle, which consistently appears

darker than other body parts (i.e. wings and legs) when back-lit.

We utilize this appearance consistency to further segment fly pixels

into body and appendage groups. At each frame and for each camera,

we fit a 1D Gaussian mixture model with two members to the

segmented fly pixels using the expectation-maximization (EM)

algorithm.

A threshold, whose value is chosen as the local minima between

the modes of the Gaussian densities, is used to segment the body

and appendages (see Fig.2C). This secondary segmentation is used

in the image registration step (see Fig.2B and ‘Model registration’

below).
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Model-based image tracking and non-linear estimation

To quantify the body and wing kinematics of Drosophila from video

sequences recorded in multiple synchronized cameras, we first build

a geometric model of the fly that is defined by the vector p of the

parameters that encode the model’s position, orientation and internal

shape. Tracking over a sequence of images indexed by the positive

integer k is performed by recursively estimating the parameters pk

from image measurements zk at time step k. This tracking approach

is based on a discrete time dynamic state space model:

pk = f (pk–1, ξk–1) , (1)

zk = h (pk,νk) , (2)

where f describes the motion model, h is the measurement model,

and ξk and νk are independent and identically distributed noise

processes. From a Bayesian perspective, tracking is based on the

use of Bayes’ rule to estimate the posterior probability density

function, P:

where z1:k–1={z1, z2,…, zk–1}. The optimal estimate of the fly’s pose

is the conditional mean of P(·):pk=E[pk�zk]=�pkP(pk�z1:k)dpk.

Computationally, the estimates are obtained from a repeating two

step process: (1) given the organism’s estimated pose from the last

frame, use the dynamic model (Eqn 1) to predict the animal’s pose

in the current frame; (2) use the image measurements from the current

frame to further refine the estimate. In general, this recursive

tracking solution is intractable and approximate solutions must be

 

 P( pk | z1:k ) =
P(zk | pk ) P( pk | z1:k −1)

P(zk | z1:k −1)
 , (3)

used instead. These approximation methods can be divided into two

categories: those that assume the normally distributed density

functions [e.g. Kalman filters (van der Merwe and Wan, 2003)] and

those that allow arbitrary density functions [e.g. particle filters

(Doucet et al., 2001)]. While particle filters can solve very general

estimation problems, there are many visual tracking problems where

the normal assumption holds, in which case Kalman filters provide

accurate solutions and computational efficiency. The present study

demonstrates that the normal assumption holds when tracking

Drosophila via multiple cameras within a constrained laboratory that

contains few environmental occlusions; hence we adopt the Kalman

filtering approach. In particular, we employ the recently developed

Sigma Point Kalman Filters (SPKFs), whose improved statistical

linearizations have been shown to work well when applied to non-

linear motion and measurement models (Ito and Xiong, 2000; van

der Merwe and Wan, 2003; Nørgaard et al., 2000; Sibley et al., 2006).

However, an appropriate motion model (Eqn 1) and measurement

model (Eqn 2) are also needed in order to estimate the fly’s motion

parameters. First we construct a geometric model of Drosophila,

whose outline forms the basis for the measurement equations. Second,

we develop an empirical motion model. These models, when used

in conjunction with the SPKF, allow automatic estimates of the fly

parameters across an image sequence.

Geometric model

The exoskeleton and wings of fruit flies exhibit various deformations

during flight maneuvers. However, because the flies are filmed at

a low magnification in order to capture the gross body and wing

motion, we can reasonably assume that the fly’s body and wing
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Fig. 1. Experimental set-up for capturing 3D high-speed sequences of take-

off. (A) Arrangement of high-speed cameras and LED panels for back

lighting. Individual flies emerged from inside a Pasteur pipette. To elicit

escape responses, a stop was removed that released a black disk which

fell toward the fly along a brass rod. (B) Images of Drosophila

synchronously captured from three camera views. The high-speed video

offers no strong visual features except the silhouette. Even with three

camera views, the complex wing beat motion is difficult to capture due to

low observability of the wings at certain postures and motion out of the

camera’s depth of field.
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Fig. 2. Segmentation procedure for Drosophila images. (A) Typical image of

Drosophila during flight initiation. (B) Image segmented into body (green)

and appendage (yellow) pixels. (C) Histogram of pixel intensities (0–255)

from A fitted with the sum of two Gaussians. The local minimum of the

Gaussian sum is chosen as the threshold to classify body and appendage

pixels. (D) Histogram of fly pixels calculated from background subtraction in

over 200 frames across three different camera views. The characteristic

bimodal shape is due to the opaque nature of the fly’s body cuticle (lower

intensity peak) versus the more translucent appendages (higher intensity

peak).
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parts undergo rigid body motion. Under this rigid body assumption,

Dickson and colleagues constructed a polygonal model of the fruit

fly from multiple calibrated images of the body and wing (Dickson

et al., 2006). This triangular mesh model (Fig.3A) is integrated into

a high performance software library to simulate the Newtonian

dynamics of flapping flight (see http://www.ode.org). We used this

polygonal model to construct a parameterized generative model of

the fly that contains three primitive shapes: the body, head and wings

(Fig.3B). The primitive shapes are assembled into an articulated

model where each wing joint is modeled as a spherical joint

(permitting arbitrary rotations about all three coordinate axes). In

this paper, the head is rigidly attached to the thorax, though extra

degrees freedom could easily be added. The shapes are constructed

by applying continuous transformations to a B-spline curve. For

instance, the fly’s body (thorax and abdomen) and head are

constructed by revolving a profile curve, R(u), around a known

centerline, C(u), while the wings are constructed by transforming

and scaling a closed curve (see Fig.3A–C). This generative model

offers a more compact representation of the fly’s shape than the

triangle mesh (i.e. ~80 spline control points versus 104 mesh points).

