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RESEARCH ARTICLE
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Abstract

Recent heritability analyses have indicated that genome-wide association studies (GWAS)

have the potential to improve genetic risk prediction for complex diseases based on poly-

genic risk score (PRS), a simple modelling technique that can be implemented using sum-

mary-level data from the discovery samples. We herein propose modifications to improve

the performance of PRS. We introduce threshold-dependent winner’s-curse adjustments for

marginal association coefficients that are used to weight the single-nucleotide polymor-

phisms (SNPs) in PRS. Further, as a way to incorporate external functional/annotation

knowledge that could identify subsets of SNPs highly enriched for associations, we propose

variable thresholds for SNPs selection. We applied our methods to GWAS summary-level

data of 14 complex diseases. Across all diseases, a simple winner’s curse correction uni-

formly led to enhancement of performance of the models, whereas incorporation of func-

tional SNPs was beneficial only for selected diseases. Compared to the standard PRS

algorithm, the proposed methods in combination led to notable gain in efficiency (25–50%

increase in the prediction R2) for 5 of 14 diseases. As an example, for GWAS of type 2 dia-

betes, winner’s curse correction improved prediction R2 from 2.29% based on the standard

PRS to 3.10% (P = 0.0017) and incorporating functional annotation data further improved

R2 to 3.53% (P = 2×10−5). Our simulation studies illustrate why differential treatment of cer-

tain categories of functional SNPs, even when shown to be highly enriched for GWAS-heri-

tability, does not lead to proportionate improvement in genetic risk-prediction because of

non-uniform linkage disequilibrium structure.

Author Summary

Large GWAS have identified tens or even hundreds of common SNPs significantly associ-

ated with individual complex diseases; however, these SNPs typically explain a small pro-

portion of phenotypic variance. Recently, heritability analyses based on GWAS data

suggest that common SNPs have the potential to explain substantially larger fraction of

phenotypic variance and to improve the genetic risk prediction. Because of the polygenic

nature, improving genetic risk prediction for complex diseases typically requires substan-

tially increasing the sample size in the discovery set. Thus, it is crucial to develop more

efficient algorithms using existing GWAS summary data. In this article, we extend the
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polygenic risk score (PRS) method by adjusting the marginal effect size of SNPs for win-

ner’s curse and by incorporating external functional annotation data. Theoretical analysis

and simulation studies show that the performance improvement depends on the genetic

architecture of the trait, sample size of the discovery sample set and the degree of enrich-

ment of association for SNPs annotated as “high-prior” and the linkage disequilibrium

patterns of these SNPs. We applied our method to the summary data of 14 GWAS. Our

method achieved 25–50% gain in efficiency (measured in the prediction R2) for 5 of 14

diseases compared to the standard PRS.

Introduction

Large genome-wide association studies (GWAS) have accelerated the discovery of dozens or

even hundreds of common single nucleotide polymorphisms (SNPs) associated with individ-

ual complex traits and diseases, such as height [1, 2], body mass index [3] and common can-

cers (e.g., breast [4] and prostate [5] cancers). Although individual SNPs typically have small

effects, cumulative results have provided insight about underlying biologic pathways and for

some common diseases like breast cancer have yielded levels of risk-stratification that could be

useful as part of prevention efforts [6]. Analyses of GWAS heritability using algorithms such as

GCTA [7, 8] have shown that common SNPs have the potential to explain substantially larger

fraction of the variation of many traits.

The future yield of GWAS studies, for both discovery and prediction, depends heavily on

the underlying effect-size distribution (ESD) of susceptibility SNPs [9, 10]. A number of alter-

native types of analyses of ESD now point towards a polygenic architecture for most complex

traits, in which thousands or even tens of thousands of common SNPs, each with small esti-

mated effect sizes together can explain a substantial fraction of heritability [11, 12]. Mathemat-

ical analyses of power indicates that because of the polygenic nature of complex traits, future

studies will need large sample sizes, often by an order of magnitude higher than even some of

the largest studies to date, for improving accuracy of genetic risk-prediction [10, 11]. Never-

theless, for current datasets, there remains an opportunity to develop more efficient algorithms

for improving the models [13].

Available algorithms for polygenic risk score (PRS) prediction models have varying degrees

of complexity. The simplest of these methods, widely implemented in large GWAS, selects

SNPs based on a threshold for the significance of the marginal association test-statistics and

then the cumulative weighting of these SNPs by their estimated marginal strength of associa-

tion is applied [14]. The threshold for SNP selection can be optimized to improve the predic-

tive performance in an independent validation dataset. For a number of traits with large

GWAS sample sizes, it has been shown that an optimally selected threshold can improve risk

prediction compared to that based on the genome-wide significance threshold used for discov-

ery [15]. A number of newer methods involving the joint analysis of all SNPs using sophisti-

cated mixed-effect modeling techniques have recently been developed and may lead to further

increases in model performance [16–18].

In this report, we propose simple modifications to the widely used PRS modeling tech-

niques using only GWAS summary-level data. Drawing from the lasso [19] algorithm, we pro-

pose a simple threshold dependent winner’s curse adjustment for marginal association

coefficients that can be used to weight the SNPs in PRS. Second, to exploit external functional

knowledge that might identify subsets of SNPs highly enriched for association signals, we con-

sider using multiple thresholds for SNPs selection based on group membership and identify an

Improve Polygenic Risk Prediction for Genome-Wide Association Studies Using Summary Data
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optimal set of thresholds through an independent validation dataset. We demonstrated the

value of our new method using summary-level results from large GWAS across a spectrum of

traits, some with available independent validation datasets to assess the performance of these

methods. Available resources, such as annotation databases, expression and methylation quan-

titative trait locus (QTL) analyses were employed to identify groups of SNPs that are likely to

be enriched with the trait of interest. We evaluated the utility of this information for risk-pre-

diction for respective outcomes. We also report on the performance of new algorithm using

simulation studies that incorporate realistic genetic architecture, linkage disequilibrium pat-

tern and enrichment factor for underlying functional SNPs.

Results

Overview of statistical approach

Let Zm, Pm, b̂m, and ŝm (m = 1, . . ., T) denote the Z-statistics, the two-sided P-values, the esti-

mated association coefficients and their standard deviations available as part of summary-level

results for T SNPs from a GWAS. We assume that each genotypic value is normalized to have

mean zero and unit variance and that b̂m is rescaled to correspond to the normalized genotypic

values. We assume thatM SNPs are selected after LD-clumping, a SNP pruning procedure

guided by the association P-values [20]. Let gim be the genotype of SNPm for subject i. The

simplest and most popular form of the PRS has the form

PRSiðaÞ ¼
X

M

m¼1

b̂mIðPm < aÞgim; ð1Þ

where the threshold α for the P-values can be chosen to optimize the predictive performance

of PRS in an independent validation dataset. Here, I (�) is an indicator function. Because

PRSi(α) uses a single threshold to select SNPs, we refer this as one-dimensional PRS or 1D

PRS. In what follows, we extend PRSi(α) by incorporating annotation data and correcting for

the upward bias in b̂m caused by winner’s curse.

