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TECHNICAL PAPER

Winter and Summer PM, 5 Chemical Compositions in Fourteen
Chinese Cities
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PM, 5 in 14 of China’s large cities achieves high concentrations in both winter and summer with averages >100 ug m—> being
common occurrences. A grand average of 115 g m™ was found for all cities, with a minimum of 27 pg m > measured at Qingdao
during summer and a maximum of 356 pg m > at Xi ’an during winter. Both primary and secondary PM5 5 are important contributors
at all of the cities and during both winter and summer. While ammonium sulfate is a large contributor during both seasons,
ammonium nitrate contributions are much larger during winter. Lead levels are still high in several cities, reaching an average of
1.68 g m™ in Xi’an. High correlations of lead with arsenic and sulfate concentrations indicate that much of it derives from coal
combustion, rather than leaded fuels, which were phased out by calendar year 2000. Although limited fugitive dust markers were
available, scaling of iron by its ratios in source profiles shows ~20% of PM, s deriving from fugitive dust in most of the cities.
Multipollutant control strategies will be needed that address incomplete combustion of coal and biomass, engine exhaust, and
fugitive dust, as well as sulfur dioxide, oxides of nitrogen, and ammonia gaseous precursors_for ammonium sulfate and ammonium
nitrate.

Implications: PM, s mass and chemical composition show large contributions from carbon, sulfate, nitrate, ammonium, and
fugitive dust during winter and summer and across fourteen large cities. Multipollutant control strategies will be needed that address

both primary PM, s emissions and gaseous precursors to attain China’s recently adopted PM, 5 national air quality standards.

Introduction

Suspended particulate matter (PM) is the major pollutant in
many Chinese cities (Chan and Yao, 2008; Tie and Cao, 2009).
Coal combustion to generate electricity and for domestic cook-
ing and heating constitutes ~70% of the national energy budget
(NAE et al., 2008). Total biomass burning in China, which
includes domestic cooking and residential heating, field burning
of crop residue, forest fires, and grassland fires, is estimated at
511.3 Tg yr' (Yan et al., 2006). Improved engines and tighter
emission standards are being offset by rapid growth in the motor
vehicle fleet (Han and Hayashi, 2008). Paved and unpaved roads,
construction, agricultural operations, and wind-blown soil eject
geological material into the atmosphere (Du et al., 2008; Xuan
et al., 2004). These and other emitters are contributing to high
PM levels in Chinese cities, both through direct PM emissions
and through conversion of sulfur dioxide (SO,), nitrogen oxides
(NOy), ammonia (NH3), and volatile organic compound (VOC)

gases to secondary sulfate (SO4° "), nitrate (NO; ™), ammonium
(NH,"), and organic carbon (OC).

The Chinese government issued a national PM, 5 standard on
February 29, 2012, that requires cities to have concentrations
below 35 pg m > annual average and <75 pug m > for 24 hr,
beginning in 2016 (http://cleanairinitiative.org/portal/node/
8163). These standards were adopted owing to recognized
adverse effects of PM, 5 chemical components on human health,
visibility, and materials (Hu et al., 2009; Mauderly and Chow,
2008; Pope and Dockery, 2006; Watson, 2002). Elements, ions,
and carbon fractions are often measured in PM, 5 to better
evaluate the adverse effects and to indicate contributing sources.
Several studies have reported these measurements in China (Cao
et al., 2011; Chow et al., 2006; Deng et al., 2011; Duan et al.,
2006; Gu et al., 2011; Guinot et al., 2007; He et al., 2001; Ho
etal., 2006; Hu et al., 2010; Louie et al., 2005; Louie et al., 2005;
Shen et al., 2007; So et al., 2007; Song et al., 2007; Sun et al.,
2004; Wang et al., 2006; Wang et al., 2007; Wu et al., 2003; Xu
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et al., 2004; Yang et al., 2011; Zhang et al., 2010; Zhang and
Friedlander, 2000; Zhao et al., 2010), but the areas studied,
sampling site zones of representation, sampling periods, vari-
ables measured, and analysis methods are of insufficient con-
sistency to evaluate similarities and differences. Reported here
are consistently characterized simultaneous winter and summer
PM, 5 mass and chemical concentrations obtained during 2003
at receptors with neighborhood and urban scale (Chow et al.,
2002) in 14 of China’s major cities. These measurements are
used to compare and contrast the situation across a broad range
of emissions and meteorology, examine seasonal changes, and
assess contributions from coal combustion using elemental con-
centration ratios. These measurements from nearly a decade ago
provide a baseline against which to evaluate future speciated
PM, s measurements that will be needed to create and evaluate
the multipollutant (Chow and Watson, 2011) control strategies
required to attain the national standards.

