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Abstract—The ever pervasive growth in informa-
tion services and technology has resulted in the
outbreak of demand for data in the wireless networks.
This has made the network operators to ponder over
the imminent difficulties such as computing capabil-
ities and fronthaul-backhaul link capacities. Hence,
to bridge the gap between the cloud capacity and the
requirement of mobile services by the network edges,
edge computing and caching techniques have been
gaining more and more attention from researchers
across the world. Further, motivated by the successful
applications of machine learning (ML) in solving
complex and dynamic problems, in this article, it has
been used to advance edge caching capabilities. The
proposed ML based algorithms have been evaluated
and proved to have better performance compared
with the existing conventional algorithms.The highest
difference gain in the mean squared error (MSE) for
the proposed deep learning (DL) algorithm is ob-
served to be 0.425 and while comparing with the sim-
ple neural network, the gain in MSE for the proposed
DL algorithm is observed around 27%. Similarly for
the federated learning (FL) based caching algorithm
the difference is around 104, hence demonstrating
the benefit of the proposed algorithms. Additionally,
opportunities and challenges for a promising upcom-
ing future of ML in edge computing and content
popularity prediction has also been discussed.

I. INTRODUCTION

THE surge in Internet usage through smart
phones, social media platforms and online

video streaming has heralded an explosive growth

in the amount of data being created. Due to the fast
development of communication based applications,
it is expected that there will be 5.3 billion total
Internet users (66 percent of global population) by
2023, up from 3.9 billion (51 percent of global pop-
ulation) in 2018 [1]. Thus, wireless edge caching
which exploits the vast data, compensates for the
shortage of local computing capacity and high
transmission costs of individual cloud computing.
While the unprecedented volume of wireless data
traffic may suggest tougher and scalable commu-
nication system design, Machine Learning (ML)
embraces unique opportunities that can be a game
changer for breaking the wireless communication
bottlenecks in the next generation 5G and beyond
wireless networks [2], [3], [4].

The implementation of dense and Small Base
Stations (SBSs) does reduce the latency and pro-
vides immense throughput in the 5G and beyond
network, but the bottleneck issue still remains the
same [5]. To strike a balance between increasing
mobile traffic and user’s quality-of-experience, edge
caching and computing can be seen as invariable
solution by bringing storage and computation close
to the edge. Both edge caching and computation
helps in storing and computation helps in the im-
plementation of ML algorithms at the edge, hence
making the edge intelligent and further reducing
the burden on the backhaul (see [6], [7], [8], or
[9]). The standard simplified algorithms such as
least frequently used (LFU), least recently used
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(LRU), least frequently/recently used (LRFU) and
other variants, can be inefficient when it comes
to dynamic environments, since they do not take
into account the correlation and non-stationarity of
the demand requests. Therefore, a gradual shift to-
wards learning and optimizing the edge devices for
content prediction is seen [10], [11]. The dynamic
environment makes the modeling approach difficult,
and accurate models are difficult to analyze, hence
ML based approaches have become very popular.

A critical performance metrics of a caching algo-
rithm include its ability to quickly and accurately
learn a popularity distribution of requests. However,
a majority of work on performance analysis focuses
on cache hit probability after a huge duration has
elapsed. Thus the caching problem reduces to how
quickly the underlying unknown popularity distri-
bution can be learned. Hence, in this article, the
challenges and opportunities in designing scalable
wireless network architectures to adapt to the perva-
sive big data is studied. In this article, first, a state-
of-the-art learning based wireless edge caching
schemes is reviewed. Building such a wireless net-
work architecture will enable operators to optimize
the 5G and beyond wireless networks, where large
amount of data can be exploited by using ML tools
for content popularity estimation and placement.
Second, after an overview, (a) application of re-
inforcement learning jointly with recommendation
in edge caching has been demonstrated, (b) con-
tent popularity prediction using Transfer Learning
(TL) [12] (c) popularity prediction using Deep
Learning (DL) and (d) Federated Learning (FL)
based caching strategy is presented [9]. Finally,
we present the future directions and challenges to
conclude the article.