2D PRS. Information from various functional studies, annotation databases and GWAS

from various traits is increasingly available to allow identification of subset of SNPs that can be

considered to have potential high-prior probability for association with a given trait. Various

types of enrichment analyses, whether based on distribution of summary-level statistics [21] or

on more advanced heritability-partitioning analyses [22, 23], have shown empirical evidence

of strong enrichment of GWAS association signals for different categories of SNPs which rep-

resent only a relatively small fractions of all GWAS SNPs. However, very few systematic studies

have examined whether and how such enrichment information can be utilized to improve

models for genetic risk prediction. We consider a simple modification to PRS to explore this

issue. We assume that the set ofM SNPs can be partitioned into two mutually exclusive groups,

S1 and S2, where S1 represents a relatively small subset representing “high-prior” SNPs

(referred to as HP) and the second group S2 represents the remainder of the GWAS SNPs

(referred to as “low-prior” SNPs or LP) that can be considered part of an “agnostic” search.

We allow differential treatment of the SNPs in the PRS:

PRSiða1
; a

2
Þ ¼

X

m2S1

b̂mIðPm < a
1
Þgim þ

X

m2S2

b̂mIðPm < a
2
Þgim ð2Þ

and select the optimal (α1, α2) based on independent validation dataset(s). Intuitively, SNPs in

the HP group are included at a less rigorous threshold than SNPs in the LP group to optimize

the performance. We refer to the PRS in Eq (2) as two-dimensional PRS or 2D PRS.

Improve Polygenic Risk Prediction for Genome-Wide Association Studies Using Summary Data
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When the genetic architecture parameters are known and SNPs are independent, we

derived the theoretical predictive performance of 2D PRS and the corresponding optimal (α1,

α2) following analytic techniques similar to those derived for 1D PRS [11] (Materials and

Methods). Fig 1A shows the theoretically-derived area under the curve (AUC) for a binary

trait based on 1D PRS and 2D PRS. For both PRS models, the AUC increases with the sample

size of the discovery dataset. The 2D PRS can improve the 1D PRS in which the magnitude

Fig 1. Theoretic investigation of prediction performance and optimal thresholds for SNP selection in 2D PRS.
The theoretic calculation assumesM = 53,163 independent SNP, of which 5,000 are causal for a binary trait, similar to
simulation studies. The high-prior (HP) SNP set has 5,000 SNPs and the low-prior (LP) SNP set has 48,163 SNPs. Δ
is the enrichment fold of HP SNPs in the causal SNP set. (A) The prediction AUC for 1D PRS and 2D PRS. (B) The
optimal P-value thresholds for including HP and LP SNPs in 2D PRS. For both plots, x-coordinate is the discovery
sample size, assuming equal number of cases and controls.

doi:10.1371/journal.pgen.1006493.g001
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depends on the sample size in the discovery sample and also the enrichment fold change Δ of

the HP SNPs. Here, Δ is defined as the ratio of the proportion of causal SNPs in HP to the

overall proportion of causal SNPs. A larger value of Δ indicates a greater enrichment of causal

SNPs in HP. Fig 1B shows the optimal P-value thresholds (α1, α2) for including SNPs that max-

imize the prediction of 2D PRS for a given sample size in the discovery sample. The optimal P-

value threshold for including HP SNPs is more liberal than that for LP SNPs and the difference

diminishes as the training sample size becomes very large.

PRS with winner’s curse correction. In PRS, only SNPs with P-values less than a specific

threshold are included. This selection affects the probability density of b̂m for selected SNPs

and may cause upward bias in the estimate, an effect called winner’s curse. Methods have been

proposed to reduce the selection bias in GWAS [24–26]; however, it is not clear whether win-

ner’s curse corrections improve the performance of PRS. Let βm denote the true effect size and

assume that b̂m � Nðbm; ŝ
2

mÞ. Following Zhong and Prentice [26], we consider a shrinkage

estimator b̂mle
m ðaÞ that maximizes a conditional likelihood

Pðb̂mjPm < aÞ ¼
�ððb̂m � bmÞ=ŝmÞ=ŝm

Fðbm=ŝm � l=ŝmÞ þ Fð�bm=ŝm � l=ŝmÞ
Iðjbmj � lðaÞÞ;

where ϕ() is the density function of N(0,1),F() is the cumulative distribution function of

N(0,1) and lðaÞ ¼ F
�1ð1� a=2Þŝm. The 1D PRS and 2D PRS after winner’s curse correction

are calculated as

PRSmle
i ðaÞ ¼

X

M

m¼1

b̂mle
m ðaÞIðPm < aÞgim ð3Þ

and

PRSmle
i ða

1
; a

2
Þ ¼

X

m2S1

b̂mle
m ða

1
ÞIðPm < a

1
Þgim þ

X

m2S2

b̂mle
m ða

2
ÞIðPm < a

2
Þgim; ð4Þ

respectively. Because b̂mle
m ðaÞ is a maximum likelihood estimator, we denote it as MLE winner’s

curse correction. It is critical that for selection of the optimal threshold parameter(s), bias cor-

rection is performed simultaneously with SNP selection for different values of the threshold

parameters. This approach, although conceptually straightforward, is computationally exten-

sive for analyzing a large number of SNPs and a grid of P-value thresholds.

A computationally more attractive approach is to build a PRS using lasso [19] based on

summary level data from a GWAS. Suppose that we haveM independent SNPs and N training

samples with phenotype yj. We assume that genotypic values gjm are standardized to have

mean zero and unit variance. We estimate parameters (β0, β1, . . ., βM) by minimizing a penal-

ized loss function:

1

2

X

N

j¼1

yj � b
0
�
X

M

m¼1

bmgjm

 !2

þ l
X

M

m¼1

jbmj; ð5Þ

where λ controls the sparseness of the prediction model. Let b̂m ¼
XN

j¼1
ðyj � �yÞgim be the

marginal estimate of βm. When SNPs are independent, the solution to Eq (5) was derived as
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[19]

b̂ lasso
m ðlÞ ¼ signðb̂mÞjjb̂mj � ljIðjb̂mj > lÞ: ð6Þ

The resulting linear prediction model, or equivalently the PRS, is given as

PRSlassoi ðlÞ ¼
X

M

m¼1

b̂ lasso
m ðlÞgim ¼

X

M

m¼1

signðb̂mÞjjb̂mj � ljIðjb̂mj > lÞgim:

