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Abstract
Manufacturers of welding wire electrodes for GMAW welding adapt the alloy compositions of welding wire electrodes 
in order to adjust the weld pool behavior and the properties of the weld. Additively manufactured components in various 
sizes and with complex structures and multi-axial stress states place diverse demands on the material. The filler wire can 
significantly influence the material properties. The approach shown here describes the possibility of coating welding wire 
electrodes by physical vapor deposition, which enables flexible adjustment of the welding material composition. The ele-
ment content in the weld metal can be adjusted within certain limits via the coating thickness. In the arc, applied thin-film 
coatings with coating thicknesses < 1 µm pass into the molten phase together with the substrate wire electrode according 
to ISO 18273—S Al 5754 (AlMg3). Microalloying elements such as  TiB2 or Ti added to the weld pool in this way change 
the composition and thus influence the microstructure in the weld metal. This results in a grain refinement of up to 46%, 
which in turn has a positive effect on hot cracking susceptibility. PVD-coated welding electrodes also show changes in arc 
characteristics. With increasing  TiB2 layer thickness, the arc length decreases by up to 44%, while the arc current increases. 
The fusion penetration behavior changes from a narrow finger-shaped to a round fusion penetration.

Keywords Welding · Aluminum · Modified welding wire · Grain refinement · Hot cracking reduction · Physical vapor 
deposition

1 Introduction

The general goal of reducing  CO2 emissions is being pur-
sued in particular with lightweight structures. In the trans-
port and logistics sector in particular, aluminum materials 
thus offer potential for reducing dead weight and increas-
ing payload. This is, among other things, the reason for the 
increasing demand in the aluminum sector and goes hand 
in hand with the requirement that the processing properties 
of the alloy allow the material to be used in the individual 
application. In this context, joining technology and, in par-
ticular, welding technology play an essential role. Safe join-
ing conditions are requirements for maximum utilization of 

the material properties in the subsequent application. The 
material properties are adapted and specifically influenced 
by alloying elements. In GMAW welding processes, the 
chemical composition of the weld metal is influenced in 
particular by the filler wire. Microalloying elements are 
added to influence, for example, the mechanical properties 
or the cracking resistance. The avoidance of hot cracks is a 
particular challenge in the welding of aluminum materials.

Due to its economic efficiency, the MIG welding process 
is widely used in the processing of these materials. Various 
influencing variables have to be considered, which have an 
influence on the weld seam or the WAAM structure [1]. In 
addition to the deposition strategy [2] and the travel speed 
[3], the filler material has a major influence on the resulting 
material structure. The alloy composition of the filler mate-
rials used in this process is adjusted in the molten phase, 
and the resulting semi-finished products (rod material) are 
subsequently processed into welding wire electrodes. In 
addition to the alloy adjustment in the molten phase, cored 
wires also influence the composition of the weld metal for 
steel wire electrodes.
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Investigations show that thin-film coatings, which can 
be applied to selected substrate wire electrodes by PVD 
processes, are also appropriate for introducing microalloy-
ing elements into the weld metal [4–10]. As expected, it is 
shown that the amount of alloying elements can be modified 
by adjusting the thickness of the coating. The external coat-
ing, however, influences not only the alloy composition and 
microstructure, but also the welding process.

The grain refining effect of titanium diboride  (TiB2) on 
various aluminum materials has already been researched 
[11–14]. In tungsten inert gas welding and laser beam weld-
ing, it has been proven that the alloying elements titanium 
and boron, which are introduced into the welding area by 
cast inserts, have a corresponding effect [15–20]. By increas-
ing the titanium diboride content with casting inserts in the 
weld seam area, Schempp [16] was able to reduce the grain 
size of the alloy AlMg4.5Mn by 44%.

The influence of titanium on the microstructure and grain 
size has also been investigated [21–25]. Wang, Suo et al. 
have investigated the influence of titanium powder in the 
interlayers of a WAAM structure. They note a grain refining 
effect and increasing tensile strength in the weld metal [26].

