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Abstract

This paper describes the software architecture of Stanley,
an autonomous land vehicle developed for high-speed
desert driving without human intervention. The vehi-
cle recently won the DARPA Grand Challenge, a major
robotics competition. The article describes the software
architecture of the robot, which relied pervasively on
state-of-the-art AI technologies, such as machine learn-
ing and probabilistic reasoning.

Introduction

The DARPA Grand Challenge was a major robot competi-
tion organized by the U.S. government to foster research and
development in the area of autonomous driving. The highly
popularized event required an autonomous ground robot to
traverse a 132-mile course through the Mojave desert in no
more than 10 hours. While in 2004, no vehicle traveled more
than 5% of the course, five vehicles finished in 2005, four of
them within the alloted time.

The DARPA Grand Challenge was in large part a soft-
ware competition. A skilled human driver would have no
difficulty traversing the terrain in a standard SUV. Without a
driver, however, the robot has to perform functions normally
provided by human drivers: it has to sense, decide, and act.
Thus, the methods required to win such a race fall into the
realm of autonomous robotics and AI.

This article describes the software architecture of Stanley,
Stanford’s entry in the DARPA Grand Challenge. The soft-
ware is capable of acquiring sensor data, constructing inter-
nal models of the environment, and making driving decisions
at speeds up to 38 mph. Major components of the software
are based on machine learning, probabilistic reasoning, and
real-time control. Probabilistic methods proved essential in
overcoming the measurement noise in various sensors. Ma-
chine learning was applied in two different ways: offline, to
tune various performance-related parameters, and online, to
endow the vehicle with the capability to adapt to the terrain.
The “glue” between these modules is a distributed architec-
ture that serves as an effective data pipeline for autonomous
robotic driving.
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This article provides a comprehensive description of Stan-
ley’s software architecture. Towards the end of this article,
we discuss results from the 2005 DARPA Grand Challenge.

Vehicle

Stanley (Fig. 1) is based on a diesel-powered Volkswagen
Touareg R5. The Touareg has four wheel drive, variable-
height air suspension, and automatic, electronic locking dif-
ferentials. To protect the vehicle from environmental impact,
the robot has been outfitted with skid plates and a reinforced
front bumper. A custom interface enables direct, electronic
actuation of both throttle and brakes. A DC motor attached
to the steering column provides electronic steering control.
Vehicle data, such as individual wheel speeds and steering an-
gle, are sensed automatically and communicated to the com-
puter system through a CAN bus interface.

Nearly all of the vehicle’s sensors are mounted on a cus-
tom roof rack (Fig. 1b). Five SICK laser range finders are
mounted pointing forward along the driving direction of the
vehicle, but at slightly different tilt angles. The roof rack also
holds a color camera for long-range road perception. Two
forward-pointed antennae of a RADAR system are mounted
on both sides of the laser sensor array. Further back, the roof
rack holds the primary Global Positioning System (GPS) an-
tenna, two antennae for the GPS compass, and various track-
ing antennae required by the race organizer. A 6-DOF inertial
measurement unit (IMU) is mounted in the trunk.

The computing system is located in the vehicle’s trunk, as
shown in Fig. 1c. The trunk features a shock-mounted rack
that carries an array of six 1.6 GHz Pentium M blade com-
puters, a Gigabit Ethernet switch, and various devices that
interface to the physical sensors and the vehicle. It also fea-
tures a custom-made power system with backup batteries and
a switch box that enables the robot to power-cycle individual
system components through software. The operating system
on all computers is Linux.

Software Pipeline

In autonomous driving, the software has to be reliable, robust
to errors, and it has to run in real-time. Our vehicle achieves
these objectives through a distributed software architecture
reminiscent of the well-known three layer architecture (Gat
1998). The architecture pipelines data through a series of
layers, transforming sensor data into internal models, abstract
plans, and concrete robot controls. The use of pipelining for
the data flow minimizes the data processing latency, which
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Figure 1: (a) The robot shown at approximately 1:40pm on Oct 8, 2005, as it successfully completes the 132-miles course. (b) View of the
car and the roof rack with sensors. (c) The computing system in the vehicle’s trunk.

is the time between the acquisition of a sensor measurement
and its effect on the vehicle motion.

The overall software system consists of about 30 modules
executed in parallel (Fig. 2). The system is broken down into
six layers which correspond to the following functions: sen-
sor interface, perception, control, vehicle interface, user in-
terface, and global services.

