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As a whole, the World Wide Web displays a striking ‘‘rich get
richer’’ behavior, with a relatively small number of sites receiving
a disproportionately large share of hyperlink references and traffic.
However, hidden in this skewed global distribution, we discover a
qualitatively different and considerably less biased link distribu-
tion among subcategories of pages—for example, among all uni-
versity homepages or all newspaper homepages. Although the
connectivity distribution over the entire web is close to a pure
power law, we find that the distribution within specific categories
is typically unimodal on a log scale, with the location of the mode,
and thus the extent of the rich get richer phenomenon, varying
across different categories. Similar distributions occur in many
other naturally occurring networks, including research paper cita-
tions, movie actor collaborations, and United States power grid
connections. A simple generative model, incorporating a mixture
of preferential and uniform attachment, quantifies the degree to
which the rich nodes grow richer, and how new (and poorly
connected) nodes can compete. The model accurately accounts for
the true connectivity distributions of category-specific web pages,
the web as a whole, and other social networks.

The World Wide Web is a reflection of human culture—a
massive social network encoding associative links among

almost 109 documents (1) authored by millions of people and
organizations around the globe. The web’s structure has
emerged without central planning, the result of a bottom-up
distributed process. Yet many aggregate web characteristics
display a striking degree of regularity (2), including the distri-
butions of traffic (3, 4), pages per site (5), file sizes (6, 7), and
the depth to which a web user surfs (8). Several independent
investigations show that the distribution of the number of links
to (and from) a web page obeys a power law over many orders
of magnitude (9–12). Power law scaling arises from a variety of
physical, biological, and social processes (5, 13–15). The emer-
gence of a power law tail seems to characterize the connectivity
distribution of many networks in addition to the web, including
the graph of movie actor collaborations, the pattern of research
paper citations, the topology of the power grid in the western
United States, and the metabolic networks of many micro-
organisms (10, 16, 17).

Barabási and Albert (10, 18) attribute power law scaling to a
‘‘rich get richer’’ mechanism called preferential attachment: as
the network grows, the probability that a given vertex receives an
edge is proportional to that vertex’s current connectivity.
Adamic and Huberman (19) give an alternative explanation for
power law behavior by adapting their model of the growth of web
sites (5) to the case of web links.

Obscured behind the nearly pure power law distribution found
for inbound links on the web as a whole, we uncover a richer
structure among subsets of web pages in the same category. We
find that these category-specific distributions exhibit very large
deviations from power law scaling, with the magnitude of deviation
varying from category to category. For these subsets of the web,
we illustrate that the body of the distribution of incoming links
is actually unimodal, rather than power law. Thus the rich get
richer character of the web can be much less drastic among

competing pages of the same type. In fact, pure power law scaling
seems to be the exception rather than the rule. The distributions
for outbound web links, and for a variety of other social and
biological networks, also display significant deviations from
power law, qualitatively similar in nature to those we find for web
subsets (9–12, 16).

We employ a generalized Barabási–Albert (BA) model [sim-
ilar to recent models (20–23) independently proposed else-
where] that incorporates both preferential attachment and a
uniform baseline probability of attachment. The model predicts
the observed shape of both the body and tail of typical connec-
tivity distributions, including those observed within specific
categories of web pages where the divergence from power law is
especially marked. In the model, larger modes arise from faster
rates of growth of edges as compared with vertices, suggesting an
explanation for the different modes observed within different
categories of web pages.

Generic vs. Category-Specific Degree Distributions
Several studies find that the probability that a randomly selected
web page has k links is proportional to k�� for large k (9–12),
where � is a constant, empirically determined as roughly 2.1 for
inbound links and 2.72 for outbound links (11). When displayed
on a log–log plot, this so-called power law distribution appears
linear with slope ��. A power law distribution has a heavy tail,
which drops off much more slowly than the tail of a Gaussian
distribution. As a result, although the vast majority of web pages
have relatively small numbers of links, a few pages have enor-
mous numbers of links—enough to skew the mean well above the
median. If we interpret the number of inbound links to a web
page as a measure of its popularity or impact, then power law
scaling implies that a small fraction of web pages receive a
disproportionately large share of such endorsements. As a result,
these few popular pages typically benefit from a greater volume
of traffic from web surfers, a higher probability of being indexed
in search engine databases (1), and more prominent ranking
within search engine results. Meanwhile, the majority of sites
suffer from relatively poor visibility, and new commercial sites
may have a difficult time competing for consumer attention. This
state of affairs on the web has been referred to (metaphorically,
if somewhat inaccurately) as a ‘‘winners take all’’ phenomenon.

