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SUMMARY

In a recent paper we have shown howwave variablescan be used to interconnectpassiveplants withpassive
controllers such that the system remainsl2-stable in spite of time varying delays and data dropouts. The present
paper further enhances these results by providing a detailed model which captures time varying delays, data
dropouts and network capacity for wireless ring token networks. It also provides a new theorem showing how
an asynchronous controller can be implemented which maintains anl2-stable system. Simulations, show that
asynchronous control of apassivemotor reduces the overall distortion when compared to a synchronous controller
which relies on lossy data reduction techniques. These two distinct results pave the way to study high performance
rate adaptive control schemes which minimize their control rate in order to match the network capacity. Copyright
c© 2008 John Wiley & Sons, Ltd.

KEY WORDS: passivity, non-linear control, Markov chains,Passive Asynchronous Transfer Unit, PATRU, wave
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1. Introduction

In [13, Theorem 4] it has been shown how to digitally control apassive(Definition 6-i) plant over
a network in which data can be subject to arbitrary time delays and data dropouts while remaining
l2-stable. Initial simulations in [13] showed the system to perform quite well under fixed time delays
however it remained to be shown how well the system performed under time varying delays. One
similar class of control networks which has been extensively studied is that related to telemanipulation
[1,2,14,19,20].The purpose of this paper is twofold: first, to present a model which accurately captures
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2 N. KOTTENSTETTE AND P. ANTSAKLIS

both the time varying delays associated with routing data over a token network and the data dropouts
that occur due to finite queue length; and second, is to compare how well apassiveasynchronous
controller compares to a rate adaptivepassivecompression scheme [11, Section 4.3.1]. In order to
evaluate performance we compare how our control scheme is able to effectively minimize the distortion
(Definition 3) between a desired set point and the plants position through a simulated example. Since
most digital control systems are concerned with sampling at a constant bit rate (CBR) we will focus
our analysis on suchCBRgenerating sources.

The networking delays and data dropout rate is intimately linked to the data rate of aCBRsource,
the length of the data queue and the capacity of the network. The capacity of the network is typically
limited by the distance between stations, the radio, medium access control (MAC) and routing policy
chosen. Therefore, much work has been done in order to determine optimum ways to route messages
from various sources to desired sinks. In [25] classical optimal control techniques [16] were used to
determine an optimal static routing policy which minimizes energy consumption. [18] provides an
algorithm which specifies the nodes’ order of transmission and power level in order to maximize the
network lifetime known asmaximum lifetime accumulative broadcast(MLAB). [9] illustrates how to
use feedback techniques in order to find the optimal number of redundant packets to send in order to
maximize an objective functionJ(ub, n, p). [8] shows how to use feedback to control uncooperative
users of networking resources. Unfortunately, most of these analysis are not concerned with attempting
to characterize or understand the effects of the delay of the information transmitted in the network.

One paper which provides a model which captures round trip delays and data drop outs of small
UDP packets sent over the Internet is presented in [5]. The model consists of a simple single server
queueing model with two input streams, where one stream represents the probe traffic and the other
stream represents the Internet traffic. Papers which look specifically atMAC protocols typically have
a stronger relationship between network capacity and routing delays. Two popular wirelessMAC
protocols which have received much attention are m-phase time division multiple access (TDMA), and
ALOHA. TDMA typically achieves a greater capacity than random access protocols such asALOHA,
however, for correlated flows such as those under a constant bit rate source (CBR), ALOHAcan obtain
greater capacity thanTDMA [27]. Also, in [28] the time varying delay statistics can be computed
for TDMA and ALOHA MACs subject to various sources such as aCBR source. These papers, do
not characterize the delay characteristics for round trip communication patterns which will be seen
in the l2-stablepassivenetworks introduced in [13]. These networks can containpassiveelements
such as nonlinear n-DOF robots, such as those described in [2] which are used in telemanipulation
systems [19]. Therefore, we shall study a simple token passingMAC protocol which will allow us to
compute the network capacity and delays for ourl2-stablepassivenetworks.

In Section 2 we determine the delay characteristics ofMACs which use token passing by developing
the appropriate Markov chains to describe the system. The token ring network consists ofm stations
in which a station can only transmit new information to its successor if it currently possess a token
received from its predecessor. Such a model is convenient as it allows us to focus our analysis on
the head of queue delay of stationm which generates new data packets at a constant packet rater
and still account for random communication delays incurred when relaying the data over the wireless
networks remainingm−1 stations. As such, the capacity of our network is calculated from the average
number of round trip stepsτm = {Mm[v]} taken for the delivery of control data which originated
from the starting stationm. τm is calculated using a convenient set of formulas provided by [22] and
summarized in [11, Appendix C.1]. Note that a wireless token ring protocol was chosen to control the
spacing of vehicles in the Automated Highway System program and the Berkeley Aerobot Project [7].
This protocol is robust and can handle problems such as duplicate tokens, lost stations (nodes), and
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WIRELESS CONTROL TOKEN 3

Figure 1. A telemanipulation system with flow-effort (velocity-force) architecture.

dynamically adding new stations to the ring. Furthermore, ifm is large, smaller rings of stations could
be established with an alternating carrier frequency in order to increase network capacity. In Section 2
we provide the basic analysis of a single ring ofm stations. Looking at performance of a single ring is
further justified when looking at potential wireless telesurgery applications in whichm = 4, consisting
of a station at the operator, robot and an aerial unmanned autonomous vehicle (the aerial vehicle can
be treated as two stations in the ring) [20].

In [14] methods to reduce the data communicated over a network using sample based lossy data
reduction (LDR) for telemanipulation systems has been investigated. It is concerned with developing
LDR algorithms which provide good compression while attempting to maintain a high level of
transparency. They proposed a measure which could be reflective oftransparencywhich is computed
by

I =

∫ t

0

[(fm(τ) − fmd(τ))2 + (ec(τ) − ecd(τ))2]dτ. (1)

Comparing Figure 1 to [14, Fig. 2] we see that the flows (fm, fmd) are treated as velocities (vhsi, vto)
of the human system interface (HSI, Gm(e(t))) and teleoperator (TO) which consists of the controller
Gc(f(t)) and robotGr(er(t)). Likewise, the efforts (ec, ecd) represent the corresponding forces
(Fto, Fhsi) depicted in [14, Fig. 2].