Materials and Methods

As shown in Figure 1, measurement sites were located in 14
economically developed and developing cities across China. The
neighborhood- and urban-scale sites were located on the cam-
puses of schools and research institutes, as previously described
(Cao et al., 2007; Cao et al., 2011; Han et al., 2009; Ho et al.,
2007; Wang et al., 2006). Filter samplers were located on roof-
tops at 6 to 20 m above ground level for around 2 weeks of
sampling during winter (January 6-20) and summer (June 3—
July 30) of 2003.

Changc.hun[CC]
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JinchanglJC)® vulin(vL)® Tianji
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Figure 1. PM, 5 samples were taken in seven southern China cities: Chongging
(CQ), Guangzhou (GZ), Hong Kong (HK), Hangzhou (HZ), Shanghai (SH),
Wuhan (WH), and Xiamen (XM); and seven northern China cities: Beijing
(BJ), Changchun (CC), Jinchang (JC), Qingdao (QD), Tianjin (TJ), Xi’an (XA),
and Yulin (YL). Filter samples were obtained from 0900 to 0900 LST the next
morning over 2-week periods during winter (January 6—20) and summer (June 3 —
July 30) 0of 2003. Cities are classified as representing northern and southern China
since: (1) precipitation events are more frequent and intense in southern China,
and (2) northern China cities have lower wintertime temperatures, resulting in a
greater amount of domestic heating, often using coal, along with shallower and
more prolonged surface inversions at night and early morning.

PM,; 5 samples were obtained on prefired (900°C, 3 h) 47-mm
Whatman QM-A quartz-fiber filters by mini-volume air sam-
plers (Airmetrics, Eugene, OR) at 5 L min~' flow rates. The
exposed filters were stored at ~4°C after sampling, including
shipping to the Xi’an laboratory, to minimize evaporation of
volatile components. Filters were weighed before and after sam-
pling with a +1-ug sensitivity Sartorius MCS5 electronic micro-
balance (Sartorius, Gottingen, Germany) after 24-hr
equilibration at 20 to 23°C and 35 to 45% relative humidity
(RH). Each filter was weighed at least three times before and
after sampling. The maximum differences among the three
repeated weights were less than 10 g for blank filters and less
than 20 pg for exposed filters. The collected PM was the differ-
ence between the average of exposed weights and the average of
unexposed weights. Field blanks were also collected at each
sampling site every seventh day by exposing filters in the sam-
pler without drawing air through them; these were used to
account for passive deposition or artefacts introduced between
sample changing.

Elemental concentrations of Fe, Ti, Mn, Zn, As, Br, and Pb in
filter deposits were determined by energy-dispersive x-ray fluor-
escence (ED-XRF) spectrometry (PANalytical Epsilon 5,
Almelo, The Netherlands) (Chow and Watson, 2012; Watson
et al., 2012). Other elements, such as Si, Ca, Al, and Mg, were
not quantified owing to high and variable blank values on quartz-
fiber filters and potential biases caused by absorption of low-
energy x-rays from particles penetrating into the filter. XRF
measurements on nine collocated Teflon-membrane and quartz-
fiber filters from Xi’an were comparable for these elements, with
correlations (7) ranging from 0.982 for Fe and Zn (with slopes of
1.054 and 1.062, respectively) to 0.915 for As (with slope of
1.204). Measurement precision was determined as the standard
deviation of several analyses of the same samples, yielding
+7.6% for Fe, +8.6% for Ti, +12.5% for Mn, £7.6% for Zn,
£23.5% for As, £33.3% for Br, and £7.9% for Pb at typical
concentration levels. Instrumental detection limits are 24.0 ng
m " for Fe, 14.0 ng m > for Ti, 25.0 ng m > for Mn, 24.0 ng m >
for Zn, 26.0 ng m > for As, 9.0 ng m ™ for Br, and 21.0 ng m >
for Pb based on the uncertainties of blank filter counts. Replicate
measurements were taken for every eight samples, and no differ-
ences were found that exceeded the precision intervals.

