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Abstract

Modifications to an existing three-dimensional, im-

plicit, upwind Euler/Navier-Stokes code (CFL3D Version

2.1) for the aeroelastic analysis of wings are described.

These modifications, which were previously added to CFL3D

Version 1.0, include the incorporation of a deforming mesh

algorithm and the addition of the structural equations of mo-

tion for their simultaneous time-integration with the govern-

ing flow equations. The paper gives a brief description of

these modifications and presents unsteady calculations which

check the modifications to the code. Euler flutter results

for an isolated 45 o swept-back wing are compared with ex-

perimental data for seven freestream Mach numbers which

define the flutter boundary over a range of Mach number

from 0.499 to 1.14. These comparisons show good agree-

ment in flutter characteristics for freestream Mach numbers

below unity. For freestream Mach numbers above unity, the

computed aeroelastic results predict a premature rise in the

flutter boundary as compared with the experimental bound-

ary. Steady and unsteady contours of surface Mach number

and pressure are included to illustrate the basic flow charac-

teristics of the time-marching flutter calculations and to aid

in identifying possible causes for the premature rise in the

computational flutter boundary.
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Introduction

Research during the last decade on the application of

computational fluid dynamics (CFD) methods to unsteady

flows and aeroelastic analysis has been rapidly progressing.

Edwards and Malone _ recently presented a survey on the

status of computational methods for unsteady aerodynamic

and aeroelastic analysis with an emphasis on methods for

transonic flows. The transonic speed range has been a mai0

focus of activity because flutter dynamic pressures _'tce l_l_-



icallycritical(lower)in thisspeedrange.Muchof thisre-
search,especiallyforthree-dimensionalconfigurations,has
focusedonthedevelopmentoffinite-differencemethodsfor
thesolutionof thetransonicsmalldisturbance(TSD)and
full potential(FP)equations?Onereasonfor thefocus
on theFPandTSDmethodsis thatthereducedmemory
andrun-timerequirementsof thesemethodsincomparison
withthehigher-ordermethodshavemadethemmoreviable
foruseinaeroelasticanalysesof three-dimensionalconfig-
urations.EdwardsandMalone1reportedon13aeroelastic
studiesof flexiblewingsandflexiblewings/rigidbodycon-
figurationswhichutilizedtheTSDandFPmethods.These
studies,whichcompareflutterboundarycalculationswith
experimentaldata,provideimportantapplicationsof these
CFDmethods.

Reference1 pointsout thatmanycriticalchallenges
facingcomputationalaeroelaticitywill requirethemodeling
of increasinglymorecomplexflowphysics.Tomeetthese
challenges,researchershavebegunto develophigher-order
methodsinvolvingtheEulerandNavier/Stokesequationsfor
unsteadyaerodynamicandaeroelasticanalysis.Withrecent
advancesinalgorithmdevelopmentandcomputerhardware,
higher-ordermethodsutilizingtheEulerandNavier/Stokes
equationshavebeenusedin three-dimensionalaeroelastic
applications;2-_however,thenumberof theseapplications
lagsbehindthoseutilizingtheTSDandFPmethodslargely
in partbecauseof theirincreasedcomputationalrequire-
ments.

TheresearchdescribedinRefs.2-11representsimpor-
tantstepsin thedevelopmentofthree-dimensionalEulerand
Navier/Stokesmethodsfor aeroelasticanalysis.However,
continuingstudiesareneededtovalidatethesemethodsfor
thepredictionof aeroelasticresponse and flutter. In Ref. 3,

Robinson et al. performed time-marching flutter calculations

for an isolated 450 swept-back wing using an Euler code.