One limitation of the current version of our automated tracker is

the inability to detect and quantify deformations of the wing and body

that violate the rigid body assumption. Wing and body deformations

can be quite large in insects (Combes and Daniel, 2003a), and may

play an important role in stability and maneuverability (Combes and

Daniel, 2003b). There is nothing in our general methods that would

preclude altering the geometric model of the insect to include

deformation. However, such an effort would be worthwhile only if

the deformation were large enough and the spatial resolution sufficient

to capture them. Our imaging system was optimized to capture as

large a portion of a fly’s take-off behavior as possible, sacrificing

spatial resolution for spatial extent. It should be possible for other

researchers to modify our imaging arrangement and tracking algorithm

in order to detect deformations of the body and wings, especially in

larger insects in which such distortions are more pronounced.

Coordinate transformations

To parameterize the rotations of the fly’s body and wings relative

to a fixed global frame, we utilize unit quaternions because their

global representation does not suffer from the singularities inherent

in Euler angle schemes. A unit quaternion, denoted Q=[q1 q2 q3 q0]
T

can be equated to a 3�3 rigid body rotation matrix by the relation:

A rigid body coordinate transformation:

is a 4�4 matrix that defines the position of a body-fixed reference

frame relative to a world-fixed frame, with T being the 3�1 vector

that represents the translational distance between the reference

frames. A kinematic chain of an articulated body is represented as

the consecutive application of coordinate transforms. In this context,

one coordinate transform defines the relative motion between the

M =
RQ T

0T 1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

,

RQ =

q0
2 + q1

2 − q2
2 − q3

2 2q1q2 − 2q0q3 2q1q3 + 2q0q2

2q1q2 + 2q0q3 q0
2 − q1

2 + q2
2 − q3

2 2q2q3 − 2q0q1

2q1q3 − 2q0q2 2q2q3 + 2q0q1 q0
2 − q1

2 − q2
2 + q3

2

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 . 

(4)

fly body and the world reference frame, while two others define the

relative motion between the wings and the body (see Fig.4). The

kinematic chain for one wing joint has the form:

where Xj represents the 3D coordinates of the jth model point of a

wing in the local wing frame, and Tbw is the translation between

the body-centered frame and the corresponding wing joint. The state

of the fly model is p=[TQb Qlw Qrw]T, where the superscripts refer

to the body, left wing and right wing, respectively. These 15

parameters uniquely define the pose of the model fly at a particular

instant of time.

An initial step is needed to initialize the fly model to the first frame

of the video sequence, adjusting the model’s dimensional parameters

to the given organism, as well as approximating the animal’s initial

pose in the first video frame. This initialization process is enabled by

a customized software package (Card and Dickinson, 2008). A user

clicks on six locations (head, tail and joint/tip locations of both wings)

on the fly’s body in two out of three camera views to localize its 3D

position. A wire frame model is next adjusted about its rotational axis

until an approximate visual match is realized (see Fig.5A). Thereafter,

the body transformation found by the manual initialization is refined

using the registration procedure described in ‘Model registration’

(below) applied to segmented images of the body shown in Fig.2B.

Finally, the body’s shape profile is adjusted, while fixing the pose,

to match the body-only segmented images. The entire width profile

is modeled as the combination of two B-spline curves representing

the head and the body. The B-spline control points are adjusted to

best match the images, similar to a procedure recently published for

zebrafish (Fontaine et al., 2008). Fig.5B illustrates the results of such

a shape refinement process for a particular Drosophila.

Motion prediction via scaled motion dynamics

Practically speaking, the dynamic motion model (Eqn 1) predicts the

fly’s pose in the current frame being processed, based on the

previously estimated poses. This prediction better initializes the fly

parameter estimates before they are updated using the image

measurement, restricting the search space for possible pose

configurations. As a result, the tracking algorithm is able to cope with

self-occlusion (e.g. the wing covers the body or vice versa) and other

misleading visual clues (e.g. the fly partially covered by the pipette

or other obstacles). While this approach assumes a priori knowledge

of the animal’s dynamics, a first principles construction of such a

model is a daunting task, and the resulting model may be quite

complicated. Techniques to craft empirical low-dimensional

dynamical models have been developed within the human motion-

tracking literature, where the motion model is calculated using

principal component analysis (PCA) (Sidenbladh et al., 2002) and

Gaussian processes (Urtasun et al., 2006; Sminchisescu and Jepson,

2004). However, these techniques are not invariant with respect to

velocity (i.e. animals that have the same motion pattern but travel at

different speeds, or animals traveling the same speed but filmed at

different frame rates). Thus, low-dimensional models cannot provide

accurate predictions when the training images (i.e. those sequences

used to learn the motion pattern) are captured at different frame rates

   

′X j

1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= M( p)
X j

1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 , (6)

′X j

1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
RQb T

0T 1

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

RQw Tbw

0T 1

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

X j

1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 , (5)
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to the experimental images. In addition, dimensionality reduction

works well for a single motion pattern, but a difficult-to-estimate

mixture of regressors is needed in the case of multiple different motion

patterns (Jacobs et al., 1991). We build upon the work of Rosenhahn

and colleagues who model the motion patterns in the original high-

dimensional space (Rosenhahn et al., 2007a). This approach can

incorporate training data that are rescaled to different velocities, and

that consist of completely different motion patterns.