Following XRF analysis, the filter was sectioned with a pre-
cision cutter and one-fourth was extracted in 10 mL of distilled
deionized water; the extract was submitted to ion chromato-
graphic (IC) analysis (Shen et al., 2008; Shen et al., 2009) for
cations Na™, NH, ", and K™ and anions SO,>~, NO;~, and Cl".
Detection limits were 4.6 wg L™ for Na™, 4.0 wg L™' for NH4 ™,
10.0 pg L™! for K™, 0.5 pg L™! for C17, 15 pg L' for NO5 ™,
and 20 pg L™' for SO,*". Reference materials (National
Research Center for Certified Reference Materials, China)
agreed with analyses values within + 4%. One in 10 extracts
was reanalyzed and none of the differences between these repli-
cates exceeded precision intervals. Blank values were also sub-
tracted from sample concentrations.

Organic carbon (OC) and elemental carbon (EC) were deter-
mined on a 0.5-cm? punch from each filter by a DRI model 2001
carbon analyzer (Atmoslytic, Inc., Calabasas, CA) following the
IMPROVE thermal/optical reflectance (TOR) protocol (Cao
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et al., 2003; Chow et al., 1993; Chow et al., 2007; Chow et al.,
2011). This produced four OC fractions (OC1, OC2, OC3, and
0C4 at 120, 250, 450, and 550°C, respectively, in a helium [He]
atmosphere); OP (a pyrolyzed carbon fraction determined
when reflected laser light attained its original intensity after
oxygen [O,] was added to the analysis atmosphere); and three
EC fractions (EC1, EC2, and EC3 at 550, 700, and 800°C,
respectively, in a 2% 0,/98% He atmosphere). OC is defined as
OC1 + OC2 +0C3 4+ OC4 + OP, and EC is defined as EC1 +
EC2 + EC3 -OP.

Results and Discussion

PM, 5 mass concentrations

Figure 2 shows the wide distribution of concentrations
observed across seasons and cities. The grand average of 115
g m ° is more than 3 times the annual standard, and the highest
24-hr value of 543.9 wg m >, found in Xi’an during winter, is
more than 7 times the 24-hr standard. OC, SO42_ NO;,NH, ",
and EC are the most abundant species, all with averages exceed-
ing 5 wg m . Elemental averages are less than the averages for
carbon and ions, with Fe having the highest average of 2.4 g
m > at Chongging during winter. Concentrations ranged over
several orders of magnitude, with the range increasing as the
average concentration decreased. This variability indicates large
spatial and temporal differences across the network.

Table 1 summarizes winter and summer PM, 5 averages for
each city. Standard deviations are typically 25% to 50% of the
averages, indicating that these averages are not highly influenced
by extreme events. Standard errors (standard deviation divided
by the square root of the number of samples) of the averages are
in the range of 6% to 13%.

In every city except Beijing and Xiamen (no summer data),
wintertime PM, s exceeded those of summertime, in many cases
by a factor of 2 or more. Seasonal averages for PM, 5 mass were
similar in Beijing, with a winter/summer ratio of 0.88, in contrast

1000
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Figure 2. Average (square), median (central horizontal bar), 25th and 75th
percentiles (lower and upper bars), 1st and 99th percentiles (lower and upper x),
and minimum and maximum (—) concentrations for each chemical component
across all cities and seasons. Average chemical components are ordered by
abundance, with OC (24.5 ug m~>), SO,2~ (19.9 pg m~>), NO;~ (9.9 pg
m~3), NHs" (9.2 pg m ™), EC (6.5 pg m ™), CI~ 3.1 pg m3), K* (1. 9 pg

m ), and Na™ (1.5 wg m ) all being at important levels.
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to the highest ratio of 4.9 at Qingdao, a coastal city in northern
China. The lack of difference in the mass ratio for Beijing is
partially due to the lack of change in the OC concentrations,
which were 23.9 4 12.4 pg m ™ in winter, only 20% higher than
summer. The winter/summer mass ratios for other cities are
reflected in the major chemical component averages, which are
2 to 3 for OC, EC, and SO42_ in most cities, with NO3;~ and
NH," showing even higher winter/summer differences.

Average wintertime PM, 5 was lowest in Xiamen (74.2 g
m ) and highest in Xi’an (356.3 g m ). PM, s was higher at
inland cities (e.g., Xi’an, Wuhan, and Chongqing), and lower at
the coastal (e.g., Xiamen and Hong Kong) and desert (i.c.,
Jinchang) cities. For the summer samples, average PM, 5 was
lowest in Qingdao (27.3 wg m~>), and highest in Beijing
(131.6 pg m ™).