A novel aspect of the capability described in Ref. 3 was

the deforming mesh algorithm which was used to move the

mesh so that it conformed continuously to the instantaneous

position of the wing. The results presented compared fa-

vorably with the experimental data and with results from a

transonic small disturbance code for the single flutter point

analyzed. The purpose of the present work is to further

demonstrate and assess the capability presented in Ref. 3 by

completing the flutter boundary for the simple, well-defined,

isolated 450 swept-back wing configuration using the Euler

equations. The wing analyzed in these studies is the first

AGARD standard aeroelastic configuration for dynamic re-

sponse, and its flutter data is an accepted set with which to

test codes, t2 In Ref. 3, modifications were made to an ex-

isting three-dimensional, unsteady Euler/Navier-Stokes code

(CFL3D Version 1.0) for the aeroelastic analysis of wings.

These modifications included the incorporation of a deform-

ing mesh algorithm and the addition of the structural equa-

Iio_ of motion for their simultaneous time-integration with

the governing flow equations. The deforming mesh algo-

rithm and the structural equations of motion described in

Ref. 3 have been added to the most recently released ver-

sion of CFL3D, Version 2.1, by the present authors. This

paper gives a brief description of these modifications and

presents unsteady calculations which check the modifica-

tions to the code. Results from calculations performed for a

rigid wing undergoing forced pitching and plunging motions

are presented to test the performance of the deforming mesh

algorithm. Aeroelastic results for the 450 swept-back wing

at a freestream Mach number of 0.9 are compared to those

presented in Ref. 3 to check the addition of the structural

equations of motion. Calculated flutter results for the same

450 swept-back wing are compared with the experimental

data for seven freestream Mach numbers which define the

flutter boundary over a range of Mach number from 0.499 to

1.14. Steady-state Mach contours of the initial flowfields are

also included in the discussion of the aeroelastic results to

illustrate the basic flow characteristics of the time-marching

flutter calculations at selected freest.ream Mach numbers. In-

stantaneous surface pressure contours during an aeroelastic

transient at Mo_ = 0.99 are presented to demonstrate changes

in the flowfield which are induced by the aeroelastic motions.

Upwind Euler/Navier-Stokes Algorithm

The time-dependent Euler equations are solved within

the CFL3D TM1,* code by a three-factor, implicit, finite-

volume algorithm based on upwind-biased spatial differenc-

ing. The algorithm, which is a cell-centered scheme, uses

upwind differencing based on either flux-vector splitting or

flux-difference splitting. Both types of upwind differencing

account for the local wave-propagation characteristics of the

flow and sharply capture shock waves. Also, because these

schemes are naturally dissipative, additional artificial dissi-

pation terms are not necessary. Several types of flux-limiting

are available within the code to prevent oscillations in the

solution near shock waves. These oscillations are typically

found in results from higher-order schemes. For unsteady

cases, the original algorithm contains the necessary met-

ric terms for a rigidly translating and rotating mesh which

moves without deforming. For cases involving a deforming

mesh, however, an additional term accounting for the change

in cell volume must be included in the time-discretization of

the governing equations. This modification is implemented

as described in Ref. 3. The aeroelastic equations of motion

were implemented in the more recent Version 2.1 because,

in addition to other improvements, this code contains several

options for computing multi-block solutions which will be

utilized in future computations.

Deforming Mesh Algorithm

In the time-marching aeroelastic calculations, the mesh

must be updated at every time level so that it conforms to

the aeroelastically deformed shape of the wing. Because the



aeroelastic motion of the wing may be general in nature and

are not known a priori, a general mesh updating procedure is

necessary. One such method, the deforming mesh algorithm,

models the mesh as a network of springs and solves the

static equilibrium equations for this network to determine

the new locations of the mesh grid points. This algorithm

was originally developed by Batina _5 for tetrahedral cells

and extended by Robinson et at.3 for hexahedral cells. The

edge of each hexahedral cell is modeled as a spring whose

stiffness is inversely proportional to the length of the edge

raised to a power. In order to control cell shearing and to

prevent the collapse of the cell, diagonal springs are added

along the faces of each cell. Similarly, the stiffness of the

diagonal springs is also inversely proportional to the length

of the diagonal raised to a power. As suggested in Ref. 3, a

power of three was used in the present calculations.

