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Abstract In multiagent settings where agents have different preferences, preference aggre-

gation can be an important issue. Voting is a general method to aggregate preferences.

We consider the use of voting tree rules to aggregate agents’ preferences. In a voting tree, deci-

sions are taken by performing a sequence of pairwise comparisons in a binary tree where each

comparison is a majority vote among the agents. Incompleteness in the agents’ preferences

is common in many real-life settings due to privacy issues or an ongoing elicitation process.

We study how to determine the winners when preferences may be incomplete, not only for

voting tree rules (where the tree is assumed to be fixed), but also for the Schwartz rule (in

which the winners are the candidates winning for at least one voting tree). In addition, we

study how to determine the winners when only balanced trees are allowed. In each setting,

we address the complexity of computing necessary (respectively, possible) winners, which

are those candidates winning for all completions (respectively, at least one completion) of

the incomplete profile. We show that many such winner determination problems are com-

putationally intractable when the votes are weighted. However, in some cases, the exact

complexity remains unknown. Since it is generally computationally difficult to find the exact

set of winners for voting trees and the Schwartz rule, we propose several heuristics that find

in polynomial time a superset of the possible winners and a subset of the necessary win-

ners which are based on the completions of the (incomplete) majority graph built from the

incomplete profiles.

This article is a revised and extended version of the conference papers [23, 28].
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1 Introduction

In multiagent settings, agents generally have different preferences, and it can be important

to aggregate these preferences, i.e., to select a collectively desirable candidate from a set of

candidates. Candidates could be, for example, potential presidents, joint plans, allocations

of goods or resources, etc. A general method for aggregating preferences in multi-agent sys-

tems, in order to take a collective decision, is to run an election among the different options

using a voting rule.

Eliciting preferences from agents, to be able to run such an election, is a typical problem

in multiagent systems, such as combinatorial auctions and voting systems. However, pref-

erence elicitation is often difficult, time-consuming and costly. Agents may be unwilling to

reveal all their preferences due to privacy reasons, or due to the set of alternatives being

large. Fortunately, we can often determine the outcome before all the preferences have been

revealed [10]. For example, it may be that one option has so many votes that it will win

whatever happens with the remaining votes.

In this article, we consider the class of voting tree rules (for short, we shall often say voting

trees, identifying the tree with the associated rule). These are sometimes called “sequential

majority voting” or “Cup.” In addition, we consider the Schwartz rule, which can be char-

acterized as a voting tree rule with an undefined tree since the Schwartz winners are exactly

those who win for at least one voting tree. We also consider fair winners, i.e., those candidates

who win when the voting tree is balanced. Fairness comes from the fact that both finalists

will have faced the same number of competitions, or the same number plus or minus one.

We consider the computation of the above rules when voters’ preferences are incomplete,

i.e., represented by partial orders on the set of candidates. We focus on the problem of deter-

mining if a given candidate is the necessary winner (i.e., the candidate who wins for any

completion of these partial preferences) and a possible winner (i.e., a candidate who wins for

some completion of these partial preferences). Determining if a given candidate is the neces-

sary or a possible winner for voting trees and the Schwartz rule is likely to be computationally

hard. We show that they are indeed NP-complete when the input consists of weighted votes,

and also when we require that the tree is balanced. We therefore introduce heuristics, that

find a superset of the possible winners and a subset of the necessary winners, where the set of

completions of the incomplete preferences is replaced by the completions of the incomplete

majority graph computed from the incomplete preferences. We discuss the links between

possible (respectively, necessary) winners from incomplete profiles and those returned by

the heuristics, and we show that these heuristics can be computed in polynomial time.

Our results concern several issues in computational social choice: voting trees, voting

under incomplete knowledge, and incomplete tournaments. Voting trees have received

increasing attention of late in the literature. For example, they have been considered

by Trick [34], Procaccia et al. [30, 31], Conitzer et al. [9, 11], Xia and Conitzer [38],

Hazon et al. [20], Vu et al. [36], Fischer et al. [16, 17], and Vassilevska Williams [35].

The computational aspects of incomplete tournaments have been thoroughly investigated by

Brandt et al. [6, 7]. Voting under incomplete knowledge has received even more attention

[2, 3, 5, 4, 8, 10, 19, 21, 27, 36, 38]. We will discuss some of these papers in Sect. 7.
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132 Auton Agent Multi-Agent Syst (2012) 25:130–157

2 Voting trees, the Schwartz rule, and fair winners

We define some basic notions related to voting trees. We first focus on unweighted profiles

and then extend all the notions to weighted votes.

2.1 Preferences, profiles and majority graphs

We assume that each agent’s preferences are specified by a strict total order (TO), that is, by

an asymmetric, transitive and complete order, on a set of m candidates. The candidates are

taken from a set �, and they represent the possible options over which agents vote.

Definition 1 (profile) A profile P on � is a collection of n strict total orders over �, i.e.,

P = (P1, . . . , Pn), where Pi is the preference relation (or vote) of agent (also called voter) i .

For the sake of simplicity we assume throughout the article that the number n of voters

is odd. Our results can be extended to the case where n is even, but at the price of some

complications that arise with the handling of ties.

Profiles are denoted using the following notation: ((A > B > C); (A > C > B);

(C > A > B)) means that voter 1 prefers A to B and B to C , etc.

Definition 2 (voting rule and correspondence) A (deterministic) voting rule is a mapping

from the set of profiles to the set of candidates. A voting correspondence is a mapping from

the set of profiles to the set of nonempty sets of candidates.

A voting rule computes a single winner. On the other hand, a voting correspondence can

compute multiple winners. For the sake of simplicity, we will use the word “rule” even for

correspondence where it does not cause any ambiguity.

Given a profile P , the induced majority graph M(P) is defined as follows.

Definition 3 (majority graph) Let P be a profile. The majority graph induced by P , denoted

by M(P), is the graph whose set of vertices is the set of candidates � and where, for all

A, B ∈ �, there is a directed edge from A to B (denoted by A >P
m B, or by the abbreviated

form A >m B) if and only if a strict majority of voters prefers A to B.

The majority graph M(P) induced from any profile P is asymmetric, but it is not neces-

sarily transitive. Moreover, since the number of voters is odd, M(P) is complete: for each

A and B �= A, either A >m B or B >m A holds. Therefore, M(P) is a complete and

asymmetric graph, also called a tournament on � [24].

2.2 Voting trees

Given a set of candidates, a voting tree is a binary tree (also called an agenda) with one

candidate per leaf, such that each candidate appears on at least one leaf. This assumption can

be made without loss of generality: if a candidate does not appear anywhere in the tree then

they can be removed from the set of candidates. In addition if every candidate appears on

exactly one leaf then we say that the voting tree is a simple voting tree. Each internal node

represents the candidate that wins the pairwise election between the node’s children. The

winner of each pairwise election is computed by the majority rule, where A beats B if and

only if there is a majority of voters stating A > B. The candidate at the root of the agenda

is the overall winner. Given a binary tree T , we will denote by V (T ) (and sometimes with

rV (T )) the voting tree rule induced by T , and given a profile P , we will denote by V (P, T )
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Fig. 1 An agenda and a majority

graph
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the candidate that, given profile P , wins in tree T . Note that, because the number of voters

is odd, ties never happen in the pairwise elections, so that V (T ) is a (deterministic) voting

rule. We denote by V the class of all voting tree rules.

Example 1 Let � = {A, B, C, D}. Consider the agenda T shown in Fig. 1a, where A first

plays against D, the winner, called w1, plays against C , and then the winner, called w2, plays

against B. The winner, called w3, is the overall winner. Consider the profile P = ((A > B >

C > D); (D > A > B > C); (C > D > B > A)). Its induced majority graph is shown in

Fig. 1b. Therefore V (P, T ) = B. ⊓⊔

2.3 The Schwartz rule

Given a profile P , a Schwartz winner [32] is a candidate that wins, according to the prefer-

ences of P , in some agenda.

Definition 4 (Schwartz winner) Given a profile P , a candidate A is a Schwartz winner if

and only if there exists a binary tree T such that V (P, T ) = A.

The Schwartz rule (more precisely, correspondence) denoted by rSchwartz maps any profile

P to the set of all Schwartz winners for P .

Example 2 Consider the profile presented in Example 1, i.e., P = ((A > B > C >

D); (D > A > B > C); (C > D > B > A)). Then the set of Schwartz winners for P is

{A, B, C, D}. ⊓⊔

The set of Schwartz winners coincides with the top cycle of the majority graph [26]. The

top cycle of a majority graph G is the set of maximal elements of the reflexive and transitive

closure G∗ of G. An equivalent characterization of Schwartz winners, that we use later in

this article, is the following:

Theorem 1 (see e.g. [24, 26]) Given a majority graph G, a candidate A is a Schwartz winner

if and only if, for every other candidate C, there exists a path from A to C.