At small connectivities k, the distribution of links on the web
fails to fit a power law, with the discrepancy larger for outbound
links than for inbound links (11). Systematic divergence from
power law scaling at small k is also seen in the connectivity
distributions of graphs encoding actor collaborations, the west-
ern United States power grid, scholarly citations, and outbound
links from several subsets of the web (10).

Moreover, for some collections of web pages of the same type,
we find that the distribution of inbound links departs drastically
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from a power law at small and moderate k. We examined the
inbound link distributions for a set of public company homepages
(obtained from http:��www.investorguide.com�StockListA.
htm, StockListB.htm, etc.), a set of American university
homepages (from http:��www.clas.uf l.edu�CLAS�american-
universities.html), a set of US newspaper homepages (from
http:��www.usnewspaperlinks.com�), and a set of scientist
homepages (from HPSearch at http:��hpsearch.uni-trier.de�
hp�). Diamond-shaped points in Fig. 1 graph the connectivity
distribution for company homepages as a log-linear histogram.
Pages are placed into buckets according to the number of their
inbound links. Buckets are of exponentially increasing width, or
constant width on the log scale—the same histogram type used
in characterizing web file sizes (6), although different from the
histograms used in some previous studies (5, 10). Specifically, in
Fig. 1, the ith bucket point marks the normalized number of
pages with between 10i/6 � 1 and 10(i�1)/6 � 1 inbound links.
Although the tail of the distribution continues to fit a power law,
the body appears roughly lognormal, with a sharp and singular
mode, indicating that a plurality of company homepages have
between 99 and 146 inbound links.

Diamonds in Fig. 2 display the connectivity distributions of
company homepages, university homepages, scientist
homepages, and newspaper homepages on log-log scales. All
four display the same qualitative shape—unimodal body and
power law tail—although the modes vary among the different
categories of pages. Heavy tails indicate that a handful of popular
pages still gain a disproportionate percentage of all inbound
links. Nevertheless, among less popular web pages of the same
type, the distribution of inbound links is more evenly balanced.
Many web pages can fare well when compared against the mode
of all competing pages within the same category. Relative to
their community, winners don’t quite ‘‘take all.’’ Losing sites and
mediocre sites attract a considerably higher proportion of links
than would be the case under a pure power law distribution.

It is an open question exactly how peaked distributions for
subsets of the web like those in Figs. 1 and 2 sum together to
produce the nearly pure power law for the web as a whole. We
conjecture that the vast majority of subsets (or subsets contain-
ing the vast majority of pages) exhibit a nearly zero mode and
dominate this sum, though more investigation is needed.

Network Growth Model
Generative Process Description. We employ a generative model of
network growth to explain the observed connectivity distribu-

tions for the web, for web categories, and for other social
networks. The model is similar to other generalized BA models
recently developed independently by other authors (20–23). The
network begins with m0 vertices. At each time step t, one vertex
and m edges are added to the network. In the BA model, all m
edges connect the new vertex with an old vertex according to
preferential attachment: the probability �(ki) that an edge
connects to vertex i is proportional to ki , where ki is the current
number of edges incident on vertex i.

We presume instead that every vertex has at least some
baseline probability of gaining an edge. Both endpoints of edges
are chosen according to a mixture of probability � for prefer-
ential attachment and 1�� for uniform attachment. The prob-
ability that an endpoint of a new edge connects to vertex i is

��ki� � �
ki

2mt
� �1 � ��

1
m0 � t

, [1]

where m0 � t is the total number of vertices and 2mt is the total
connectivity at time t. Edge endpoints are chosen symmetrically,
rather than pinned to the newest vertex. Solitary vertices are not
destined to remain forever disconnected. Under preferential
attachment alone, sites that are already rich in links tend to get
richer, resulting in a nearly pure power law distribution over
connectivities. On the other hand, with the addition of a
component for uniform attachment, the poorer sites (with some
luck) can get rich too. Intuitively, the two growth components
can be viewed as capturing two common behaviors of web page
authors: (i) creating links to pages that the author is aware of
because they are popular, and (ii) creating links to pages that the
author is aware of because they are personally interesting or
relevant, largely independent of popularity.