At each time level, the grid points on the outer boundary

are held fixed, and the displacement of the wing surface is

specified. For aeroelastic calculations, the displacement is

determined from the integration of the structural equations

of motions. The new locations of the interior grid points are

then determined by solving the static equilibrium equations

which result from a summation of forces in the x, y and

z coordinate directions at each grid point. These static

equilibrium equations are solved using a predictor-corrector

method. The new grid point locations are first predicted

by an extrapolation from the previous two time levels and

then corrected by using several Jacobi iterations of the static

equilibrium equations. In the present calculations, four

Jacobi iterations are sufficient to move the mesh.

Although the deforming mesh algorithm is a general

procedure, the current implementation in CFL3D is restricted

to meshes of C-H topology. This limitation is due to the

specialized treatment required for the mesh boundaries. For

example, in a C-H mesh the plane of points represented

by the maximum i index would be an outer boundary;

however, in a C-O mesh the plane of points represented

by the maximum i index would be an internal cut.

Time-Marching Aeroelastic Analysis

In a time-marching aeroelastic analysis, the calculation

of each flutter point is begun by obtaining a static aeroelastic

solution about the wing. There are several ways to obtain a

static aeroelastic solution. One way is to compute a steady-

state solution about the rigid wing. The next step is to

allow the rigid wing to deform to the steady loads until

a static aeroelastic solution is obtained. The calculation

of the static deformation is obtained using the aeroelastic

equations of motion. For this time-marching calculation,

however, the structural damping of the wing is set to a

number, around 0.99, such that the dynamic system is near

critically damped. The aeroelastic equations of motion are

then marched simultaneously in time with the governing

flow equations until the wing no longer deforms under the

aerodynamic loads. Since the system ts very damped, this

calculation dots not require a great amoutit of computational

time. The static aeroelastic solution is then used as the

starting point for the time-marching dynamic aeroelastic

solution. Since the wing analyzed in the present work has

a symmetric airfoil section, at zero degree angle of attack

this configuration will have no static deflection. Therefore,

for this wing, the steady, rigid solutions could be used

as the starting solutions for the aeroelastic time-marching

calculations.

In order to bracket the flutter point, the static aeroe-

lastic and dynamic aeroelastic computations are computed

at several values of dynamic pressure (typically three val-

ues) which ranged from 80% to 120% of the experimental

values depending on the freestream Mach number. In each

of the dynamic aeroelastic calculations, the motion of the

wing is initiated by specifying a small initial velocity for

the first two modes. The resulting transients are analyzed

with a modal identification technique for their damping and

frequency content. The computed flutter dynamic pressure

and frequency can then be determined by interpolating the

specified dynamic pressures and the computed frequencies

to the zero damping value of the dominant mode at flutter.

The subsequent sections contain a brief description of the

aeroelastic equations of motion, the time-marching solution

procedure, and the modal identification technique.

Aeroelastic Equations of Motion

The aeroelastic equations of motion that are incorpo-

rated within CFL3D are similar to those described in Refs. 3

and 16. In this formulation, the equations are derived by as-

suming that the general motion of the wing can be described

by a separation of time and space variables in a finite modal

series. This modal series consists of the summation of the

free vibration modes weighted by the generalized displace-

ments. After applying Lagrange's equations to this system,

the aeroelastic equations of motion can then be written for

each vibration mode i as

mi_t'i + ciqi + kiqi = Qi (1)

where qi is the generalized displacement, rni is the general-

ized mass, ci is the generalized damping, k_ is the general-

ized stiffness, and Qi is the generalized aerodynamic force

computed by integrating the pressure weighted by the mode

shapes. The superscript dots in Eq. (1) represent differenti-

ation with respect to time.