We are interested in evaluating the performance of our plantGp controllerGc network as governed
by the discrete random delays which occur over a wireless ring network. In Section 3 we will study
the resulting distortion between a desired position set pointθset(i) and the resulting position output
from the plantθact(i). In particular we will show how anovel passiveasynchronous control technique,
in which the controller is only run when new data is received from the plant, outperforms apassive
discrete time varyingLDR algorithm [11, Section 4.3.1]. When the asynchronous controller is not
running, it will drop the current reference input and its output will reset to0 after being held at its last
computed level for a period equal to that of the sample and hold period of the plant. Typically, when
data for the controller is dropped over apassivecontrol network, the controller either assumes a0-input
and updates its output accordingly or it attempts to make a prediction of what the correct input should
be. The variable compression scheme compared attempts to make a smooth prediction on the input to
tolerate delay and data dropouts. Although less steady state error and distortion occurs when using a
variable compression scheme over a0-input prediction scheme, it still does not perform as well as using
an asynchronous controller for a simulated example. A detailed simulation and discussion is provided
in Section 3.2 with a corresponding Theorem 1 (Section 3.3) which shows that the asynchronous
controller is indeedstrictly-output passive, as indicated by our simulations. Conclusions follow and
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Figure 2. Ring networks consisting ofm stations andn =
m−2

2
+ 2 stations.

are presented in Section 4.

2. Capacity and Delay of Single Ring Token Networks

A ring network consists ofm stations in which each station has a successor (the station it will pass
its token to) and a predecessor (the station it will receive a token from). For simplicity we will
consider rings in which stationi will have the following predecessor, successor pairs(pri, sci), ∀i ∈
{1, . . . , m}:

(pri, sci) =











(i + 1, m), if i=1;

(1, m − 1), if i=m;

(i + 1, i − 1), otherwise.

(2)

Figure 2 illustrates a corresponding ring network in which each station has a probabilityPi of
successfully sending a packet ofnp bits (which typically includesnd data bits,nh header bits and
nfcs frame check sequence bits) and receiving an acknowledgment ofnack from its successor. For
simplicity we assume that the successful transmission of a packet and receiving an acknowledgment
is equivalent to passing a token to its successor. The packet dropout rate is denoted asPper which
is derived from the bit error ratePber such thatPper = 1 − (1 − Pber)

np ( [11, Appendix C.2]).
Therefore, we conservatively estimatePi = (1−Pber)

np+nack . This assumption is conservative, since
most people neglect the acknowledgment entirely.

Definition 1. Let the indexk = {0, 1, 2, . . .} denote a packet time slot, and letx(k) = 1 if a packet
has been generated at stationm at timek and letx(k) = 0 otherwise. If stationm generates a packet
of data to transmit around a ring network as depicted in Figure 2 at a constant packet rater then it is
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WIRELESS CONTROL TOKEN 5

assumed thatx(k) behaves as follows:

x(k) =

{

1, if k mod r = 0.

0, otherwise.
(3)

In order for stationm to transmit the new packet of data around the ring, it will need access to the
token. Assume for simplicity, that the token is available atk then the soonest the next available token
could arrive back at stationm is k + m. Therefore, the minimum ideal rate in which stationm can
generate a packet isrpc = m. Therefore, we define the ideal packet capacity as

λpc =
1

rpc

=
1

m
(4)

The average packet capacityλp depends on the average round trip timeτm and has the following form

λp =
1

τm

(5)

In order to calculateτm we note that the following Markov chain describes a single packet journey in
our ring network from stationm and back tom. We capture the final round trip packet delivery from
station1 to stationm with the corresponding absorbing state0. The transition matrixP is as follows:

P =













1 0 0 0 . . . 0
P1 1 − P1 0 0 . . . 0
0 P2 1 − P2 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 . . . . . . . . . . . . . . . 0 Pm Pm − 1













=

[

I 0

R Q

]

(6)

This is in canonical form [11, Appendix C.1]. We can now computeN in which eachNi,j element
i, j ∈ {1, . . . , m} is the average number of times each stationj is visited if the packet originated in
stationi before the token reaches the absorbing state0.

N = (I − Q)−1 (7)

N =













1
P1

0 . . . . . . . . . . . 0
1

P1

1
P2

0 . . . . . . 0
1

P1

1
P2

1
P3

0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . .
1

P1

1
P2

1
P3

. . . . . . 1
Pm













(8)

Using the formulas in Table III the mean arrival time to stationm when the initial packet started at
stationi is obtained by solving forτ :

τ =













1
P1

1
P1

+ 1
P2

�

�

∑m

i=1
1
Pi













(9)

Or equivalently

τi =

{

1
Pi

, i = 1;

τi−1 + 1
Pi

, 1 < i ≤ m.
(10)
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6 N. KOTTENSTETTE AND P. ANTSAKLIS

Using (47) to solve forσ2
v = {σ2

vi
} (in which σ2

vi
represents theith element in vectorσ2

v which
describes the variance in arrival time to stationm when the packet originated from stationi) results in
the following:

σ2
vi

= 2

i
∑

j=1

τj

Pj

− τi(1 + τi). (11)

Solving forσ2
vδ

= (σ2
vi
− σ2

vi−1
) results in the following:

σ2
vδ

=
2τi

Pi

− τi(1 + τi) + τi−1(1 + τi−1) (12)

=
2τi

Pi

− τi − τ2
i + (τi −

1

Pi

)(1 + τi −
1

Pi

) (13)

=
1 − Pi

P 2
i

. (14)

Therefore,σ2
vi

can be equivalently written in the following recursive form

σ2
vi

=

{

1−P1

P 2

1

, if i = 1;

σ2
vi−1

+ 1−Pi

P 2

i

, 1 < i ≤ m.
(15)

We now state the following lemma.

