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In this paper we describe the winning entry of the time-series prediction competition which was
part of the International Workshop on Advanced Black-Box Techniques for Nonlinear Modeling,
held at K. U. Leuven, Belgium on July 8–10, 1998. We also describe the source of the data
set, a nonlinear transform of a 5-scroll generalized Chua’s circuit. Participants were given 2000
data points and were asked to predict the next 200 points in the series.
The winning entry exploited symmetry that was discovered during exploratory data analy-

sis and a method of local modeling designed specifically for the prediction of chaotic time-series.
This method includes an exponentially weighted metric, a nearest trajectory algorithm, inte-
grated local averaging, and a novel multistep ahead cross-validation estimation of model error
for the purpose of parameter optimization.

1. Introduction

The prediction of chaotic time-series is a challeng-
ing problem for nonlinear modeling techniques. Al-
though local instability on attractors prohibits ac-
curate long-term predictions, short term predictions
can be made with varying degrees of accuracy de-
pending upon the technique that is used.
A time-series prediction competition sponsored

by the Santa Fe institute was held in 1991. The

purpose of the competition was twofold: first, to
bring together researchers from diverse disciplines
that study time-series (physics, biology, economics,
etc.) and quantitatively compare different ap-
proaches within a common domain of problems.
Second, the competition was held to incite collec-
tive discussion and research on common problems
within the field of time-series analysis.
The K. U. Leuven competition was held to

take a current assessment of where this discussion
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has been led to and to also, give a fresh quanti-
tative evaluation of leading time-series prediction
techniques.
The competition data set consisted of 2000

points1 generated by a nonlinear transform of a 5-
scroll generalized Chua’s circuit. The data set is
shown in Fig. 2. The data set was made available
in November 1997 and the deadline for entries was
in April 1998. No information was given about the
source of the data. Participants were asked to pre-
dict the next 200 points in the series. Seventeen
entries were submitted.
The winning entry in the competition was gen-

erated by a local modeling method that is described
in this paper. The method was inspired by the suc-
cess of the second place entry in the Santa Fe com-
petition [Sauer, 1994] and the success of local mod-
els as reported by other researchers [Casdagli et al.,
1992; Farmer & Sidorowich, 1988; Kugiumtzis et al.,
1998]. Other entries in the K. U. Leuven competi-
tion that incorporated local models also performed
very well [Suykens & Vandewalle, 1998a, 1998b].
This paper is organized as follows. Section 2 de-

scribes the origin of the competition data set. Sec-
tion 3 describes a general approach to time-series
prediction including assumptions about the source
of the time-series, issues that arise when applying
a local model to this type of problem, and some
innovations that can improve the accuracy of lo-
cal models for time-series prediction. Section 4 de-
scribes the exploratory data analysis, user specified
decisions and the parameter optimization that gen-
erated the winning entry.

2. Origin of Data

Consider the following generalized Chua’s circuit

ẋ1 = α[x2 − h(x1)]

ẋ2 = x1 − x2 + x3

ẋ3 = −βx2

(1)

with piecewise-linear characteristic

h(x1) =m2q−1x1

+
1

2

2q−1
∑

i=1

(mi−1 −mi)(|x1 + ci| − |x1 − ci|)

(2)

where q denotes a natural number. A complete
family of n-scroll attractors, allowing an even and
odd number of scrolls, can be obtained from this
circuit (see [Suykens et al., 1997]). For the pa-
rameters α = 9, β = 14.286 and the vectors
m = [m0m1 · · ·m2q−1], c = [c1 c2 · · · c2q−1] one
obtains

• q = 1: double scroll (2-scroll) [Chua et al., 1986;
Chua, 1994; Madan, 1993]

m = [−1/7 + 2/7]

c = 1
(3)

• q = 3: 5-scroll [Suykens et al., 1997]

m = [0.9/7 − 3/7 3.5/7 − 2.7/7 4/7 − 2.4/7]

c = [1 2.15 3.6 6.2 9] . (4)

In order to generate the competition data we have
selected the 5-scroll attractor (see Fig. 1).
The generalized Chua’s circuit was simulated

with the initial state vector [0.1 −0.2 0.3]T using
a Runge–Kutta integration rule (ode23 in Matlab).
The time-series was generated by taking a nonlinear
combination of the three state variables,

y =W tanh(V x) , (5)

where x is the three-dimensional state vector and
the nonlinearity is a multilayer perceptron with

Fig. 1. The 5-scroll attractor [Suykens et al., 1997] from
which the competition data have been generated. The
marked part of the trajectory corresponds to the data which
have to be predicted.