Time-Marching Solution

The solution procedure implemented in CFL3D for

integrating Eq. (1) is that described by Edwards et al. aT' _s

The linear state equations are written as

:_i = Azi + Bui (2)



whereA and B are coefficient matrices that result from the

change of variables xi = [qi _j_]T and ui is the nondimen-

sional representation of the generalized force Q_. Equation

(2) is integrated in time using the modified state-transition

matrix structural integrator 17 implemented as a predictor-

corrector procedure. The prediction for x_ +1, £n+l, is

given by

= + eB(3. - (3)

where ¢b is the state-transition matrix and O is the integral

of the state-transition matrix from time step n to n + 1.

The predicted value of the generalized displacement £,,+1

is used to update the mesh for the next flow field calcula-

tion which is used in turn to evaluate the nondimensional

generalized force 6n+_ These values are then used in the

corrector step to determine x_'+1, given by

z_'+1 = ,:han + OB(Si n+l + u'_)/2 (4)

Modal Identification Technique

Damping and frequency characteristics of the aeroe-

lastic responses are estimated from the response curves by

using the modal identification technique of Bennett and

Desmarais. 19 The modal estimates are determined by a least

squares curve fit of the responses of the form

m

q,(T) = ao + E e#'T[ajc°s(wjT) + bjsin(wjT)]

j=, (5)

i = 1,2,3,...

where qi is the generalized displacement of the natural

vibration mode i (as previously defined) and where ej and w./

are the damping and frequency, respectively, associated with

mode j of the aeroelastic response. The number of modes rn

determined in the curve fit of the response is usually greater

than or equal to the number of modes initially excited.

Pulse Transfer-Function Analysis

Generalized aerodynamic forces (GAF's) can be ob-

tained by calculating several cycles of a forced harmonic

oscillation and using the last cycle of oscillation to deter-

mine the load. This requires one time-marching calculation

for each value of reduced frequency and each mode of in-

terest. In contrast, the GAF's may be determined for a wide

range of reduced frequency in a single time-marching calcu-

lation for each mode using the pulse transfer-function anal-

ysis. In the pulse analysis, the unsteady force is computed

indirectly from the response =Of the fl0wfield due to a wing

motion that is represented by a smoothly varying, exponen-

tialFy shaped pulse, A fast Fourier transform of the unsteady

force is divided by the Fourier transform of the displacement

to obtain the GAF. The pulse transfer-function analysis has

been previously employed to determine the GAF's which

are used in aeroelastic analyses. 3' 16.20-22 Results presented

in Refs. 3, 16 and 20-22 have shown that the analysis is

valid for predicting the small perturbation response about a

nonlinear flowfield.

Wind Tunnel Model Description

The wing being analyzed in this study is the first

AGARD standard aeroelastic configuration for dynamic re-

sponse, Wing 445.6,12 which was tested in the Transonic Dy-

namics Tunnel (TDT) at NASA Langley Research Center? 3

The Wing 445.6 has a quarter-chord sweep angle of 45 °,

a panel aspect ratio of 1.65, a taper ratio of 0.66, and a

NACA 65A004 airfoil section. A planform view of this

wing is shown in Fig. 1. Several different models of the

Wing 445.6 were tested in the TDT including both full span

and semi-span models. The model used in this study was one

of the semi-span wind tunnel-wall-mounted models which

was constructed of laminated mahogany. In order to obtain

flutter data for a wide range of Mach number and density

conditions in the TDT, holes were drilled through several of

the mahogany wings to reduce their stiffness. The aerody-

namic shape of the original wing was preserved by filling the

holes with rigid foam plastic. A photograph of a weakened

model mounted in the TDT is shown in Fig. 2. The model

designated as "WF_,AKY' in Ref. 23 is analyzed herein. The

flutter data for this model tested in air is reported in Ref. 23

over a range of Mach number from 0.499 to 1.14t.