PM, 5 composition

OC and EC exhibited winter maxima and summer minima.
OC was the most abundant wintertime PM, 5 constituent in all
cities except Hangzhou and Hong Kong, ranging from 13.3
(Hong Kong) to 95.8 pg m > (Xi’an). Wintertime EC levels
vary with OC concentrations, which ranged from 4.6 (Jinchang)
to 21.5 wg m > (Xi’an). This co-occurrence is expected, as OC
and EC typically result from incomplete combustion of solid and
liquid fuels (Lighty et al., 2000). OC and EC concentrations were
highest in the inland cities, such as Changchun, Xi’an, Wuhan,
and Chongqing, and lower in the coastal cities, such as Qingdao,
Xiamen, and Hong Kong.

Wintertime SO4>~ was the second most abundant component
of PM, 5 for all the cities except Hong Kong, varying from 11.5
pg m° in Jinchang to 60.9 wg m~* in Chongging. This was
followed by NO; ™, ranging from 2.1 wg m > (Jinchang) to 29
pg m > (Xi’an), and NH, " ranged from 6.6 g m > (Jinchang)
to 29.8 wg m ° (Xi’an). These high secondary ammonium
sulfate ((NH4),SO4) and ammonium nitrate (NH4NO3) levels
imply the need for precursor gas, as well as primary PM, emis-
sion reductions to reduce PM, s mass. The higher NH4NO;
values in winter than summer are consistent with a shift in
equilibrium from the gas to particle phase with lower tempera-
tures and higher RH (Stelson et al., 1979).

K" is considered a marker for biomass burning (Andreae,
1983; Duan et al., 2004), although it is also a component of
certain soils and sea spray (Pytkowicz and Kester, 1971).
Wintertime K levels exceeded 3 ne m~> at Xi’an, Wuhan,
Chongqing, and Hangzhou. The inland cities experience cold
temperatures during winter and have abundant biomass available
for residential heating.

Fe is a marker for fugitive dust, although it also originates from
heavy industry. The wintertime Fe concentration was highest at
2.4 pgm " in Chongging, followed by Xi’an (1.8 wg m ™), with
the lowest wintertime average of 0.6 g m  at Xiamen. The two
arid-region cities had low Fe concentrations, 1.2 ug m™> at
Jinchang and 0.7 g m > at Yulin. The wintertime Fe averages
did not correlate well with other soil components such as Ti and
Mn across the sites, which may indicate additional Fe sources or
variability in the fugitive dust compositions.
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The highest wintertime As (0.11 wgm ™) and Pb (1.7 pgm )
concentrations were found at Xi’an. As and Pb are found in
Chinese coal (Tian et al., 2011; Want et al., 2006), while
Pb gasoline additives were discontinued in 2000 (Xu et al.,
2012). The highest Br average was found at a coastal city,
Qingdao (0.17 pg m ), consistent with a potential marine
aerosol contribution.

Summertime averages were lower than those for winter for
nearly all chemical components. In most cases, this can be attrib-
uted to warmer weather that improved dispersion and shifted the
NH4NO; from the particle to gas phase. Lower OC and EC
averages are probably less related to domestic biomass and coal
combustion, which is consistent with lower K™ and As averages.
Engine exhaust and agricultural burning emissions are expected to
contribute larger portions of OC and EC during summer.

NO;~ and NH, " show the biggest contrast between winter
and summer, consistent with the change in equilibrium. SO4*~
levels were also much lower during summer than winter. This
would be consistent with more nearby SO, to SO4>~ conversion
during winter, possibly in conjunction with reactive fogs and
clouds (Pandis et al., 1992) and with local accumulation under
stagnant conditions. The summer values could be more influ-
enced by standard photochemical mechanisms occurring during
long-range transport (Qian et al., 2001).

The Fe and Ti fugitive dust markers do not show a clear
winter/summer pattern, being higher in some cities during sum-
mer and lower in others. The sampling periods did not include
the April/May Asian dust storms (Gong and Zhang, 2008; Li
et al., 2008) that are causes of high PM, 5 during these periods.
The other elements do not show major or consistent differences
between winter and summer, except that the summertime
averages are generally lower. The summer Pb average in Xi’an
decreased by more than a factor of two (0.75 pg m).