1The data set was available at http://www.esat.kuleuven.ac.be/sista/workshop/
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Fig. 2. Competition data. The first 2000 points (data before the red vertical line) were given to participants. The next 200
points (after the red vertical line) were to be predicted and judged according to the mean squared error (MSE).

three hidden units, interconnection matrices

W = [−0.0124 0.3267 1.2288] ,

V =









−0.1004 −0.1102 −0.2784

0.0009 0.5792 0.6892

0.1063 −0.0042 0.0943









and a zero bias vector. This multilayer perceptron
hides the underlying structure of the attractor.
The resulting time-series y(t) is shown in Fig. 2.

2000 data points were given (data before the verti-
cal line) and the aim was to predict the next 200
data points (between the two vertical lines) so as to
minimize the mean squared error (MSE),

MSE
∆
=
1

200

2200
∑

i=2001

(yi − ŷi)
2 (6)

In Fig. 1 we have marked with a star the data
points that were to be predicted. One can observe
that the 2000 data points cover the whole attrac-
tor, i.e. the 5 scrolls. Within the 200 data points
to be predicted the time-series makes a transition
between scrolls that is difficult to predict.
A physical implementation of a related fam-

ily of n-double scroll attractors has been given in
[Arena et al., 1996a, 1996b]. Further extensions to
hyperchaotic n-double scroll hypercubes in cellular
neural networks (one-dimensional array) have been

proposed in [Suykens & Chua, 1997]. The n-scroll
attractors have been used for secure communication
applications exploiting chaos, such as the method
of nonlinear H∞ synchronization of chaotic Lur’e
systems in [Suykens et al., 1997; Suykens et al.,
1997]. Steps towards unmasking chaotic commu-
nication schemes have been taken in [Short, 1994,
1996; Yang, 1995], which are related to the nonlin-
ear system identification. The latter is a motivation
for understanding the limits of performance of time-
series prediction methods.

3. Local Modeling

Local models generate predictions by finding seg-
ments of the time-series that closely resemble the
segment of the points immediately preceding the
point to be predicted. The prediction is an estimate
of the average change that occurred immediately af-
ter these similar segments of points.
Previous studies have shown that forecasting

methods based on local models produce predictions
that are better than or comparable to competing
models and they have a number of favorable prop-
erties not shared by other methods [Casdagli et al.,
1992; Farmer & Sidorowich, 1987, 1988; Liu et al.,
1997; Sauer, 1994].
To use local models for time-series predic-

tion there are many decisions that one must
make. For example, how should local be defined
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mathematically, how should the input vector be
constructed, what should the model be designed to
predict, what type of local model should be used,
and how values for model parameters should be cho-
sen. This section describes how these decisions were
made for the method of local modeling that gener-
ated the winning entry.

3.1. Assumptions

The local modeling method described here was de-
signed to predict time-series generated by nonlinear
dynamic systems that can be described by a set of
nonlinear ordinary differential equations:

ẇt = fc(wt) (7)

yt = gc(wt) (8)

where wt ∈ ℜ
ns is the state of the system, ns is the

order of the system, and yt ∈ ℜ
1 is the time-series

to be predicted. An equivalent discrete-time system
also exists,

wt = fd(wt−1) (9)

yt = gd(wt) (10)

where we have assumed that the sampling period
is one for ease of presentation. This system can be
thought of as a nonlinear oscillator as illustrated in
Fig. 3.
We assume that fd(wt) and gd(wt) are smooth

in the sense that they have continuous and bounded
derivatives. We also assume that the system is time
invariant, that fd(wt) has a finite number of equi-
libria, and that the order of the system is small
(ns < 10).
Many equivalent mathematical representations

exist for any given set of ordinary differential equa-
tions. For the type of nonlinear dynamic system
discussed here Takens has shown that an equivalent
representation exists where the equivalent state is
defined as a finite window of past values of the time-
series [Takens, 1981]. This is illustrated in Fig. 4.
This window is called a time delay embedding and
is defined as

xt
∆
= [yt, yt−δ, yt−2δ, . . . , yt−(m−1)δ ] (11)

where m is the embedding dimension and δ is the
embedding delay, both of which are natural num-
bers. Takens’ work was later generalized and shown

Fig. 3. Nonlinear oscillator. Chaotic time-series generated
by nonlinear dynamic systems can be thought of as the out-
put of a nonlinear oscillator as illustrated in this diagram.

Fig. 4. Equivalent oscillator. Takens has shown that the
nonlinear oscillator shown in Fig. 3 has an equivalent repre-
sentation shown here.

to apply to a broader class of systems by Sauer
et al. [1991].
This theorem is important because it implies

that an exact one-step ahead prediction is possible
given a finite window of previous values:

yt+1 = g(xt) (12)

= g(yt, yt−δ, yt−2δ, . . . , yt−(m−1)δ) (13)

for some unknown function g(xt). This effectively
reduces the one-step ahead prediction problem to a
standard nonlinear modeling problem.
Multistep ahead predictions can be generated

by making further iterations. For example, if the
embedding delay is 1 then the following equations
illustrate how iterative prediction can be used to
predict more than one-step ahead

ŷt+1 = ĝ(yt, yt−1, yt−2, . . . , yt+1−m)

ŷt+2 = ĝ(ŷt+1, yt, yt−1, . . . , yt+2−m)

ŷt+3 = ĝ(ŷt+2, ŷt+1, yt, . . . , yt+3−m)

...