We assume a set of temporally ordered training samples are

available:

where Ti, Qb
i and Qi respectively represent the translation, rotation

(in quaternion form) and wing joint angle vectors (details on

collecting the training samples are given in Results). This list of

temporally ordered training samples is denoted P=�pi…pN�, and

the sublist in P of length m ending at time i is denoted �pi–m+1…pi�.
To predict the state pk+1, the training list is searched to find the

location in the list that best matches the sublist of previous tracked

states, �pk–m+1…pk�. For the matching to be invariant with respect

to the fly’s velocity, the matching is performed at different scalings

s of P. The different scalings of the training data, denoted Ps, are

calculated using two different techniques. Scaled body translations

are obtained by linear interpolation and resampling. To produce

valid rotations, spherical linear interpolation (Slerp) is employed

(Shoemake, 1985) on the quaternion parameters. The resulting

scaled lists are denoted .

The best matching sublist of the training data is chosen as:

Note that only the wing joint angles are considered in the initial

matching process, as their motion will be invariant with respect to

argmin
s, j

Qk − v − �Q j−v
s( )  . (8)

v=0

m−1

∑

P s={ �pi
s
:=( �Ti

s , �Qi
b,s , �Qi

s ) | i =0…sN}

�pi := :=�Ti ,
�Qi

b , �Qi
lw, �Qi

rw( ) �Ti ,
�Qi

b , �Qi( ) | i = 0…N{ }  , (7)

the fly’s global orientation. Fig.6 illustrates this technique. To

calculate the wing displacement for the dynamic update step, Eqn

1, the predicted motion between frames is estimated from the training

data set, and this relative motion is applied to the current state to

predict the state variables in the next frame:

where i denotes quaternion multiplication. An identical calculation

to Eqn 9 is also performed for the right wing and the body

orientation. The predicted body translation is given by:

so the entire predicted state consists of .

Model registration

The filter’s measurement update step, which is effectively an image

registration procedure, is constructed as follows. To quantify the

registration error between the 3D fly model and the image

measurements, we minimize the distance between a set of 3D points

on the model and a set of 3D lines that are constructed from the

image. We assume a set of calibrated pin-hole cameras:

with known intrinsic parameters Ki and extrinsic parameters (Ri, Ci)

(Svoboda et al., 2005). Xj� denotes the jth 3D point in our fly model

with respect to the fixed frame, and (ui
j, v

i
j) are the pixel coordinates

of this point in camera i. In order to create correspondences between

the model and image silhouette features in a given camera view,

pk +1=[Tk +1 Qk +1
b Qk +1

lw Qk +1
rw ]

Tk +1 = Tk + �Tj+1
s − �Tj

s( )  , (11)

Qk +1
lw = ∂ �Q j+1

lw,s
i Qk

lw  ,  (10)

∂Q j+1
lw,s = �Q j+1

lw,s
i �Q j

lw,s( )−1

 , (9)

λ j
i

u j
i

v j
i

1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

= Ki Ri Ci
⎡
⎣

⎤
⎦

′X j

1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

i = 1…M  , (12)
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Fig. 3. Generative model of fly body. (A) Triangle

mesh of Drosophila calculated from multiple

calibrated images [courtesy W. Dickson (Dickson et

al., 2006)]. (B) Complete generative model

constructed from the data points shown in A. The

model consists of three shape primitives: the body,

head and wing. The generative modeling approach

offers a more compact representation of the shape

and motion of the fly than its triangle mesh

counterpart. (C–E) Method for constructing

components of the body shape primitive. (C) The

centerline C(u) is a 3D B-spline curve with five

control points (only three of them are visible in the

axes). The curve of the centerline lies completely in

the x–z plane. The width profile, Rb(u), is revolved

around C(u) using an elliptical cross-section where

the lateral direction is 20% wider than the

dorsal–ventral direction. (D) Complete head model of

the fly constructed identically to the method

described for C using a different profile curve and

the x-axis as the centerline. (E) Outline profile of the

fly wing model constructed from a closed planar B-

spline curve with 20 control points. For other

definitions see ‘Table of abbreviations’ in text. 
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the model, whose pose is calculated in the dynamic prediction step,

is first projected using Eqn 12 to produce the set of 2D image points

corresponding to 3D points on the model surface (Fig.7). Next, a

closed B-spline curve is fitted to the 2D boundary points x
i
j to

determine the local normal vector ni
j at each boundary point. For

each point xi
j, a search in the data image (Fig.2B) is performed along

the normal ni
j to locate edges. Because the 3D coordinates of the

projected points xi
j are known, one obtains a set of correspondences

between edge locations e
i
j and 3D model locations Xj� (Fig.7A).

These correspondences are recomputed at each iteration of the

Kalman filter update, similar to the widely used iterated closest point

(ICP) algorithms (Rusinkiewicz and Levoy, 2001).

Next, a set of projection rays emanating from the 2D edge

locations are reconstructed so that the Euclidean distance between

the model points and corresponding rays can be minimized. The

projection rays are represented in Plüker coordinates to permit an

easy calculation of the distance between a point and a line. Let Li
j=(ni

j,

mi
j) denote the Plüker coordinates of the projection ray connecting

edge point ei
j with camera center Ci, where ni

j is a unit vector colinear

to the line and mi
j=x�ni

j is for any point x in the line. Given a camera

calibration, these coordinates are:

A point x is incident with line L if x�n–m=0. The distance between

a point x�L and line L=(n, m) is �x�n–m�, and this quantity serves

as a convenient error measure (Fig.7B). Hence, the state is updated

by collecting all of the correspondences across all camera views

(Fig.7C) and minimizing the error:

This approach for 3D pose estimation is also utilized in Rosenhahn

et al. (Rosenhahn et al., 2007b). By concatenating the error vectors,

this error function can be put in the standard Kalman filter form

�z–h(p)�2 where h(p)=[M(p)X]3�1�n and z=m. Minimizing the point-

to-line distances offers considerable computational savings

compared with an error function that minimizes point-to-point

distance in the image plane. Such an error function involves the

projection of the 3D model and the calculation of its occluding

contour for each function evaluation.