1. The sensor interface layer comprises a number of software
modules concerned with receiving and time-stamping all
sensor data. The layer receives data from the laser sen-
sors at 75Hz, from the camera at approximately 8 Hz, the
GPS and GPS compass at 10Hz, and the IMU at 100Hz.
This layer also contains a database server with the course
coordinates (RDDF file).

2. The perception layer maps sensor data into internal mod-
els. A primary module in this layer is the UKF vehicle state
estimator, which determines the vehicle’s coordinates, ori-
entation, and velocities. Three different mapping modules
build 2-D environment models based on lasers, the cam-
era, and the radar system. A road finding module uses the
laser-derived maps to find the boundary of a road, so that
the vehicle can center itself laterally. Finally, a surface as-
sessment module extracts parameters of the current road
for the purpose of determining safe vehicle speeds.

3. The control layer is responsible for determine the steering,
throttle, and brake response of the vehicle. A key module
is the path planner, which sets trajectories in steering- and
velocity-space. This trajectory is passed to two reactive
controllers, one for the steering control and and for brake
and throttle control. Both of those generate low-level con-
trol commands for the vehicle.

4. The vehicle interface layer serves as the interface to the
robot’s drive-by-wire system. The control layer also fea-
tures a top level control module, implemented as a sim-
ple finite state automaton. This level determines the gen-
eral vehicle mode in response to user commands, received
through the in-vehicle touch screen or the wireless E-stop.

5. The user interface layer comprises the remote E-stop and
a touch-screen module for starting up the software.

6. The global services layer provides a number of basic ser-
vices for all other software modules. Naming and com-
munication services are provides through CMU’s Inter-
Process Communication (IPC) toolkit (Simmons & Apfel-
baum 1998). A centralized parameter server module main-
tains a database of all vehicle parameters and updates them

Figure 2: Software flowchart: The software is divided into six func-
tional groups: sensor interface, perception, control, vehicle inter-
face, user interface, and global services.

in a consistent manner. Another module monitors the
health of all systems components and restarts processes
when necessary. Clock synchronization is achieved thor-
ough a time server. Finally, a data logging server dumps
sensor, control, and diagnostic data on disk for replay and
analysis.

Key Software Modules

Dynamic State Estimation

The vehicle state is comprised of two groups of variables: pa-
rameters characterizing the dynamic state of the vehicle (lo-
cation, speed, etc), and parameters pertaining to the health
of the vehicle. Following the rich literature on vehicle guid-
ance (Grewal, Weill, & Andrews 2001), the dynamic state
is comprised of 15 variables: the vehicle coordinates in a
global GPS-referenced coordinate frame, the derivatives of
these coordinates (vehicle velocity), the orientation of the ve-
hicle relative to the global coordinate frame (in Euler angles,
yaw, pitch, and roll), three accelerometer biases, and three
gyroscope biases.

An unscented Kalman filter (UKF) (Julier & Uhlmann
1997) estimates these quantities at an update rate of 100Hz.
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Figure 3: UKF results for a GPS outage that lasts three minutes.
The dotted red line is the estimate without GPS (the green line is
a portion at which GPS was available). Ground truth is shown in
black.

Figure 4: The vehicle uses a single line scanner to acquire surface
data from the terrain to make driving decisions. The scan is inte-
grated over time into a 3-D point cloud.

The UKF incorporates observations from the GPS, the GPS
compass, the IMU, and the wheel encoders. The GPS system
provides both absolute position and velocity measurements,
which are both incorporated into the UKF. Thanks to an in-
ternal vehicle model, the UKF can survive GPS outages of up
to several minutes (see Fig. 3).

Laser Mapping

The lasers are the primary obstacle detection sensors on the
vehicle. Fig. 4a illustrates the view of one of the five lasers
as it scans the terrain. Each of the lasers is angled slightly
downward to scan the terrain at a specific range. The vehicle
integrates the laser data over time into a 3-D point cloud, such
as the one shown in Fig. 4b.

The robot analyzes this point cloud for pairs of nearby
measurements whose z-coordinates differ by an amount large
enough to constitute an obstacle. Any pair of such points con-
stitute a witness for an obstacle. However, when implemented
in the most straightforward way this comparison often leads
to severe mapping errors that can cause the vehicle to veer off
the road.

The key problem in the analysis of the 3-D point clouds is
pose estimation error. In particular, noise in GPS, IMU, and
wheel sensors affects the accuracy of the UKF estimates. For
a forward-pointed laser measuring at a range of 30 meters, a
1-degree error in pitch induces a 0.5 meter error in perceived
Z . As a result, a relatively small UKF error can lead the
vehicle to perceive huge fake obstacles where in reality there
are none. Such “phantom obstacles” are common when not
considering this type of noise. In fact, in one of our reference
datasets the number of false positives in the map (phantom
obstacles) was found to be 12.6%—despite all our attempts
to optimize the UKF. Figure 5 illustrates such a situation.