(14)
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The generalization to other values of δ is straight-
forward.
Any of the standard nonlinear models, such as

neural networks, radial basis functions, local mod-
els, or support vector machines could be used to
create an approximation for g(xt). However, a more
accurate model can be built if the aforementioned
assumptions are incorporated into the model struc-
ture. Several techniques that tailor local models
specifically for time-series prediction are described
in the following section.

3.2. Introduction to Local Modeling

Generating a prediction with a local model can gen-
erally be divided into two steps: first, the k nearest
neighbors in the data set of a given input query
vector xτ [Eq. (11)] are found and, second, a simple
model is constructed using only the k neighboring
points to generate the prediction ŷτ+1.

3.2.1. Local Model Types

The second step, building a model given k data
points, is an unusual function approximation prob-
lem because the dimension of the input vector (m)
is often large compared to the number of data points
(k) that are used to construct the model. Most non-
linear modeling methods are not viable under these
conditions because they require that the number of
data points be larger than the dimension of the in-
put vector. Models that are computationally expen-
sive to construct are also not viable since a different
model must be constructed for every query. Instead
a relatively simple model must be used that can be
cheaply constructed and evaluated with just a few
data points.
For this reason, the two most common types of

local models are local averaging models and local
linear models. Local linear models generally pro-
duce more accurate predictions but are very sen-
sitive to the method of regularization [Kugiumtzis
et al., 1998] and generally require more neighbors
than local averaging models. Local averaging mod-
els can be used with smaller neighborhoods, are
more stable, and are often more accurate for very
short data sets. Since only 2000 points were avail-
able in the competition data set and because of its
simplicity a local averaging model was used to gen-
erate the winning entry.

3.2.2. Discontinuities

One commonly mentioned disadvantage of local

models is that they generate discontinuous pre-
dictions [Casdagli et al., 1992; Lillekjendlie &
Christophersen, 1994; Liu et al., 1997] For exam-
ple, consider a local averaging model:

ŷτ =
1

k

k
∑

i=1

yci (15)

where ci is the data set index of the ith nearest
neighbor. In some regions of the input space where
two data points are nearly equidistant to the input
vector, an arbitrarily small perturbation can result
in a different kth nearest neighbor. This can cause
a discontinuous change in the summation above,
which in turn causes a discontinuous change in ŷτ .
This problem can be remedied by decreasing

the influence of neighbors that are relatively far
away. For example, consider the weighted average

ŷτ =

k
∑

i=1

yciwi

k
∑

i=1

wi

. (16)

where wi are non-negative weights that are a mono-
tonically decreasing function of the distance to the
ith nearest neighbor.
It is generally accepted that model accuracy is

insensitive to the type of weighting function used
[Atkeson et al., 1997]. A good choice is the biweight
function,

wi =

(

1−
d2i
d2k+1

)2

(17)

where di is the distance to the ith nearest neigh-
bor. Since the biweight function is smooth in the
sense that it has a continuous first derivative, the
weighted average produces an estimate that is also
a smooth function of the input vector.

3.2.3. Fast nearest neighbor algorithms

Another common criticism of local models is that
they are computationally expensive. For most lo-
cal modeling techniques the majority of the com-
putation is used finding the k nearest neighbors in
the data set. For time-series prediction problems
the data sets can be very large and the computa-
tional cost of the näıve brute force approach can be
prohibitive.
To solve this problem a fast nearest neighbor al-

gorithm can be used. Many of these algorithms fall
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into two categories: axis-partitioning algorithms
and triangle inequality-based algorithms. Axis-
partitioning algorithms divide the m-dimensional
input space into hypercubes and establish a lower
bound on the distance from the query point to all
points contained in each hypercube. If the lower
bound is greater than the distance to the kth near-
est neighbor found so far, all of the points contained
by the hypercube can be eliminated without explic-
itly calculating the distance to each point [Friedman
et al., 1977; Kim & Park, 1986; Nene & Nayar, 1997;
Niemann & Goppert, 1988; Tai et al., 1996].
Triangle inequality-based algorithms use the

triangle inequality to find lower bounds on the dis-
tance to points. If the lower bounds is greater than
the distance to the kth nearest neighbor found so
far, the point can be eliminated from considera-
tion without explicitly calculating the distance to
that point. Subsets of points can also be elimi-
nated by finding a lower bound on the distance to
an enclosing hypersphere [Fukunaga & Narendra,
1975; Kalantari & McDonald, 1983; Kamgar-Parsi
& Kanal, 1985; McNames, 1998; Micó et al., 1996;
Vidal, 1986].