From the characterization above, since finding a path from a single source to all other

candidates is polynomial [13], computing the set of the Schwartz winners is polynomial.
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Note that voting tree rules, as well as Schwartz, are rules that can be computed from the

majority graph. Among the most well-known rules computable from the majority graph, the

Schwartz rule is the most liberal. At the other extreme, the Condorcet set contains the Con-

dorcet winner when there exists one, and is empty otherwise; we recall that the Condorcet

winner is a candidate who beats every other candidate in the majority graph. In particular,

the Schwartz set contains the set of Copeland winners [22],1 as well as the uncovered set,2

the Banks set [1], and the Slater set[33].3 Finally, all these rules are Condorcet-consistent:

when a Condorcet winner A exists, all these sets coincide with the singleton {A}.

2.4 Fair winners

Schwartz winners are candidates who win in at least one binary tree. However, such a tree

could be very unbalanced and the winner could compete against only a few candidates. This

might be considered “unfair”. In the following, we will consider a voting rule fair if it has a

balanced agenda.

Definition 5 (balanced agenda) A balanced agenda T is a binary tree in which each candi-

date must appear exactly once in leaves and the difference between the maximum and the

minimum depth among the leaves (the level of imbalance, written d(T )) is less than or equal

to 1.

Assume that we have a profile of strict total orders. We will say that a candidate is a fair

winner if he wins under some balanced agenda.

Definition 6 (fair winner) Given a profile P , a candidate A is a fair winner if and only if

there exists a balanced agenda T , such that V (P, T ) = A.

Example 3 Consider the profile presented in Example 1, i.e., P = ((A > B > C >

D); (D > A > B > C); (C > D > B > A)). The set of the fair winners for P is {A, D}.

In fact, we have only three balanced trees, up to isomorphism: in the balanced tree where

A plays against B, and C plays against D, the winner is A, while in the other two balanced

trees the winner is D. ⊓⊔

Notice that the Condorcet winner is a fair winner since they win in all trees, and thus also

in balanced ones. Moreover, a fair winner is a Schwartz winner since there is a tree, in fact

a balanced tree in which they win. Moreover, while there could be no Condorcet winner,

there is always at least one fair winner, because there always exist at least one balanced tree.

Notice also that the candidates that win in every balanced tree are Condorcet winners.

2.5 Weighted votes

Until now we have considered unweighted votes. However, weighted voting systems are

used in a number of real-world settings like shareholder meetings and elected assemblies.

An agent with integer weight k can be viewed as k agents voting identically. Although human

1 Copeland winners are those candidates who maximize the number of outgoing edges in the majority

graph [12].

2 The uncovered set are those candidates that defeat every other alternative either directly or indirectly at one

remove [25].

3 We do not give formal definitions for Banks and Slater sets since they do not play any further role in the

paper.
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elections are often unweighted, the addition of weights make voting schemes more general.

Weights are useful in multiagent systems where we have different types of agents and some

agents are more important than others when taking a decision. Moreover, the weighted case

informs us about unweighted case when we have probabilistic information about votes [9].

For example, in [9] Conitzer and Sandholm show that, if coalitional manipulation is hard

in the weighted case with complete information about the votes, evaluating a candidate’s

winning probability is hard in the unweighted case when there is uncertainty about the votes

provided we permit perfect correlations between the votes (that is, some votes are uncertain

but known to be identical).

We now generalize the notions presented above in this section assuming that each agent

may have a weight.

Definition 7 (weighted profile) A weighted profile is a profile where each agent has a given

integer weight.

Note that the unweighted case considered previously is a special case of weighted case

where all the agents’ weights are equal.

For simplicity, we assume that the sum of the weights of the agents is odd.

Definition 8 (corresponding unweighted profile) Given a weighted profile P , its corre-

sponding unweighted profile U (P) is the profile obtained from P by replacing every ordering,

say O , expressed by an agent with weight k, by k agents with weight 1 all with the same

ordering O .

Example 4 Consider the profile shown in Example 1, i.e., P = ((A > B > C > D); (D >

A > B > C); (C > D > B > A)). Assume that the first agent has weight 1, and that

the second and third agents have weight 2. Then the corresponding unweighted profile is

U (P) = ((A > B > C > D); (D > A > B > C); (D > A > B > C); (C > D > B >

A); (C > D > B > A)). ⊓⊔

Given a weighted profile P , the induced majority graph M(P) is the majority graph of

the corresponding unweighted profile of P , i.e., M(P) = M(U (P)).

Since the sum of weights is odd, M(P) is complete: for each A and B �= A, either A >m B

or B >m A holds. Therefore, as for unweighted profiles, M(P) is a tournament.

Example 5 Consider the weighted profile of Example 4. The majority graph induced by such

a profile is shown in Fig. 1b. ⊓⊔

Voting trees for weighted profiles work as in the case of unweighted profiles, except that

the winner of every pairwise competition is computed by the weighted majority rule (and not

by the classical majority rule), where A beats B if and only if there is a weighted majority

of votes stating A > B.

3 From incomplete profiles to incomplete majority graphs

When votes are only partially known, applying a voting rule may result in some uncertainty

about the winner. We first define what we mean by an incomplete profile; then we will make

clear what we mean by applying a voting rule to an incomplete preference profile, via the

definition of possible and necessary winners. Finally, in the specific case of voting trees, we

define heuristics that find a superset of possible winners and a subset of necessary winners

by considering the incomplete majority graph induced from the incomplete profile.
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3.1 Incomplete profiles, possible and necessary winners

Previously, we assumed agents gave complete preferences over candidates. We now consider

the case where agents’ preferences may only be partially known.

Definition 9 (incomplete profile) Let � be a set of candidates and {1, . . . , n} a set of voters.

An incomplete preference relation > on � is a strict order on �, that is, a transitive and irre-

flexive relation on �. An (n-voter) incomplete profile on � is a collection P = (P1, . . . , Pn)

of incomplete preference relations on �.

Example 6 Assume there are three voters and three candidates A, B, and C , then a possible

incomplete profile is ((A > B > C); (B > A); (A > B)). ⊓⊔

This definition naturally extends to weighted voters: a weighted incomplete profile is a

weighted collection of incomplete preference relations.

Definition 10 (complete extension (aka completion)) Let P = (P1, . . . , Pn) be an incom-

plete profile over a set of candidates �. A complete extension (or completion) R of P is

a tuple (R1, . . . , Rn) such that every Ri is a strict total order on � containing Pi . We will

denote by Ext(P) the set of all complete extensions of P .

Definition 11 (possible and necessary winners) Let r be a voting rule, P be an incomplete

profile and A a candidate. A is a possible winner for P and r , denoted by A ∈ Poss(P, r), if

there exists a completion Q of P such that r(Q) = A. A is the necessary winner for P and

r , denoted by A ∈ Nec(P, r), if for any completion Q of P we have r(Q) = A.

Possible and necessary winners were introduced in [21]. Xia and Conitzer showed that,

for unweighted votes and an unbounded number of candidates, for most commonly used

voting rules computing possible winners is NP-hard, whilst computing necessary winners

is coNP-hard for some voting rules but polynomial for others [38]. Also, Betzler and Dorn

[3, 4], and Baumeister and Rothe [2], showed that, for an unbounded number of candidates

and unweighted votes, computing possible winners is NP-hard for some classes of scoring

rules and polynomial for others.

These definitions apply to any voting rule, and thus to V(T) and Schwartz. For instance,

A is a possible Schwartz winner for P if it is a possible winner with respect to the incomplete

profile P and the Schwartz rule, i.e., A ∈ Poss(P, rSchwartz).

We also define possible and necessary Condorcet winners [21], and possible and necessary

fair winners:

Definition 12 (possible and necessary Condorcet winners) Let P be an incomplete profile

and A a candidate, A is a possible Condorcet winner for P if there exists a completion Q of

P such that A is the Condorcet winner for Q, and the necessary Condorcet winner for P if

for every completion Q of P, A is the Condorcet winner for Q.

Definition 13 (possible and necessary fair winners) Let P be an incomplete profile and A

a candidate, A is a possible fair winner for P if there exists a completion Q of P such that

A is a fair winner for Q, and the necessary fair winner for P if for every completion Q of

P, A is the fair winner for Q.
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3.2 Winners defined from the majority graph

We now consider an abstraction of the incomplete profile: the incomplete majority graph.

Definition 14 (incomplete majority graph) Given an incomplete (weighted) profile P with n

voters, the incomplete majority graph M(P) induced by P is the graph whose set of vertices

is � and where there is an edge from A to B, denoted by A >P
m B (or by the abbreviated

form A >m B), if the number of voters (or the sum of the weights of the voters) who prefer

A to B is greater than n/2 (half of the voters’ total weight).

M(P) is an incomplete asymmetric graph (or weak tournament) over �.