Lemma 1. Given a ring network as described by (2) and depicted in Figure 2. In which each station
i ∈ {1, . . . , m} has a probabilityPi of successfully sending a message to its successor station and
1 − Pi of unsuccessfully sending the message per attempt, the following holds:

i. The average steps it takes to relay a message from stationm around the ring network isτm =
∑m

i=1
1
Pi

,
for the special casePi = p thenτm = m

p
.

ii. The corresponding variance in the round trip time isσ2
vm

=
∑m

i=1
1−Pi

P 2

i

, for the special casePi = p

thenσ2
vm

= m(1−p)
p2 .

Remark 1. The corresponding packet capacity of the ring network isλp = 1
τm

, for the special case
Pi = p thenλp = p

m
. The solution ofλp is a direct substitution ofτm = m

p
(Lemma 1-i) into (5) from

Definition 1.

Proof 1. Most of the proof has been provided in the subsequent discussion. In summary:

i. The solution forτm is provided by (9).

ii. The solution forσ2
vm

is easily obtained by our recursive solution given by (15).

Remark 2. For the l2-stable digital control network depicted in Figure 7 withn − 2 equally spaced
relay motes, we can create a ring network as depicted in Figure 2 in which stationm contains
the plantGp and stationm

2 = n − 1 contains the controllerGc. Furthermore assume thatPi =
p, ∀i ∈ {1, 2, . . . , m}. Then the average packet transmission delay (E{p(i)}) from plant to controller
station and from controller to plant station (E{c(i)}) is m

2p
= n−1

p
with a corresponding variance of

(n−1)(1−p)
p2 .
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WIRELESS CONTROL TOKEN 7

Although, the packet capacity is a convenient abstraction for characterizing the network, we still need
to quantify the actual rate of data being transmitted. Therefore, we provide the following definition:

Definition 2. The data capacity of a ring network is the number of actual data bits per second which
can be transmitted round trip from a given source node, in which the data is relayed from every station
in the network. Therefore, the data capacity in the ring network is

λd =
fbitλpnd

(np + nack)
(16)

in whichλp is the packet capacity,nd is the number of actual data bits which get transmitted for a
successful packet delivery,np is the number of packet bits,nack is the number of bits required for the
acknowledgment, andfbit is the transmit data rate (bits per second).

For the special case when each node is equally spaced in a line network withn nodes (m = 2(n − 1)
stations) then the corresponding data capacity is

λd =
fbitndp

m(np + nack)
=

fbitndp

m(nd + nh + nfcs + nack)
(17)

in whichp is dependent onnp, andnack and the node spacingd. This dependency is seen, as we recall
that

p = 1 − Pper = (1 − Pber)
np+nack ,

in which the probability of a bit errorPber = f(snr) depends on the received signal to noise ratio
(snr). In which the received signal to noise ratio depends on the radio and transmission path loss
PL(d) which is a function of the node spacingd and the transmission path loss model chosen [11,
Appendix C.2]. The CC2420 is a true single-chip 2.4 GHz IEEE 802.15.4 compliant RF transceiver
designed for low power and low voltage wireless applications [10]. Building from the analysis provided
in [11, Appendix C.2] for determining the packet error rate for the CC2420 and using the following
parameters given in Table I: we can calculateλd as a function ofd andnd in which mλd is plotted

Table I. CC2420 PARAMETERS SUMMARY.
Term Symbol Value

bits per second fbit 250 × 103 bps
header bits nh 13 ∗ 8 = 104 bits

frame check sequence bits nfcs 2 ∗ 8 = 16 bits
ack bits nack 11 ∗ 8 = 88 bits
data bits nd 0 ≤ nd ≤ 960 bits

typical transmit power PT −24 ≤ PT ≤ 0 dBm
worst case transmit power PT −27 ≤ PT ≤ −3 dBm

typical noise figure NF 15.44 dB
worst case noise figure NF 20.44 dB

in Figure 3(a) andd × m × λd is plotted in Figure 3(b). These are fairly easy estimates to remember
and use when attempting to determine the average delays in a ring network. However, there is a way
to get an even closer estimate of the corresponding delay in the network. Using techniques similar
to those used by [15, 26], we describe a two dimensional Markov chain to track the head of queue
HoQdelay at stationm for an outgoing packet which is generated from aCBRsource which generates
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Figure 3. Normalized network capacity plots assumingn = 3.3, do = 8 meters,PT = −3 dBm, NF = 20.44dB.

packets at packet rater to be transmitted over a token ring network. The chain will be described by
the(d(k), s(k)) tuple (or more compactly(d, s)) in which d(k) ∈ {−r + 1,−r + 2, . . . , D} denotes
the delay of theHoQat packet time slotk in whichD is the maximum delay before the packet will be
dropped or compressed ands(k) ∈ {1, 2, . . . , m} is the station where the token is in the network at
timek. In particular theHoQdelay,d(k) is related to the packet generation rater as follows:

d(k + 1) = d(k) − (θ(k)r − 1). (18)

in which

θ(k) =

{

1, if stationm has a tokens(k) = m and transmits the token to stationm − 1 (s(k+1)=m-1).

0, otherwise.

Note, that whend(k) < 0 it indicates that there is no data in the transmit buffer of stationm in addition
the next packet will be generated at time(k − d(k)) i.e. (x(k − d(k)) = 1). Note that for the simple
example given in Table II it is impossible for the delay of the head of queue to be reduced to0 without
flushing the queue, even if the token was successfully passed between station 1 and station 2 for all
remainingk > 10.

Table II. A simple example illustrating (18), whenr = 2 andm = 2.
k 0 1 2 3 4 5 6 7 8 9 10

x(k) 1 0 1 0 1 0 1 0 1 0 1
s(k) 2 1 2 1 1 2 1 2 1 2 2
θ(k) 1 0 1 0 0 1 0 1 0 0 1
d(k) 0 −1 0 −1 0 1 0 1 0 1 2

Lemma 2. Given a ring network as described by (2) and depicted in Figure 2 and assuming that
a packet (ofnp bits) will be rotated through the network (even if no new data is present). In which
each stationi ∈ {1, . . . , m} has a probabilityPi of successfully sending a message to its successor
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WIRELESS CONTROL TOKEN 9

station and1 − Pi of unsuccessfully sending the message per attempt, the following transition matrix
P ∈ R

((D+r)m)×((D+r)m) describes the HoQ delay:

P =

(−r + 1, s)
(−r + 2, s)

. . .
(−1, s)
(0, s)
(1, s)
. . .