If the data set variables are independently dis-
tributed and there are relatively few of them (i.e. a
low-dimensional space) then both types of nearest
neighbor algorithms perform drastically better than
the brute force approach. In low dimensions most
of these algorithms achieve O(log nc) search time
and require only O(nc log nc) preprocessing time
and storage, where nc is the number of points in
the data set.

In high-dimensional spaces, say m > 15, the
bounding techniques of both types of algorithms
are ineffectual and the performance is much worse.
In fact, the computational cost of these algorithms
can be significantly higher than the brute force ap-
proach due to overhead imposed for ordering the
search of the input space and for calculating the
lower bounds. Generally, the search time increases
exponentially with m up to a limit where the dis-
tance is calculated for nearly all of the points in the
data set.

If all the points in the data set lie in a low-
dimensional subspace of ℜm, the triangle inequality
algorithms have an advantage over axis-partitioning
algorithms — they can achieve search times com-
parable to low-dimensional data sets. If the dimen-
sion of the subspace is held constant, the search
time grows roughly linearly with m rather than ex-
ponentially. This is especially relevant when the

data points are taken from a time-series generated
by a nonlinear dynamic system because the points
will often lie on a manifold of low dimension that
is independent of m [Gershenfeld & Weigend, 1994;
Sauer et al., 1991; Takens, 1981].
Figure 5 illustrates the advantage of using a

fast triangle inequality-based algorithm when the
points lie on a low-dimensional manifold, which
is always the case for time-series generated by
the type of nonlinear dynamic systems discussed
here (Sec. 3.1). This figure shows the average
query time for four different nearest neighbor al-
gorithms applied to the competition data set. The
trace labeled Brute represents the brute force al-
gorithm. The trace labeled KD Tree represents an
axis-partitioning algorithm proposed by Friedman
et al. [1977]. The traces labeled FN and FNM rep-
resent triangle inequality algorithms proposed by
Fukunaga and Narendra [1975] and McNames
[1998] respectively.

3.3. Nearest neighbor metrics

Local models are constructed using only the near-
est points on the k nearest neighboring trajectory
segments, as described in the next section. Choos-
ing an appropriate measure of nearness, or metric,
is an important decision that can strongly affect
accuracy [Garćıa et al., 1996; Murray, 1993; Tanaka
et al., 1995]. The most common metric is the square
of the Euclidean distance between the query vec-
tor xτ and a vector taken from the data set, xt
[Eq. (11)]

DE(xτ , xt)
∆
=
m−1
∑

i=0

(yτ−iδ − yt−iδ)
2 (18)

In this case the only parameters are the embed-
ding dimension (m) and the embedding delay (δ). If
the time-series is generated from a continuous-time
dynamic system then the Euclidean distance is an
estimate of the integrated squared error,

ISE(xτ , xt)
∆
=
1

δT

∫ mδT

0
(yτT−υ − ytT−υ)

2dυ (19)

≈
m−1
∑

i=0

(yτ−iδ − yt−iδ)
2 (20)

= DE(xτ , xt) (21)

where T is the sampling period. If the window
length, mδT , is fixed then smaller values of δ pro-
duce more accurate estimates of the ISE. However,
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Fig. 5. Average query time to find 5 nearest neighbors in the Leuven time-series with 1900 points. The query vectors were
taken from the time-series continuation that was released after the competition deadline. Brute is the brute force algorithm.
KD Tree is an axis partitioning algorithm. FN is a triangle inequality algorithm proposed by Fukunaga and Narendra, [1975]
and FNM is a modified version of the same algorithm.

smaller values of δ also require more computation
so δ is treated here as a user-selected parameter
that should be chosen as small as possible within
the limits of available computational resources.
Choosing a more general measure of nearness

with more parameters can greatly increase model
accuracy. For example, a diagonally weighted Eu-
clidean distance,

DWE(xτ , xt)
∆
=
m−1
∑

i=0

λi(yτ−iδ − yt−iδ)
2 (22)

could be used where λi ≥ 0∀i. However, short time-
series are often too short to accurately estimate
the best m parameters (λi) and optimizing over so
many parameters is computationally impractical for
longer time-series.
Murray has proposed using an exponentially

weighted diagonal metric similar to the one de-
scribed by the following equation,

Dλ(xτ , xt) =
m−1
∑

i=0

λi−1(yτ−iδ − yt−iδ)
2 (23)

where 0 < λ ≤ 1 [Murray, 1993]. Although this
metric is not optimal [Tanaka et al., 1995] it is in-
tuitively appealing because the variables closest in
time to the prediction are given exponentially more

weight. It is especially appropriate for chaotic sys-
tems whenm is large because neighboring states are
known to diverge exponentially with time.