Example 7 Consider the incomplete profile shown in Example 6, i.e., ((A > B > C); (B >

A); (A > B)), and assume that the weight of the first agent is 1 and the weight of every other

agent is 2. The majority graph induced by this incomplete weighted profile, that we call Q,

is the graph with three nodes A, B, and C and only one edge A >
Q
m B. ⊓⊔

A completion of M(P) is a (complete) tournament containing M(P). Note that the set of

all completions of M(P) is a superset of the set of majority graphs induced by all possible

completions of P . Formally, let Ext(M(P)) be the set of all complete extensions of M(P)

and M(Ext(P)) = {M(R) | R ∈ Ext(P)} the set of all majority graphs induced from the

extensions of P . Then, the following result holds.

Proposition 1 M(Ext(P)) ⊆ Ext(M(P)).

This inclusion can be strict, which means that moving from P to M(P) implies a loss of

information. An incomplete majority graph throws away information about how individual

agents have voted. For example, we lose information about correlations between votes. Such

correlations may prevent a candidate from being able to win.

Example 8 Consider an incomplete profile P with just one agent and � = {A, B, C}, where

the only vote is A > B (the relations between A and C , and between B and C have not

been specified). The induced majority graph M(P) has only one edge from A to B. In this

situation, there is a completion of M(P) (with edges from B to C and from C to A) and an

agenda where B wins (we first compare A with C, C wins, and then C with B, and B wins).

However, there is no way to complete profile P and set up the agenda so that B wins. In fact,

the possible completions of P are A > B > C, A > C > B, and C > A > B, and in all

these cases B is always beaten at least by A. Hence, there is no agenda where B wins. Note

that the completion of the majority graph which allows us to conclude that B can win, cannot

be obtained from any possible completion of the agent’s preferences of P since it violates

transitivity. ⊓⊔

Clearly, the more “complete” P is, the more complete Ext(P) is (M(P) can even be

complete without P being so) and the better M(P) approximates M(Ext(P)).

For any rule r based on the majority graph, including V(T ) and Schwartz, we can define

notions of the possible (respectively, necessary) winner from the incomplete majority graph.

Definition 15 (possible/necessary winners from the incomplete majority graph) Let Q be

a complete profile, A a candidate, and r a voting rule based on the majority graph, that

is, there is a function fr such that r(Q) = fr (M(Q)). Let P be an incomplete profile, A

is a possible winner for M(P) and r if there exists a completion M ′ of M(P) such that
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A = fr (M ′). A is the necessary winner for M(P) and r if for every completion M ′ of M(P)

we have A = fr (M ′). We denote by Poss(M(P), r) and Nec(M(P), r)4 respectively the set

of possible and necessary winners for M(P) and r .

Note that these notions of possible and necessary winners only apply to rules that are

based on the majority graph. Note also that Poss(M(P), r) ⊇ Nec(M(P), r), and that when

the majority graph is complete, Poss(M(P), r) = Nec(M(P), r) = r(P).

We also define the possible and necessary Condorcet winners from a majority graph in a

similar way:

Definition 16 Let P be a profile and A a candidate, A is a possible Condorcet winner for

M(P) if there exists a completion M ′ of M(P) such that A beats every other candidate in

M ′. A is the necessary Condorcet winner for M(P) if for every completion M ′ of M(P), A

beats every other candidate in M ′.

We will denote by PossCond(P) and NecCond(P) (respectively, PossCond(M(P)) and

NecCond(M(P))) the possible and necessary Condorcet winners from the profile P (respec-

tively, from the majority graph M(P)).

Example 9 Consider the profile P given in Example 7. We have that NecCond(P) =

Nec(P, rSchwartz) = ∅, PossCond(P) = {A, C}, and Poss(P, rSchwartz) = {A, B, C}.

Notice that in this example the possible and necessary Schwartz and Condorcet winners

obtained by considering the completions of P coincide with those obtained by considering

the completions of the majority graph induced by P . However, as shown in Example 8, this

is not true in general.

Given an incomplete unweighted profile P and the incomplete majority graph G induced

by P , that is, G = M(P), we already observed that the completions of G are a (possibly

proper) superset of the set of complete majority graphs induced by all possible completions

of P . This observation leads to the following results.

Proposition 2 Let P be an incomplete weighted profile and r be a rule based on the majority

graph.

1. Poss(M(P), r) ⊇ Poss(P, r).

2. Nec(M(P), r) ⊆ Nec(P, r).

3. PossCond(P) = PossCond(M(P)).

4. NecCond(P) = NecCond(M(P))

Proof We first give the proof when P is unweighted. Points 1 and 2 are straightforward

consequences of Proposition 1.

For point 3, if a candidate A is a possible Condorcet winner for P then, by Proposition 1,

it follows that it is also a possible Condorcet winner for M(P). Also the converse holds. If a

candidate A is a possible Condorcet winner for M(P), then there must be one or more comple-

tions of the majority graph where A is the Condorcet winner, i.e., where there is an outgoing

edge from A to all the other candidates. We now show that there is completion of P in which

A is the Condorcet winner. For this we complete P by first adding, to every agent preference

relation >i and every candidate C such that neither A >i C nor C >i A, the relation A >i C .

Let >′
i the relation obtained. First, we claim that >′

i has no cycles. Assume that >′
i has a cycle,

4 Note that, given a voting rule r , Poss(x, r) and Nec(x, r) represent two different functions, depending on

whether the first argument x is a profile or a majority graph.
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then there exists an agent i and a cycle in >′
i involving A (otherwise the cycle would already

be in >i , which is not possible because >i is a strict partial order). Without loss of generality,

this cycle is A >′
i C1 >′

i C2 >′
i · · · >′

i Cm >′
i A, for some {C1, . . . , Cm} ⊆ � \ {A},

where m ≥ 1. Because every Ci is different from A, Ci > Ci+1 was already in >i , as

well as Cm > A, that is, C1 >i C2 >i · · · >i Cm >i A. Since >i is transitive, this

implies that C1 >i A. This contradicts the fact that A >i C1 was added to >i , because

the relation between A and C1 was not unspecified in >i . Now, for every agent i , let >∗
i

be the transitive closure of >′
i . Because >′

i has no cycles, >∗
i has no cycles and is a partial

order. Now, we complete >∗
i by instantiating all remaining unspecified pairs in an arbitrary

way that preserves transitivity. Let us denote by P ′ such a completion of P . According to

Proposition 1 we have, M(P ′) ∈ Ext(M(P)), therefore in M(P ′) there is an outgoing edge

from A to all the other candidates and thus A is the Condorcet winner for P ′, and therefore

a possible Condorcet winner for P .

Now for point 4, the fact that the necessary Condorcet winner for a majority graph M(P)

is the necessary Condorcet winner for the profile P is an obvious consequence of Proposi-

tion 1. For the converse inclusion, let us suppose A is not the necessary Condorcet winner

for M(P). Then there exists B such that (A, B) �∈ M(P), that is, in the profile we have

#{voter i | A >i B} < n
2

. Let us complete the profile by adding B > j A for all voters j

for which the relation between A and B is unspecified: we get an extension of P in which a

majority of voters prefers B to A, therefore A is not the necessary Condorcet winner for P .

The proof can be easily extended to weighted profiles. Let P be an incomplete

weighted profile, Poss(M(P), r) ⊇ Poss(P, r), Nec(M(P), r) ⊆ Nec(P, r), NecCond

(M(P)) = NecCond(P), and PossCond(M(P)) = PossCond(P). In fact, obviously,

M(P) = M(U (P)), and it is easy to show that NecCond(P) = NecCond(U (P)) and

PossCond(P) = PossCond(U (P)). We recall that U (P) is the corresponding unweighted

profile of P (see Definition 8). ⊓⊔

Notice that there are cases in which the subset relation Poss(M(P), rSchwartz) ⊇

Poss(P, rSchwartz) is strict. In fact, a candidate can be a Schwartz winner for a completion

of M(P) which is not induced by any completion of P , as shown previously in Example 8.

Note that if r is a Condorcet-consistent rule, then NecCond(P) ⊆ Nec(P, r) and Pos-

sCond(P) ⊆ Poss(P, r).

Notice also that the set of winners from an incomplete profile and from its incomplete

majority graph coincide when we allow also for completions of the preferences that may

contain cycles, i.e., when we allow that the voters are irrational. Such preferences do occur

in practice and have been explored in the context of computational social choice [14, 15].

4 Computing winners with incomplete preferences in voting trees

We now analyze the computational complexity of computing the various kinds of winners

in voting trees when preferences are incomplete.5 We will consider first winners from an

incomplete profile and then winners from an incomplete majority graph.

5 For a complete treatment of the basic notions of complexity theory, see [18].
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4.1 Incomplete profiles

Assume agents’ preferences have been specified by an incomplete weighted profile P . It is

possible to show that, when we have three or more candidates, it is difficult to determine if

a candidate is a possible winner for V (T ), even if T is a balanced tree.