The Wing 445.6 is modeled structurally using the

first four natural vibration modes which are illustrated in

Figs. 3(a) and (b). Figure 3(a) shows oblique projections of

the natural modes while Fig. 3(b) shows the corresponding

deflection contours. These modes which are numbered 1

through 4 represent first bending, first torsion, second bend-

ing, and second torsion, respectively, as calculated by a fi-

nite element analysis. 23 The modes have natural frequencies

which range from 9.6 Hz for the first bending mode to 91.54

Hz for the second torsion mode. As suggested in Ref. 23,

the experimentally determined modal frequencies were used

in the time-marching flutter analysis. For the cases consid-

ered in this study, no structural damping is included in the

aeroelastic equations of motion (ci = 0 for all modes).

Results and Discussion

Results are presented in this section for calculations

about the Wing 445.6. All of the computational results were

obtained using a 193 x 33 x 41 C-H-type grid with 193

points wrapped around the wing and its wake (129 points on

the wing surface), 41 points distributed from the wing root

to the spanwise boundary (25 points on the wing surface),

and 33 points distributed radially from the wing surface to

the outer boundary. This mesh topology was chosen rather



Figure1 Planformviewof Wing445.6.

Figure2 Wing445.6modelin theNASA
LangleyTransonicDynamicsTunnel.

thanaC-O-typetopologybecausethewindtunnelmodel
hasasheared-offtip.Thiscanbeseeninthephotographof
themodelin Fig.2.A partialviewof thesurfacemeshon
thewingandsymmetryplaneis showninFig.4.Itsouter
boundariesextend10localchordlengthstotheupstreamand
downstreamboundaries,10localchordlengthstotheupper
andlowerboundaries,and1semi-spanlengthoffofthetip.
Notethatthisgridis identicaltotheoneusedinRef.3.

For all of thecalculations,theEulerequationsare
solvedusingflux-vectorsplittingandasmoothflux-limiter.
Convergenceto steady-statewasacceleratedusinglocal
time-stepping,meshsequencingandmulti-gridcycling.For
time-marchingcalculations,thenondimensionalglobaltime-
step(basedontherootchordandthefreestreamspeedof
sound)was0.05456.Thein-corememoryrequirementfor
thisgridwas25Mw ona Cray-2computerwhichis 15.6
MwoverwhatisrequiredfortheunmodifiedCFL3DVer-
sion2.1.Recentcodingmodificationshavereducedthead-
ditionalmemoryrequirementsfortheaeroelasticversionby
approximately50%,andsothecurrentgridwouldnowre-

Mode 3,48.35 Hz Mode 4, 91-¢,4 Hz

(a) oblique projections.

y25. 750

25 25

Mode 1, 9.60 Hz Mode 2, 38.17 Hz

0 25 25.

Mode 3,48.35 llz Mode 4, 91.54 Hz

(b) deflection contours.

Figure 3 Natural vibrations modes for Wing 445.6.

quire 17.4 Mw. Each of the steady-state calculations re-

quired approximately 3-4 hours of CPU time on a Cray-2

computer to converge the solution to an acceptable level (6

orders of magnitude). Aeroelastic transients were computed

at each dynamic pressure for approximately 2 cycles of the

lowest frequency modal motion. These calculations typi-

cally required 8 hours of CPU time. Since aeroelastic tran-

sients were computed for three different values of dynamic

pressure at each freestream Mach number, the total compu-

tational cost for each flutter point (including the steady-state

solution) was approximately 28 hours of CPU time.

Pulse Transfer-Function Results

The generalized forces for the Wing 445.6 at Mo_ = 0.9

were computed using the pulse transfer-function analysis

method described in a preceding section. The pulse cal-

culations were restarted from a steady-state flow condition

at an angle of attack of a = 0 °. A plunging motion and a

pitching motion about the root quarter chord, which are de-

fined as modes h and 0 respectively, were analyzed. These

simple "modes" were chosen in order that the motion of the

wing could be simulated not only by the deforming mesh

algorithm but also by a rigid translation and rotation of the

grid. The maximum amplitude of the plunging motion was

0.01 root chord lengths, and the maximum pitch amplitude

was 1°. The results of the pulse analyses, shown in Fig. 5, :_

are plotted in terms of the real and imaginary components of



Figure4 Partialviewof the193x 33x 41computational
gridonthewingsurfaceandsymmetryplane.