The metric Dλ is defined by the parameters m,
δ and λ. Assuming δ is fixed, if m is sufficiently
large and λ is sufficiently small then the influence
of the later elements of the sum multiplied by λi−1

(for large i) will have a negligible influence. Thus,
if a model is constructed with m sufficiently large,
only λ will affect model accuracy. This can be
implemented practically by defining a cutoff value,

λmin
∆
= λm−1, for which larger values of i in Eq. (23)

will have a negligible effect on Dλ:

λ = λ
1

(m−1)

min (24)

Dλ(xτ , xt)
∆
=
m
∑

i=1

λi−1(yτ−iδ − yt−iδ)
2 (25)

≈
∞
∑

i=1

λi−1(yτ−iδ − yt−iδ)
2 . (26)

This modified metric has one free parameter (m)
and two user-selected parameters (δ and λmin). Fig-
ure 6 shows the weight λi−1 of each element in the
sum for different values of m. Since the model ac-
curacy is sensitive to the value of m it is usually
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Fig. 6. The weight, λi−1, of each element in the metric sum-
mation given in Eq. (23) for various values of the embedding
dimension (m).

worth the computational cost to find the value that
maximizes model accuracy.

3.4. Nearest trajectories

One of the differences between a regression prob-
lem and a time-series prediction problem is that it
is possible to increase the number of data points by
upsampling, or interpolating, the time-series; more
data can be generated without adding any new in-
formation. This is problematic because a signal
sampled at a high enough rate will have all k of
its nearest neighbors adjacent to each other in the
time-series. For example, in Fig. 7 many of the
points on the nearest trajectory segment are closer
than the points on the third nearest trajectory
segment.
This problem can be solved by finding the near-

est trajectory segments instead of the nearest neigh-
bors [Farmer & Sidorowich, 1988]. Fortunately, it
is possible to modify existing nearest neighbor al-
gorithms to find the nearest trajectory segments.
This is advantageous because, as described previ-
ously, much research has gone into the development
of efficient nearest neighbor algorithms.
The nearest trajectory modification described

by McNames [1998] is repeated here. Suppose a
nearest neighbor algorithm has found a point xi
that is closer than the k nearest points found by
the algorithm so far.

1. Calculate the distance to the points preceding
xi, {xi−1, xi−2, . . .}, until the nearest local min-
imum is found. Repeat this procedure for the
points succeeding xi. The local minimum found
by this procedure, xmin, is the closest point in
the trajectory segment.

Fig. 7. Trajectory segments from the Lorenz time-series in
a two-dimensional embedding space. The query point, xτ , is
shown by a diamond. The three nearest points on each of the
three nearest trajectory segments are shown by red squares.
The inner green circle shows the distance to the third near-
est neighbor and the outer green circle shows the distance
to the nearest point on the third nearest trajectory segment.
Note that the three nearest neighbors all lie on the nearest
trajectory segment.

2. Calculate the distance to the points preceding
xmin until either a maximum is found or the dis-
tance becomes greater than the distance to the
kth nearest neighbor found so far. Call this point
xmax. Eliminate all points between xmin and
xmax from consideration by the nearest neighbor
algorithm.

3. Repeat the previous step for the points succeed-
ing xmin.

4. Replace the kth nearest neighbor found so far
with xmin and continue with the nearest neigh-
bor algorithm.

3.5. Local averaging models

Although local averaging models are reasonably ac-
curate at interpolation they are generally poor at
extrapolation. Since the local model described pre-
viously is a weighted average, the output will never
be greater than or less than any of the points
that make up the average. In high-dimensional
spaces this can be a significant disadvantage since
nearly every point is an outlier [Friedman, 1991].
For example, Fig. 8 shows a prediction generated
by averaging the next point of the three nearest
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Fig. 8. Trajectory segments from the Lorenz time-series in
a two-dimensional embedding space. The query point, xτ ,
is shown by �. The prediction generated by direct averag-
ing is shown by H. The prediction generated by integrated
averaging is shown by N.

trajectories. Because two of the trajectories are
above the query point the predicted next point is
biased upward.
One way to fix this problem is to build a model

that predicts the change, or residual, yt+1 − yt,
rather than yt+1 directly. The final prediction can
then be found by integrating from the current state.
The equations for direct local averaging (ŷD, τ ) and
integrated local averaging (ŷI, τ ) are given below:

ŷD, τ
∆
=

k
∑

i=1

wiyci

k
∑

i=1

wi

(27)

ŷI, τ
∆
= ŷI, τ−1 +

k
∑

i=1

wi(yci − yci−1)

k
∑

i=1

wi

(28)

where wi are the weights defined in Eq. (17) and ci
is the data set index of the ith nearest neighbor.
Figure 8 illustrates why integrated local aver-

aging may be better than direct local averaging. In
this case the integrated local average is much closer
to the actual yτ than the direct local average.