II. WIRELESS CACHING SCENARIOS

In this section, wireless caching is classified into
different subsections depending on the architecture
of the wireless network.

A. Small Base Station Caching

Deploying edge servers on SBS allows services
to be provided quickly and efficiently to the users.
The system model is depicted in Fig. 1 and consists
of N SBSs and U users. Designing a distributed
content network reduces multiple transmissions at

the downlink and hence redundancy is reduced.
This way a user can fetch a file from local SBS or
neighboring set of SBS. Caching of a file further
involves an optimal cache placement algorithm in
the caches of SBS which have limited storage
capacity and also have to consider the ranking of
files. The optimal cache content problem turns out
to be a combinatorial problem and hence results in
NP-hard problem. In [13], the authors proposed a
epsilon close-to-optimal caching solution and also
show that the proposed algorithm performs better
with respect to average cache hit and average delay.

Fig. 1: System model of small base station caching.

B. Device to Device Caching

Device-to-Device (D2D) caching provides direct
communication between devices, without the data
being transferred from SBS. In a D2D communica-
tion the users are enabled to connect directly with
each other, without or limited connectivity with the
SBS.

With coordinated small-cell systems, consider-
able gain can be achieved. Typically, edge de-
vices have less computing power, therefore the
integration of ML with the edge devices will meet
the needs of real-time services such as real-time
data processing with low latency. In a mulit-agent
setting, where the behavior of other users are
unknown, the users can learn from each other
using ML techniques. In [14], without assum-
ing the knowledge of the rank vector of files in
D2D networks, the content caching strategies using
multi-agent reinforcement learning is designed. To
maximize the expected total caching reward, D2D
caching problem is formulated as a multi-agent
multi-armed bandit learning problem in [14]. Then,
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the Q-learning algorithm is used to determine how
to integrate the caching decisions in a multi-agent
systems. Thus, a multi agent system in which the
devices interact with each other and also learn
from each other significantly improves system’s
performance.

III. EDGE CACHING USING REINFORCEMENT

LEARNING

RL enables the agent to learn to behave in an en-
vironment by performing actions and then analyz-
ing the results [15]. The task of Q-learning is usu-
ally described as Markov Decision Process (MDP),
however, state space, transition probabilities and
reward functions are not required. Therefore, it can
be used in a situation when the model is known, but
an analytical solution is not available. In particular,
when the underlying transition probabilities are
unknown, a caching policy is defined as a MDP and
hence a Q-learning caching algorithm is formulated
for estimating the average cache hit. The system
model is illustrated in Fig. 1 which consists of N
SBSs and U mobile users. Each SBS is assumed
to have a storage capacity of F . The scheduling
event and the caching mechanism are considered
independent of each other in this problem. The
popularity of a file determines which files needs to
be cached and hence the caching policy is affected
by the demand profiles. Towards this, when the
user demands are unknown, the problem of joint
optimization of recommendation and caching to
maximize the cache hit is considered in this section.

The variable df,n,t, represents the sum total of all
the requests for file f at the SBS n at time t. The
various factors like rank of a file, type of a file,
genre of a file and other global factors are to be
considered when estimating the demand requests.
The nature/type of demand is captured in a attribute
vector denoted by xf,n,t ∈ RN , 1 ≤ f ≤ F . The
attribute vector includes the details of the types of
the files, genre of the files etc. The recommendation
variable is denoted by βf,n,t for file f at time t and
can take value in {0, 1}. Recommendation changes
the demand rate of a file, and to capture this effect,
variable δf,n,t ∈ R is used. An illustration of the
same would be, suppose we assume that a user
demands for a file f at time t which is not cached
at the SBS n, then based on the previous requests

by the user, a similar file can be recommended
instead of the original file and that is captured by
the vector δf,n,t. Another scenario could be, a file
f is very relevant or popular at time t, then if that
file is recommended to other users as well, the user
requests may shoot up and hence the demand rate is
altered. The variable βf,n,t takes the value 1 when
the file is recommended in the nth SBS else it is 0.