Theorem 2 Given a fixed number m of candidates with m ≥ 3, an incomplete weighted pro-

file P and any agenda T on these candidates, deciding if a candidate is in Poss(P, rV (T )) is

NP-complete, even if every candidate appears exactly once in T , and even if T is a balanced

tree.

Proof We give a reduction from the number partitioning problem. Consider the tree T where

A plays against B and the winner thus plays against C . We have a bag of integers, ki with sum

2k and we wish to decide if they can be partitioned into two bags, each with sum k. We will

show that we can build an election where we can complete the incomplete weighted profile

so that C wins (i.e., C is a possible winner) if and only if such a partition exists. We suppose

the following votes are given: 1 vote for C > B > A of weight 1, 1 vote C > A > B of

weight 2k − 1, and 1 vote B > C > A of weight 2k − 1. Hence, C is ahead of A by a weight

of 4k − 1, C is ahead of B by a weight of 1 and B is ahead of A by a weight of 1. For each

ki in the bag of integers, we have an incomplete vote of weight 2ki in which A > C is fixed,

but the rest of the vote is incomplete. We are sure A beats C in the final result by a weight of

1 whatever completion takes place. We now show that the incomplete weighted profile can

be completed so that B beats A and C beats B (and thus C is a possible winner) if and only

if there is a partition of size k.

Assume that such a partition exists, and that votes in one partition have A > C > B

and the votes in the other have B > A > C . Thus, B beats A overall and C beats B. Thus

C is the winner. On the other hand, suppose there is a way to complete the preferences so

that C wins. This can only happen if B beats A and C then beats B. In fact, if A beats B in

the first round, A will beat C in the second round, since we have shown before that A beats

C overall, and then A will be the final winner. For C to beat B, at least half the weight of

incomplete votes must rank C above B. Similarly, for B to beat A, at least half the weight

of incomplete votes must rank B above A. Since all votes rank A above C, B cannot be both

above A and below C . Thus precisely half the weight of incomplete votes ranks B above A

and half ranks C above B. Hence, we have a partition of equal weight. Therefore, we can

complete the incomplete profile so that C wins if and only if there is a partition of size k.

The result can also be extended to the trees with more than three candidates which extend T

or a tree isomorphic to it, by placing any additional candidate at the bottom of every voters’

preference ordering (it does not matter how).

We can use the same construction above when T is a balanced tree. Given the profile

constructed here, the only possible balanced trees in which C wins are those in which A

plays against B, and the winner then plays against C . All the additional candidates will be

defeated by A, B and C , so that they can be placed anywhere in the balanced tree. ⊓⊔

In [29] it is shown that, when we have three candidates and the agenda is a simple voting

tree, the necessary winner from the incomplete profile and from the incomplete majority

graph coincide. Therefore, since by Theorem 4, it is polynomial to compute the necessary

winner from the incomplete majority graph, it is also polynomial to compute the necessary

winner from the incomplete profile. On the other hand, we now show that, when we have

four or more candidates, it is a coNP-complete problem to determine if a candidate is the

necessary winner.
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Theorem 3 Given a fixed number m of candidates with m ≥ 4, an incomplete weighted

profile P and any agenda T on these candidates, deciding if a candidate is in Nec(P, rV (T ))

is coNP-complete, even if every candidate appears exactly once in T .

Proof To show that with at least four candidates it is coNP-complete to decide if a candidate

wins for every completion of the preferences, we will consider the tree T where A plays

against B, the winner then plays against C , and the winner of this match goes forward to the

final match against D. We will reduce number partitioning to deciding if, given a particular

incomplete weighted profile, we can complete such a profile to make a given candidate win.

We have a bag of integers, ki with sum 2k and we wish to decide if they can be partitioned

into two bags, each with sum k. We construct an incomplete profile where the following votes

are given: 1 vote for C > D > B > A of weight 1, 1 vote C > D > A > B of weight

2k − 1, and 1 vote D > B > C > A of weight 2k − 1. For the first number, k1 in the bag

of integers, we have a vote for D > B > A > C of weight 2k1. For each other number, ki

where i > 1, we have an incomplete vote of weight 2ki in which A > C is fixed, but the rest

of the vote is incomplete. We are sure that A beats C in the final result by 1 vote whatever

completion takes place. Similarly, we are also sure that D beats A, and D beats B.

If we complete preferences so that in all incomplete votes D beats C in their pairwise

election, then D will win overall. We now show that there is a completion that makes C win

if and only if there is a partition of equal weight.

Suppose there is such a partition and that the complete votes in one partition have B >

A > C and the complete votes in the other have A > C > B. Thus, B beats A overall, C

beats B. We put D in the bottom position in all such completions as far as possible, and so

C beats D. Thus C is the overall winner.

On the other hand, suppose there is a way to complete the preferences so that C wins.

This can only happen if B beats A, C then beats B and C finally beats D. If A beats B in

the first round, A will beat C in the second round and then A will be beaten by D. For C to

beat B, at least half the weight of incomplete votes must rank C above B. Similarly, for B

to beat A, at least half the weight of incomplete votes must rank B above A. Since all votes

rank A above C, B cannot be both above A and below C . Thus precisely half the weight of

incomplete votes ranks B above A and half ranks C above B, and we have a partition of

equal weight. Hence, if there is a partition of equal weight then both C and D are possible

winners; if not, then only D is a possible winner, therefore the necessary winner. Therefore,

D is the necessary winner if and only if there is no partition in the initial problem. The proof

can be extended to all the trees with more than four candidates, when they extend T or a tree

isomorphic to it, by placing any additional candidate at the bottom of every voter’s preference

ordering (it does not matter how). ⊓⊔

These results can be compared with Theorem 7 in [9] which states that weighted construc-

tive manipulation for V (T ) is polynomial. A candidate can be made a winner by a coalition

of weighted votes if it is a possible winner for a specific incomplete profile consisting of

full votes and empty votes. By allowing any kind of incomplete profile, we increase the

computational complexity.

The possible winner (respectively, necessary winner) problem for V (T ) was proved to be

NP-complete (respectively, coNP-complete) for unweighted votes and an unbounded number

of candidates even when T is balanced [39] and easy to compute for unweighted votes and

a bounded number of candidates [37].
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4.2 Incomplete majority graphs

In this Section (unlike the rest of the article) we focus on simple voting trees, that is, voting

trees where every candidate appears exactly once. We present an algorithm, called Win, for

determining, given a simple voting tree T and an incomplete majority graph G, the set of

possible winners (i.e., Poss(G, rV (T ))). We will represent a simple voting tree T with a binary

tree with a root, that we call root(T ), a left subtree, called left(T ), and a right subtree, called

right(T ).

Algorithm Win recursively takes in input a simple voting tree T and an incomplete majority

graph G, and it returns a set of candidates W , which is the set of possible winners. If root(T )

is not empty, and both left(T ) and right(T ) are empty, then the algorithm returns root(T ).

Otherwise, the set of winners at the root of T is the set of all candidates who are possible

winners in the left (respectively, right) branch of T and who beat at least one candidate who

is a possible winner in the right (respectively, left) branch of T .

Algorithm 1: Win

Input: T : a simple voting tree, G: an incomplete majority graph;

Output: W : set of candidates;

if T contains only one node then
W ← label(root(T ))

else
W1 ← Win(left(T ), G);

W2 ← Win(right(T ), G);

W ← ∅;

foreach (s, t) ∈ W1 × W2 do

if s >m t then
W ← W ∪ {s}

else

if t >m s then
W ← W ∪ {t}

else
W ← W ∪ {s, t}

return W

To check whether there exists a necessary winner for an incomplete majority graph G, it

suffices to run the algorithm Win on P; if it outputs a single candidate, then it is the necessary

winner, otherwise there is no necessary winner. We will call such a procedure NecessaryWin.

Example 10 We now show how to determine possible and necessary winners given a fixed

simple voting tree by applying Win. Let � = {A, B, C, D, E, F, H, I } and consider the

simple voting tree T over � with left(root(T )) = Win(Win({C}, {D}), Win({E}, {F})) and

right(root(T )) = Win(Win({A}, {B}), Win({I }, {H})). Consider also the incomplete major-

ity graph G with edges A >m B, A >m C, A >m D, A >m E, A >m I, E >m F , and

I >m H .