For long-term predictions these methods have
very similar performance. However, if the time-
series is a smoothly varying function of time then
integrated local averaging is usually more accurate
for very short-term predictions.

3.6. Assessing model accuracy

The type of local averaging discussed so far has
four parameters: the embedding dimension (m), the
embedding delay (δ), the minimum metric weight
(λmin), and the number of neighbors (k). Reason-
able values of λmin and δ can be chosen by the
user but there is no obvious means of picking the
best values of m and k, which can strongly affect
the model accuracy [Casdagli et al., 1992; Casdagli
& Weigend, 1994; Gershenfeld & Weigend, 1994;
Smith, 1994]. However, these two parameters can
be optimized globally if an accurate estimate of the
model accuracy can be calculated cheaply.
One advantage that local models have over

global models is that it is possible to calculate the
leave-one-out cross-validation error very cheaply.
This method begins by constructing a model to pre-
dict one step ahead with all but one of the nc points
in the data set. The prediction error for the omit-
ted point is calculated and the process is repeated
for all nc points. The average leave-one-out error is
used as a measure of the model accuracy.
Any of a variety of measures of error could be

used. Absolute error, squared error, and the coef-
ficient of correlation are common choices. For ex-
ample, if squared error is used the cross-validation
error is defined as

MSE1
∆
=
1

nc

nc
∑

i=1

(yi+1 − f
−(i+1)
i+1 (xi))

2 (29)

≈ E[(yt+1 − f
−(t+1)
t+1 (xt))

2] (30)

≈ E[(yt+1 − ft+1(xt))
2] (31)

where f
−(i+1)
i+1 (xi) is the model constructed to pre-

dict one step ahead with the (i+1)th point left out
of the data set and E[ ] denotes expectation.
A disadvantage of using one-step ahead cross-

validation error (OSCV) for parameter optimization
is that it does not take into account the model sen-
sitivity to errors in the input vector that occur with
iterated prediction [Eq. (14)]. Hence, the parameter
values that minimize the OSCV error are generally
not the same values that minimize the p-steps ahead
cross-validation error.
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It is better to choose an error measure that rep-
resents the cost of making poor predictions in the
application at hand. In many cases an average (pos-
sibly weighted) model accuracy over p-steps ahead
is appropriate,

MSE1, p
∆
=
1

pnp

p
∑

j=1

np
∑

i=1

(yi+j − f
−(i+1, i+p)
i+j (xi))

2

(32)

where np = nc − p + 1 and f
−(i+1, i+p)
i+j (xi) is the

model output j-steps ahead constructed with the
points (i+ 1) to (i + p) left out. Kantz and Jaeger
[1997] have argued that multi step ahead cross-
validation (MSCV) also reduces bias.
To reduce the computation required to calcu-

late MSE1, p, fewer than np terms could be used to
approximate the expected error. For example, win-
dows of p-points could be used that are spaced s
points apart.

MSE1, p ≈
1

pnv

p
∑

j=1

nv
∑

i=1

(yvi+j − f
−(vi+1, vi+p)
vi+j

(xvi))
2

(33)
where v1 = 1, v2 = s, v3 = 2s, and so on. Here nv
is the number of windows, or validation sets.
For large values of p and short time-series, re-

moving p values from the data set may significantly
affect the model that is constructed. In this case,
the cross-validation error will not be representative
of the expected error using all nc points. One ap-
proach to reduce this effect is to omit only the tra-
jectory segment that surrounds the point being pre-
dicted, yvi+ρ, instead of all p points.

4. The Winning Entry

The winning competition entry was generated us-
ing the method of local modeling described in the
previous section. The exploratory data analysis, se-
lection of user-specified parameters, and the model
analysis that was performed prior to the competi-
tion deadline is described in this section.

4.1. Measure of accuracy

Entrants were told that the predictions would
be compared using mean squared error [Eq. (6)].
Hence the cross-validation MSE of Eq. (33) was cho-
sen for the purpose of parameter optimization and
accuracy estimation. This is equivalent to mini-
mizing the average normalized mean squared error,

which is defined as

NMSEρ
∆
=

1

nv

nv
∑

i=1

(yvi+ρ − f
−(vi+1, vi+200)
vi+ρ (xvi))

2

1

n

n
∑

i=1

(yi − ȳ)
2

(34)
where yvi+ρ is the (vi + ρ)th point in the time-
series, vi is the index of the first point in the ith
validation set, and ȳ is the average value of yt.

f
−(vi+1, vI+200)
vi+ρ (xvi) is the prediction at time vi + ρ
of a model that has been iterated ρ times with the
points yvi+1, yvi+2, . . . , yvi+200 left out of the data
set.
Similarly, the normalized root mean squared er-

ror is defined as

NRMSEρ
∆
=
√

NMSEρ . (35)

NRMSEρ is a convenient measure of error because
it is independent of the scale of the time-series and
NRMSEρ = 1 can be interpreted as meaning the
model prediction error is no better than predicting
the sample mean ȳ, on average.