Because event {Pm< α} is equivalent to event fjb̂mj > lðaÞg with

lðaÞ ¼ F
�1ð1� a=2Þsdðb̂mÞ, we can rewrite PRSlassoi ðlÞ as

PRSlassoi ðaÞ ¼
X

M

m¼1

signðb̂mÞjjb̂mj � lðaÞjIðPm < aÞgim: ð7Þ

Similarly, considering the lasso problem with two penalty terms by minimizing

1

2

X

N

i¼1

yi � b
0
�
X

M

m¼1

bmgim

 !2

þ l
1

X

m2S1
jbmj þ l

2

X

m2S2
jbmj

leads to a 2D PRS

PRSlassoi ða
1
; a

2
Þ ¼

X

m2S1

b̂ lasso
m ðlða

1
ÞÞIðPm < a

1
Þgim þ

X

m2S2

b̂ lasso
m ðlða

2
ÞÞIðPm < a

2
Þgim: ð8Þ

Note that the above derivation assumes independence between SNPs. In reality, nearby

SNPs may still be in weak LD even after aggressive LD-clumping using r2 < 0.1. Thus, Eq (6)

approximates the exact lasso solution that formally adjusts for correlation. The similarity

between PRSmle
i ðaÞ in Eq (3) and PRSlassoi ðaÞ in Eq (7) suggests that the lasso shrinkage estimator

Eq (6) provides an alternative approach for reducing the bias caused by winner’s curse. This

observation motivated us to use the shrinkage estimator in Eq (6) to build PRS for a binary

trait, where b̂m is marginally estimated. Because the models in Eqs (7) and (8) are approxima-

tions to the true lasso prediction model in presence of weak LD between SNPs, we refer to

them as PRS with lasso-type winner’s curse correction.

Simulation results

We performed simulations to evaluate the performance of six PRS prediction methods: 1D

and 2D PRS without and with winner’s curse correction (MLE and lasso-type correction). To

make simulations realistic in terms of the distribution of minor allele frequencies (MAF) and

LD, we simulated quantitative traits with specific genetic architecture by conditioning on the

genotypes of a lung cancer GWAS [27], which had 11,924 samples of European ancestry and

485,315 autosomal SNPs after quality control. We randomly selected 10,000 samples as a dis-

covery set and 1,924 as a validation set. The causal SNP set consisted of 5,000 SNPs in linkage

equilibrium. In the first set of simulations, the HP SNPs were randomly selected from LD-

pruned SNPs across the genome. In the second set of simulations, we simulated HP SNPs

located in conserved regions (CR) [28], which were recently reported to be highly enriched for

association signal of 17 complex traits based on a heritability partitioning analysis [23].

The simulation results are summarized in Fig 2. First, winner’s curse corrections slightly

improved prediction in most if not all simulations and in particular improved more for the 1D

PRS than the 2D PRS. We also observed that the two winner’s curse correction methods
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performed similarly. Second, if HP SNPs were chosen randomly in the LD-pruned SNP set

and were strongly enriched for causal SNPs, 2D PRS substantially improved the prediction

over 1D PRS. As expected, the improvement increased quickly with the enrichment fold

change Δ. Consistent with theoretical analysis assuming independent SNPs (Fig 1B), the opti-

mal P-value threshold for HP SNPs was more liberal than that for LP SNPs (S1 Table).

However, when we used CR-SNPs as the HP SNPs, the improvement of 2D PRS was less

compared to the simulations with randomly selected HP SNPs, even with the same enrichment

fold change. To investigate whether the difference was caused by different local LD structure,

for each SNP, we counted the number of SNPs located less than 1Mb from the given SNP and

had r2 � 0.8 with the SNP in The 1000 Genomes Project [29]. For 9,940 CR-SNPs used for our

simulations, the average number of LD SNPs is 22.4 (median = 12) while the average number

is 6.4 (median = 2) for non-CR SNPs. See also the histograms in S1 Fig. Thus, CR-SNPs are

enriched in regions with strong LD and may suggest a possible explanation why CR-SNPs

Fig 2. Simulation results for comparing polygenic risk predictionmethods and different high priority SNP sets.Quantitative traits were simulated
conditioning on the genotypes of LD-pruned SNPs in lung cancer GWASwith 10,000 discovery samples and 1,924 validation samples. For each
simulation, we used 5,000 causal SNPs and 9,940 high priority (HP) SNPs (either randomly selected or the SNPs related with conserved regions). Δ
denotes the enrichment fold change of the HP SNP. In the x-axis, “1D” denotes 1D PRSwithout winner’s curse correction; “1D-LASSO(MLE)” denotes 1D
PRSwith lasso-type (MLE) correction; “2D-random” indicates 2D PRSwith HP SNP sets randomly selected from the LD-pruned SNPs in the genome;
“2D-CR” indicates 2D PRS using SNPs in conserved regions as HP SNPs.

doi:10.1371/journal.pgen.1006493.g002
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(and other functional categories with similar LD structure) may not lead to improvement in

risk prediction as much as would be expected based on enriched heritability.

Results of analyzing real GWAS data sets

We applied the six PRS methods to 14 traits with either individual level GWAS data or sum-

mary level data (Tables 1 and 2). We defined the HP SNP set S1 using expression QTL SNPs

(eSNPs) in blood, tissue specific eSNPs and methylation QTL SNPs (meSNPs), SNPs related

with cis-regulatory elements (referred to as CRE-SNPs), SNPs related with genomic regions

conserved across mammals (referred to as CR-SNPs) and SNPs identified by pleiotropic analy-

ses (referred to as PT-SNPs). Details about annotation data are provided in Materials and

Methods. The annotation data used for each trait is summarized in S2 Table. For those with

individual level data but without independent validation samples, we used cross-validation to

estimate performance.

Polygenic risk prediction of type 2 diabetes. We first use type-2 diabetes (T2D) as an

example to illustrate our methods. Fig 3A presents the 1D PRS results for T2D. The standard

1D PRS without winner’s curse correction had a prediction R2 = 2.29% by including SNPs

with P�2×10−3. The winner’s curse correction improved R2 to 3.10% using the lasso-type cor-

rection and 2.67% using the MLE correction.

Next, we investigated whether functional annotation could further improve risk prediction.

We considered CR-SNPs, eSNPs and meSNPs in adipose tissue, and SNPs related with differ-

ent histone marks and their combinations as HP SNP sets. These SNPs were enriched in T2D

GWAS, exemplified by the QQ plot in Fig 3B for a HP SNP set comprising of eSNPs/meSNPs

in adipose tissue and SNPs related with H3K4me3 in the pancreatic islet cell line. Note that the

SNPs have been pruned to have pairwise r2� 0.1, so the observed enrichment was unlikely

due to an artifact related to extensive LD. Fig 3C illustrates how the prediction R2 of a 2D PRS

depends on the P-value thresholds for the HP and LP SNPs. The prediction R2 was maximized

Table 1. GWAS data sets with individual level data.