The state of research shows that titanium and titanium 
diboride can have a grain refining effect and influence the 
microstructure. This effect can be seen both in casting tests 
and in the welding process, into which the elements are 
introduced in various ways. In contrast, the possibility of 
microalloying elements being added to the weld metal of 
aluminum materials via coatings is not yet widely investi-
gated. The aim of this work is to work out general interac-
tions in the processing of thin-film-coated aluminum weld-
ing wire electrodes and their influence on the weld metal 
and the welding process. The effectiveness of the coatings 
is to be investigated.

2  Experimental

The tests carried out deal with the GMAW welding process 
of the aluminum alloy S Al 5754 (AlMg3), according to ISO 
18273 [27], which tends to be susceptible to hot cracking. 
Titanium and titanium diboride  (TiB2) thin-film coatings 
are to be used to achieve grain refinement of the weld metal 
structure, which can potentially reduce susceptibility to hot 
cracking. Furthermore, the coatings influence the arc length, 
the energy per unit length, and the fusion penetration.

2.1  PVD‑coating

For coating the wire electrodes, a PVD system from Ceme-
Con AG according to industrial standards is used. Figure 1 
shows the coating chamber of the system, which is loaded 
with the substrate wire electrode in batches.

Titanium and titanium diboride are applied to the sub-
strate wire electrode in three different layer thicknesses each. 
Table 1 summarizes the coating thicknesses of the thin-film 
coatings resulting from the selected coating duration and 
the titanium content in the weld metal determined by opti-
cal emission spectrometry. To determine the coating thick-
nesses, a half-masked and polished base material sample is 
added to the respective coating process. After the process, 
the height difference between the coated and uncoated areas 
respectively the coating thickness can be measured using a 
confocal laser scanning microscope. As expected, the coat-
ing thickness increases with the coating duration resulting 
in an increased titanium content in the weld metal.

2.2  Welding and grain size

The coated welding wire electrodes are welded using the 
parameters summarized in Table 2.

To evaluate the microstructures and in particular to deter-
mine the grain size, beads on a plate are welded on sub-
strate material EN AW-5754 according to [28]. The substrate 
plates are preheated to 100 °C for this purpose. At a length 
of 70 mm, micrographs are taken from the center of the weld 
beads, cf. Figure 2.

Fig. 1  PVD coating system with substrate electrode

Table 1  Coating time, resulting layer thickness, and element content

Element Coating time in 
min

Coating thickness 
in nm

Ti in wt. − %

Ti 10 35 0.119
20 87 0.153
40 194 0.177

TiB2 10 31 0.103
20 47 0.109
40 129 0.146
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The weld metal of the uncoated reference wire electrode 
is shown in comparison with a  TiB2-coated material. To 
analyze the microstructures, the microscopic specimens are 
electrolytically contrasted using the Barker method. For this 
purpose, the samples are etched 5 times for 40 s at a voltage 
of 12 V and viewed under polarized light. The influence of 
 TiB2 on the grain size is evident. To quantify the grain refin-
ing effect, five images are taken in each case in the globular 
dendritically solidified region of the microstructure and then 
evaluated using the linear intercept method.

2.3  Modified varestraint‑transvarestraint test 
(MVT‑test)

To determine the influence of the thin-film coatings on the 
susceptibility to hot cracking, the modified varestraint-
transvarestraint test is carried out in accordance to the DVS 
code of practice 1004–2 [29] and DIN Technical Report 
17,641–3 [30]. In contrast to the test procedure described in 
that documents, the MIG welding process with a consum-
able electrode is used.

Figure 3 shows the test setup. For the test, specimens 
with the dimensions 60 × 300 × 10 mm are inserted into the 
hydraulic test stand. Starting at the edge of the plate, weld-
ing is performed in the direction of the center of the plate 
using the parameters given in Table 2. The samples are also 
preheated to 100 °C for the MVT test.

The straining process is triggered at the same time as the 
torch is switched off in the middle of the substrate plate and 
the samples are stretched to 1%, 2% and 4% with different 
matrices. At least 3 specimens are welded for each coating 
and strain. The weld is then cut out, and the hot-cracked end 
crater and parts of the weld surfaces on which hot cracks are 
visible are imaged under a scanning electron microscope. 
Image analysis software then allows manual measurement of 
the individual cracks (Fig. 4), which can finally be summed 
up to a total crack length.