(D − 1, s)
(D, s)





























0 Pr 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0

0 0 Pr 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 . . . 0 Pr 0 . . . . . . . . . . . . . . . . 0

Pm 0 . . . . . . . 0 Pr − Pm 0 . . . . . 0

0 Pm 0 . . . 0 0 Pr − Pm 0 . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 . . . . . . . . 0 Pm 0 . . . . . . . . . . . . 0 Pr − Pm

0 . . . . . . . . . . . . . 0 Pr 0 . . . . . 0





























(19)

in whichPr ∈ R
m×m is the transition matrix which describes the evolution of the token,

Pr =

















1 − P1 0 . . . . . . . . . . . . . . . . . 0 P1

P2 1 − P2 0 . . . . . . . . . . . . . . . . . . . . 0
0 P3 1 − P3 0 . . . . . . . . . . . . . . . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 . . . . . . . . . . . . . . . 0 Pm−1 1 − Pm−1 0
0 . . . . . . . . . . . . . . . . . . 0 Pm 1 − Pm

















(20)

andPm ∈ R
m×m is the part of the transition matrix which captures shrinking of the HoQ delay from

d to d − r + 1 when the token is at stationm and is successfully transmitted to stationm − 1

Pm =

















0 0 0 0
0 . . . . . . . . 0
0 . . . . . . . . 0
. . . . . . . . . . . . . . .
0 . . . . . . . . 0
0 0 Pm 0

















. (21)

The(d, s) is a short hand to show how the states of the chain correspond to the rows of the transition
matrix P in whichd is a fixed column of integers ands would have each row correspond to the next
state in the chain describing the evolution of the token i.e.

(d, s) =

(d, 1)
(d, 2)
(d, 3)
(·, ·)

(d, m − 1)
(d, m)

. (22)

Proof 2. The transition matrixP as described by (19) consists of combinations ofm × m block
matrices{0, Pr, Pm}. Assuming that north is the top of the page and south the bottom of the page
we will use the following notation to indicate the location of each block matrix withinP asP (x, y) in
which: P (−r + 1,−r + 1) represents the most north-west block;P (D,−r + 1) represents the most
south-west block;P (−r + 1, D) represents the most north-east block; finally,P (D, D) represents the
most south-east block.
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10 N. KOTTENSTETTE AND P. ANTSAKLIS

1. (−r + 1) ≤ d < 0, s ∈ {1, . . . , m}: Pr describes the evolution of the tokens(k). Since there is no
packet in the HoQ,θ(k) = 0, which when substituted into (18) results in

d(k + 1) = d(k) + 1, ∀s(k) ∈ {1, 2, . . . , m}.
Therefore for the case whenx ∈ {−r + 1,−r + 2, . . . ,−1}

P (x, y) =

{

Pr, if y = (x + 1)

0, otherwise.

2. 0 ≤ d(k) < D, s(k) ∈ {1, . . . , m}: once the HoQ delayd(k) ≥ 0, a packet is available for
transmission at stationm, hence if stationm has the token and successfully transmits to stationm− 1
thenθ(k) = 1, otherwiseθ(k) = 0. Therefore, from (18) the delayd(k) will evolve as follows

d(k + 1) =

{

d(k) − (r − 1), if s(k) = m ands(k + 1) = (m − 1)

d(k) + 1, otherwise.

Whens(k) = m, a successful transmission (s(k + 1) = (m − 1)) will occur with probabilityPm

which is used in formulating the matrixPm. Conversely, token transmissions from any other station
will haveθ(k) = 0 in which the delayd will increase by one, thereforePr − Pm will describe the
remaining state transitions which do not lead in reducing the HoQ delay. Therefore, for the case when
x ∈ {0, 1, . . . , D − 1}

P (x, y) =











Pm, if y = (x − r + 1)

Pr − Pm, if y = (x + 1)

0, otherwise.

3. d(k) = D, s(k) ∈ {1, . . . , m}: once the delayd(k) = D the packet will either be successfully
delivered or dropped (θ(k) = 1), therefore, the delay will shrink such that

d(k + 1) = D − (r − 1), ∀s(k) ∈ {1, 2, . . . , m}.
Thus, we only need to track the evolution of the tokens which is described byPr. Therefore,

P (D, y) =

{

Pr, if y = (D − r + 1)

0, otherwise.

Remark 3. Noting that the Markov chain evolves according to

π(k + 1) = π(k)P. (23)

Then in order to calculate the average delay of the HoQ we simply solve for the steady state distribution
of our Markov chain

πP = π, (24)

in whichπ = (π(−r+1,1), π(−r+1,2), . . . , π(−r+1,m), π(−r+2,1), . . . , π(D,m)) is a row vector. The delay
distribution,di(0,≤ d ≤ D) is given by

di =
Pmπ(i,m)

∑D

k=0 Pmπ(k,m)

=
π(i,m)

∑D

k=0 π(k,m)

(25)

where
∑D

k=0 Pmπ(k,m) is the normalizing constant, in which we only consider successful transmissions
with probabilityPm from stationm to stationm − 1 in deriving the delay distribution.
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WIRELESS CONTROL TOKEN 11

Remark 4. Calculating the packet loss probabilitypo is simply

po =
(1 − Pm)π(D,m) +

∑m−1
k=1 π(D,k)

λ

= r[(1 − Pm)π(D,m) +

m−1
∑

k=1

π(D,k)] (26)

in whichλ = 1
r
, if we are in any other state besidesm the packet will be dropped, when in statem

there is only a probability of(1 − Pm) of dropping the packet and that is accounted for.