Chemical ratios as source indicators

Several potential sources of different chemical components
were mentioned earlier. These can be better understood by
examining some of the elemental ratios available from the data
set that might correspond to similar ratios in the source profiles.
OC/EC ratios across the 14 cities are compared in Cao et al.
(2007). Given the large role of domestic and industrial coal use,
the SO4°>7/OC, SO,* /EC, NO; /SO,*~, As/Fe, and Pb/Fe
ratios are compared with ratios from other cities in Table 2.
The 2003 SO4*/OC ratio found in this study (0.90 + 0.43) is

much higher than that for the other cities, as is the SO4* /EC
ratio (3.42 £ 2.06). Only Toronto had a higher SO4> /EC ratio
(i.e., 4.93), mostly due to low EC levels. As noted earlier, there
are spatial and seasonal variations in these ratios that reflect local
and regional contributions.

NO; /SO,*" ratios have been used to evaluate relative con-
tributions from coal-burning emissions, which abound in NO, and
SO,, and engine exhaust, which is a major NO, emitter but con-
tains little SO, (Hu et al., 2002; Wang et al., 2005; Yao etal., 2002).
Average NO; /SO,>~ ratios were 0.61 in winter and 0.30 in
summer. The NO; /SO4>~ ratio for Toronto (0.81) was >75%
higher than the value found in this study (i.e., 0.46 £ 0.27),
while the ratios in Seattle, WA (0.43), and Mexico City (0.45)
were comparable. As/Fe and Pb/Fe ratios were 0.04 & 0.03 and
0.39 + 0.32, respectively, much higher than those for the other
cities and indicative of the ash in uncontrolled coal combustion.
Figure 3 shows a reasonably good association of Pb and
SO42*concentrations with the As marker for coal ash. The scatter
(e.g., Figure 3d) is typical of different ash composition and SO, to
SO,*>~ transformation rates. The Pb/As correlation indicates that
the Pb more probably derives from the coal ash than from the
remnants from leaded gasoline, as also indicated by differences in
abundances for Pb isotopic ratios (Xu et al., 2012; Widory et al.,
2010; Zheng et al., 2004).

Material balance

Material balances estimating organic matter and soil from their
marker species are shown in Figures 4 and 5 for the winter and
summer seasons. Consistent with the previous discussion, organic
material (OM), S04, NO; ™, and NH," are large components.
OC takes on an even larger role when its unmeasured hydrogen and
oxygen components are taken into account as OM. The role of
geological material is also enhanced when the Fe marker is lever-
aged by reasonable assumptions about its abundance in Chinese
soils. Approximately 0 to 15% of the measured mass is not
quantified by the chemical analysis, which is potentially due to
unmeasured species, underestimations for weighting factors for
OM and geological material, and uncertainties in filter equilibra-
tion and gravimetric analysis (Malm et al., 2011; Kajino et al.,
2006).

For winter samples, contributions in order of importance were
OM > geological material > sulfate > nitrate> ammonium >
elemental carbon at major cities such as Beijing, Tianjin,
Wuhan, Chongqing, Hangzhou, and Xiamen. Compositions

Table 2. Comparison of PM, 5 chemical component ratios for the 14 Chinese cities with ratios from selected cities in Europe, Canada, Mexico, and the United States

Cities S0,27/0C SO, /EC  NO; /S0, As/Fe Pb/Fe Reference
14 Chinese cites 090+ 043 3.42+2.06 0.46 +0.27 0.04 +£0.03 039+ 0.32  This study

(winter and summer)
Over Europe 0.50 1.51 0.92 NA NA Schaap et al. (2004)
Toronto, ON, Canada 0.62 4.93 0.81 0.007 0.062 Lee et al. (2003)
Mexico City, Mexico 0.32 0.71 0.45 0.006 0.068 Vega et al. (2004)
Seattle, WA 0.45 1.13 0.43 0.015 0.099 Maykut et al. (2003)

Note: NA, data not available.
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at the 35% to 45% relative humidity filter weighing conditions.