3  Results and discussion

Figure 5 shows the average grain size as a function of the 
titanium content, for the titanium diboride and for the pure 
titanium coating.

It gets obvious that the grain size tends to decrease with 
increasing titanium content in the studied area, in accord-
ance with the theory and in agreement with the research 
work described further above.

Table 2  Welding parameters

Welding parameters Value

Wire feed 9.5 m/min
Arc voltage 21.4 V
Welding current 172.6 A
Travel speed 30 cm/min
Energy per unit length 0.73 kJ/mm
Shielding gas ISO 14175 – I1

Fig. 2  Comparison of the grain 
size in the micrograph. Left 
side, welding wire AlMg3 
uncoated. Right side, welding 
wire AlMg3 with TiB2-coating

reference
0,091 wt.-% Ti; 0,003 wt.-% B

TiB2-coa�ng
0,109 wt.-% Ti; 0,013 wt.-% B

Fig. 3  Modified varestraint-transvarestraint test
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The results of the modified varestraint-transvarestraint 
test are shown in Fig. 6 for titanium and in Fig. 7 for tita-
nium diboride. Both coatings reduce the susceptibility to hot 
cracking. In particular, the welds with the lowest element 
contents and thus lowest coating thicknesses lead to the low-
est hot cracking susceptibilities compared to the reference.

The influence on the arc is evaluated by high-speed 
recordings. For this purpose, the substrate plates are 
moved under the stationary torch with the aid of a robot 
and the welding speed of the welding process. In this 
way, high-speed images can be taken at 5000 frames per 
second over a period of 1 s using the backlight method. 
In addition, the welding current and the voltage curves 
of the welding process are recorded simultaneously. To 
evaluate the high-speed images of the arc, the individual 

images of each recording (Fig.  8) are converted into 
binary images using a thresholding (gray scale) method. 
The arc length is then measured in the converted images. 
The angle of the arc is approached at the upper end via 
the center of the arc 10% below the attachment point 
at the anode and via the center of gravity of the arc in 
the two-dimensional image. Figure 9 shows the binary 
image cropped to the arc. The distance the arc is meas-
ured along is shown in red.

To determine the average arc length, the arc lengths of the 
individual images of the high-speed recording are averaged 
over the measured period. The changes in arc length in per-
cent compared to the reference arc (uncoated wire electrode) 
are summarized in Table 3.

It can be demonstrated that the arc length decreases sig-
nificantly with increasing coating thickness. In the tests car-
ried out, the electrode with the largest  TiB2 layer thickness 
shows the highest process influence. When the electrode is 
processed, the arc shortens by 44% compared with the ref-
erence. At the same time, the welding current increases by 
17% with nearly unchanged arc voltage.

The conductivity of the arc is significantly depending 
on the degree of ionization and in particular on the metal 
vapor, since the metallic components in the arc plasma to 
a large extent carry the arc current. Even traces of metal 
vapor change the ionization state in the arc column [31]. 
The coatings can lead to an increase in the metal vapor 
content and thus to increased electrical conductivity of 
the arc respectively to a decrease in the length-specific 
arc resistance. Due to the constant voltage characteris-
tic used in gas metal arc welding, the measured volt-
age remains nearly constant. The changed operating 
point of the arc characteristic results in a shorter arc. As 
the length-specific arc resistance decreases, the weld-
ing machine increases the welding current due to the 

Fig. 4  Hot cracks at the end of a welding seam (SEM)
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Fig. 5  Grain size as a function of titanium content
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characteristic curve, as also shown by the measurements. 
Macroscopically, this is manifested by a shorter arc. Fig-
ure 10 shows images of the arc with different coatings. 
The decreasing arc length with increasing coating thick-
ness is visible in the figures.

Another consequence of the increased metal vapor con-
tent is the decrease in arc column temperature associated 
with a wider arc core. The penetration thus becomes flatter 
and wider. The influence on the fusion penetration shape and 
the fusion penetration depth of the  TiB2 coatings is clearly 
shown by micrographs. Figure 11 compares the reference 
wire electrode with the two higher coating thicknesses. It 
is noticeable that the penetration decreases with increas-
ing coating thickness and excess weld increases at the same 
time.