Data source Ancestry Diseases (Cases, controls) Cross-validation

WTCCC European Bipolar disorder (1817, 2928) 5-fold

European Coronary artery disease (1878, 2928) 5-fold

European Crohn’s disease (1729, 2928) 5-fold

European Hypertension (1934, 2928) 5-fold

European Rheumatoid (1894, 2928) 5-fold

European Type 1 diabetes (1939, 2928) 5-fold

NCI GWAS European Bladder cancer (5937, 10862) 10-fold

Asian Lung cancer in non-smoking females (5510, 4544) 10-fold

European Pancreatic cancer (5066, 8807) 10-fold

doi:10.1371/journal.pgen.1006493.t001

Table 2. GWAS data with summary level data.

Discovery sample Validation sample

Ancestry Data (Cases, controls) Ancestry Data (Cases, controls)

Type 2 diabetes European DIAGRAMGERA (17802, 105109) Europe GERA (1500,1500)

Lung cancer European TRICL (11300, 15952) Europe PLCO (1237,1330)

Schizophrenia European PGC2 (31560,42951) Europe MGS (2681,2653)

Colorectal cancer European GECCO (9719, 10937) Europe PLCO (1000,2302)

Prostate cancer Europe African Japanese Latino PRACTICAL ELLIPSE (38703, 40796) Europe Pegsus (4600,2941)

doi:10.1371/journal.pgen.1006493.t002
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using a more liberal P-value threshold 0.03 for HP SNPs and a more rigorous threshold 0.005

for LP SNPs. This optimal 3D PRS had 8,018 HP SNPs and 2,033 LP SNPs.

Fig 3D reports the prediction R2, AUC and the significance for testing whether an alterna-

tive PRS method could improve the standard 1D PRS. The best predictions were achieved by

the 2D PRS with lasso-type correction: R2 = 3.48% using eSNPs/meSNPs and CR-SNPs and

R2 = 3.53% using eSNPs/meSNPs and H3K4me3 SNPs in pancreatic islet cell line (52.0%

and 54.1% efficiency gain compared to 2.29% using standard 1D PRS, respectively). These

improvements were statistically significant compared to the 1D standard PRS (P = 0.00002

Fig 3. Genetic risk prediction for type-2 diabetes. PRSmodels were built based on the summary statistics from ameta-analysis of DIAGRAM
consortium and GERA data (17,802 cases and 105,109 controls in total) and validated in independent 1500 cases and 1500 controls in GERA. (A)
Prediction R2 (observational scale) for 1D PRSwith or without winner’s curse correction. “NO”: no winner’s correction for association coefficients;
“Lasso”: regression coefficients were modified by a lasso-type correction; “MLE”: association coefficients were modified by maximizing a likelihood
function conditioning on selection. (B) Quantile-quantile plot for −log10(P) for high priority (HP) SNPs vs. low priority (LP) SNPs. SNPs were pruned to
have pairwise r2� 0.1. Here, the HP SNPs were eSNPs/meSNPs in adipose tissue or SNPs related with the H3K4me3mark in pancreatic islet cell line
with data downloaded from the ROADMAP project. The HP SNPs were strongly enriched in the discovery data. (C) Prediction R2 for 2D PRSwith lasso-
type winner’s curse correction. The SNP set was the same to (B). The best prediction (R2 = 3.53%) was achieved when we included HP SNPs using
criterion P� 0.03 and LP SNPs with P� 0.005. (D) The prediction R2, the area under the curve (AUC) and the significances for testing whether an
alternative PRS was better than the standard 1D.

doi:10.1371/journal.pgen.1006493.g003
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and 0.00004, respectively). Of note, the recently developed method LD-pred [31] that models

the LD information only slightly improved prediction R2 from 2.47% to 2.73% (10.5% effi-

ciency gain) using DIAGRAM summary statistics as discovery. Results are summarized in S3

Table (prediction R2, AUC and Nagelkerke R2), S4 Table (P-value for testing significance of

improvement) and S5 Table (optimal thresholds for SNP selection).

Results for WTCCC data. The prediction R2 values for six diseases in WTCCC data are

reported in Fig 4A. The AUCs and Nagelkerke R2 are summarized in S6 Table. Optimal

thresholds for SNP selection are in S7 Table. The lasso-type winner’s curse correction

improved the 1D PRS predictions for CD, RA and T1D. The 2D PRS improved the prediction

for CD (6.65% to 7.71% using blood eSNPs). Combining functional data and lasso-type correc-

tion gave a prediction R2 = 8.75% for CD (31.6% efficiency gain over the standard 1D PRS).

Fig 4. Comparison of polygenic risk predictionmethods for 13 complex diseases. For all figures, the y-coordinate is the prediction R2 in the
observational scale. “1D” denotes 1D PRS; “2D, blood eSNPs” denotes 2D PRS using blood eSNPs as high-prior SNP set. In the x-axis, “NO” denotes PRS
without winner’s curse correction; “LASSO” and “MLE” denote lasso-type and MLE winner’s curse correction, respectively. (A) Prediction R2 values for six
diseases in WTCCC data, estimated based on five-fold cross-validation. (B) Prediction R2 values for three GWAS of cancers, estimated based on ten-fold
cross-validation. (C) Prediction R2 values for four complex diseases estimated based on independent validation samples.

doi:10.1371/journal.pgen.1006493.g004
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However, because of the small sample size in the validation sample, the improvements were

not statistically significant.

Results for three cancer GWAS with individual genotype data. Results are summarized

in Fig 4B (prediction R2), S8 Table (AUC and Nagelkerke R2), S9 Table (P-value for testing sig-

nificance of improvement) and S10 Table (optimal thresholds for SNP selection). The standard

1D PRS achieved an R2 = 1.12% for bladder cancer, 2.35% for Asian nonsmoking female lung

cancer and 2.2% for pancreatic cancer, indicating the difficulty of genetic risk prediction for

these cancers. The 2D PRS with lasso-type correction improved the prediction although the

various annotation datasets gave different improvement. For bladder cancer, the greatest effi-

ciency gain (R2 = 1.64%, 46.4% efficiency gain over the standard 1D PRS and 27.1% efficiency

gain over the 1D PRS with lasso-type correction) was achieved with the SNPs related to the

lung tissue/cell line expression data (eSNPs, meSNPs, H3K4me3 SNPs in SAEC), which per-

formed slightly better than the SNPs related with histone marks in bladder cell line (R2 =

1.46%). For non-smoking female Asian lung cancer, the 2D PRS incorporated with PT-0.001

SNPs or H3K4me3 SNPs in HAEC improved R2 to 2.84%. For pancreatic cancer, the 2D PRS

incorporated with CR-SNPs, SNPs related with histone marks of pancreatic islet and adipose

eSNPs/meSNPs improved prediction R2 by approximately ~30% compared with the standard

1D PRS. Many of the improvements over the standard 1D PRS were statistically significant (S9

Table), e.g., P = 0.025 for 2D PRS with H3K4me3 SNPs in HAEC for bladder cancer, P = 0.025

for 2D PRS with PT-0.001 SNPs for Asian lung cancer and P = 0.047 (0.023, 0.023) for 2D PRS

with CR-SNPs (PT-0.001, PT-0.01 SNPs) for pancreatic cancer.