We generated a simulated network by using Eq. 1, with
parameters set to model the company homepages data: t and 2m
are set to the actual number of web pages (4,923) and the average
number of inbound links per page (2,712), respectively. The seed
set size m0 is set to zero. The only tuning parameter, �, is set
according to a nonlinear least-squares fit of the analytic solution
(Eq. 3) to the data (resulting in � � 0.950). Multiple edges
between two vertices are allowed, although self-edges are not.
Circles in Fig. 1 plot the resulting connectivity histogram, which
corresponds very well with the true distribution. Circles in Fig.
2 display simulation results for all four data sets on log–log scales,
again showing good agreement with empirical measurements.

Notice that the simulation builds a graph among subset
members only, whereas empirical data includes inbound links
originating from the entire web. There are two ways to interpret
the model to reconcile this difference. First, one can think of the
model as a prescription not for graph generation, but simply for
connectivity growth, where each vertex increments its connec-
tivity independently according to Eq. 1; this is the same abstrac-
tion adopted in other models (20, 22). Second, one can interpret
an edge between vertex i and vertex j as a path between i and j,
possibly traversing outside subset boundaries (with both end-
points being inbound links).

Finally, we note that the model can be easily generalized into
a directed graph model. Two parameters �in and �out encode
mixture probabilities for inbound and outbound links. The
source of each new edge is chosen according to Eq. 1 using �out
and the destination according to Eq. 1 using �in. Simulation and
analytic results describing inbound (or outbound) connectivity
growth are unaffected by this modification, modulo a factor of
two.

Analytic Solution. With a continuous mean-field approximation
similar to that used by Barabási and Albert (18), we can derive
the connectivity distribution for the model in closed form.

Fig. 1 Diamonds plot the empirically observed connectivity distribution for
company homepages. Circles display the histogram resulting from a simula-
tion of the model, with parameters t � 4,923, m � 1,356, and � � 0.950 set to
match the company data. The dashed line marks the analytic solution (Eq. 3)
instantiated with the same parameters.
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Assuming that t �� m0, the probability that a vertex has
connectivity k is

Pr�k� � �2m�1 � ��	
1
���k � 2m�1 � ��	 � 1 �

1
� [2]

In the limit as k 3 
, the density Pr(k) is proportional to
k�(1�1/�), or a power law with exponent � � 1 � 1��. For
example, if � � 0.5, then � � 3, the same as predicted in the BA
model. Mixture parameters � of 0.909 and 0.581 yield exponents
of 2.10 and 2.72, respectively, the empirically observed expo-
nents for inbound and outbound web links (11). Other values for
� yield alternative power law exponents.

Our log-scale histograms in Figs. 1 and 2 used exponentially
increasing bucket sizes. We can perform an analogous transfor-
mation of the probability density (Eq. 2), to facilitate comparison
on log-scale plots. We substitute k � 10k�/6 into the cumulative
distribution, take the derivative with respect to k�, and substitute
back by using k� � 6log10 k. The resulting function displays the
instantaneous probability mass at each k, where the widths of the
infinitesimal ‘‘buckets’’ dk are constant on the logarithmic scale.

This transformed density Pr̃(k), suitable for log-scale visualiza-
tion, is

Pr̃�k� �
ln10

6
� �2m�1 � ��	

1
��k���k � 2m�1 � ��	 � 1 �

1
�. [3]

The maximum of this function, corresponding to the mode of the
distribution on a log scale, occurs at k � 2m(1 � �). The location
of the mode is directly proportional to m, the rate of edge
additions per time step. If � � 0.5, for example, then the mode
is simply m, or the number of edges added per vertex. As the
growth rate of edges increases compared with that of vertices, the
mode shifts toward higher connectivities k. As the mixture
parameter � approaches 1, or as m approaches 0, the distribution
approaches a pure power law, and the mode appears at much
lower connectivities.

Related Models. Dorogovtsev et al. (20) and Levene et al. (22)
independently propose similar generalizations of the BA model
(the addition of a uniform component), motivating it in part as
a natural way to parameterize the power-law exponent. Doro-