4.2. Exploratory data analysis

By visual inspection, the data set appeared to be
noise-free (Fig. 2). A plot of the power spectrum
(Fig. 9) indicated that the series had been sampled
at approximately five times the Nyquist frequency
and, therefore, little could be gained by upsampling
the time-series. This is also confirmed by consid-
ering that more than 99.3% of the estimated sig-
nal power is at frequencies less than one-tenth the
Nyquist frequency.
Further inspection indicated that the series

was probably chaotic with three unstable equilib-
ria at approximately −0.25, 0 and 0.25, as shown
in Fig. 10. The period and growth of the oscilla-
tions about the upper and lower equilibria visually
appeared to be the same. This manifested the pos-
sibility that the source of the time-series might be
symmetrical; that is, it may just as likely have gen-
erated the time-series reflected about the horizontal
axis (i.e. multiplied by −1), as shown in Fig. 11.
If the system was symmetrical a more accu-

rate model could be built using both the original
and reflected time-series. To determine if this was
reasonable for the purpose of prediction, the cross-
validation error on the original time-series was com-
pared for two models: one built with the original
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Fig. 9. The estimated power spectrum of the workshop time-series. The spectrum was estimated using Bartlett’s method of
periodogram averaging with four nonoverlapping windows. The x-axis has been scaled so that 1 represents half the Nyquist
frequency.

Fig. 10. The competition time-series. The three red horizontal lines show the approximate location of the three unstable
equilibria in the series.

time-series and the other built with both time-
series. Figure 12 illustrates that using both
time-series results in significantly less cross-
validation error than using only the original time-
series. Consequently, both time-series were used to
build the model that generated the winning entry.
It has since been shown that the actual system that
generated the time-series is noise-free and symmet-
ric (see Sec. 2).

Figure 12 also illustrates that the average pre-
diction error becomes worse than predicting the
sample mean (ȳ) after approximately 80 steps
ahead. However, this is only an average measure
of error and does not represent the expected error
for this particular prediction interval and data set.
The accuracy of any single prediction depends upon
many factors such as how densely the attractor is
covered by the data set in the prediction region and
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Fig. 11. The competition time-series reflected about the horizontal axis. The three red horizontal lines show the approximate
location of the three unstable equilibria in the series.

Fig. 12. Plot of the NRMSEρ as a function of ρ, the number of steps predicted ahead. The upper red trace shows the error
using only the original time-series. The lower blue trace shows the error using both the original time-series and the reflected
time-series.

the value of the largest Lyapunov exponent in the
prediction region.
It is now known that the prediction region con-

tained a single transition between scrolls (Sec. 2).
Near the transition local trajectories diverge very
rapidly which makes prediction after this point es-
pecially difficult.

4.3. Parameter selection
and optimization

The user-selected parameters that had to be chosen
are the minimum metric weight (λmin), the number
of points used to calculate the MSE (nv), and the
embedding delay (δ). All three of these parameters
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Table 1. Summary of local modeling method that generated the winning entry.

Preprocessing: Both the original data set and the reflected data set were used to construct the local model.

Nearest Neighbor Algorithm: ANNA as described by McNames [1998]. However, any nearest neighbor algorithm that

incorporates the nearest trajectory modification described in Sec. 3.4 could have been used.

Nearest Neighbor Metric: Exponentially weighted Euclidean [Eq. (25)] with user-selected parameters λmin = 0.05 and

δ = 2.

Local Model Type: Integrated local averaging [Eq. (28)]

Local Weighting: Biweight function [Eq. (17)]

Parameter Optimization: Global minimization of multistep ahead cross-validation mean squared error [Eq. (33) with

nv = 33].

Optimized Parameters: Embedding dimension: m = 16. Number of nearest neighbors: k = 1

Fig. 13. NRMSEρ as a function of the number of steps predicted ahead (ρ) and the embedding dimension (m). m = 4
minimized the one-step ahead cross-validation error and m = 16 minimized the multistep ahead cross-validation error. This
plot was generated using 200 cross-validation points.