Drosophila constraints

The Drosophila tracking algorithm must incorporate two

constraints. The first simply insures that the quaternions maintain

unit length, and the second addresses the practical unobservability

of the body’s roll angle due the body’s axial symmetry. The form

of the latter constraint is suggested by anatomical principles.

Because the wings are simultaneously actuated through oscillatory

deformations of the exoskeleton, we assume that the body roll

angle will remain (roughly) symmetrical between the two wing

angles. This does not impose a condition that the wing motion is

symmetrical. Instead, it repositions the body’s roll angle, while

allowing the wings to follow the image data. This technique is

illustrated in Fig. 8, and the detailed calculations that quantify this

constraint are presented in the Appendix. Both of these non-linear

constraints can be expressed as a functional relation of the form

c(pk)=0 that must be included within the estimation algorithm.

Within the SPKF filter framework, the constraints are incorporated

by using a Sigma Point transform applied to a projection operator

which projects the state estimate onto the constraint surface (Julier

and LaViola, 2007). This method presumes the existence of a

projection function w(pk) such that:

The quaternion constraint has the form w1(pk)=Qk/�Qk�=1, while the

analogous result for the roll angle constraint is developed in the

Appendix.

Quantifying tracker performance

To assess the accuracy of the proposed method, we compared body

pose estimates in six video sequences with those reported in Card

c w( pk )( ) = 0 ∀pk ∈ n  . (15)R

min M( p) X j( )
3×1

× n j
i − m j

i
2

. (14)

i, j

∑

n j
i = Ri

TKi
−1

e j
i

1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
, m j

i = Ci × n j
i  . (13)
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(Q lw,Tbw)
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Fig. 4. Geometric generative model of Drosophila. Following aeronautical

convention, the rotations about the x-, y- and z-axes are defined as roll,

pitch and yaw, respectively. The downward pointing z-axis is chosen so

that positive pitch angles correspond to pitching upwards. The model’s

kinematic chain includes a coordinate transformation from the left wing

frame to the body frame [given by (Qlw, Tbw)] and a transformation from the

body-fixed to the world-fixed frame F, denoted by (Qb, T). Analogous

transformations exist for the right wing.

B

A

Updated

Original

0.5

Rb(u)

u

Fig. 5. Procedure for initializing automated tracker. (A) We used customized

software for manual digitizations of Drosophila body kinematics from Card

and Dickinson (Card and Dickinson, 2008). Points were clicked at the

head, tail wing joint and wing tip in multiple camera views to manually fit a

geometric model to the images. The manually estimated body pose was

then used as an initial guess for the automated algorithm. (B) At the initial

frame, the profile of the body was refined, while holding the pose

parameters fixed, to more closely match the actual shape of the fly by

minimizing the error described in ‘Model registration’ (Materials and

methods).
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and Dickinson (Card and Dickinson, 2008), where the body pose

was captured manually using the customized software described in

‘Coordinate transformations’ (above). For the manually tracked

study, a reduced body model was fitted to the images typically every

five frames and a spline was used to smoothly interpolate the location

of the body model at intermediate frames (wing joint angles were

not estimated in this study). This approach decreased the labor-

intensive nature of manual digitization, and it removed some of the

variance attributed to human fitting by providing temporal

smoothness. Fig.9 demonstrates quantitatively that our automated

method can realize estimates that are comparable with human visual

inspection. In reality, there are no ‘ground truth’ estimates for these

data sets. Whereas the performance of human motion-tracking

systems is typically measured against a marker-based system, the

tiny size of Drosophila only permits visual measurements subject

to human interpretation. In this section all errors are reported as

root mean square (r.m.s.) values. Wing errors represent an average

r.m.s. value between the left and right.
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Fig. 6. Predictive component of tracker. (A) Motion model used to predict the location of the fly in the next frame, pk+1, given estimates from the previous

frame, pk. Here, the displayed motion during the upstroke of the wingbeat is exaggerated to illustrate the concept. (B) Rotational motion of Drosophila left

wing motion during take-off (120 out of 380 samples shown). Motion is parameterized by four quaternions which vary smoothly with time. The query of m=5

previously calculated poses is matched with position 106 of the prior database. The relative motion to position 107 is used to calculate the prediction. 

n

C

x1

x2

x

L

A B

C

Y

1

X

2

Z

3

1

2

3

Fig. 7. (A) Correspondence between projected model

points xi
j and detected edge locations ei

j shown in red and

yellow, respectively. The edge locations are used to

reconstruct the projection ray corresponding to that point

on the image silhouette. (B) The distance, �x2�, from a

point x to a line L=(n, m) represented in Plüker

coordinates is calculated using the relation �x2�=�x�n–m�.

This distance provides the error vector, x2, that is

minimized to make the model points match the projection

rays of the image silhouette. (C) In order to fit the

geometric model to the images from multiple camera

views, we reconstruct the projection rays from the image

silhouette in each of the three camera views. The

intersection of the projection rays from each camera and

the model are displayed individually for illustration. We fit

the model by minimizing the point to line distance across

all projection rays in all cameras.
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Fig. 8. Implementation of roll constraint. Because the

roll angle of the body is unobservable from silhouette

data in the images, a symmetry constraint within the

transverse plane of the body must be incorporated.