The solution to this problem is found in probabilistic anal-

Figure 5: Small errors in pose estimation (smaller than 0.5 de-
grees) induce massive terrain classification errors, which can force
the robot off the road.

ysis. The robot uses a Markov model to model the develop-
ment of UKF noise over time. The state of this Markov chain
is the noise in the vehicle state estimates x, y, and z, and the
three Euler angles.

Our approach stipulates that the noise in these variables is
itself a Markov chain that slowly changes state (of the noise
variables) over time. In particular, at time t there might be
a fixed value of the UKF error, where error is defined as the
difference between the true state (which cannot be measured)
and the UKF state estimate. At time t + 0.01sec, the er-
ror is essentially the same, plus a zero-mean noise variable
with very small variance. Over time, the addition of many
such noise variables makes large errors possible. However,
in short time intervals, the change of error under this Markov
chain is small.

The Markov chain makes it possible to evaluate pairs of
witnesses probabilistically. The probability that two such
points actually correspond to an obstacle is now a function
of the time elapsed, since the more time passes by, the more
error might have been introduced in the system. The mathe-
matics of such a relative comparison are straightforward for
Gaussian noise. The robot accepts obstacles only if two mea-
surements pass the resulting probabilistic test with .95 prob-
ability.

While this probabilistic analysis of the data has the poten-
tial to reduce the number of false positives, it comes with
its own problems. In particular, the Markov chain is char-
acterized by a number of parameters (the drift of the error,
the amount of new error introduced as a function of vehicle
speed, roll, pitch, shock, and so on). These parameters are
the result of complex interactions of sensors, weather, and
proprietary software of the sensor manufacturers.

To solve this problem, we employed a discriminative ma-
chine learning algorithm. This algorithm “rewarded” the
robot for correctly classifying free terrain as free, and occu-
pied terrain as occupied. The training data for this algorithm
was collected through human driving. Fig. 6 illustrates the
process: here a human driver labels drivable areas by driving
over it (colored in blue). A stripe on both sides of the vehicle
is assumed to be non-drivable (labeled in red).

The discriminative learning algorithm tunes the parameters
of the Markov chain so as to minimize the error in both cat-
egories, drivable and non-drivable. The learning algorithm
is implemented via coordinate ascent: It jointly optimizes all
parameters until a local optimum is reached. The details of
the coordinate ascent are beyond the scope of this paper.

In testing, we find that the effect of this probabilistic
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Terrain labeling for parameter tuning

no labels (white/grey)

❄

❄

obstacles (red)

❄

drivable (blue)

✻

Figure 6: Terrain labeling for parameter tuning: The area traversed
by the vehicle is labeled as “drivable” (blue) and two stripes at a
fixed distance to the left and the right are labeled as “obstacles”
(red). While these labels are only approximate, they are extremely
easy to obtain and significantly improve the accuracy of the resulting
map when used for parameter tuning.

(a) Robot and laser scan plotted over time

(b) 3-D point cloud (c) straw man method

error
✲✲✲

(d) our result

Figure 7: Comparison of non-probabilistic and probabilistic anal-
ysis: (a) shows a scan over time, (b) the 3-D point cloud, (c) the
erroneous map and (d) the result of the probabilistic analysis.

method paired with the data-driven tuning algorithm is sub-
stantial. In one of the development datasets of hard moun-
tain terrain, the approach reduces the false-positive rate from
12.6% down to 0.02%, while leaving the number of obstacles
detected virtually unaffected.

Vision Mapping

Vision is employed to overcome the limited range of laser
perception. With a 25 meter range, the laser-based system
would only provide safe driving at speeds up to 25 mph. The
camera can see much further. However, separating drivable
from non-drivable terrain in a camera image is not a trivial
task.

To find drivable terrain, our software leverages the laser
perception into the vision domain. More specifically, the vi-
sion system analyzes the laser map for a drivable region in
the near-range. When such a region is found, it projects the
drivable area into the field of view of the camera (boxed area
in Fig. 8). The vision system then fits a Gaussian that mod-
els the color distribution of pixels within the drivable area.
It uses this model to identify other areas areas of similar ap-
pearance in the image, which are then equally labeled as driv-
able. In this way, the vision module extends the range of per-

Figure 8: Online adaptation to the drivable terrain.