All SBSs are assumed to have a total cache
size of C. Also, all the files are assumed to
be of equal size. Let λf,n,t ∈ {0, 1} denote
the absence/presence of a file f in the SBS
n at time t. Then the average hit rate results
in a maximization problem, and can be writ-
ten as max

∑
t

∑
n

∑
f∈Ft,n

λf,n,tE[df,n,t|do], such
that cache constraint at each SBS is satisfied (i.e.∑

n λf,n,t ≤ C).
The above problem cannot be solved since df,n,t

and its statistics are unknown at the central node.
Here, we assume that the demand df,n,t follows
a Markov chain. This is a reasonable assumption
since the current demand depends on the previous
user requests as well as associated with the previous
caching actions (λf,n,t−1) and previous recommen-
dations (βf,n,t−1). Hence, df,n,t can be considered
as following a Markov chain. The Markov deci-
sion process model can be defined by the tuple
{S,A,R(s, a)}, where S is the set of all possible
states a SBS can take and it describes the current
situation of the SBS, A represents the action or
the decisions taken by the SBS affecting the dy-
namics of the process and R(s, a) is the reward
obtained for each transition between the states. The
Q-learning algorithm based on greedy exploration
is summarized in Algorithm 1. Similarly in [16]
a deep reinforcement learning framework is used
to study the content cache placement in wireless
network, where no prior assumptions are made on
the popularity of the files.

For the simulation setup, the number of SBS is
assumed to be 30. For simplicity, in the simulation,
the assumption is made that each user requests file
of similar size. The learning rate η is taken as 0.8
and the discount factor γ is chosen to be 0.8. Fig. 2
shows performance of the Q-learning algorithm
with recommendation which is compared with
Q-learning without recommendation and other
caching policies, such as known LRU (Least



4

Algorithm 1 Pseudo code for Q-learning
1: procedure Q LEARNING
2: iteration ← 0
3: Q(s, a) ← initial Q-value function
4: S,A ← initial action and state
5: while (iteration < maximum iterations) do
6: Execute action A
7: Reward R and S ′

is observed
8: Joint optimization of caching and

recommendation (i.e. Choose A)
▷ greedy selection

9: Q(s, a) ← Q(s, a) + η[R+ γQ(s
′
, a

′
)

−Q(s, a)]
10: S ← S ′

11: A ← A′

12: iteration ← iteration + 1
13: end while
14: end procedure

ReferencesScenario Objective Development
Tools

[15] Multi-cell
massive-
MIMO system

Maximize
average success
probability

Reinforcement
learning based
algorithm

[17] D2D enabled
cellular
networks

Minimize
energy
consumption

ML multiclass
classification
models

[17] Localized cel-
lular networks

Maximize the
average cache
hit rate

Bayesian learn-
ing

[18] In-edge
Content
delivery
network server

Maximize the
average cache
hit rate

Model free
reinforcement
learning

TABLE I: Machine Learning Based Algorithms

Recently Used) and LFU (Least Frequently Used).
It can be easily seen that the Q-learning algorithm
outperforms all the other algorithms in terms of
average cache hit. Thus, by intelligently exploiting
user’s information and popularity of files, a context
aware caching system can be developed. Table I
summarizes the other ML algorithms used for
cache management.