Remark 5. For thel2-stable digital control network depicted in [13, Fig. 2] withn−2 equally spaced
relay motes, we can create a ring network as depicted in Figure 2 in which stationm is the plantGp

and stationm
2 = n − 1 is the controllerGc. The controller only returns control data if it has received

data from the plant. If we consider the queuing delay associated with a CBR source atm and consider
that the controller will not immediately compute a control command but pass along computations from
previous transmissions. Then we can more closely approximate the delay of the delivery of data from
the controller to the plant as if it was provided a CBR sourcer as well. This average delay fromGp to
Gc and vice versa can be computed as follows:

τpc =
D

∑

i=1

idpi
+

m
2
−1

∑

i=m−1

1

Pi

for the delay fromGp to Gc, (27)

τcp =

D
∑

i=1

idci
+

m−1
∑

i= m
2

1

Pi

for the delay fromGc to Gp (28)

in which dxi
is the corresponding delay distribution for either the plant or controller if they were

supplied a CBR sourcer. If Pi = p thenτpc = τcp such that

τpc = τcp =

D
∑

i=1

idi +
(m − 2)

2p
(29)

and the corresponding variance is

σ2
v =

D
∑

i=1

i2di − (

D
∑

i=1

idi)
2 +

(n − 2)(1 − p)

p2
. (30)

3. Distortion in Single Ring Token Networks

We have characterized the delay in Section 2, however, in order to account for the time varying queuing
delay we assume that when the delay exceedsD slots the data packet should be dropped. However,
dropping packets may lead to drift in the actual position of the plantθact(i) when it is controlled
using velocity feedback. Instead of dropping the data when it reaches the maximum delayD we chose
to implement aLDR algorithm described in [11, Section 4.3.1] which is similar to thecompressor-
expanderscheme used in [3, 4]. We use a distortion measure (Definition 3) in order to evaluate the
performance of these compression schemes.
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(b) Simulated mean delay.

Figure 4. Theoretical and simulated mean delay ofuoc in which up to2 40 bit samples ofuoc can be transmitted
(maximumnp = 288 bits, S = −90dBm, PT = −3dBm, n = 3.3, do = 8.0 meters, maximumr = 86,

D = 516).

Definition 3. Considerl2-stable digital control networks similar to those depicted in Figure 7 (with or
without the PATRU) in which the flow output is denoted asfp(t). Denote the sampled integrated output
of the plant asθact(i) which depends on the sampling rateTs such that

θact(i) =

∫ iTs

0

fp(t)dt.

Further, assume that the user will provide a desired set pointθset(i) (with z-transformθset(z)) to the
input of a discrete second order trajectory generatorHt(z) which is a zero-order hold equivalent of
Ht(s)

Ht(s) =
ω2

trajs

s2 + 2ζωtrajs + ω2
traj

such that
roc(z) = −Ht(z)θset(z)

(roc(z) is the z-transform ofroc(i)). The mean squared distortion is

Iθ =
1

T
E{

T
∑

i=0

(θset(i) − θact(i))
T(θset(i) − θact(i))} (31)

in which E[·] denotes the expectation of the summation of the squared error which is dependent on
the set point, the controller, the plant dynamics, and the time varying delays incurred due to the
communication network.

In the subsequent discussion which follows we will compare the distortion results of a classic motor
control problem described in [13, Section IV]. The motor to be controlled is characterized by its torque
constant,Km > 0, back-emf constantKe, rotor inertia,Jm > 0, and damping coefficientBm > 0.

Copyright c© 2008 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control2008;1:1–19
Prepared usingrncauth.cls

Nicholas Kottenstette, Panos J. Antsaklis, “Wireless Digital Control of Continuous Passive Plants Over 
Token Ring Networks,” International Journal of Robust and Nonlinear Control, Special Issue on Control with 
Limited Information, CT Abdallah, C Canudas-de-Wit, I Lopez Hurtado, Guest Eds., November 2008.



WIRELESS CONTROL TOKEN 13

Thepassivedynamics are described by

ω̇ = −Bm

Jm

ω +
Km

Jm

i. (32)

We choose to use thepassive“proportional-derivative” controller described by (33).

KPD(s) = K
τs + 1

s
(33)

Using loop-shaping techniques we chooseτ = Jm

Bm
and chooseK = Jmπ

10KmTs
. This will provide a

reasonable crossover frequency at roughly a tenth the Nyquist frequency and maintain a 90 degree
phase margin. We choose to use the same motor parameter values given in [17] in whichKm = 49.13
(mV×rad×sec),Jm = 7.95 × 10−3 (kg × m2), andBm = 41(µN × sec/meter). With Ts = .05
seconds, we use [12, Corollaries 4,5] to synthesize astrictly-output passiveplant and controller from
our continuous model (33). We also use [12, Corollary 3] in order to compute the appropriate gains for
both the controllerKsc

= 1 and thestrictly-output passiveplantKsp
= 20.

In particular we will compare the resulting step response and corresponding distortion when adaptive
compression is used as opposed to a novel asynchronous controller which only calculates a new control
command when sensor data is received from the plant. We estimated the corresponding distortion by
averaging the summation inside the expectation of (31) over 50 trials for a fixed number ofn nodes and
spacing ofd meters. We choseθset(i) to use a square wave profile which is0.0 radians for0 ≤ t < 8.0
seconds,1.0 radians for8 ≤ t < 16.0 seconds,−1.0 radians for16.0 ≤ t < 24.0 seconds,0 radians
for 24.0 ≤ t seconds (Figure 6(a)). Since we chose a modest sampling rate of.05 seconds we generate
data at5 ∗ 8/.05 = 800.0 bits per second. Which is a small fraction of the maximum data rate that
can be achieved between a small number of nodes. As such, the delay between receiving data from the
plant and controller is roughly the sampling rate (.05 seconds) for distances less than70 meters.

3.1. Summary of LDR results.

A detailedLDR algorithm is presented in [11, Section 4.3.1], and has been simulated for the motor
control example. Figure 5(a) shows the typical step response under variousm stations and station
spacingd. The corresponding distortion is given in Figure 5(b). Note that whenIθ = 0.5 can be
achieved by simply keepingθact = 0.