Figure 9: Snapshot of the path planner as it processes the drivability
map. This snapshot is taken from the most difficult part of the 2005
DARPA Grand Challenge, a mountainous area called Beer Bottle
Pass.

ception significantly beyond that of the laser. This approach
is reminiscent of prior work in (Dickmanns et al. 1994;
Pomerleau & Jochem 1996), which also used adaptive tech-
niques for robotic driving. The learning is executed at 8
Hertz, and an exponential filter is used to decay past Gaus-
sian filter parameters over time.

Fig. 8 illustrates the resulting vision system. The data
shown here is taken form the National Qualification Event of
the DARPA Grand Challenge. Here the vehicle moves from a
pavement to grass, both of which are drivable. The sequence
in Fig. 8 illustrates the adaptation at work: the boxed areas to-
wards the bottom of the image is the training region, and the
red coloring in the image is the result of applying the learned
classifier. As is easily seen in Fig. 8, the vision module suc-
cessfully adapts from pavement to to grass within less than a
second while still correctly labeling the hay bales and other
obstacles.

Since certain color changes are natural even on flat terrain,
the vision output is not used for steering control. Instead, it
is used exclusively for velocity control. When no drivable
corridor is detected within a range of 40 meters, the robot
simply slows down to 25 mph, at which point the laser range
is sufficient for safe navigation.

Path Planning and Steering Control

The steering of the vehicle is realized by a number of modules
in the control layer. Chief among them is the path planning
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Figure 10: Human velocity compared to the output of the velocity
controller, for a 2.2-miles stretch of the 2004 DARPA Grand Chal-
lenge course.

module, which determines the desired path of the vehicle.
Fig 9 shows an example. The green trajectories are possi-
ble paths, generated from a smoothed version of the base-
line trajectory, but with changing lateral offsets. By varying
the lateral offset, the search for the best path becomes a 1-D
search, which can be executed efficiently. To select the final
path, the path planner evaluates paths according a number of
constraints: the DARPA-imposed corridor, the number of ob-
stacles under a path, and the nearness to the perceived road
center.

To accommodate the relatively short range of laser percep-
tion, the path planner evaluates two different types of steer-
ing actions: nudges and swerves. Nudges are gradual changes
which are often necessary to avoid obstacles on the side of the
corridor. Swerves are rapid changes that enables the robot to
avoid frontal obstacles.

The best path is continuously communicated to a steering
controller, which is responsible for the motor commands to
the steering column. The steering controller is a PID con-
troller on the steering wheel direction. The default steering
direction is always such that the vehicle front wheels are par-
allel to the target trajectory. However, lateral error between
the desired and actual trajectory results in a change of this de-
fault steering direction that is proportional to this error. Ad-
ditional terms in the PID controller compensate for steering
wheel lag, drift, and bias. The planning and steering control
modules are executed at 20 Hertz.

Velocity Control

The velocity control module is another key innovation in the
software architecture, which we believe to be unique to our
vehicle. Intelligent velocity control is essential to avoid fish-
tailing and to protect the vehicle from the effects of ruts and
uneven terrain.

The velocity controller uses a number of hard constraints
to set the maximum velocity, which include the DARPA-
provided speed limits, and dynamic constraints on maximum
lateral accelerations that effectively slow down the vehicle in
curves. Additionally, the controller also monitors the terrain
and adjusts the velocity dynamically. It does so by monitor-
ing a number of parameters: the terrain slope (pitch/roll), the
nearness of obstacles, and the roughness of the terrain.

While slope and obstacles are easy to sense, road rough-
ness is not. At first glance, one might be tempted to use the
vehicle accelerometers to measure terrain roughness. How-
ever, raw observations from the accelerometers measure not
only the high-frequency texture or “roughness” of the road,
but also the low frequency forward and lateral accelerations
of the vehicle, and the gravity vector. Our approach therefore
applies a high-pass filter tuned to accelerations whose mag-

(a) Beer Bottle Pass (b) Map and GPS corridor

Figure 11: Snapshot of the map acquired by the robot on the “Beer
Bottle Pass,” the most difficult passage of the DARPA Grand Chal-
lenge. The two blue contours mark the GPS corridor provided by
DARPA, which aligns poorly with the map data. This analysis sug-
gests that a robot that followed the GPS via points blindly would
likely have failed to traverse this narrow mountain pass.

Figure 12: Processed camera images from the race.

nitudes changes at high frequencies. In this way, the filter
ignores gravity and accelerations due to vehicle maneuvers.
The result of this filter is an estimate of the shocks caused by
the road surface conditions.