Results for four large-scale summary-statistics datasets. Prediction results for lung can-

cer, schizophrenia, prostate cancer and colorectal cancer are reported in Fig 4C (prediction

R2), S3 Table (AUC and Nagelkerke R2), S4 Table (P-values for testing whether improvements

were significant), S5 Table (optimal p-value thresholds for SNP selection in 2D PRS) and S2

Fig. For lung cancer, the standard 1D PRS had an R2 = 1.13%. The best prediction R2 = 1.65%

was achieved by lasso-corrected 2D PRS with eSNPs/meSNPs in lung tissues, blood eSNPs and

SNPs related with H3K4me3 in SAEC. To achieve this prediction accuracy, the optimal P-

value threshold for the 2D PRS should be 0.008 for HP SNPs and 5 × 10−6 for LP SNPs. How-

ever, the improvement was not statistically significant. For schizophrenia, the lasso-type cor-

rection improved 1D PRS R2 from 14.01% to 14.94%; the 2D PRS with CR-SNPs further

improved the R2 to 15.37% slightly and the improvement was highly statistically significant

(P = 3.2 × 10−10). For CRC and prostate cancer, neither winner’s curse correction nor 2D PRS

improved prediction.

Discussion

Our study demonstrates that the predictive performance of GWAS PRS models can be

improved based on a combination of a simple adjustment to the threshold levels of SNP selec-

tion and weights of selected SNPs. The degree of gain, however, is not uniform and depends

on multiple factors, including the genetic architecture of the trait, sample size of the discovery

sample set, degree of enrichment of association in selected set of “high-prior” SNPs and the

linkage disequilibrium patterns of these SNPs with the rest of the genome.

The simple winner’s curse correction of SNP weights using the lasso-type method leads to

an improvement in performance of PRS uniformly across all studied diseases. For some dis-

eases, such as type-2 diabetes (Fig 3 and S3 Table) or Crohn’s disease (Fig 4 and S6 Table), this

correction alone led to notable improvement in the performance of PRS. The optimal weighting

of SNPs would depend on the true effect size distribution of the underlying susceptibility SNPs.

Lasso-type weights can be expected to be optimal under a double exponential distribution
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[19, 32], and it is possible that the weighting could be improved further under alternative mod-

els of effect-size distribution. It is, however, encouraging that irrespective of what might be the

true effect-size distribution, which is likely to vary across the diseases of study; our simple lasso-

type correction improves over the standard PRS without adding any additional computational

complexity.

The effect of using various threshold levels for different functional categories of SNPs on

the performance of the model varied by disease as well as the functional annotation of exter-

nal data sets employed in our analytical approach. After adjustment with lasso-type weights,

the use of two-dimensional threshold based on prioritized SNPs led to notably higher values

of R2 for lung cancer in Caucasians, bladder cancer, type-2 diabetes and pancreatic cancer.

Consistent with theoretical expectations, for each of the traits, the optimal thresholds

selected were more liberal for the associated category of high-prior SNPs than those for com-

plementary set.

Our simulation study illustrated how the improvement in performance of the PRS model

due to differential treatment of certain categories of SNPs is modest even when these SNPs

have been categorized to be highly enriched for heritability [22]. For example, recent heritabil-

ity partitioning analysis has identified SNPs in conserved DNA regions, representing 2.6% of

the genome, to be highly enriched for GWAS heritability for many diseases (explaining 35%

heritability on average). Our theoretical calculations suggest that if only independent SNPs are

analyzed, use of a subset of SNPs similarly enriched for heritability is expected to yield much

higher improvement in the performance of the model (Fig 1). Our simulation studies showed

that a similarly large gain is expected even in the presence of naturally occurring LD pattern if

these SNPs are selected randomly from the genome. However, when we simulated high-prior

SNPs based on the exact location of conserved regions, the improvement was modest, within

the range of observed data. The CR-SNPs represent a highly unusual linkage disequilibrium

pattern in that they are in high degree of LD with an unusually large number of neighboring

SNPs (S1 Fig).

In the future, more detailed and accurate assessment of the functional annotation of SNPs

should improve performance of PRS models. Our method requires only simple modifications

to the standard PRS algorithm and can thereby be used to rapidly evaluate the effectiveness of

many alternative strategies. In the current study, we used physical location information per-

taining to histone marks to define high-priority SNP. However, a SNP located in histone

marks does not necessarily cause the variation in histone binding. Thus, a more reasonable

approach is to identify genetic variants associated with histone variation across subjects in

order to define high-priority SNP sets. These types of histone QTLs have recently been

reported in small-scale studies based on HapMap samples [33, 34]. We expect that histone

QTL SNPs identified in future large-scale tissue specific studies might be more informative for

risk prediction.

We have investigated the performance of the various algorithms using criteria that reflect

how much of the variability of the observed outcomes can be explained by the PRS in the vali-

dation dataset. For clinical applications of risk-models, however, it is important to evaluate

whether models are well calibrated that is to what extent they can produce unbiased estimates

of risk for individuals with different SNP profiles. Earlier studies have noted that the standard

PRS can be mis-calibrated and additional calibration steps may be needed when applying PRS

in a clinical setting. In this regard, we find that a winner’s curse correction can alleviate calibra-

tion bias of the standard PRS, but substantial residual bias remains in some situations (S11

Table). The regression relationship between overall PRS and disease status can be estimated

based on a relatively small validation sample and can also be used to re-scale PRS for produc-

ing calibrated risk estimates.
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We used several different metrics for evaluating the potential impact of an improved PRS

for risk-stratification. The percentage gain in prediction R2 due to improved PRS is substantial

for several diseases. For these diseases, the impact of an improved PRS on overall discrimina-

tory performance of the models is noticeable but small (increase in AUC value between 1–2%).

However, even a modest increment in AUC value can lead to identification of substantially

higher fraction of individuals who are at the tails of risk distribution and hence likely to con-

sider clinical decisions (S12 Table).

A limitation of our method is that we use stringent LD-pruning for creating sets of indepen-

dent SNPs. However, this may result in loss of predictive power of models as SNPs in moderate

or low LDmay still harbor independent association signals. The LD-pred [31] method has

been proposed to better account for correlated SNPs in building PRS using GWAS summary-

level data and has been shown to lead to improved performance over standard PRS for some

diseases such as schizophrenia. The LD-pred method also uses a specific form of prior distribu-

tion for obtaining “shrunken” estimates of the regression coefficients for the SNPs in the

model. Although we did not make direct comparisons, it appears that the LD-pred method

gains over standard PRS by improving the accounting for correlation between risk SNPs. In

contrast, in our algorithm, which used stringent LD pruning, the gain in performance over the

standard PRS mainly came from the lasso-type winner’s curse correction and the use of vari-

able thresholds to account for HP and LP SNPs. Thus it is possible that in the future the com-

plementary strengths of the algorithms can be combined to develop more powerful PRS.