3.2. Comparing LDR Algorithm With Dropping Data in a Full First-In, First-Out (FIFO) buffer.

As we have seen, theLDR algorithm behaves exceptionally well for extremely unreliable
communication channels. When the nodes are spaced72.0 meters apart, the probability of a successful
packet transmission isP = (1.0 − .00631781)8×(11+2+13+2×5) = 16%. Which corresponds to a
capacity of5596 bits/second for two nodes, and622 bits/second for ten nodes (m = 18). Thus, to
maintain an effective800 bit/second data rate for ten nodes the data needs a compression ratio of
800/622 and negligible distortion is seen. However, as the compression ratio increases so does the
distortion in Figure 5(b), which is seen in the delay and resulting steady state errors in Figure 5(a).
Although the step responses are fairly smooth, when the nodes are74.0 meters apart the probability of
a successful packet transmission isP = (1.0−.010108)8×(11+2+13+2×5) = 5.3%. Which corresponds
to a capacity of1861 bits/second for two nodes, and207 bits/second for ten nodes (m = 18) with a
required compression ratio nearing4.

However, when a FIFO is full and if we choose to use no compression and either drop the oldest or
the current data sample, we can reduce the distortion at the lower data rates. This was anunexpected
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Figure 5. Step response and corresponding distortion usingLDR.

result, after reading about previous simulations in which dropped data resulted in steady state error [4,
Figure 9] [3, Figure 5, Figure 6]. However, we have been implementing our controller in a slightly
different manner when not using compression. The controller only computes a new command when
data from the plant is received, which implies we do not calculate a control command which will
steer us away from our desired location by using a zero input. Furthermore, we achieved a significant
improvement in distortion by simply dropping the sampled control input when data is not available
from the plant. These two seemingly simple changes lead to a significant improvement in reducing
distortion as can be seen in the step responses in Figure 6(a) and distortion plot in Figure 6(b).

3.3. Asynchronous Passivity

Figure 7 indicates how to implement apassivedigital controller in an asynchronous manner. Letz−p(i)

andz−c(i) represents a time varying delay element such that if thePATRUwas bypassed andi = j,
then uoc(i) = uop(i − p(i)) and vop(i) = voc(i − c(i)) at time i in which c(i) and p(i) would
be positive integers. TheIPES and ZOH blocks are used to digitally control a continuouspassive
plant and are described in more detail in Appendix II.2. The wave variables depicted in Figure 7
(uo{p,c}(i), vo{p,c}(i)) are also reviewed in Appendix II.3. The transfer of data between the controller
and the plant is handled by thePassive Asynchronous Transfer Unit(PATRU). Note that the controller
only computes a new control commandeoc(j) when new data arrives from thePATRUuoc(j), hence,
why we refer to this as an asynchronous controller.

Definition 4. Define the setI as the set of received indexesl = (i − p(i)) from the plant which
correspond to the received tuple(l, uop(l)) and the setJ as the set of received indexesk = (i − c(i))
from the controller (via the PATRU) which correspond to the received tuple(k, voc(k)). When the plant
and controller are initially enabled the setsI andJ are empty. For simplicity of discussion we assume
that the controller can instantly compute a new control commandeoc when new data arrives from the
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Figure 6. Step response and corresponding distortion with asynchronous control and dropping latest sample.

Figure 7.Passivedigital control network withPassiveAsynchronous Transfer Unit (PATRU).

plant. The PATRU then handles the transfer of data as follows:

1. If the periodically generated tuple(l, uop(l)) from the plant has arrived to the PATRU on the controller
side then:

if l ∈ Ic:
uoc(j) = uop(l)
roc(j) = roc(i)
I = l ∪ I
calculate newvoc(j), andeoc(j)
voc(i) = voc(j)
eoc(i) = eoc(j)
j = j + 1

else:
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16 N. KOTTENSTETTE AND P. ANTSAKLIS

voc(i) = 0
eoc(i) = 0

transmit(i, voc(i))

2. Otherwise if no periodically generated tuple(l, uop(l)) from the plant has arrived to the PATRU on the
controller side then:

voc(i) = 0
eoc(i) = 0
transmit(i, voc(i))

3. If the periodically generated tuple(k, voc(k)) from the PATRU on the controller side has arrived to the
PATRU on the plant side then:

if k ∈ Jc:
vop(i) = voc(k)
J = k ∪ J

else:
vop(i) = 0

transmit(i, uop(i))

4. Otherwise if no periodically generated tuple(k, voc(k)) from the PATRU on the controller side has
arrived to the PATRU on the plant side then:

vop(i) = 0
transmit(i, uop(i))

Using definition 4 we give the following lemma:

Lemma 3. Using the PATRU as defined by Definition 4,

〈fop(i), edoc(i)〉Ni
≥ 〈eoc(j), fopd(j)〉Nj

(34)

holds for allNi ∈ {1, 2, . . . , } andNj ∈ {1, 2, . . . , }.

Proof 3. To begin, we note thatNi > Nj since the controller will only process received data from the
plant. From the wave variable transform we also know that (34) can be equivalently written as

‖(uop(i))Ni
‖2
2 − ‖(vop(i))Ni

‖2
2 ≥ ‖(uoc(j))Nj

‖2
2 − ‖(voc(j))Nj

‖2
2. (35)

It is sufficient for (35) to hold if both

‖(uop(i))Ni
‖2
2 ≥ ‖(uoc(j))Nj

‖2
2 (36)

and

‖(voc(j))Nj
‖2
2 ≥ ‖(vop(i))Ni

‖2
2 (37)

hold. By definition 4 we know thatuoc(j) can only consist of unique samples ofuop(i) therefore (36)
is obviously satisfied. Likewise,vop(i) can only consist of unique samples ofvoc(j) or the value0
therefore (37) is satisfied.

With lemma 3 we state the additional lemma which shows that using thePATRUan expression can be
obtained which is sufficient for astrictly-output passivesystem wheni = j.
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Lemma 4. Using the PATRU as defined by Definition 4 in the control network depicted in Figure 7.
The following inequality is satisfied:

〈fop(i), rop(i)〉Ni
+ 〈eoc(j), roc(j)〉Nj

≥ ǫ(‖(fop(i))Ni
‖2
2 + ‖(eoc(j))Nj

‖2
2) − β (38)

in whichǫ = min(ǫop, ǫoc) andβ = βop + βoc. Wheni = j the network is strictly-output passive.

The proof follows along the lines as the one provided for [13, Theorem 4].