To control velocity, the vehicle uses an upper bound on
the maximum acceptable shock. When an acceleration is ob-
served that violates this bound, the vehicle slows down to
a velocity under which the same impact would not have vi-
olated this bound. This velocity assumes a linear relation-
ship between vehicle speed and shock. Once the vehicle
has slowed down, it gradually increases its speed bound over
time.

The resulting velocity controller has two main parameters:
the maximum acceptable shock, and the rate at which the ve-
locity bound is lifted over time. Rather than setting those
parameters by hand, we used a simple learning algorithm to
tune them based on human driving. Figure 10 shows an ex-
ample of the learned controller. Shown there is the velocity
profile of a human driver, compared to the velocity profile of
the controller. Both attain approximately equal speeds. It is
easy to see that the robot slows down in rough terrain, and
gradually recovers so as to return to plausible velocities.

Results from the Race

Before the Grand Challenge, Stanley drove more than 1,000
miles through desert terrain in the southwestern U.S. The
longest single stretch of autonomous motion was 200 miles
along a large cyclic dirt track, during which the robot en-
countered approximately 90 frontal obstacles at speeds of up
to 35 mph. Before the race, the robot drove 418 miles without
any errors that would have required human intervention.

Fig. 14 shows the course and the actual velocities attained
by our robot. Stanley finished the DARPA Grand Challenge
in 6 hours 53 minutes and 58 seconds, ahead of any other
robot in the race. The maximum speed was 38.0 mph and the
average speed was 19.1 mph, although early in the race the
robot averaged 24.8 mph. The robot was paused twice by the
race organizers, for a total of 9 minutes and 20 seconds pause
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Figure 13: Velocity histogram during the race.

time. 5 hours and 24 minutes into the race, at mile marker
101.5, our robot passed the top-seeded robot in the race and
formally took the lead, which it would then maintain until the
end of the race.

During 4.7%of the Grand Challenge, the GPS reported
60cm or more of error. During 68.2% of the race course, the
velocity was determined as pre-calculated. In the remaining
31.8%, the robot adjusted its velocity because of the terrain
roughness (18.1%), the vision-based road finder (13.1%), and
GPS blackouts in underpasses (.6%). The final finishing time
was of course somewhat unpredictable, and a narrow 11 min-
utes ahead of the second fastest robot. A histogram of veloc-
ities is depicted in Fig. 13.

Unlike most other robots in the race, our robot showed
no evidence of collisions during the race. This matched
the robot’s performance in the National Qualification Event
(NQE), where Stanley emerged as the sole contestant that
never collided with an obstacle.

A key difference of our approach to some of the other com-
petitors was our robot’s ability to vary its speed in response
to terrain. For example, some other robots followed a pre-
planned velocity profile, in one case developed by dozens of
human experts in the hours leading up to the race (Urmson et
al. 2004). It is difficult to say whether the speed adaptation
prevented collisions in the race; however, in our testing we
found it to be absolutely essential for perceived safe driving.

Discussion

This paper surveyed the overall software architecture of Stan-
ley, an autonomous robot designed for desert driving. Stanley
participated successfully in the DARPA grand Challenge, a
challenging offroad race organized by the U.S. government.

The software architecture builds on a decade or more of
research in AI. Many of the key software modules relied
on adaptive and probabilistic techniques for accommodating
sensor noise, and for tuning the parameters. The resulting
robot is a competent driver, which has been proven in one of
the most challenging races in robotics history.

There are, however, a number of limitations. First and
foremost, the robot cannot accommodate moving traffic. This
was not a requirement of the DARPA Grand Challenge, but
will most certainly be necessary when deploying autonomous
driving technology anywhere in the world. Second, the speed
of 38 mph, while reasonable for off-road driving, is still rela-
tively low for more urban environments. And third, while the
robot managed to avoid collisions, it sometimes reacts later
than a human driver would, which results in stronger steering
and braking responses. The last two limitations are mostly

Pause 1

Pause 2

Passing✲

Figure 14: This map shows the DARPA Grand Challenge course.
The thickness of the trajectory indicates the actual race speed
(thicker means faster). At the locations marked by the red ’x’s, the
race organizers paused our robot because of the close proximity to
another robot. At Mile 101.5, this other robot was passed (green
’x’).

the result of the relatively short reach of the sensors.
Nevertheless, Stanley successfully finished the 2005

DARPA Grand Challenge, and performed best out of a field
of 195 competing teams. We attribute the success of the vehi-
cle largely to its software architecture and the various detailed
technical innovations in robot perception and control.
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