The application of Win to the subtree of T that contains only C and D gives

Win({C}, {D}) = {C, D}, because G contains no edge between C and D. Its application

to the subtree that contains only E and F gives Win({E}, {F}) = {E}, because G con-

tains an edge from E to F . Next, the application of Win to the left subtree of T gives

Win(Win({C}, {D}), Win({E}, {F})) = Win({C, D}, {E}) = {C, D, E}, because E is not
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beaten by both C and D, C is not beaten by E and D is not beaten by E . As for the right

subtree of T , we get Win(Win({A}, {B}), Win({I }, {H})) = Win({A}, {I }) = {A}. Finally,

the application of Win to the root of T gives Win({C, D, E}, {A}) = {A}, because A beats all

of C, D and E in the graph G. Thus, Win returns {A}. Since the set returned by Win contains

only one candidate, A is also the necessary winner. ⊓⊔

Theorem 4 Consider a set of candidates �, an agenda T over �, and a possibly incomplete

majority graph G over �. Then,

• Algorithm Win(T, G) returns Poss(G, rV (T )).

• Algorithm NecessaryWin(T, G) returns Nec(G, rV (T )).

• Both algorithms run in polynomial time in the number of candidates.

Proof Let us first consider Algorithm Win. We prove by induction that the following induction

hypothesis holds for any tree T :

H(T ) : Poss(G, rV (T )) = Win(T, G)

We omit G in H(T ) because the induction is over trees, and not on G.

If T is a tree with a single node, then H(T ) holds trivially, because T contains

only one candidate, namely label(root(T )), and we have Win(T, G) = Poss(G, rV (T )) =

{label(root(T ))}. Now we need to show that if T is a tree whose left subtree is T1 and right

subtree is T2, then H(T1) and H(T2) imply H(T ). Assume now that H(T1) and H(T2) hold.

Assume that A ∈ Win(T, G). Then either A ∈ Win(T1, G) or A ∈ Win(T2, G). Without

loss of generality, assume A ∈ Win(T1, G). Then there exists a B in Win(T2, G) such that G

either contains an edge from A to B or no edge between A and B.

By the induction hypothesis, A ∈ Win(T1, G) and B ∈ Win(T2, G) imply A ∈

Poss(G, rV (T1)) and B ∈ Poss(G, rV (T2)), which in turn imply that there exist two com-

plete tournaments G1 and G2 extending G such that A = rV (T1)(G1) and B = rV (T2)(G2).

Now, let G3 be the tournament obtained from G1 and G2 in the following way: for any two

candidates X and Y , (a) if both X and Y appear in T1 then G3 contains the edge X >m Y

if and only if G1 contains it; (b) if both X and Y appear in T2 then G3 contains the edge

X >m Y if and only if G2 contains it; (c) G3 contains the edge A >m B; (d) in all other

cases, if G contains an edge X >m Y then G3 contains it as well, and if G does not contain

any edge between X and Y then we can decide arbitrarily whether there is an edge from X

to Y or an edge from Y to X . By construction, G3 is an extension of G, because both G1 and

G2 are and because G either contains or does not contain the edge B >m A.

Now, because no candidate appears in more than one leaf of T , the sets of candidates

appearing in T1 and T2 are disjoint. Therefore no pair of candidates can be concerned by more

than one of the cases (a), (b), and (c), and the definition of G3 is well-founded. Now, because

the way rV (T1)(G) (respectively, rV (T2)(G)) is determined depends only on the restriction of

the graph on the candidates appearing in T1 (respectively, T2), we have that rV (T1)(G3) =

rV (T1)(G1) = A and rV (T2)(G3) = rV (T2)(G2) = B. From this and the fact that G3 contains

the edge A >m B, we get that rV (T )(G3) = A. Thus we have found a complete extension of

G in which the winner of rV (T ) is A, which shows that A ∈ Poss(G, rV (T )).

Conversely, assume that A ∈ Poss(G, rV (T )). Then there is a completion G ′ of G such

that rV (T )(G
′) = A. Obviously, A appears in T . Without loss of generality, assume it appears

in T1. Because T1 is a subtree of T, rV (T )(G
′) = A implies rV (T1)(G

′) = A; therefore, since

G ′ is an extension of G, we have A ∈ Poss(G, rV (T1)), and by the induction hypothesis, we

have A ∈ Win(T1, G). Now, rV (T )(G
′) = A implies that A beats rV (T2)(G

′) in G ′. Denote

rV (T2)(G
′) by B. Again by the induction hypothesis, we have B ∈ Poss(G, rV (T2)). Finally, G
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does not contain the edge B >m A, otherwise G ′ (which contains the edge A >m B) would

not be an extension of G. This implies that Win(T, G) contains A. We now have proven that

H(T ) holds, and therefore we have shown that the algorithm Win is sound and complete,

i.e., returns the set of possible winners for rV (T ).

Finally, if we have m candidates, Algorithm Win performs at most O(m) steps, where at

each step it may consider O(m2) pairs of candidates. For each pair it performs a constant

amount of work. Thus, the overall complexity is O(m3). The same complexity holds for

Algorithm NecessaryWin. ⊓⊔

Since Poss(M(P), rV (T )) ⊇ Poss(P, rV (T )), Algorithm Win is a heuristic that finds a

superset of Poss(P, rV (T )).

Notice that, in general, there is no guarantee on the quality of this heuristic, as shown by

the following example.

Example 11 Assume we have an incomplete profile, say P , over n + 2 candidates, say

A, B1, . . . , Bn , and C , where there is only one voter that expresses his preferences as fol-

lows: A > Bi ,∀i . Assume also that the agenda T has A first play against C . For example,

T may be the agenda where first A plays against C , the winner plays against B1, and each

new winner at step i plays against Bi+1. Then, Poss(M(P), rV (T )) = {A, B1, . . . , Bn, C},

while Poss(P, rV (T )) = {A, C}. This means that all candidates are possible winners for the

incomplete majority graph M(P), while only two of them, i.e., A and C , are possible winners

for the incomplete profile P . In fact, a candidate Bi may win only if C beats A and Bi beats

C . To achieve this, there must be a completion with a cycle A > Bi > C > A, which is

allowed in the majority graph, but it is forbidden by transitivity in the profile. ⊓⊔

Since Poss(P, rV (T )) ⊆ Poss(M(P), rV (T )), the quality of the heuristic can be mea-

sured by the ratio between the number of winners returned by Poss(M(P), rV (T )) and

Poss(P, rV (T )). Example 11 shows that this ratio can be as bad as m+2
2

.

However, we are able to give an upper bound on the number of possible winners from

the incomplete majority graph, which depends on the number of the missing arcs in the

incomplete majority graph.

Proposition 3 Let P be an incomplete profile over m candidates, M(P) its corre-

sponding incomplete majority graph, and k the number of the missing arcs in M(P).

|Poss(M(P), rV (T ))| ≤ 2k .

Proof If there are k missing arcs in M(P), then there are 2k possible completions of M(P).

Therefore, there are at most 2k results and so there are at most 2k possible winners. ⊓⊔

Parameterizations based on the total number of undetermined candidate pairs have also

been considered in [5] to analyze the complexity of the possible winner problem for some

voting rules. However, these voting rules do not include the voting tree rule.

4.3 Experimental evaluation of the heuristic

We tested computationally the quality of the heuristic given by Algorithm Win in computing

an upper bound on the set of possible winners.

4.3.1 Experimental setting

To do this, we generated profiles according to the following parameters:
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• number of candidates m ∈ {4, 8, 16, 32};

• number of agents n ∈ {3, 5, 7, 9, 11};

• type of agenda:

– completely balanced: a balanced simple voting tree,

– completely unbalanced: a simple voting tree where each internal node has at least one

child which is a leaf.

• level of completeness of the preference of each agent. We considered three levels of

completeness: High, also denoted by H (80% of the relations of a complete linear order),

Medium, also denoted by M (50% of the relations of a complete linear order) and Low,

also denoted by L (20% of the relations of a complete linear order).

For each combination of the above parameters, we randomly generated 100 instances

according to the impartial culture assumption, that is, using a uniform distribution over pro-

files. For each incomplete profile P and agenda T , we computed the set of possible winners

Poss(M(P), T ) as by Algorithm Win and then we checked for each candidate in such a set

if it is indeed a possible winner from the profile, that is, if it is in Poss(P, T ).

We then measured the following:

• the error rate: the percentage of instances where Poss(M(P), T ) is larger than Poss(P, T );

• the error mean: the ratio
|Poss(M(P),T )|−|Poss(P,T )|

|Poss(P,T )|·(m−1)
averaged over the instances in which

there is an error. The error is |Poss(M(P), T )|−|Poss(P, T )| divided by |Poss(P, T )|.

We have then multiplied it by 1/(m − 1) in the definition of the error mean, since we

wanted to have a value which is in [0, 1] independently of the number of candidates.

All the experiments were done on an Intel Xeon 3.2 GHz machine with 16 GB of RAM.

4.3.2 IP model for incomplete profiles

To generate the possible winners from an incomplete profile, due to the combinatorial nature

of this problem, we adopt a Integer Programming model (IP),6 defined as follows, and solved

with IBM ILOG Cplex 12.2.

We are given m candidates, n agents, and a fixed agenda T . We want a model that proves

that a given candidate is a possible winner, by looking for a profile completion where such a

candidate wins, or proving that no such profile exists.