theunsteadyforcesasafunctionofthereducedfrequencyk

which is defined by ,_bV-__" The generalized force Ahh is the

lift due to plunge, Abe is the lift coefficient due to pitch-

ing, Aeh is the pitching moment due to plunge, and Aoa is

the pitching moment due to pitch. As shown in Fig. 5, the

forces from the pulse analysis obtained using the deform-

ing mesh agree very well with the forces obtained using

the rigidly moving mesh. This good agreement between the

results verifies the three-dimensional deforming mesh capa-

bility which was implemented in the code.

Flutter Results

Flutter characteristics were determined for seven

freestream Mach numbers, Mo_ = 0.499, 0.678, 0.900,

0.960, 0.990, 1.072, and 1.141 at a = 0° angle of at-

tack. Each time-marching calculation was restarted from

the steady-state solution about the rigid wing, and the mo-

tion of the wing was initiated by specifying a small initial

velocity for the first two modes. The resulting transients

were analyzed for their damping and frequency content with

the modal identification technique which was previously de-

scribed. The computed flutter dynamic pressure and fre-

quency were determined by interpolating the specified dy-

namic pressures and the computed frequencies to the zero

damping value of the flutter mode, The flutter mode for all

freestream Mach numbers considered in this study was dom-

inated by motion in the first bending mode. A summary of

the coml_uted flutter characteristics in terms of flutter speed

index _ and nondimensional flutter frequency ratio
is shown in Table 1. For Moo = 0.9, Ref. 3 reports acom _-

puted flutter speed index of 0.353 and a computed flutter

frequency ratio of 0.42. These results agree very well with

those shown in Table 1 for M_ = 0.9 which verifies the

addition of the structural equations of motion to CFL3D

version 2. t.
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Figure 5 Comparison of generalized aerodynamic

forces for the rigid pitch and plunge of

Wing 445.6 at Moo = 0.9 and a = 0 °.

Table 1 Summary of computed

flutter results for Wing 445.6.

Moo

0.499

Flutter Speed

Index

0.439

Hurter

Frequency

Ratio

0.597

0.678 0.417 0.539

0.900 0.352 0.425

0.960 0.275 0.343

0.990 0.310 0.373

1.072 0.466 0.541

1.141 0.660 0.764

6



Thecomputedfluttercharacteristicsarecomparedwith
theexperimentallymeasuredvaluesof flutterspeedindex
andflutterfrequencyratioinFig.6.Theexperimentaldata
definesa typicaltransonicflutter"dip" with thebottom
nearMoo = 1.0. At the subsonic freestream Mach numbers

(Moo = 0.499 and 0.678), the computed flutter speed indexes

agree well with the experimental values while the computed

frequency ratios are slightly larger than the experimental val-

ues. It is interesting to note that at these subsonic freestream

Mach numbers the computed flutter results are characterized

by "hard" flutter crossings. In other words, small changes in

dynamic pressure result in large changes in the damping of

the flutter mode. At Moo = 0.9 and 0.96, the computed flut-

ter speed indexes are less than the experimental values and

the frequency ratios agree well with the experimental val-

ues. The computed flutter results at these freest.ream Mach

numbers are characterized by a "mild" flutter crossing. Al-

though there was no experimental flutter point determined

at Moo = 0.99, computational results are included to aid in

identifying the bottom of the flutter "dip". The computa-

tional results at Mo_ = 0.99 are compared in Fig. 6 to esti-

mated values of flutter speed and frequency determined from

the faired curves in Fig. 16 of Ref. 23. These faired curves

which were based on the experimentally determined flut-

ter points, the experimentally determined no-flutter track,

and analytic calculations are considered to be of reason-

able accuracy. 24 The computational results at Moo = 0.99

as well as those at Moo = 1.072 and 1.141 indicate a prema-

ture rise in the computational flutter boundary as compared

with the experimental boundary. Although the boundary is

more sensitive to freest.ream Mach number in this range, the

computed flutter results are still characterized by a "mild"

flutter crossing.