Changes in the penetration shape can be attributed to the 
fact that the electrically conductive area of the arc expands 
due to the low ionization energy of the metal vapor and 
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Fig. 6  The result of the trans-varestraint test for Ti-coatings
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Fig. 8  The video recording of the welding arc
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the decreasing current density [32]. It is noticeable that 
the pore content increases as the  TiB2 content rises. With 
increasing coating thickness, an increasing hydrogen con-
tent in the wire electrodes was observed. However, only 
very low film thicknesses are required to achieve a signifi-
cant grain refinement effect, as demonstrated here. Further 
research is challenged to find the optimum point in terms 
of film thickness, grain refinement effect, and porosity. In 
addition, the process parameters of the PVD process can be 
influenced, possibly leading to a reduction in the hydrogen 
content of the wire electrodes.

4  Conclusions

The investigations carried out show that thin-film coatings 
can be an interesting tool for influencing the weld metal 
and the welding process in the welding of aluminum wire 
electrodes. It was demonstrated that nucleating elements can 
be introduced into the weld metal via a coating of the filler 
metals and that a grain-reducing effect can be achieved in 
this way. By influencing the weld metal and the grain refine-
ment caused by the microalloying elements, the susceptibil-
ity to hot cracking can be reduced with a coating of titanium 
diboride and also with a titanium. In particular, low coating 
thicknesses show a significant hot crack-reducing effect at 
high strains. The weld metal with a titanium content of 0.103 
wt.% brought in by a titanium diboride coating and the weld 
metal with a titanium content of 0.119 wt.% brought in by a 
titanium coating have the lowest hot cracking susceptibility.

In addition, there are clear effects with regard to the weld-
ing process, which were illustrated by considering the arc 
length and the welding process energy. At almost constant 
arc voltage, the arc length decreases, and the welding current 
increases with increasing coating thickness. Micrographs 
show that  TiB2 coatings make the fusion penetration flatter 
and wider, which can be explained by the influence of the 
arc plasma via a higher metal vapor content.

Depending on the coating element, high coating thick-
nesses lead to a correspondingly higher hydrogen input into 
the welding process and thus to higher porosities in the weld 
metal. For some elements, however, the coating thicknesses 
required for positive weld metal and process effects are far 
below a critical range in terms of hydrogen-induced porosity.

5  Outlook and future research

In addition to titanium and titanium diboride, the effect of 
other coating elements on the weld metal and the process is 
worth investigating. It is also worthwhile to extend the inves-
tigations to other substrate wire electrodes. The substrate 
wire electrode chosen here is a naturally hard alloy. Research 

Fig. 9  The binary image of the arc with measuring path

Table 3  Arc length change, 
welding current, and arc voltage 
depending on the coating

Coating element Coating thick-
ness in nm

Ti content
in wt. − %

Arc length 
change in %

Welding cur-
rent in A

Arc voltage in V

Reference - 0.091 - 173 21.4
Ti 35 0.119  − 18 184 21.3

87 0.153  − 26 191 21.3
194 0.177  − 31 190 21.3

TiB2 31 0.103  − 23 183 21.3
47 0.109  − 31 190 21.3
129 0.146  − 44 202 21.3
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should be extended into the area of heat-treatable alloys. 
Initial results show an influence on the mechanical-techno-
logical properties and thus the need for further research in 
this respect. In terms of the coating process, further investi-
gations can be made to reduce the inherent hydrogen content 
of the coatings.
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Fig. 10  Influence of coatings on 
the arc length

reference (uncoated)

Ti 0,119 wt.-% Ti 0,153 wt.-% Ti 0,177 wt.-% 

Ti 0,103 wt.-% 
B 0,009 wt.-% 

Ti 0,109 wt.-% 
B 0,013 wt.-%

Ti 0,146 wt-% 
B > 0,24 wt.-%

0.091 wt.-% Ti (reference)
0.003 wt.-% B

0.109 wt.-% Ti
0.013 wt.-% B

0.146 wt.-% Ti
0.24 wt.-% < B

Fig. 11  Fusion penetration and excess weld of the welding seam depending on the  TiB2-coating
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