Let us introduce the following variables:

xi jk =

{

1 if candidate i is preferred to candidate j according to agent k

0 otherwise

yi j =

{

1 if candidate i is preferred to candidate j according to the majority graph

0 otherwise

For each agent k, variables xi jk define the ordering of the candidates according to agent

k: such an order can be seen as a permutation of m elements and so it can be easily modeled

with linear constraints (as done, for example, in the linear ordering problem). In particular,

the following constraints suffice:

xi jk + x j ik ≤ 1 ∀(i, j)

xi jk + x jlk + xlik ≤ 2 ∀(i, j, l)

6 Notice that we are not trying to optimize a specific function. We will consider a feasibility program.
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Next we need to link variables y to variables x with the logical constraint

yi j = 1 ↔
∑

k

xi jk ≥ ⌈n/2⌉ ∀(i, j)

and this also can be modeled with the following linear constraints:

⌈n/2⌉yi j ≤
∑

k

xi jk ≤ ⌊n/2⌋ + ⌈n/2⌉yi j ∀(i, j)

Finally, we must compute the winner for each node a of the tree. To this end, we introduce

variables

wai =

{

1 if candidate i is the winner at node a

0 otherwise

zai j =

{

1 if (i, j) is the pair of possible winners at node a

0 otherwise

Some constraints are needed to ensure the correct computation of the winner at node a

starting from the winners at its child nodes l and r

wai → wli ∨ wri ∀(a, i)

zai j → wai ≥ yi j ∀(a, i, j)

zai j = (wli ∨ wri ) ∧ (wli ∨ wri ) ∀(a, i, j)

The first set of constraints says that a candidate i can be a winner at node a only if it is

a winner in one of its child nodes. The second set of constraints uses the majority graph to

compute the winner among the two possible candidates. The third set of constraints just links

variables z and w. All of them can be stated as linear constraints

wai ≤ wli + wri ∀(a, i)

wai ≥ yi j + zni j − 1 ∀(a, i, j)

zai j ≤ wli + wri ∀(a, i, j)

zai j ≤ wl j + wr j ∀(a, i, j)

zai j ≥ wli + wri + wl j + wr j − 1 ∀(a, i, j)

Notice that the model has O(m2n + m3) variables and O(m3n) constraints. However,

for small numbers of candidates, the size of the model is reasonably compact. Also, several

variables can be fixed right from the beginning, the more so if we run algorithm Win and

use the information collected by it. This variable fixing, together with the logical constraints,

allows for a very effective preprocessing and constraint propagation on the model. To test if

a candidate i is a possible winner we just need to solve the model by setting wroot,i = 1.

Notice also that, given m candidates and n agents, we have (m!)n possible complete pro-

files. In fact, each agent gives a strict total order over the candidates. Such an ordering is a

permutation of the candidates, and thus in the worst case (when there is full incompleteness)

we have m! possible orderings for every agent. For example, in an instance with 8 candidates

and 11 agents, we have (8!)11, that is, more than 1050, possible completions, which cannot

be enumerated via a brute-force algorithm.
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(a) (b)

(c) (d)

Fig. 2 Error rate and error mean for agendas with four candidates

4.3.3 Experimental results

Figures 2, 3, 4 and 5 show the error rate and the error mean for the cases with 4, 8, 16, and

32 candidates.

It is easy to notice that the shape of the agenda (completely balanced vs. completely

unbalanced) does not seem to affect the quality of the heuristic. On the other hand, the level

of completeness of the profile does influence the quality of the heuristic, since both the error

rate and the error mean decrease as the level of completeness decreases. Indeed, when the

profile is rather incomplete, the set of possible winners is larger and thus closer to what the

heuristic can return. However, the error mean is always very small. Moreover, the error rate

increases with the number of candidates and it decreases as the number of agents increases.

Notice that, with four candidates and a high level of completeness, the error is always 0, since

in this case the profile is almost complete.

The largest instances we have considered (32 candidates and 11 agents) have been solved

in about 30 s (we need to solve an IP model for each of the candidates returned by the

heuristic). Thus, we could certainly tackle much larger instances, but we have preferred to

focus on smaller instances and consider 100 of them to get a reasonable average. This is the

time needed by the exact algorithm. Instead, the time needed by the heuristics is less than

1 ms in all instances. This is expected, since it is just a visit of the nodes of the agenda based

on the majority graph.

5 Computing winners with incomplete preferences in the Schwartz rule

We now analyze the complexity of determining Schwartz winners when we have uncertainty

in the preferences.
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(a) (b)

(c) (d)

Fig. 3 Error rate and error mean for agendas with eight candidates

(a) (b)

(c) (d)

Fig. 4 Error rate and error mean for agendas with 16 candidates
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(a) (b)

(c) (d)

Fig. 5 Error rate and error mean for agendas with 32 candidates

We show that deciding whether a given candidate is a Schwartz winner from incom-

plete weighted profiles is intractable in general, but polynomial from the induced majority

graphs. Hence, computing the winners for incomplete majority graphs can be a computation-

ally efficient heuristic that finds a superset of the winners for incomplete weighted profiles.

We conjecture that computing the set of all the possible Schwartz winners for incomplete

unweighted profiles is NP-hard as well, but so far have not been able to show this.

5.1 Incomplete weighted profiles

We prove that determining whether a given candidate is a possible Schwartz winner for

weighted profiles is NP-hard for incomplete weighted profiles where there are three or more

candidates.

Theorem 5 Given a fixed number m of candidates with m ≥ 3 and an incomplete weighted

profile P on these candidates, deciding if a candidate is in Poss(P, rSchwartz) is NP-complete.

Proof Clearly the problem is in NP as a polynomial witness is a completion and an agenda

in which the candidate wins. To show it is NP-complete, we give a reduction from the num-

ber partitioning problem. The reduction is based on constructing a Condorcet cycle and is

similar to those used in [9] to show that manipulation is computationally hard even with a

small number of candidates when votes are weighted.

We have a bag of integers, ki with sum 2k and we wish to decide if they can be partitioned

into two bags, each with sum k. We want to show that a candidate B is a possible Schwartz

winner if and only if such a partition exists. We construct an incomplete profile over three

candidates (A, B, and C) as follows. We have 1 vote for B > C > A of weight 1, 1 vote

B > A > C of weight 2k − 1, and 1 vote C > B > A of weight 2k − 1. At this point, the
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total weight of votes with B > A exceeds that of A > B by 4k − 1, the total weight of votes

with B > C exceeds that of C > B by 1, and the total weight of votes with C > A exceeds

that of A > C by 1.

We also have, for each ki , a partially specified vote of weight 2ki in which we know just

that A > B. As the total weight of these partially specified votes is 4k, we are sure A beats

B in the final result by 1 vote. The only agenda in which B can win is the one in which A

plays against C and the winner then plays against B. In addition, for B to win, the partially

specified votes need to be completed so that B beats C , and C beats A in the final result.

We show that this is possible if and only if there is a partition of size k. Suppose there is

such a partition. Then let the votes in one bag be A > B > C and the votes in the other be

C > A > B. Then, A beats B, B beats C and C beats A, all by 1 vote in the final result.

On the other hand, suppose there is a way to cast the votes to give the result A beats B, B

beats C , and C beats A. All the uncast votes rank A above B. In addition, at least half the

weight of votes must rank B above C , and at least half the weight of votes must rank C

above A. Since A is above B, C cannot be both above A and below B. Thus precisely half

the weight of votes ranks C above A and half ranks B above C . Hence we have a partition of

equal weight. We therefore conclude that B can win if and only if there is a partition of size

k. That is, deciding if B is a possible Schwartz winner is NP-complete. We can extend the

reduction to more than three candidates by placing any additional candidate at the bottom of

every voters’ preference ordering in whatever way we wish. ⊓⊔

Computing possible Schwartz winners for weighted profiles seems to be intractable, how-

ever we will show that is easy to find a superset of these winners considering the majority

graph.

5.2 Incomplete majority graphs

We now give graph characterizations of possible and necessary Schwartz winners for incom-

plete majority graphs, which allow us to conclude that they can be computed in polynomial

time.

Theorem 6 Given an incomplete majority graph G and a candidate A, A ∈ Nec(G,

rSchwartz) if and only if, for every other candidate B, there is a path from A to B in G.

Proof (⇐) Suppose that for each B �= A there is a path from A to B in G. Then these paths

remain in every completion of G. Therefore, using Theorem 1, A is a Schwartz winner in

every completion of G, i.e., it is the necessary Schwartz winner.