Fig. 2 Diamonds display log–log histograms of inbound connectivities for category-specific homepages, and inbound and outbound connectivities for random
web pages. Circles mark the connectivity distributions, with m0 � 0, t set equal to the number of web pages, 2m set equal to the average number of inbound
links per page, and � chosen according to a nonlinear least-squares fit. Dashed lines indicate the analytic solutions (Eq. 3).
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govtsev et al. (20) solve for the exact degree distribution, showing
that BA’s mean-field approximation is correct in determining
the asymptotic power-law exponent; the authors go on to study
the connectedness properties of the network as it grows (21).
Levene et al. (22) reformulate the growth process in terms of an
urn transfer model, enabling them to obtain exact solutions in
certain cases. Albert and Barabási (24) have proposed their own
extension of their original model. Their augmented model
involves a parameterized mixture of three processes: vertex
additions, edge additions, and edge rewirings. The combination
of these three processes leads to a connectivity growth function
that is roughly a sum of uniform and preferential terms. Klein-
berg et al. (23) propose a model in which some edges are added
at random and some edges are copied from existing vertices,
again leading to a mixture of uniform and preferential influences
on network growth. Even Simon (25) in 1955 invokes a similar
process to explain Estoup–Zipf word frequency distributions.
Although most authors point out that the generalized form is
flexible enough to admit any asymptotic power law exponent in
the range (2, 
), we focus on the fact that the same single
additional degree of freedom is also sufficient to explain the
often large deviation from power law behavior observed in the
low-connectivity region.

Web Data and Model Comparisons. The model’s ability to fit both
the body and the tail of typical degree distributions is especially
evident for category-specific web data. Fig. 2 illustrates the fit
between the model and the actual connectivity distributions for
company, university, newspaper, and scientist homepages. The
figure overlays web data, simulation data, and the mean-field
solution (Eq. 3) for the four sets of web pages on log–log scales;
Fig. 1 displays the same information on a log-linear scale for the
company homepages. Any discrepancy between the analytic
solution and the simulation is a result of the mean-field approx-
imation. For the simulation and the analytic solution, the model
parameters t and 2m are set to the number of web pages and the
average number of inbound links per page, respectively. The seed
set size m0 is set to zero and � is optimized by using a nonlinear
regression. In all four cases, the model distributions fit very
closely to the true distributions, capturing the same unimodal
body and power law tail observed in the data.

Note that the only tuning parameter, �, affects both the mode
and the slope of the tail, yet a single best-fit � captures both
dimensions well. We also computed distributions for inbound
and outbound links for the web as a whole, by using a collection
of 100,000 pseudorandom web pages, sampled from roughly one
billion URLs in Inktomi Corporation’s Webmap. The model fits
these distributions closely as well; moreover, the mixture param-
eters � imply power law slopes � � 1 � 1�� precisely in line with
previous measurements (11). Table 1 reports the best-fit param-
eters �, modes, and power law exponents � for the four data sets
and for the web as a whole.

The distribution of links to university homepages exhibits the
largest deviation from a power law; on the other end of the
spectrum, the distribution of inbound links on the web as a whole
is closest to a pure power law. In all cases studied, mixture
parameters � are greater than 0.5. Thus, preferential attachment
appears to play a larger role in web link growth than does
uniform attachment. The growth of links to company homepages
(� � 0.950) and to newspaper homepages (� � 0.948) is mostly

dominated by the ‘‘rich get richer’’ process of preferential
attachment, whereas link growth on scientist homepages (� �
0.602) and university homepages (� � 0.612) suggest a more
balanced mixture of preferential and uniform terms. The model
also appears consistent with the shape of connectivity distribu-
tions reported for the graph of actor collaborations, the networks
of western United States power stations, the citation pattern
among publications, and outbound links from subsets of the web
(10). The distribution of file sizes on the web is also qualitatively
similar to our category-specific link distributions, with a log-
normal body and a power law tail (6). Previous studies charac-
terized the body and tail separately (6); Eq. 3 (when interpreted
purely as a growth model rather than a graph generation
model) serves as a single-function alternative for describing
the full distribution.

Conclusions
The addition of pages and links to the web is a distributed,
asynchronous, complex, and continual process: to an outside
observer, fine-grained changes must appear almost haphazard.
Yet, when examined on the large, discernible patterns emerge (2,
3, 5, 6, 8, 11), some of which are shared with other social and
biological networks (10, 16, 17). For one, the distribution of the
number of links to (and from) a page has been shown to follow
a power law over many orders of magnitude (10–12). We
demonstrate that, among web pages of the same type, the body
of the distribution of inbound links deviates strongly from a
power law, exhibiting a roughly log-normal shape. A generative
model incorporating uniform as well as preferential attachment
explains data from the web as a whole, as well as category-
specific data from company, university, newspaper, and scientist
homepages.

As commerce and communication move to the web, the
dynamics of link accumulation—at both global and local granu-
larities—can strongly influence competition and diversity in
business and society. Improved tools for characterizing and
modeling these dynamics will have significant scientific and
commercial value (23). Beyond the web, understanding com-
monalities among diverse network types promises to enrich
our understanding of the evolution of social and ecological
structures.
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