In conclusion, we have proposed a set of simple methods for constructing PRS for genetic

risk prediction using GWAS summary-level data. The proposed methods are computationally

not onerous and yet show a noteworthy gain in performance. A major strength of our study is

that we evaluated the proposed methods across a large number of scenarios reflecting a spec-

trum of underlying genetic architectures for different complex diseases, sample size of the

study and available functional annotation. These studies and additional simulations provide

comprehensive insights to promises and limitations of genetic risk prediction models in the

near future.

Materials and Methods

LD-pruning and LD-clumping

The performance of PRS is typically improved if genetic markers are pruned for LD. LD-prun-

ing procedures that ignore GWAS P-values frequently prune out the most significant SNPs

and may reduce performance. Instead, we use the LD-clumping procedure implemented in

PLINK [20] that chooses the most significant SNP from a set of SNPs in LD guided by GWAS

P-values. After LD-clumping, no SNPs with physical distance less than 500kb have LD r2 �

0.1.

Expanding HP SNP set through LD

Suppose S1 is a given HP set defined based on external annotation data (see section Annotation

datasets). Any SNP in high LD with a SNP in S1 is also considered to be an HP SNP. Thus, we

expanded S1 by including all SNPs that were in high LD (r2� 0.8) with any SNP in the original

S1.

Simulations

We simulated quantitative traits with specific genetic architecture by conditioning on the

genotypes of a lung cancer GWAS [27], including 11,924 samples of European ancestry and
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485,315 autosomal SNPs after quality control. The simulation scheme is summarized in the

following steps:

1. We performed LD-pruning implemented in PLINK so that no SNPs within 500kb were in

LD at threshold r2 = 0.1. After LD-pruning,M = 53,163 autosomal SNPs (denoted as S)

were left.

2. Denote S1 as the putative HP SNP set and S2 = S \ S1 as the LP SNP set. We selected a set of

5000 “causal” SNPs (denoted as C) from the pruned SNP set S. If C is randomly selected, i.

e., S1 is not enriched with causal SNPs, we expect | S1 \ C | = | C || S1| /M SNPs overlapping

between S1 and C. Thus, we defined the enrichment fold change for S1 as

D ¼
jS

1
\ Cj

jCjjS
1
j=M

:

The enrichment fold change Δ ranged from 2 to 4 in simulations.

3. We simulated quantitative traits according to yi = St2C βtgit + εi, where βtswere simulated

independently from a Gaussian mixture distribution bt � pNð0; s2
1
Þ þ ð1� pÞNð0; s2

2
Þ with

π = 0.1 Here, s2
1
, s2

2
and Var(ε i) were scaled so that Var(y i) = 1. The phenotypic variances

explained by the two components were h2
1
¼ jCjps2

1
¼ 0:1 and h2

2
¼ jCjð1� pÞs2

2
¼ 0:4.

We assume the same effect-size distribution for both HP and LP causal SNPs, but the propor-

tions of causal SNPs are higher in the former than the later group. Under this assumption,

Δ also reflects the ratio of heritability explained at a per SNP basis in the HP set compared to

LP set.

4. We randomly selected 10,000 samples as a discovery set and 1,924 as a validation set. We

performed GWAS association analysis for all 485,315 autosomal SNPs in the discovery sam-

ple. The summary statistics were used to calculate PRS for each sample in the validation

sample. The prediction R2 was calculated as maxλ cor
2(PRSi(λ), yi) for 1D PRS methods and

maxλ1
,λ2

cor2(PRSi(λ1, λ2), yi) for 2D PRS methods. We repeated the simulation 50 times for

each set of parameters and report the average prediction R2.

Recently, Finucane et al. [23] reported the heritability explained by common SNPs in multi-

ple functional categories for 17 traits. Interestingly, they found that common SNPs located in

regions that are conserved in mammals [28] accounted for about 2.6% of total common SNPs

but explained approximately 35% of total heritability in average across these traits, suggesting

a 13.5-fold enrichment. Thus, we were motivated to investigate whether SNPs related with the

conserved regions (CR) may be useful for 2D PRS methods. We downloaded the CR annota-

tions (http://compbio.mit.edu/human-constraint/data/gff/), identified common SNPs located

in any CR and also identified their LD SNPs with r2 � 0.8. These SNPs are referred to as

CR-SNPs, which were used as HP S1 in simulations. We found 9,940 CR-SNPs overlapping

with the 53,163 LD-pruned SNPs. To investigate whether specific genomic locations of

CR-SNPs influence the performance of 2D-PRS, we also performed simulations using a set S1
of random SNPs that has the same size and associated heritability as the CR-SNPs.

WTCCCGWAS data

TheWellcome Trust Case Control Consortium [30] (WTCCC) data consisted of two control

data sets (1958 Cohort samples and NBS control samples) and seven diseases: bipolar disorder

(BD), coronary artery disease (CAD), Crohn’s disease (CD), hypertension (HT), rheumatoid

arthritis (RA), Type 1 diabetes (T1D) and Type 2 diabetes (T2D). Since we analyzed T2D
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using a much larger discovery sample, we did not analyze the T2D data in WTCCC. Because

cases and controls were genotyped in different batches, differential errors between cases and

controls might cause a serious overestimate of the risk prediction. Thus, we performed very

rigorous quality control (QC) by removing duplicate samples, first or second degree relatives,

samples with missing rate greater than 5% and non-European samples identified from Eigen-

Strat [35] analysis. For each disease, we excluded SNPs with MAF<5%, missing rate>2%,

missing rate difference>1% between cases and controls or PHWE<10−4 in the control samples.

For each PRS method and each disease, we estimated the prediction R2 by five-fold cross-

validation.

Three cancer GWAS with individual genotype data

We analyzed three cancer GWAS with individual level genotype data: the bladder cancer [36,

37] GWAS of European ancestry including 5,937 cases and 10,862 controls, the pancreatic can-

cer GWAS [38] of European ancestry (after excluding samples with Asian or African ancestry)

including 5,066 cases and 8,807 controls, and the Asian non-smoking female lung cancer

GWAS [39] with 5,510 cases and 4,544 controls. After QC, the bladder cancer GWAS had

463,559 autosomal SNPs and the Asian lung cancer GWAS had 329,703 autosomal SNPs. The

pancreatic cancer GWAS included samples from three studies that used different genotyping

platforms. For convenience, we analyzed 267,935 autosomal SNPs that overlapped in all three

platforms. The prediction performance was evaluated using ten-fold cross-validation.