(⇒) Suppose there is no path from A to B in G. Let us define the following three subsets

of the set of candidates � : R(A) is the set of candidates reachable from A in G (including

A); R−1(B) is the set of candidates from which B is reachable in G (including B); and

Others= � \ (R(A) ∪ R−1(B)). Because there is no path from A to B in G, we have that

R(A) ∩ R−1(B) = ∅ and therefore {R(A), R−1(B), Others} is a partition of �. Now, let us

build the complete majority graph Ĝ as follows:

1. Ĝ := G;

2. ∀x ∈ R(A), y ∈ R−1(B), add (y, x) to Ĝ;

3. ∀x ∈ R(A), y ∈ Others (i.e., y ∈ � \ (R(A) ∪ R−1(B))), add (y, x) to Ĝ;

4. ∀x ∈ Others (i.e., x ∈ � \ (R(A) ∪ R−1(B))), y ∈ R−1(B), add (y, x) to Ĝ;

5. ∀x, y belonging to the same element of the partition: if neither (x, y) nor (y, x) is in G

then add one of them (arbitrarily) in Ĝ.
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Let us first show that Ĝ is a complete majority graph. If x ∈ R(A) and y ∈ R−1(B), then

(x, y) �∈ G (otherwise there would be a path from A to B in G). If x ∈ R(A) and y ∈

Others, then (x, y) �∈ G, otherwise y would be in R(A). If x ∈ Others and y ∈ R−1(B),

then (x, y) �∈ G, otherwise x would be in R−1(B). Therefore, whenever x and y belong to

two distinct elements of the partition, Ĝ contains (y, x) or (x, y), but not both. Now, if x

and y belong to the same element of the partition, by Step 5, Ĝ contains exactly one edge in

{(x, y), (y, x)}. Therefore, Ĝ is a complete majority graph. Let us show now that there is no

path from A to B in Ĝ. Suppose there is one, that is, there exist z0 = A, z1, . . . , zm−1, zm = B

such that {(z0, z1), (z1, z2), . . . , (zm−1, zm)} ⊆ Ĝ. Now, for all x ∈ R(A) and all y such that

(x, y) ∈ Ĝ, by construction of Ĝ, we necessarily have y ∈ R(A). Therefore, for all i < m, if

zi ∈ R(A) then zi+1 ∈ R(A). Now, since z0 = A ∈ R(A), by induction we have zi ∈ R(A)

for all i , thus B ∈ R(A), which is impossible. Therefore, there is no path from A to B in

Ĝ. Thus, Ĝ is a complete majority graph with no path from A to B, which implies that A is

not a Schwartz winner with respect to Ĝ. Lastly, by construction, Ĝ contains G. So Ĝ is a

complete extension of G for which A is not a Schwartz winner. This shows that A is not the

necessary Schwartz winner for G. ⊓⊔

A procedure based on the previous theorem gives us a polynomial time algorithm to find

necessary Schwartz winners for incomplete majority graphs. Hence, we have a heuristic

which computes in polynomial time a subset of necessary Schwartz winners for incomplete

profiles.

Corollary 1 Given an incomplete majority graph G, Nec(G, rSchwartz) can be computed in

polynomial time.

Proof By Theorem 6, we know that A ∈ Nec(G, rSchwartz) if and only if, for every other

candidate B, there is a path from A to B in G. Since finding a path from a single source to all

other candidates is polynomial [13], then also computing Nec(G, rSchwartz) is polynomial.

⊓⊔

We now consider computing possible Schwartz winners. Let G be an asymmetric graph,

� the set of candidates, and A ∈ �. Let us consider Algorithm 2. It tries to complete G in

order to have a path from A to every other candidate Z by putting edges directed to Z , where

it is possible, from the candidates that are reachable from A.

Algorithm 2: PossibleSchwartzWinner

Input: G: an asymmetric graph, A: a candidate,

Output: �: a set of candidates;

� ← {A} ∪ {X | there is a path from A to X in G};

G′ ← G;

repeat

foreach (Y, Z) ∈ � × (� \ �) do

if (Z → Y ) �∈ G′ then

add (Y → Z) to G′;

foreach Z ∈ � \ � do

if there is a path from A to Z in G′ then
add Z to �;

until � = � or there is no (Y, Z) ∈ � × (� \ �) s. t. (Z → Y ) �∈ G′;

return �
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Theorem 7 Given an incomplete majority graph G and a candidate A, A ∈ Poss

(G, rSchwartz) if and only if PossibleSchwartzWinner(G, A) = �.

Proof We start with the following observation: the graph G ′ obtained at the end of the

algorithm is asymmetric and extends G. It is asymmetric because it is so at the start of the

algorithm (since G is asymmetric) and it is still asymmetric if an edge Y → Z is added to

G ′ when Z → Y is not already in G ′.

Now, assume PossibleSchwartzWinner(G, A) = �. Let G ′′ be a majority graph extending

G ′ (and, a fortiori, G). Such a G ′′ exists (because G ′ is asymmetric). By construction of G ′,

there is a path in G ′ from A to every node of PossibleSchwartzWinner(G, A) \ {A}, hence

to every node of � \ {A}; since G ′′ extends G ′, this holds a fortiori for G ′′, hence A is a

Schwartz winner in G ′′ and therefore a possible Schwartz winner for G.

Conversely, assume PossibleSchwartzWinner(G, A) = � �= �. Denote � = � \ �.

Then, for all (Y, Z) ∈ � × � we have Z → Y ∈ G ′. Now, Z ∈ � means that no edge

Z → Y (for Z ∈ � and Y ∈ �) was added to G ′; hence, for every Y ∈ � and Z ∈ �, we

have that Z → Y ∈ G ′ if and only if Z → Y ∈ G. This implies that for all (Y, Z) ∈ � × �

we have Z → Y ∈ G, therefore, in every majority graph G ′′ extending G, every candidate

of � beats every candidate of �, and in particular A. Therefore, there cannot be a path in G ′′

from A to a candidate in Z , which implies that A is not a Schwartz winner in G ′′. Since the

latter holds for every majority graph G ′′ extending G, A is not a possible Schwartz winner

for G. ⊓⊔

Algorithm 2 is in fact a polynomial-time algorithm for computing a superset of possible

Schwartz winners for incomplete profiles.

Corollary 2 Given an incomplete majority graph G, the set Poss(G, rSchwartz) can be

computed in polynomial time.

Proof It follows from Theorem 7 together with the fact that Algorithm Possible Schwartz-

Winner (Algorithm 2) runs in polynomial time, since it performs at most m iterations, each

iteration considering at most m2 pairs of candidates. ⊓⊔

By Lemma 2 of [7], the set of the Smith winners7 for an incomplete tournament G coin-

cides with the set of possible Schwartz winners for G. Therefore, the above polynomiality

result is also subsumed by Theorem 5 of [7].

An equivalent characterization of possible Schwartz winners says that Poss(G, rSchwartz)

is the smallest subset � of G satisfying this condition: for every Z ∈ � and every X ∈

� \ �, (Z , X) ∈ G. The proof of this result can be found in [23].

To conclude, we have shown that it is easy to compute a superset of the possible Schwartz

winners from the incomplete profile by considering the majority graph. Regarding the quality

of this heuristic, similar results can be derived as in Sect. 4.2 since Example 11 can be easily

generalized to work for every agenda.

6 Computing winners over balanced agendas

We now turn our attention to fair winners, that is, candidates that win in some balanced

agendas. We study the computational complexity of determining whether there is comple-

tion of the incomplete preferences such that a given candidate can win in a balanced tree,

i.e., whether he is a possible fair winner.

7 The Smith winners are the candidates that belong to the Smith set, which is the set of candidates that

dominate any candidate not in the set [7].
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We recall that the candidates that win in every balanced agenda coincide with Condorcet

winners, thus the candidates that win in every balanced agenda for some completion (respec-

tively, all completions) of the preferences coincide with possible (respectively, necessary)

Condorcet winners, and thus they are polynomial to find both for weighted and unweighted

profiles, and for majority graphs.

Given an incomplete weighted profile P , since every balanced agenda is also an agenda,

we have that every possible fair winner is also a possible Schwartz winner. We already

know from Theorem 5 that determining whether a given candidate is in Poss(P, rSchwartz)

is intractable. We will now show that this remains so also when we require that the agenda

is balanced.

Theorem 8 Given a fixed number m of candidates with m ≥ 3 and an incomplete weighted

profile P, deciding if a candidate is a possible fair winner for P is NP-complete.

Proof We use the same construction as in the proof of Theorem 5. Given the profile con-

structed there, the only possible fair agendas in which B wins are those in which A plays

against C , and (at some later point) B then plays against the winner. All the additional

candidates will be defeated by A, B, and C so can be placed anywhere in the fair agenda. ⊓⊔

The computational complexity of determining whether a given candidate is the necessary

fair winner remains an open question, just as the complexity of computing necessary Sch-

wartz winners. However, we know that, since every balanced agenda is also an agenda, every

necessary fair winner is also a necessary Schwartz winner.