Computational results for this configuration obtained

with linear theory and TSD methods were previously re-

ported in Ref. 16. In this report, three sets of flutter results

were presented: results from a linear theory subsonic kernel-

function program, results using the linear potential equation

and modeling the wing aerodynamically as a fiat plate, and

results using the complete (nonlinear) TSD equation and in-

cluding wing thickness. Flutter results, flutter speed index

and flutter frequency, from the subsonic kernel-function and

the potential equation compare well with the experimental

data over the range of freestream Mach numbers from 0.338

to 1.141. ( Note that the subsonic kernel-function results are

limited to the subsonic freestream Mach numbers.) Results

from the nonlinear TSD equation for the subsonic freestream

Mach numbers 0.678, 0.901, and 0.96 indicate that the flut-

ter speed index is decreased by I%, 5%, and 19%, respec-

tively, from the experimental results with a similar decrease

in the flutter frequency. These results are similar to the trend

shown by the current computations in Fig. 6. Subsequent un-

published calculations by the authors of Ref. 16 indicate that

flutter results for the supersonic freestream Mach numbers

0.8

0.6

Flutter

Speed
Index

0.4

0.2

0.0

O Experiment (Ref. 23)

A Estimoted (Ref. 2.3)

-t3-Com puted
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Figure 6 Comparison of Euler flutter predictions

with experimental data for Wing 445.6.

which were obtained with the nonlinear TSD equation are

highly non-conservative. This trend is also consistent with

the results shown in Fig. 6. It is counter-intuitive that the

higher-order methods utilizing the TSD and Euler equations

should produce flutter results which compare less favorably

with the experimental results than with the results based on

linear methods. However, it is important to note that the

modeling of the flow physics is incomplete even when us-

ing the TSD and Euler equations. The existence and effect

of highly nonlinear flow phenomena such as strong shocks

and viscous boundary layers must be investigated before any

conclusions can be drawn.

Steady-state Mach contours of the initial flowfields on

the upper wing surface are shown in Figs. 7(a)-7(d) to illus-

trate the basic flow characteristics at the selected freestream

Mach numbers of 0.96, 0.99, 1.072, and 1.141 where time-

marching flutter calculations were made. Mach contours for

M,,o = 0.400, 0.678, and 0.900, which are not shown, indi-

cate a smooth expansion and recompression of the flow from

the leading edge to the trailing edge with very little variation

in the spanwise direction and no supercritical flow. Math
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contours on the upper surface of Wing 445.6.

Figure 7 Concluded.
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Figure 8 Time history of the first generalized displacement

for the Wing 445.6 at Mo_ = 0.99 and o_ = 0°.

contours shown in Fig. 7(a) indicate that at M_ = 0.96 an

area of supercritical flow has formed on the wing. This

area of supercritical flow does not terminate with a shock.

Figure 7(b) shows that at Moo = 0.99 the areas of super-

critical flow has expanded, and a normal shock has formed

near the tip of the wing at approximately 25% of the local

chord. Mach contours for Moo = 1.702 and 1.141, shown

in Figs. 7(c) and 7(d), respectively, indicate that with fur-

ther increases in freestream Mach number, the normal shock

transitions to an oblique shock located further downstream

on the outboard portion of the wing at approximately 70% of

the local chord. Also, at Moo = 1.141, the spanwise extent

of the oblique shock has increased to approximately 50%

of the outboard portion of the wing. Rapid changes in the

steady-state flow conditions from M_ = 0.96 to 1.141 are

indicated by the formation and movement of a shock at the

tip of the wing. This range of freestream Mach number also

corresponds to the range of Mach numbers where the com-

puted flutter boundary rapidly rises (See Fig. 6). Therefore,

small variations due to errors associated with modeling defi-

ciencies and computational deviations could be expected to

have a large effect on the final flutter speed and frequency.