(A) Unconstrained estimate of the fly’s pose; (top)

projection of the model vectors into the transverse

plane, (bottom) 3D pose with transverse plane

illustrated in gray. This body configuration is highly

unlikely given the biomechanics of Drosophila.

(B) Constrained estimate after rotating the body by

angle and updating joint angle vectors, Q. 
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Fig. 9. Performance metrics of tracker compared to

human digitizer. Only body kinematics are compared

because human-tracked wing motion is unavailable.

(A,B) Two frames where a large discrepancy in roll

angle was observed between the human estimate

and the algorithm. From visual inspection, the

human estimate in A appears more accurate than

the algorithm’s estimate, while in B the algorithm

appears to provide a better estimate and more

accurate roll angle. (C) Time trace of entire video

sequence with frames A and B indicated. Tracker

values are solid lines, data from human are shown

as open circles. (D) Root mean square (r.m.s.)

deviations between the human estimates and our

tracker for body orientation and translation. Each bar

represents a separate video sequence. The roll

angle shows the greatest deviation, as expected due

to the symmetrical nature of the fly’s body. Video

sequence from C has the largest deviation amongst

all videos. 
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Fig.9A,B illustrates two configurations where large differences

between human and automated roll angle estimates were observed.

Based on visual inspection, it appears that the human estimates were

more accurate in Fig.9A, while the automated estimates are slightly

better in Fig.9B. Both display the reduced body frame model used

for manual fitting (the long axis indicates the head and tail locations,

and the raised ‘T’ junction indicates the approximate wing joint

locations which are the visual cues used to determine roll angle).

Fig.9C is the time trace of the body orientation and translation with

frames A and B clearly marked. Fig.9D summarizes the results for

all six video sequences. The algorithm can typically estimate the

body’s center of mass location within 5% of the body length, an

absolute distance that is of the order of 0.1mm. Body orientation

is also estimated well. As expected, the roll angle exhibits the largest

deviations of 6.5±1.9deg. on average due to the greater uncertainty

associated with rotations about a highly symmetrical axis. The video

sequence associated with Fig.9A–C represents the sequence with

the largest error (8.6deg.) between the human and automated roll

angle estimates.

Fig.10 compares wing angle performance against a human

digitizer for a representative voluntary take-off sequence. The results

are nearly identical for stroke amplitude (θ; 3.3deg. error) and stroke

deviation (φ; 2.1deg. error), although the two methods do differ for

angle of attack (α; 8.8deg. error), especially during stroke reversals.

Such differences are expected, as the subjective choices that are

required of a human digitizer are most difficult during stroke reversal

when the wing is rapidly flipping and changing direction. This does

not imply that a human operator is necessarily less precise, and

because there is no absolute ground truth for a captured behavioral

sequence it is impossible to determine which method yields more

accurate kinematic data. Automatic tracking is, however, more

objective and repeatable. Thus, the algorithm will be useful in

practical application because it achieves estimates comparable to

human interpretation, while significantly decreasing the labor

involved in measuring such data.

Another performance assessment was performed to compare the

tracker estimates with an actual ground truth. We use the geometric

model (Fig.11A) and the known experimental camera calibration

to construct a set of synthetic images (Fig.11B) of the fly along a

realistic trajectory involving a stable voluntary take-off. The

algorithm is used to track these synthetic images, and the results

are displayed in Fig.11C. The difference between the estimate and

the ground truth at each time step is displayed as a histogram of

residuals. Body position and orientation accuracy are similar to those

achieved when comparing with manual tracking (Fig.9D). Estimates

of the wing angles, however, exhibit a broader distribution of errors.

Because our model is connected in a kinematic chain, errors in the

wing angles are coupled to errors in the body position and

orientation. Stroke amplitude (θ) and deviation (φ) display strong

accuracy with errors of 3.3deg. and 4.8deg., respectvely. Geometric

angle of attack (α) is also estimated with errors of 17.2deg. Higher

errors in angle of attack are expected due to decreased camera

resolution about this degree of freedom. In some instances, the

synthetic image contained very few wing pixels due to our model’s

infinitesimal wing thickness. Also, when the wing speed is small

the direction of motion is noisier, which causes the angle of attack

measurements to be noisier. For this reason, we do not include the

measurements before the initial downstroke in our error analysis.

The tracking algorithm’s two failure modes are primarily seen

during escape behaviors. These fast maneuvers can cause
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Fig. 10. Comparison of manual and automated tracking of wing

kinematics. Each pair of traces (for θ, φ and α) plots the

kinematic angles for the right (red) and left (blue) wing.

Automatically tracked data are shown in color; manual-digitized

data are shown in black. The r.m.s. errors are 3.3 deg. ( θ),

2.1 deg. (φ) and 8.8 deg. (α).
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significant wing deformations that are not captured by our current

rigid model (see Fig. 12Aii). However, given the multiple camera

views and scaled motion priors, the algorithm is able to continue

tracking and provide good estimation once the wing assumes a

less deformed configuration (Fig. 12B). Another failure mode of

the current algorithm is shown in Fig. 12Ci, where the right wing

of the fly is flipped. The frame is taken from an upstroke of the

wing path, so the right wing should be undergoing supination

like the left wing. Instead, the leading edge is facing downwards

as if during a downstroke. This failure primarily occurs during

the escape maneuvers when complicated body motions self

occlude one of the wings in one or more camera views. Despite

the strong motion prior, this causes the state posterior distribution

to violate the normal assumption. In addition, the incorrect

orientation of the right wing could be caused by the inaccuracies

in the body orientation estimate, which are primarily due to

inaccuracies in the body shape (length, width, deforming

centerline axis, etc.).
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Fig. 11. Performance metrics of tracker compared with synthetic images. (A) The generative model of the fly and known camera calibration are used to

construct (B) synthetic images of a realistic trajectory of stable voluntary take-off. (C) The difference between the estimate (colored line) and the ground truth