Five large GWAS with summary statistics and independent validation
samples

For T2D, we downloaded the summary statistics of the DIAGRAM (DIAbetes Genetics Repli-

cation AndMeta-analysis) consortium [40] with 12,171 cases and 56,862 controls for 2.5 mil-

lion SNPs imputed to the Hapmap2 reference panel. We also downloaded the GERA (Genetic

Epidemiology Research on Adult Health and Aging) GWAS data of European ancestry with

7,131 T2D patients and 49,747 samples without T2D (but may have other medical conditions,

e.g., 27.4% with cancers, 25.4% with asthma, 25.4% with allergic rhinitis and 12.4% with

depression). We randomly selected 5,631 T2D patients and 48,247 non-T2D subjects from

GERA as discovery set, performed association analysis adjusting for top 10 PCA scores and

meta-analyzed with the summary statistics from DIAGRAM for 353,196 autosomal SNPs over-

lapping between the two studies. The resulting summary statistics were used to build PRS risk

models, which were validated in the remaining 1500 T2D patients and 1500 non-T2D subjects

in GERA.

The PGC2 (Psychiatric Genetics Consortium) schizophrenia GWAS meta-analysis con-

sisted of 34,241 cases and 45,604 controls [41] (http://www.med.unc.edu/pgc/downloads).

Summary statistics were obtained by meta-analyzing all PGC2 schizophrenia GWAS except

the MGS [42] (Molecular Genetics of Schizophrenia) subjects of European ancestry. The sum-

mary statistics were used to build PRS models, which were validated in MGS samples with

2,681 cases and 2653 controls.

The TRICL (Transdisciplinary Research in Cancer of the Lung) GWAS consortium con-

sisted of 12,537 lung cancer cases and 17,285 controls [43, 44]. We performed meta-analysis

using TRICL samples excluding the samples from the PLCO [27] (Prostate, Lung, Colon, and

Ovary Cohort Study) study. The summary statistics based on 11,300 cases and 15,952 controls

were used to build risk models, which were validated in the PLCO lung GWAS samples with

1,237 cases and 1,333 controls.
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For colorectal cancer, we performed meta-analysis for the GECCO (Genetics and Epidemi-

ology of Colorectal Cancer Consortium) [45] GWAS data after excluding the PLCO GWAS

data. The PLCO samples were genotyped using two different genotyping platforms with differ-

ent marker densities: one had approximately 500K SNPs and the other had only 250K SNPs.

Thus, we first imputed the genotypes to the Hapmap2 reference panel using IMPUTE2 [46]

and selected SNPs with imputation r2� 0.9 for risk prediction. The discovery sample consisted

of 9,719 cases and 10,937 controls from 19 studies. The PLCO validation sample had 1,000

cases and 2,302 controls.

The summary statistics for prostate cancer were obtained from the PRACTICAL (PRostate

cancer AssoCiation group To Investigate Cancer Associated aLterations) consortium and The

GAME-ON/ELLIPSE (Elucidating Loci Involved in Prostate Cancer Susceptibility) Consor-

tium with samples from populations of European, African, Japanese and Latino ancestry [5].

The discovery samples consisted of 38,703 cases and 40,796 controls after excluding the NCI

Pegsus GWAS samples with 4,600 cases and 2,941 controls, which were used for validation.

We analyzed 536,057 autosomal SNPs after QC that overlapped between the validation and the

discovery sample summary statistics.

Annotation data sets

For many traits, GWAS risk SNPs have been reported to show enrichment for eQTLs, methyl-

ation QTLs (meQTLs) and cis-regulatory elements (CREs). In addition, recent studies have

reported extensive genetic pleiotropy across diseases and traits, e.g. psychiatric diseases [47,

48], schizophrenia and cardiovascular-disease risk factors, including blood pressure, triglycer-

ides, low- and high-density lipoprotein, body mass index (BMI) and waist-to-hip ratio (WHR)

[49]. This information may potentially improve risk prediction if the SNPs identified from the

secondary trait are highly enriched in the GWAS of the primary trait. Thus, we defined the HP

SNP set S1 using eQTL SNPs (referred to as eSNPs) in blood, tissue specific eSNPs and meQTL

SNPs (referred to as meSNPs), SNPs related with CREs (referred to as CRE-SNPs), SNPs

related with genomic regions conserved across mammals (referred to as CR-SNPs) and SNPs

identified by pleiotropic analyses (referred to as PT-SNPs). Here, LD was calculated based on

the genotype data of relevant ancestry in The 1000 Genomes Project [29]. Note that the avail-

ability of functional annotation data depends on tissue types. However, for all diseases studied

in the paper, we have used blood eSNPs and CR-SNPs because blood eSNPs are enriched for

GWAS of all these traits and CR-SNPs were highly enriched in many traits by a heritability

partitioning analysis [23].

eSNPs and meSNPs. Blood cis-eSNPs were identified from two large-scale eQTL studies

in European populations. One study involved a transcriptome sequencing project of 922

subjects [50] and the other involved a microarray study of 5,311 subjects [51] (http://

genenetwork.nl/bloodeqtlbrowser/). Because of its very large sample size, the second study had

the power to detect eSNPs with even tiny effect sizes which may not have meaningful func-

tional importance. Thus, we included eSNPs with association P-value<10−6 with any gene in

the cis region in the second study. For both Asian and European lung cancer GWAS data, we

used eSNPs [52] and meSNPs [53] based on lung tissues. For T2D, we used eSNPs [54] and

meSNPs [55] based on adipose tissues (http://www.muther.ac.uk/Data.html). Furthermore,

detected trans-SNPs are much fewer than cis-SNPs and the replication rate of trans-eSNPs was

much lower than cis-SNPs [54], suggesting that including trans-SNPs would be unlikely to

improve risk prediction. Thus, we did not include trans-SNPs.

CRE-SNPs. CREs are regions of noncoding DNA regulating the transcription of nearby

genes. SNPs located in CREs may change the binding of specific transcription factors and thus
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the expression of the target genes. Typically, CREs are identified through ChIP-Seq experi-

ments of histone modifications. We downloaded “peak” data (each peak represents one CRE)

of specific sets of histone methylation markings, acetylation markings and DNase I hypersensi-

tive sites (DHSs) from the ROADMAP project website for relevant cell lines. For each identi-

fied CRE (‘peak’), we identified common SNPs with MAF>1%. For prostate cancer, we used

the ChIP-Seq data for H3K27Ac and the transcription factor TCF7L2 [56] to define HP SNP

sets.

PT-SNPs. The summary statistics for height [1, 2], BMI and obesity [3, 57], WHR [58],

waist circumference (WC) [58], hip circumference (HIP) [58] were downloaded from the

GIANT consortium website. The summary statistics for GWAS meta-analysis of cardiovascu-

lar-disease risk factors [59], including triglycerides (TG), low-density lipoprotein (LDL) and

high-density lipoprotein (HDL), were also used for 2D PRS.