Proof 4. First, by [13, Theorem 3-I],Gp is transformed to a discrete passive plant. Next, by [13,
Theorem 2] both the discrete plant and controller are transformed into strictly-output passive systems.
The strictly-output passive plant satisfies

〈fop(i), eop(i)〉Ni
≥ ǫop‖(fop(i))Ni

‖2
2 − βop (39)

while the strictly-output passive controller satisfies (40).

〈eoc(j), foc(j)〉Nj
≥ ǫoc‖(eoc(j))Nj

‖2
2 − βoc (40)

Substituting,edoc(i) = rop(i) − eop(i) and fopd(j) = foc(j) − roc(j) into (34) (which holds by
Lemma 3) yields

〈fop(i), rop(i) − eop(i)〉Ni
≥ 〈eoc(j), foc(j) − roc(j)〉Nj

which can be rewritten as

〈fop(i), rop(i)〉Ni
+ 〈eoc(j), roc(j)〉Nj

≥ 〈fop(i), eop(i)〉Ni
+ 〈eoc(j), foc(j)〉Nj

(41)

so that we can then substitute (39) and (40) to yield

〈fop(i), rop(i)〉Ni
+ 〈eoc(j), roc(j)〉Nj

≥ ǫ(‖(fop(i))Ni
‖2
2 + ‖(eoc(j))Nj

‖2
2) − β (42)

in whichǫ = min(ǫop, ǫoc) andβ = βop + βoc. Thus (42) satisfies [13, Definition 3-II] wheni = j in
which the input is the row vector of[rop, roc], and the output is the row vector[fop, eoc].

Interestingly, we can describe the controllers behavior in terms ofi since thePATRUonly transfers
data to the controller when available from the plant or sends a0 to the plant when no control data is
available. Equivalently we can simply transfer a0 to the controller when no data is available from the
plant and use a switched controllerGc in whichGc = Gco when data is present from the plant and set
Gc = 0 when thePATRUfills in the missing data forvoc(i), vop(i), andeoc(i) with 0.

Theorem 1. Using the PATRU as defined by Definition 4 in the control network depicted in Figure 7.
The digital control network in Figure 7 is strictly-output passive.

Proof 5. From lemma 4 we have shown that (38) holds. Given definition 4, both

‖(eoc(j))Nj
‖2
2 = ‖(eoc(i))Ni

‖2
2 (43)

and
〈eoc(j), roc(j)〉Nj

= 〈eoc(i), roc(i)〉Ni
(44)

will hold, therefore,

〈fop(i), rop(i)〉Ni
+ 〈eoc(i), roc(i)〉Ni

≥ ǫ(‖(fop(i))Ni
‖2
2 + ‖(eoc(i))Ni

‖2
2) − β (45)

holds in whichǫ = min(ǫop, ǫoc) andβ = βop + βoc.
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4. Conclusions

We have presented several results related to digital control of continuouspassiveplants over wireless
networks. Of particular importance is that we provided a much needed analysis which captured time
varying delays (Lemma 1) and data dropouts (Lemma 2) for two way wireless digital communication
token passing medium access control (MAC) networks. Also we showed how anovelasynchronous
controller can be used to maintain anl2-stable system (Theorem 1) while improving control
performance over synchronous controllers which rely on lossy data reductionLDR algorithms. More
specifically: (i) thepassiveplant (stationm = 2(n − 1)) andpassivecontroller (stationm/2) were
treated as stations of an node token ring network depicted in Figure 2; (ii) we provided a Markov chain
(with transition matrix (6) and Lemma 1) in order to determine the network capacity, mean round trip
travel time (τm) and variance of travel time for a packet of data in a ring network; (iii) we accounted
for the overhead of the data acknowledge, header, and frame control sequence with the corresponding
definition fordata capacity(Definition 2); (iv) Definition 2 (and a useful analysis relating packet error
rate to node spacing with wireless transceivers such as the CC2420 in [11, Appendix C.2]) allows
one to generate figures such as: a) Figure 3(a) showing the maximum data capacity is attained by
sending the longest possible packet until a distance spacing of the nodes is such thatp is fairly low, b)
and Figure 3(b) shows that a maximum spacing exists which provides the maximum data capacity×
distance for relaying data over a network; (v) in order to account for queuing delays and data dropouts
we provide a more precise networking delay model in Lemma 2; (vi) Lemma 2 shows that the delay
will undergo aphaseshift in which the delay will suddenly increase at a critical number of nodes and
node separation distance, as seen in Figure 4(a) and verified by simulation in Figure 4(b) such that
(a) the sudden increase in delay is equal to the maximum allowed buffer delayD and it occurs when
the data rater < 1

λp
= 2(n−1)

p
, (b) this is intuitive since once data is generated at a rate that exceeds

the capacity of the network, then the delay will continue to grow unbounded until packets are dropped
which occurs when the First-In, First-Out (FIFO) buffer is full.

In order to evaluate control performance over ourpassivewireless network we: (i) introduced
a new definition for distortion Definition 3 which allowed us to evaluate and compare: (a)
an adaptiveLDR algorithm as described in [11, Section 4.3.1] which has been shown to be
passive[11, Lemma 8], (b) anovel strictly-output passiveasynchronous controller as depicted
in Figure 7 which only computes a new possibly non-zero control command when valid data
from the plant is received (Section 3.2); (ii) provided a new Theorem 1 (with corresponding new
Lemma 4, and Lemma 3) showing that the asynchronous controller, governed by thePATRU as
defined by Definition 4, is indeedstrictly-output passive; (iii) Figure 6(b) shows the corresponding
improvement in distortion for the asynchronous controller, as compared to the one which uses the
adaptive compression scheme as shown in Figure 5(b). (iv) using the network models discussed
for token ring networks, it should be a fairly straight forward task to design a estimate of the
network capacity in order to allow the plant to adjust its sampling rateTs in order to generate
data packets at a rater = 1

λp
. This additional piece of informationTs can be sent along

to the controller in order to use the appropriate gains to calculate a new control command.
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APPENDIX

I. Key Formulas For Finite Markov Chains

We summarize some key results given by [22] as they allow us to evaluate various random processes
which can be described by a finite Markov Chain. We assume the chain can be described by a finite
set of statess ∈ {1, . . . , m} and the state transition matrixP . If the chain is an absorbing chain, it
will reach an absorbing state with probability1. An absorbing state is one that once reached, it will not
leave that state (i.e.P(i,i) = 1). Hence, we are interested in the following processes:

1. uj: The number of times the process is in the nonabsorbing statej before being absorbed.