(black line) at each time step is displayed as a histogram of residuals. Body position and orientation accuracy are similar to those achieved when comparing

with manual tracking (Fig. 9D). Stroke amplitude (θ) and deviation (φ) have errors of 3.3 deg. and 4.8 deg., respectively. Angle of attack (α) error of 17.2 deg.

is due to higher errors when the wing speed is small because the wing velocity direction is a noisier signal. For this reason, we don’t plot angle of attack

before the initial downstroke.
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Ci CiiiCii

Ai Aii B
Fig. 12. Examples of gross errors in tracking

algorithm. (A) During some escape maneuvers,

the fly’s wing can undergo large deformations

(shown in Aii) that are not captured by our

current rigid body model. In other camera

views (Ai), this deformation is not apparent.

(B) Despite this large error, the algorithm does

not lose track and is able to continue

successful estimation. (C) Another failure mode

of the tracking algorithm. The fly as seen in Ci

is facing towards the camera during an

upstroke. The left wing (top) is in the proper

configuration, but the right wing (bottom) is

flipped in the wrong orientation (pronation

instead of supination).
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Fig. 13. Example of voluntary take-off. (A) 3D

trajectory of fly during take-off sequence. Wing

kinematics for stroke cycles at the beginning,

middle and end of the sequence are shown to

the right. The right wing is indicated in red, the

left in blue. (B) Time history of angles

describing wing and body kinematics

throughout the take-off sequence. The wing

angles were defined relative to a plane

through the wing hinges that is inclined

62 deg. from the body axis (see Ai), which is

the position of the mean stroke plane in

hovering flies. Sequence is shown in

supplementary material Movie 1. See text for

details.
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RESULTS

The algorithm is written in MATLABTM and has an average

computation time of 45±3s frame–1 on a 3.0GHz Intel® Xeon

processor. The source code will be made freely available upon

request to the authors. To illustrate our algorithm’s capabilities, we

analyzed video of two different types of behavior: voluntary take-

offs (flies remained on a pipette undisturbed until they flew away)

and escape take-offs (flies were startled by the approach of a falling

disk). For each video sequence, the geometric model was manually

initialized to the first frame according to ‘Coordinate

transformations’ (Materials and methods). The database of training

samples (‘Motion prediction’, Materials and methods) consisted of

380 samples from a voluntary take-off and 111 samples from an

escape take-off. Initially the training samples were captured

manually, and then they were gradually replaced with the estimated

values from the tracking algorithm. Wing angles are measured in a

body-centered coordinate frame with the longitudinal axis pitched

at 62deg. with the horizontal (Fig.13Ai), which is consistent with

hovering flight (David, 1978). The orientation measurements are

smoothed with a zero phase lag fourth order Butterworth filter with

a cut-off frequency of 1000Hz and 250Hz for the wings and body,

respectively.

Using our tracking algorithms, we analyzed a total of nine take-

off sequences. Of these, we describe in detail four sequences (two

voluntary and two escape) that illustrate the range of changes in

wing and body kinematics that occur at the onset of flight. Fig.13

(and supplementary material Movie1) shows a voluntary take-off

in which the onset of flight was particularly smooth and stable. By

the third downstroke, the fly reaches a consistent pattern of wing

motion that is maintained with little change for the rest of the

sequence. This basic pattern in which the wings follow gentle ‘U-

shaped’ trajectories is quite similar to that previously described for

stably hovering fruit flies using a manual method of digitization

(Fry et al., 2005). The main change in stroke kinematics throughout

the entire sequence is a slight gradual decrease in stroke amplitude

(θ), which is accomplished primarily through a drop in the ventral

extent of the wing stroke (compare kinematics at i, ii and iii). Once

wing motion stabilizes, the fly maintains a constant body pitch of

E. I. Fontaine and others
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Fig. 14. Example of voluntary take-off. Plotting

convention same as Fig. 13. Sequence is shown in

supplementary material Movie 2. See text for

details.
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approximately 45deg., a slight roll of about 20deg., and a constant

heading. The only major break in left–right symmetry is during the

seventh upstroke in which the right wing shows a very high angle

of attack. The fact that this change is maintained for just one

wingstroke indicates that the fly has the ability to modulate wing

kinematics on a stroke-by-stroke basis. There is, however, no

obvious change in body orientation as a consequence of this one

stroke. The stroke frequency averaged across the sequence is

268Hz, which is somewhat higher than measured during stable

hovering flight, but consistent with studies of flight initiation using

tethered flies (Lehmann and Dickinson, 1998).

The kinematics over the first two strokes in Fig.13 indicate how

rapidly the pattern of wing motion can reach steady conditions

following the jump that initiates flight. The flight sequence begins

with the wings held constant in a dorsal location. The wing motion

parallel to the stroke plane (θ) reaches the steady-state pattern almost

instantly, as does the pattern for wing axial rotation (α). The main

difference in wing motion during the first two strokes is that stroke

deviation (φ) exhibits a sawtooth-like pattern of constant downward

motion during the downstroke and constant upward motion during

the upstroke. The result is that the wing follows a more ventral

trajectory during the downstroke than during the upstroke

(Fig.13Ai), opposite to the pattern exhibited during steady flight

(Fig.13Aiii). Note that during the first downstroke the wing angle

of attack is nearly parallel to the body axis, which is itself roughly

parallel to the horizontal plane. Such an arrangement would create

very high vertical forces just as the animal takes off. As found

previously for free flight (Fry et al., 2005), the fly in Fig.13 did not

exhibit clap and fling (Weis-Fogh, 1973), even during the initial

strokes of take-off.