Modeling deficiencies could be due to the neglect of the vis-

cous effects. Computationally, these errors might be due to

a lack of spatial convergence.

The rapid changes in the steady-state flowfield condi-

tions from Moo = 0.96 to 1.141 suggest that, for a given

freestream Mach number in this range, the flow characteris-

tics can also change rapidly during an aeroelastic transient.

Figure 8 shows the time history of the first generalized dis-

placement ql for a time-marching aeroelastic transient at

M_ = 0.99 and at a freestream dynamic pressure of 1.12

times the estimated experimental value. Recall that ql cor-

responds to the first bending mode which is the dominant

component of the flutter mode. The damping and frequency

content of this aeroelastic transient indicates that the wing

is dynamically unstable at this condition. Instantaneous sur-

face contours of the pressure coefficient Cp are shown in

Figs. 9 and 10 for the times 7'1 and T2, respectively, which

are indicated in Fig. 8. Upper and lower surface pressures

are shown at these points in time with ACp = 0.02. At T1,

contours on the upper surface indicate that an upper surface

shock has disappeared while contours on the lower surface

indicate that a lower surface shock has strengthened and

moved slightly downstream. Similarly, at T2, the opposite

has occurred. The shock has weakened on the lower sur-

face and strengthened on the upper surface. Figures 9 and

10 therefore show that during the aeroelastic transient, rapid

changes in surface pressures occur due to the formation and

disappearance of a normal shock on the tip of the wing.

Figures 9 and 10 also illustrate an unusual shock behavior

during the aeroelastic transient in that there is little chord-

wise movement of the shock as it strengthens and weakens.

For two-dimensional airfoils, significant shock weakening is

usually accompanied by large shock motion.

Conclusions

Modifications to an existing three-dimensional, im-

plicit, upwind Euler/Navier-Stokes code (CFL3D Version

2.1) for the aeroelastic analysis of wings was described.

These modifications included the incorporation of a deform-

ing mesh algorithm and the addition of the structural equa-

tions of motion for their simultaneous time-integration with

the governing flow equations. Euler results from calcula-

tions performed for a rigid wing undergoing forced pitching

and plunging motions were presented to check the deforming

mesh algorithm. Aeroelastic Euler results for a 45 ° swept-

back wing at a freestream Mach number of 0.9 were com-

pared to those presented in Ref. 3 to check the addition of

the structural equations of motion. Calculated flutter results

for the same 45 ° swept-back wing were compared with the

experimental data for seven freestream Mach numbers which

define the flutter boundary over a range of Mach number

from 0.499 to 1.14. These comparisons showed good agree-

ment in flutter characteristics for freestream Mach numbers

below unity. For freestream Mach numbers above unity, the

computed aeroelastic results predicted a premature rise in the

flutter boundary as compared with the experimental bound-

ary. Steady-state Mach contours of the initial flowfields il-

lustrated rapid changes in the basic flow characteristics from

Moo = 0.96 to 1.141 which is indicated by the formation

and movement of a shock near the tip of the wing. Instanta-

neous surface pressure contours during an aeroelastic tran-

sient at Moo = 0.99 also demonstrated significant changes

in the flowfield due to the formation and disappearance of

a normal shock on the tip of the wing which is induced by

the aeroelastic motions at this freestream Mach number.



(a)uppersurface. (a)uppersurface.

(b)lowersurface.

Figure9 Instantaneoussurfacecontoursof
thepressurecoefficientattimeT1 for the

Wing 445.6 at Mo_ = 0.99 and a = 0 °.

(b) lower surface.

Figure 10 Instantaneous surface contours of

the pressure coefficient at time T2 for the

Wing 445.6 at M_o = 0.99 and c_ = 0°.
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