2. v: The number of steps taken before absorption.

3. w: The number of different nonabsorbing states entered before absorption.

4. x: The state in which the process is absorbed.

Using the following notation:

1. Pri[p]: The probability thatp occurs when the process is started in statei.

2. Mi[f ]: The mean value of the random variablef when the process started in statei.

3. Ci[f, g]: The covariance off andg when the process is started in statei.

The transition matrix can be put in a canonical formP in which the absorbing states are placed first
such that

P =

[

I 0

R Q

]

(46)

From which we can compute the following first and second moments based on the fundamental matrix
N = (I − Q)−1 as given in Table III.

Table III. FIRST AND SECOND MOMENT STATISTICS FOR AN ABSORBING MARKOV CHAIN [22]
First Moment Second Moment

N = {Mi[uj ]} = (I − Q)−1 N2 = {Mi[u
2
j ]} = N(2Ndg − I)

τ = {Mi[v]} = Ne τ2 = {Mi[v
2]} = (2N − I)Ne

H = {Mi[w]} = NN−1
dg e

In whichNdg is a matrix with the same diagonal elements asN and0 elsewhere, ande is a column
vector of ones. It is also given thatB = {Pri[x = j]} = NR. Denoting the variance ofv given i as
σ2

v = {Ci[v, v]} can be calculated as follows:

σ2
v = τ2 − diag(τ)τ = [2N − I − diag(Ne)]Ne = [2N − I − diag(τ)]τ . (47)
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II. PassiveSystems,IPESH, and Wave Variables

This appendix provides a brief review ofpassivesystems, theIPESH, wave variables, and nomenclature
to aid in the reading of Section 3.3.

II.1. Passive Systems

The following is a brief summary onpassivesystems. The interested reader is referred to [6, 24] for
additional information. LetZ+ represent the set of positive integers to indicate time for discrete time
signals.lm2 denotes the space of all discrete time functionsu : Z

+ → R
m which satisfy the following:

‖u‖2
2 =

∞
∑

0

uT(i)u(i) < ∞. (48)

Similarly lm2e denotes the extended space of discrete time functionsu : Z
+ → R

m which satisfy the
following:

‖uN‖2
2 = 〈u, u〉N =

N−1
∑

0

uT(i)u(i) < ∞; ∀N ∈ Z
+. (49)

Definition 5. A dynamic systemH : lm2e → lm2e is lm2 stable if

x ∈ lm2 =⇒ Hx ∈ lm2 . (50)

Definition 6. LetH : lm2e → lm2e. We say thatH is

i) passive if∃β s.t.

〈Hu, u〉N ≥ −β, ∀u ∈ lm2e, ∀N ∈ Z
+ (51)

ii) strictly-input passive if∃δ > 0 and∃β s.t.

〈Hu, u〉N ≥ δ‖uN‖2
2 − β, ∀u ∈ lm2e, ∀N ∈ Z

+ (52)

iii) strictly-output passive if∃ǫ > 0 and∃β s.t.

〈Hu, u〉N ≥ ǫ‖HuN‖2
2 − β, ∀u ∈ lm2e, ∀N ∈ Z

+ (53)

iv) non-expansiveif ∃γ̂ > 0 and∃β̂ s.t.

‖HuN‖2
2 ≤ β̂ + γ̂2‖uN‖2

2, ∀u ∈ lm2e, ∀N ∈ Z
+ (54)

Remark 6. A non-expansivesystemH is equivalent to any system which has finitelm2 gain in which
there exists constantsγ andβ s.t.0 < γ < γ̂ and satisfy

‖HuN‖2 ≤ γ‖uN‖2 + β, ∀u ∈ lm2e, ∀N ∈ Z
+. (55)

Furthermore anon-expansivesystem implieslm2 stability [13, Remark 1].
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II.2. IPESH

We recall the definition stated in [13, Definition 4] for theinner-product equivalent sample and hold
(IPESH) depicted in Figure 7 consist of a zero order hold (ZOH) block andinner-product equivalent
sampleblock (IPES).

Definition 7. [21, 23] Let a continuous one-port plant be denoted by the input-output mapping
Gct : Lm

2e → Lm
2e. Denote continuous time ast, the discrete time index asi, the periodic sample

rate asTs, the continuous input asu(t) ∈ Lm
2e, the continuous output asy(t) ∈ Lm

2e, the transformed
discrete input asu(i) ∈ lm2e, and the transformed discrete output asy(i) ∈ lm2e. The inner-product
equivalent sample and hold (IPESH) is implemented as follows:

I. x(t) =
∫ t

0 y(τ)dτ

II. y(i) = x((i + 1)Ts) − x(iTs)

III. u(t) = u(i), ∀t ∈ [iTs, i(Ts + 1))

As a result
〈y(i), u(i)〉N = 〈y(t), u(t)〉NTs

, ∀N ≥ 1 (56)

holds.

II.3. Wave Variables

The wave variables depicted in Figure 7(uo{p,c}(i), vo{p,c}(i)) allow effort andflow variables to be
transmitted over a network while remainingpassivewhen subject to arbitrary fixed time delays and
data dropouts [19].

uop(i) =
1√
2b

(bfop(i) + edoc(i)) (57)

voc(j) =
1√
2b

(bfopd(j) − eoc(j)) (58)

When actually implementing the wave variable transformation the “outputs”(upk, edock) are related to
the corresponding “inputs”(vpk, fopk) as follows (see [11, Figure 2.2]):

[

uop(i)
edoc(i)

]

=

[

−I
√

2bI

−
√

2bI bI

] [

vop(i)
fop(i)

]

(59)

likewise the “outputs”(voc, fopd) are related to the corresponding “inputs”(uoc, eoc) as follows:

[

voc(j)
fopd(j)

]

=





I −
√

2
b
I

√

2
b
I − 1

b
I





[

uoc(j)
eoc(j)

]

. (60)
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