7 Related work

Since we have studied a number of different issues (fair winners with complete profiles, pos-

sible and necessary winners for voting trees and Schwartz, from incomplete profiles and from

incomplete majority graphs), the related work spans several areas of research. We therefore

structure this section according to the kind of topic studied. There are three related streams of

work: voting rules with incomplete preferences, computational aspects of voting trees, and

computing winners from incomplete tournaments.

7.1 Computing voting rules with incomplete preferences

We have given several results about voting trees and the Schwartz rule when voters’ prefer-

ences are incomplete. The notions of possible and necessary winners for voting rules, as well

as the notions of possible and necessary Condorcet winners, were introduced by Konczak

and Lang [21]. The computational complexity of computing possible and necessary winners

for many common voting rules was thoroughly studied by Xia and Conitzer [38], by Bet-

zler and Dorn [4], and by Baumeister and Rothe [2]. We complete the picture by adding

results concerning voting trees and Schwartz. Moreover, we consider both the standard case

of incomplete profiles and the case of incomplete majority graphs, which leads to a superset

of the sets of possible winners which is easier to compute. The complexity of determining

whether a given candidate is a possible or necessary winner has also been considered in Pini

et al. [27] for the STV rule. Moreover, they give a preference elicitation procedure which

focuses just on the set of possible winners. The problem of deciding if preference elicitation

is over (that is, the problem of determining if the remaining votes can be cast so that a given

candidate does not win) has been previously investigated also by Conitzer et al. [10, 11, 37].
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7.2 Voting trees

We have considered the computational complexity of determining possible winners for vot-

ing trees. A special case of the possible winner problem is when a subset of voters provide

complete votes and the other voters provide empty votes. In such situations, determining

whether a given candidate is a possible winner is equivalent to deciding whether there is a

constructive coalitional manipulation for this candidate. Conitzer et al. [11] have investigated

the complexity of weighted coalitional manipulation for V (T ) and found out that the latter

problem is polynomial. We prove that the more general possible winner problem for V (T )

is NP-complete for weighted voters and three candidates or more.

Vu et al. [36] consider the following problem. The input consists of a set of candidates and a

collection of pairwise winning probabilities (i, j) representing the probability that candidate i

beats candidates j in a pairwise election; the problem (called “tournament schedule control”)

consists of designing a voting tree satisfying some given conditions (such as balancedness)

that maximizes the winning probability of a target candidate. It is shown ([36], Theorems 1

and 3) that finding a balanced tree maximizing the probability that a given candidate wins

is NP-hard, even if the pairwise winning probabilities are all in {0, 0.5, 1}. Our fair winners

correspond to winners for which the maximum winning probability over all balanced trees

is 1, when the probability matrix is composed only of 0’s and 1’s (for any two candidates,

we know with certainty which of them beats the other in a pairwise comparison). Whether

the NP-hardness result of [36] still holds when winning probabilities are 0/1, that is, whether

computing fair winners is NP-hard, is still an open problem. However, Vassilevska Williams

[35] has shown that, if we allow only some of the matches between players, then the problem

of determining if a candidate is a fair winner is NP-complete. Moreover, she has shown that

if a candidate satisfies certain conditions, they are a fair winner and it is possible to construct

in polynomial time a balanced tree in which this candidate wins. For example, if a candidate

A has a number of outgoing edges in the majority graph G that is greater than or equal to the

number of outgoing edges of every candidate B that beats A in G, then A is a fair winner and

it is possible to compute in polynomial time a binomial spanning arborescence of G rooted

in A [35].

We have given some slightly different complexity results to [36] and [39] for certain prob-

lems about voting trees with incomplete preferences. The differences concern mainly the

nature of the incomplete preferences. In [36], the input is a probability matrix specifying, for

every pair of candidates x, y, how likely it is that x beats y. In Sects. 4.2 and 5.2, we start

from an incomplete majority graph, therefore the ‘qualitative’ counterpart of [36]. In [39]

and in Sects. 4.1 and 5.1, the input is a collection of partial orders over the set of candidates.

Hazon et al. [20] also address the maximization over all voting trees of the probability

that a given candidate wins the election, and show that a modified version of the problem of

designing a tree such that the probability that a given candidate wins be greater than or equal

to a certain value is NP-hard.

7.3 Incomplete tournaments

Brandt et al. [7] generalize several tournament solutions to incomplete tournaments, and

study their computational complexity. Among the concepts they study there are the Smith set

[7] and the Schwartz set (which are known to coincide for complete tournaments). Therefore,

their input is an incomplete tournament, just as we study in Sect. 3.2. By Lemma 2 of [7]

and Definition 15, the set of the Smith winners for an incomplete tournament G defined

as in [7] coincides with the set of our possible Schwartz winners for G. Therefore, our
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polynomiality result (Corollary 2) is subsumed by their Theorem 5. Note that these two

works have been developed independently (both conference papers were published in 2007)

with very different starting points and motivations.

Since the Schwartz set is contained in the Smith set even for incomplete tournaments

(Theorem 1 in [7]), we may wonder whether it coincides with the set of necessary Schwartz

winners. However, this does not hold; for example, consider the graph G with four candidates

A, B, C, D, and the edges A >m B, B >m C , and C >m A : A is in the Smith set for G,

but from our Theorem 6, A is not a necessary Schwartz winner.

8 Conclusions and future work

We have considered multi-agent settings where agents’ preferences may be incomplete and

are aggregated using voting trees. We have addressed various computational issues of deter-

mining winners for complete and incomplete profiles, as well as majority graphs.

All our complexity results about determining the various types of winners are summarized

in Table 1: in the first four rows we consider the voting tree rule associated with a fixed tree

(V (T )) with incomplete preferences, as well as the case of balanced trees. The following

three rows concern the Schwartz rule and the fair winner determination when the agents’

preferences are incomplete.

We first considered voting trees when the tree is fixed, i.e., V (T ), when the agents’ pref-

erences are incomplete (rows 1, 2, 3, and 4 of Table 1). In this context, we have shown that,

if we assume we know the agents’ preferences in the form of incomplete majority graphs,

it is polynomial to compute both the necessary and the possible winners. However, if we

assume that agents’ preferences are expressed by an incomplete weighted profile, then possi-

ble and necessary winners are computationally intractable to compute. We have also shown

that possible winners are intractable to compute even when the agenda is balanced. The same

results have been shown also in [39] in the case of incomplete unweighted profiles with an

unbounded number of candidates.

We also evaluated experimentally the quality of our heuristic to compute possible winners,

showing that it performs very well in every case.

We then analyzed the Schwartz rule in the case of incomplete preferences (rows 5 and

6 of Table 1). When the preferences are expressed via an incomplete majority graph, it is

easy to find possible and necessary Schwartz winners, i.e., those candidates that are Schwartz

Table 1 Complexity of winner determination. All the polynomial results for V (T ) hold for simple voting

trees

Incomplete weighted profiles Incomplete majority

(number of candidates) graphs

Possible winner for V (T ) NP-complete (≥3) (Theorem 2) P (Theorem 4)

Necessary winner for V (T ) coNP-complete (≥4) (Theorem 3) P (Theorem 4)

Possible winner for V (T ), T balanced NP-complete (≥3) (Theorem 2) P (Theorem 4)

Necessary winner for V (T ), T balanced ? P (Theorem 4)

Necessary Schwartz winner ? P (Corollary 1)

Possible Schwartz winner NP-complete (≥3) (Theorem 5) P (Corollary 2)

Possible fair winner NP-complete (≥3) (Theorem 8) ?

123



156 Auton Agent Multi-Agent Syst (2012) 25:130–157

winners in some completion or in all the completions of the preferences, respectively. On the

other hard, when the agents’ preferences are expressed via an incomplete weighted profile,

it is intractable to determine if a given candidate is a possible Schwartz winner. These two

results imply that every candidate has an incentive to participate in the election which is

desirable. If it were easy to find the set of possible Schwartz winners, then a candidate that

was not in this set, i.e., that is a loser, might choose not to participate.

We also have defined fair winners, i.e., candidates that win in at least one balanced agenda.

The problem of determining whether a given candidate is a fair winner for a given complete

profile is an open problem that we intend to investigate in the future. We have also analyzed

the complexity of determining whether a given candidate is a possible fair winner when the

agents’ votes are incomplete and weighted, and we have shown that this problem is intractable

(row 7 of Table 1).

The computational complexity of determining necessary Schwartz winners is related to

the problem of testing whether constructive control is possible. This problem is polynomial-

time solvable for some classes of incomplete profiles [29]. Nevertheless, it remains open in

general and needs to be studied further when we consider incomplete profiles. However, we

have shown that it is polynomial-time solvable if we consider incomplete majority graphs.

An interesting direction for future work is deciding which candidates are most likely to

win, which is related to probabilistic approaches to voting theory. We also plan to study other

forms of uncertainty in the application of the voting rule, such as uncertain weights in a

scoring rule and uncertainty about the voting rule.
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