The sequence shown in Fig.14 (and supplementary material

Movie2) shows another voluntary take-off. The first two strokes of

the flight sequence are virtually identical to those shown in Fig.12,

suggesting that voluntary take-offs begin with a stereotyped pattern

of wing motion. The final stroke of the sequence again resembles

the ‘U-shaped’ pattern indicative of stable flight. In this sequence,

however, the fly generates a brief, but extreme, maneuver starting

with the fourth stroke (Fig.14Aii). At this time, the left wing

undergoes a shorter stroke (θ) and a large negative deviation (φ)

while the right wing maintains the same stroke length but undergoes

a positive deviation. The net result is a large left–right asymmetry

in wing motion. This asymmetry continues, slightly attenuated,

during the fifth stroke, but then reverses during the sixth such that

the left wing undergoes a more positive deviation while the right

wing undergoes a more negative deviation (φ trace, Fig.14B).

Starting with the fourth stroke, the animal begins to roll at a rate

of roughly 5500deg. s–1. Rotation this fast is likely to activate the

campaniform sensilla at the base of the halteres (Sherman and
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Fig. 15. Example of escape take-off. Plotting

convention same as Fig. 13. Sequence is shown in

supplementary material Movie 3. See text for details.
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Dickinson, 2003), which might be responsible for initiating the

compensatory reaction observed during the sixth stroke, in which

the pattern of wing motion exhibited in the fourth and fifth stroke

reverses. Throughout this maneuver, the animal maintains a constant

pitch and heading and a wingbeat frequency of 241Hz. As with the

other voluntary sequence, the fly does not exhibit clap and fling.

The sequence shown in Fig.15 (and supplementary material

Movie3) is an example of an escape response, elicited by a looming

visual stimulus, that nevertheless resulted in a relatively stable take-

off. By the fourth and fifth strokes the animal has achieved the ‘U-

shaped’ pattern typical of stable hovering. During the second and

third strokes of the sequence the fly exhibits a switch in the pattern

of stroke amplitude and deviation (φ trace, Fig.15B) that is

reminiscent of that seen in Fig.14. The sequence differs from those

shown in Figs13 and 14 most notably at the start of wing motion.

Inspection of the video sequence indicates that the thoracic flight

motor begins oscillating before the animal has raised its wings, and

as a consequence the wing stutters during the first stroke. The initial

downstroke is not coordinated with a large negative deviation as it

is in the voluntary take-off sequences. The initial wingbeat frequency

is 300Hz, substantially higher than that measured at the start of the

voluntary take-offs or in stable hovering flight (Fry et al., 2005).

The animal starts the sequence with its body parallel to the ground,

but pitches upward over the first five strokes to reach a posture typical

of low stable flight. Again, the fly did not exhibit clap and fling.

The sequence shown in Fig.16 (and supplementary material

Movie4) is an escape take-off that was chosen because it represents

an extreme case in wing and body kinematics. At the start of flight,

the jump legs generate a large torque that pitches the animal

backwards so that it is upside down for most of the sequence. As in

the sequence in Fig.15, the wings begin oscillating before they have

been elevated to a proper start position and as a consequence they

appear to ‘unfurl’ during the first stroke (Fig.16Ai). By the end of

the sequence, the animal has partially recovered, not by pitching down,

but rather by rolling toward an upright position (see the rising roll

trace at the bottom of Fig.15). This strong rolling moment is

correlated with an extreme asymmetry in wing motion in which the

tip of the right wing follows a broad open loop (Fig.16Aii). The angle

of attack is very high during the upstroke, whereas it is much lower

during the downstroke. It is presumably this large asymmetry during

the upstrokes and downstrokes of the right wing that creates the

moment which starts to roll the animal from an upside-down position.

E. I. Fontaine and others
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Fig. 16. Example of escape take-off. Plotting

convention same as Fig. 13. Sequence is shown in

supplementary material Movie 4. See text for details.
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Although the fly is not fully recovered, the kinematics in the last stroke

in the sequence begin to resemble the stable flight pattern seen in the

other sequences. This sequence illustrates how quickly an animal can

recover from an enormous perturbation at the onset of flight. As with

the escape sequence shown in Fig.15, the fly in Fig.16 begins flight

with a rather high wingbeat frequency of 285Hz. Consistent with the

other three sequences, the fly did not exhibit clap and fling during

take-off.

A more extensive comparison of voluntary take-offs is shown in

Fig.17, which plots the wing kinematics from eight automatically

tracked sequences. To align the sequences from eight different flies,

the data were normalized by either stretching or contracting the time

axis so that the first three stroke periods were equivalent. The

sequences are remarkably similar indicating that voluntary take-offs

are quite stereotyped, in contrast to escape responses. None of the

flies exhibited clap and fling, and the take-off kinematics closely

resemble those of hovering flies (Fry et al., 2005). A detailed analysis

of escape take-offs, which are much more variable, will be the

subject of a future study.

DISCUSSION

We have presented a practical model-based visual tracking algorithm

that estimates the 3D motion of free flying Drosophila from

multiple camera views. The algorithm uses a dynamic state

estimation framework to provide robustness to self-occlusions and

static background clutter such as that due to the glass pipette from

which the animals launch. By simply matching motion patterns in

a training set, the approach provided accurate prediction in video

sequences containing multiple types of behaviors (voluntary versus

escape take-off). Our examination of take-off behaviors showed that

the algorithm can successfully track a fly through complex tumbling

motions. Our method has comparable accuracy to manual-based

human digitization, but offers the promise of allowing biologists to

analyze much larger image-based databases of kinematics.