Downloaded by [Institute of Earth Environment] at 20:10 25 September 2012

Cao et al. / Journal of the Air & Waste Management Association 62 (2012) 1214-1226 1221

15%

. 8%

2P gy 3% 2%

- 19%

% 2% -9

% 3% T%- 389 18%
Jinchang Yulin % o

21%
,25"‘ 4%’

Th 4%

T|an||n Changchun

\ Beijing
59 4%
26%

T ,

19%

.,
12 5%

g0,

21"

R
0, 8%
L E

/ Qingdao

504 2%

--J

Shanghai

6%

% 4% 5% ‘/ /

17% 17%

36
Cc hongqlng ) ’
4%

34%
Wuhan Guangzhou

13% 18%
Mass = 50 ng m~

Geological material
Organic matter
Elemental Carbon
Ammanium

Sulfate

Nitrate

Others

\ o

23%

20%
35%

14%
59%,
1% 34% A%

EECOEEON

Hong Kong Hangzhou

Figure 5. Summertime material balance of PM, 5 for the 14 Chinese cities. Organic matter, geological material, and others are explained in the Figure 4 caption.

differed for Yulin, Xi’an, and Hong Kong, where the wintertime
SO4>~ contribution exceeded that from geological material. At
arid Jinchang, the geological material contribution exceeded the
SO,>~ and OM contributions.

During summer, most cities follow the general trend of OM >
geological material > sulfate > nitrate, with elemental carbon
contributions higher than ammonium contributions at all cities
but Beijing and Tianjin. The contribution from SO, in Hong
Kong differed between winter (25%) and summer (14%). At
Shanghai and Hangzhou, SO4*~ contributions exceeded those
of geological material.

Comparison with other PM, 5 speciation studies in
Chinese cities

Table 3 compares city-specific results from this study with
chemical concentrations from other major cities (i.e., Beijing,
Xi’an, Shanghai, and Guangzhou). Although there are differences
in magnitude owing to the differences in measurement periods,
zones of representation, and measurement methods, the major
components are similar in magnitude and order of importance for
nearly all of the studies. There is no evidence of major upward or
downward trends in mass and chemical composition from 1999 to
2006, but this is expected, given the short durations of the mea-
surement programs and the large variability in emissions and
meteorology expected over this time period. Trends in the United
States have only been associated with emission reductions over
long periods of a decade or more using chemically speciated
measurements that are specific to those emissions.

PM, 5 in Chinese cities versus non-Chinese cities

Table 4 compares the major components from Chinese cities
with PM, s compositions in other countries. The geological
material contribution is on the order of 10% in PM, 5 from the
non-Chinese cities, about half of that estimated from this study
(19.5%). Roadside sites in St. Louis, MO, and Barcelona, Spain,
showed more comparable geological material contributions
(15.4 and 15.2%). The OM fractions in the Chinese cities are
similar to most of the other cities, although the absolute OM
concentrations are much higher in China. SO,*~, NO5~, and
NH,4* are important in PM, s in all of the cities, but their frac-
tions are more variable and their absolute values are generally
lower than those found in the 14 Chinese cities.

Average PM, 5 concentrations for this study ranged from 3 to
9 times higher than the values in Seoul, Yokohama, St. Louis,
Indianapolis, Toronto, Mexico City, Barcelona, and Milan, with
corresponding 2 to 10 times higher levels of OM. The average
Chinese secondary aerosol concentrations for SO4*>~, NO; ™, and
NH,4* were 2-5, 1-10, and 27 times higher, respectively, than
those in other cities in the world. As and Pb were 10 times and
average geological material was 5—43 times those found in other
cities.

Conclusions

PM, 5 in 14 of China’s large cities achieved high concentrations
in both winter and summer of 2003 with averages >100 wg m >
being common occurrences. A grand average of 115 g m ™ was
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found for all cities, with a minimum of 27.3 g m ™ measured at
coastal Qingdao during summer and a maximum of 356.3 pgm >
at inland Xi’an during winter. Both primary and secondary PM, s
are important contributors at all of the cities during both winter
and summer. While ammonium sulfate is a large contributor
during both seasons, ammonium nitrate contributions are much
larger during winter. Lead levels are still high in several cities,
reaching an average of 1.68 wg m > in Xi’an during winter. High
correlations of lead with arsenic and sulfate concentrations indi-
cate that much of it derives from coal combustion rather than
leaded fuels that were phased out by calendar year 2000. Although
limited fugitive dust markers were available, scaling of iron by its
ratios in source profiles shows ~20% of PM, s deriving from
fugitive dust in most of the cities. Multipollutant control strategies
will be needed that address incomplete combustion of coal and
biomass, engine exhaust, and fugitive dust, as well as sulfur
dioxide, oxide of nitrogen, and ammonia gaseous precursors for
ammonium sulfate and ammonium nitrate.
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