were constrained only by limited computational re-
sources. The values that were selected are given in
Table 1. The choice of these parameters was fortu-
itous; slight changes to these parameters result in
worse predictions after the transition point, though
the predictions up to that point are much less
sensitive.
Both the embedding dimension (m) and the

number of neighbors (k) were chosen so as to mini-
mize MSE.2 Figure 13 shows the MSEρ for different

values of m and ρ. This figure illustrates the im-
portance of minimizing the average multistep ahead
cross-validation (MSCV) error rather than the one-
step ahead cross-validation (OSCV) error. If OSCV
had been used for parameter optimization a much
smaller value ofm would have been chosen (m = 22)
which would have had a larger MSCV and generated
a worse prediction.
Similarly, Fig. 14 shows the NRMSEρ for dif-

ferent values of k and ρ. The same problem with

2An equivalent approach was actually used to generate the winning entry where the embedding dimension (m) was held con-
stant at 50 and λ was optimized [Eq. (23)]. However, the method described here produces the same prediction and has the
advantages of being slightly cheaper computationally and the user-selected parameter is more intuitive (λmin instead of m).
See [McNames, 1998] for more details.
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Fig. 14. NRMSEρ as a function of the number of steps predicted ahead (ρ) and the number of neighbors (k). k = 5
minimized the one-step ahead cross-validation error and k = 1 minimized the multistep ahead cross-validation error. This
plot was generated using 200 cross-validation points.

Fig. 15. The dashed trace shows the winning competition entry and the full trace shows the true time-series. The method
used to generate the winning entry is summarized in Table 1.

OSCV is illustrated by this figure; the value of k
that minimized the average OSCV (k = 5) would
not have minimized the MSCV and would have gen-
erated a worse prediction.
The values ofm and k that minimized the cross-

validation error are given in Table 1. The winning
prediction generated by the model using these val-
ues is shown in Figs. 15 and 16. A summary of the
method that generated the winning entry is also
given in the table.

5. Conclusions

Takens’ theorem provides a sound theoretic basis
for using general nonlinear modeling methods for
time-series prediction. However, if the time-series
is generated by a nonlinear dynamic system and
exhibits chaotic behavior, a nonlinear model that
incorporates this knowledge will generally perform
better.
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Fig. 16. A continuation of the predicted data for the winning entry. An accurate prediction is obtained over a time horizon
of about 300 points. The dashed red trace shows the true continuation and the full blue trace shows the 1000-step ahead
prediction.

Several such modifications to local modeling
have been described in this paper including the
use of integrated local averaging, an exponen-
tially weighted Euclidean metric, a fast trian-
gle inequality-based nearest neighbor algorithm, a
nearest trajectory algorithm, and a novel multistep
ahead cross-validation method of accuracy estima-
tion for parameter optimization.
The prediction interval contained a single tran-

sition between scrolls. All five of the competition
entries that employed local modeling generated ac-
curate predictions up to this transition (about 80
steps ahead) [Suykens & Vandewalle, 1998a, 1998b].
A synergy of exploiting the data set symmetry, a
fortuitous choice of user-selected parameters, and
a method of local modeling tailored specifically to
chaotic time-series prediction produced the winning
entry.
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Garćıa, P., Jiménez, J., Marcano, A. & Moleiro, F.
[1996] “Local optimal metrics and nonlinear model-
ing of chaotic time-series,” Phys. Rev. Lett. 76(9),
1449–1452.

Gershenfeld, N. A. & Weigend, A. S. [1994] “The future
of time-series: Learning and understanding,” in Time-
Series Prediction, eds. Weigend, A. S. & Gershenfeld,
N. A., Santa Fe Institue Studies in the Sciences of
Complexity (Addison-Wesley), pp. 1–70.

Kalantari, I. & McDonald, G. [1983] “A data struc-
ture and an algorithm for the nearest point problem,”
IEEE Trans. Software Engin. SE-9(5), 631–634.

Kamgar-Parsi, B. & Kanal, L. N. [1985] “An improved
branch and bound algorithm for computing k-nearest
neighbors,” Patt. Recogn. Lett. 3, 7–12.

Kants, H. & Jaeger, L. [1997] “Improved cost functions
for modeling of noisy chaotic time-series,” Physica
D109, 59–69.

Kim, B. S. & Park, S. B. [1986] “A fast k-nearest neigh-
bor finding algorithm based on the ordered partition,”
IEEE Trans. Patt. Anal. Mach. Intell. 8(6), 761–766.

Kugiumtzis, D., Lingjærde, N. & Christophersen, N.
[1998] “Regularized local linear prediction of chaotic
time-series,” Physica D112, 344–360.

Lillekjendlie, D. K. & Christophersen, N. [1994] “Chaotic
time-series. Part II. System identification and pre-
diction,” Modeling, Identification and Control 15(4),
225–243.

Liu, Z., Ren, X. & Zhu, Z. [1997] “Equivalence between
different local prediction methods of chaotic time-
series,” Phys. Lett. A227, 37–40.

Madan, R. [1993] Chua’s Circuit: A Paradigm for Chaos
(World Scientific, Singapore).

McNames, J. [1998] “A nearest trajectory strategy for
time-series prediction,” in Proc. Int. Workshop on Ad-
vanced Black-Box Techniques for Nonlinear Modeling,
Katholieke Universiteit Leuven, Belgium, pp. 112–128.
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