The first application of our method has already provided new insight

into the complex dynamics of flight initiation. Our results suggest

that voluntary take-offs begin with a stereotyped, feed-forward

pattern of motion in which the wing creates large vertical forces during

the first downstroke when the longitudinal body axis is parallel to the

substratum (Fig.13Ai; Fig.14Ai). The pattern of wing motion then

approaches that of stable flight within two or three strokes (Fig.13Aii;

Fig.14Aii). In cases in which the fly must recover from instabilities

introduced by the jump, the sequences reveal how quickly the

sensorimotor system can respond to bring the animal towards a stable

flight posture, even when the animal is initially flipped upside down

(Fig.16). The sequences also suggest that these animals do not rely

on clap and fling kinematics to generate elevated lift, even at the onset

of flight. This supports the notion that the clap and fling in Drosophila
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may be in large part an artifact of tethering (Fry et al., 2005). The

results confirm, however, that flies do rely on very high wingbeat

frequencies at the onset of flight (Lehmann and Dickinson, 1998).

All of the sequences show evidence that changes in wing kinematics

may last for only one or a few wingbeat cycles, which suggests that

the underlying neuromuscular circuits can operate on a stroke-by-

stroke basis to alter aerodynamic forces and moments. Evidence for

this rapidity is suggested by studies of tethered flight (Heide and Gotz,

1996; Balint and Dickinson, 2004), but is now supported by free-

flight kinematics. In the future it will be possible to gain a richer

insight into take-offs and other aspects of flight control through the

application of model-based automated tracking.

APPENDIX

A constraint on the body’s roll angle, which is deployed after the

image registration process, can be developed as follows.

Conceptually, we assume that the dynamic prediction step produces

a roughly correct candidate orientation of the model. The constraint

rotates the body about its x-axis so that the z-axis bisects the angle

formed by the wing vectors in the body’s transverse plane. The

equations are developed for the left wing only; an analogous

calculation is carried out for the right wing. Let RQb=[XbYbZb] and

RQbRQlw=[XlwYlwZlw] denote the coordinate axes of the body and left

wing relative to the fixed frame at the current time step (the subscript

k is omitted for brevity). Let VL=Ylw and VR=–Yrw be known as the

wing vectors that point from the wing tip towards the wing joint.

The vectors Yb and Zb define an orthonormal basis in the planar

subspace transverse to the fly’s body. The symmetry constraint is

imposed in this subspace. Let:

denote the projection of the left wing vector into the transverse plane.

Next, VR is mirrored about the body’s z-axis and the angle between

them is calculated as:

As α is always positive, we change signs if �VL
x�>�VR

x�, which denotes

a counter-clockwise rotation (Fig.8 is a clockwise rotation, α>0).

The constrained body transformation is calculated by applying the

coordinate transformation that encodes the roll update to the

unconstrained transformation:

is the geometric twist of the body’s roll axis, and † and * denote

the constrained and unconstrained estimates, respectively. As our

model is a kinematic chain, this roll transformation also rotated the

wings to an incorrect position. Let Xi*��
3 denote the ith wing point

in our model at the unconstrained estimate. The constrained value

of the wing joint angles is calculated as:

(A6)Q† = argmin M
Q

Xi
∗ − (Q) Xi( )

i

∑
2

 , 

(A5)where ξ = −Xb × T
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⎜
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⎛

⎝
⎜

⎞

⎠
⎟  . (A3)

A2= VL
x i + VL

y
j ( )

V̂L = VL ,Zb Zb + VL ,Yb Yb  (A1)

where M is defined in ‘Coordinate transformation’ in Materials and

methods (i.e. the distance between the wings points at the

unconstrained state and the constrained state is minimized, holding

the body transformation fixed and modifying the wing joint angles).

This calculation which imposes the roll angle symmetry constraint,

denoted w2(pk), is applied after the quaternion projection such that

the complete projection function is given by pk
†=w(pk)=w2[w1(pk)].

LIST OF ABBREVIATIONS
B(u) bi-normal vector to geometric model’s centerline curve

Ci 3D coordinates of ith camera center

C(u) centerline of generative fly body model

E[·] expectation

e
i
j measured edge location corresponding with xi

j

F world-fixed frame

f(·, ·) motion model

h(·, ·) measurement model

Ki intrinsic parameters of ith camera center

Li
j Plüker coordinates of projection ray connecting ei

j and Ci

M rigid body coordinate transformation

n
i
j local normal vector corresponding to xi

j

N(u) normal vector to geometric model’s centerline curve

p fly parameters from training database

pk fly parameters at kth time step

q unit quaternion parameterizing rotation in 3D

Q unit quaternion

Qb quaternion rotation from body to fixed frame

Qlw quaternion rotation from left wing joint frame to body frame

Qrw quaternion rotation from right wing joint frame to body frame

Rh profile curve of head model

Ri rotation matrix from fixed frame to camera-centered reference

frame for ith camera center

R(u) profile curve of fly body model

T translation from body-fixed to world-fixed frame

T(u) tangent vector to geometric model’s centerline curve

Tbw translation from body-centered coordinate frame to wing joint

frame

tw distance from wing center to joint attachment location on

geometric model

u centerline parameterization

VL left wing vector

VR right wing vector

w(·) projection function to incorporate non-linear constraints

Xj 3D coordinates of jth model point

x
i
j jth boundary point of generative model projected into ith

camera image plane

zk image measurement at kth time step

α geometric angle of attack

θ stroke amplitude

φ stroke deviation
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