We investigated whether or not each tentative HP SNP set was enriched for GWAS associa-

tions by examining the quantile-quantile (QQ) plot, which was made for HP SNPs vs. LP SNPs

after LD-clumping. The SNP sets not enriched for GWAS associations were not expected to

improve risk prediction in 2D PRS. Thus, for each disease, we only included HP SNP sets for

2D PRS when they showed strong enrichment in QQ plots. Interestingly, blood eSNPs were

enriched for almost all diseases. CR-SNPs showed modest enrichment for majority of the dis-

eases. Thus, blood eSNPs and CR-SNPs were used for 2D PRS for all diseases. In addition,

eSNPs and meSNPs derived in lung tissues were enriched in lung cancer GWAS of both Euro-

pean and Asian ancestry. The SNPs related in enhancer and active promoter regions (charac-

terized by H3K4me3, H3K9-14Ac, H3K36me3, H3K4me1, H3K9ac and H3K9me3) were

enriched for GWAS associations but SNPs related with the repressive regions (characterized

by H3K27me3) were not. Thus, we included SNPs related with these enhancer and active pro-

moter regions for 2D PRS. DHS SNPs were not strongly enriched and thus were excluded.

Recently, we have shown significantly shared genetic component between lung cancer and

bladder cancer risk [60]. Thus, we also used HP SNPs derived based on lung tissues or cell

lines for predicting bladder cancer risk. Furthermore, we found that SNPs identified through

pleiotropic analysis were enriched in multiple diseases. For example, SNPs with P-value

<0.001 in GWAS of height, HDL, LDL, TC, TG, WC, obesity, HIP and T2D were enriched in

lung cancer GWAS. Because our 2D PRS methods required a relatively large number of HP

SNPs to achieve improvement, we combined the SNPs with P-value<10−3 (or 10−2) in at least

one trait into a HP SNP set referred as PT-0.001 (or PT-0.01).

Testing the statistical significance of improvement for risk prediction

For WTCCC and three cancer GWAS data sets with individual genotype data, we used K-fold

cross-validation to estimate prediction R2. Here, K = 5 for WTCCC data and K = 10 for cancer

GWAS data. We were interested in testing whether the prediction of a new PRS method was

significantly better than that of the standard 1D PRS defined in Eq (1). For the ith cross-valida-

tion, we denote R2

i;0 as the maximum prediction for the standard 1D PRS optimized across P-

value thresholds, R2

i;1 as the maximum prediction for a new PRS method optimized across

all P-value thresholds for 1D PRS and all pairs of P-value thresholds for 2D PRS. We defined

di ¼ R2

i;1 � R2

i;0 and estimated its variance as ŝ2 ¼ S
K
i¼1
ðdi �

�dÞ
2
=ðK � 1Þ with �d ¼ S

K
i¼1
di=K.

We calculated the statistic T ¼ �d=
ffiffiffiffiffiffiffiffiffiffiffi

ŝ2=K
p

and evaluated its significance using the t-distribu-

tion. For the five diseases with independent validation samples, we used bootstrap to estimate

the variance of the R2 estimates to test significance [29].
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Theoretical prediction performance assuming independent SNPs

Suppose that for a given trait of interest Y, there are two predefined SNP sets: the high priority

(HP) SNP set S1 and the low priority (LP) SNP set S2. SNPs have been pruned and are in link-

age equilibrium. We assume that S1 hasM1 independent susceptibility SNPs andM3 null SNPs

while S2 hasM2 susceptibility SNPs andM4 independent null SNPs. Following Chatterjee et al.

[11], we assume that the true relationship between outcome Y and independent susceptibility

SNPs is modeled as follows:

Y ¼
X

M1

i¼1

b
1ig1i þ

X

M2

j¼1

b
2jg2j þ

X

M3

k¼1

0 � g
3k þ

X

M4

l¼1

0 � g
4l þ �;

where all Y and the genotypic values g’s are standardized so that E(Y) = 0, Var(Y) = 1, E(g) = 0

and Var(g) = 1, and the error term � ~ N(0, σ2) and is independent of the genotypic values.

From a discovery GWAS data set of size N, we have regression coefficient b̂i- and two-sided

p-value Pi for each SNP. We build an additive prediction model by including SNPs in S1 with

P-value� α1 and SNPs in S2 with P-value� α2:

Ŷ ða
1
; a

2
Þ ¼

X

M1

i¼1

b̂
1ig1iða1Þg1i þ

X

M2

j¼1

b̂
2jg2jða2

Þg
2j þ

X

M3

k¼1

b̂
3kg3kða1Þg3k þ

X

M4

l¼1

b̂
4lg4lða2Þg4l;

where γ (α) = I (P� α) with I (�) being an indicator function.

The predictive correlation coefficient (PCC) for the predictive model can be expressed as

PCCða
1
; a

2
Þ ¼ corðY ; Ŷ ða

1
; a

2
ÞÞ

¼

PM1

i¼1
b
1ib̂1ig1iða1

Þ þ
PM2

j¼1
b
2jb̂2jg2jða2

Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PM1

i¼1
b̂2

1ig1iða1
Þ þ

PM2

j¼1
b̂2

2jg2jða2
Þ þ

PM3

k¼1
b̂2

3kg3kða1
Þ þ

PM4

l¼1
b̂2

4lg4lða2Þ
q :

Following Chatterjee et al. (2014), one can verify that PCC follows a normal distribution by

the central limit theorem and the strong law of large numbers. Therefore, the expected value of

PCC can be approximated as

EðPCCða
1
; a

2
ÞÞ ¼

PM1

i¼1
b
1ieN;a1

ðb
1iÞpowðN; b

1i; a1Þ þ
PM2

j¼1
b
2jeN;a2

ðb
2jÞpowðN; b

2j; a2
Þ
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where eN;aðbÞ ¼ Eðb̂jgðaÞ ¼ 1Þ, nN;aðbÞ ¼ Eðb̂2jgðaÞ ¼ 1Þ, pow (N, β, α) is power to detect a
SNP with effect size β at a significance level α in a GWAS with size N, and f1(�) and f2(�) are

effect-size distributions for HP and LP susceptibility SNPs, respectively.

In our numerical calculations, we assumed that the effect sizes of the susceptibility SNPs in

the HP and LP sets followed the same distribution b � pNð0; s2

1
Þ þ ð1� pÞNð0; s2

2
Þ, consis-

tent with simulations. We performed grid search to identify the p-value thresholds (α1, α2)

that maximizes E(PCC(α1, α2)). For binary disease outcomes, AUC can be expressed as a func-

tion of PCC [11].
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S2 Fig. The prediction R2 for four diseases with large-scale discovery samples.

(TIF)
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