IV. CONTENT POPULARITY PREDICTION USING

TRANSFER LEARNING

In this section, a TL method is used to esti-
mate the rank vector of the cached contents. TL
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Fig. 2: Average cache hit versus cache size for 500
files .

focuses on learning of the new tasks by transfer-
ring or reusing the information from previously
learned tasks. Exploiting data available from other
sources allows TL to predict the popularity with
substantial accuracy. In [7], the authors consider
a heterogeneous cellular network and propose a
learning-theoretic analysis of content caching in
heterogenous networks with non-stationary, statisti-
cally dependent and unknown popularity profiles. A
heterogeneous cellular network is considered where
the set Φu ⊆ R2 of users, the set Φb ⊆ R2

of base stations (BSs) and the set Φs ⊆ R2 of
SBSs are distributed as per the independent Poisson
point processes (PPPs) with density λu, λb and
λs for users, BSs and SBSs respectively. Using
instantaneous demands from the users, the unknown
popularity profile is estimated within a stated time
frame. The file size is assumed to be B bits and
the data file is requested independently by each
user from the set F : {f1, f2, . . . , fN}, where N
is the sum total of files. The efficiency of the
caching algorithm depends on the user’s request
rate, the cache size, density of the SBS nodes and
the caching strategy. All SBSs are assumed to have
a cache size of M files, where each file is B bits
long. Each SBS interacts with the neighbouring
user u using the following communication protocol.
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Each SBS at xs ∈ Φs communicates with a user u
at xu ∈ Φu if ||xu − xs|| < γ;.

The main aim of the caching problem is to
minimize the time taken to deliver a file due to
the cache miss event when the requested file is
not present. The BS collects all the demands from
all the users in its coverage region and estimates
the popularity profile in the time slot [0, τ ]. The
demands are observed in the time duration [0, τ ]
and then the SBS calculates an estimate of the rank
vector. For any ϵ > 0, with a probability of at
least 1 − δ, an offloading loss of τ̂∗ < τ∗ + ϵ is
obtained, with proof given in [7]. A lower bound
on the waiting time is obtained. When the user
density λu is greater than a threshold, an accuracy
of ϵ > 0 is achieved. So as to obtain an accuracy of
ϵ > 0, the waiting time can be reduced by using the
knowledge gained from the users’ interaction. The
waiting time can further be reduced by combining
samples from user’s request pattern and the source
domain.
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Fig. 3: Training duration versus Θ.

For the simulation the SBSs and users are dis-
tributed according to PPPs with densities λb =
0.00001 and λu = 0.0001, respectively. The num-
ber of files is N = 100, and the coverage of the
BS and SBSs are 1000 m and 500 m, respectively.
Fig. 3 shows the advantages of the TL-based ap-
proach for the parametric family of rank vectors.

For values of m as low as 10, it can be observed that
the TL method obtains significant better results in
comparison with the source domain method. Also,
the training duration increases as d increases, which
is quite expected.

V. POPULARITY PREDICTION USING DEEP

LEARNING

In this section, a DL approach has been used
to predict the rank vector/popularity profile of the
content. DL is basically stacked neural networks,
wherein the network is composed of several layers.
Computation takes place in the layers which are
made of nodes. The node connects the input from
the data with a set of coefficients, which either am-
plifies or dampen the input. Then, these weighted
input products are added and are made to pass
through an activation function to obtain the result.
When the data has to be passed through multi-
layers of node, then it no longer remains a single
hidden layer neural network, and is referred as DL
network. Due to its high accuracy in prediction, DL
can be used appropriately in estimating the content
popularity.

The system model consists of a single BS and
multiple users spatially distributed according to a
homogeneous Poisson point process. The frequency
of contents (access pattern) follows Zipf-like distri-
bution. To understand the type of user access styles,
the analysis of the exploratory data is performed on
the commonly used Movie Lens dataset. For testing
and training the performance of prediction models,
a dataset covering 100, 000 ratings from 1000 users
on 1700 movies are used. To measure accuracy of
the prediction model, mean squared error (MSE) is
chosen. Keras and Tensorflow libraries are used to
implement the prediction models. Keras has been
used to define three models: (a) user embedder
that learns to represent each user’s preference as a
vector, (b) movie embedder that learns to represent
each movie as a vector, and (c) rating model that
concatenates user and movie embedding networks
and applies a dense neural network to predict the
rating. Keras functional API model is used such
that the inputs and embedding layers are shared.
Rectified linear unit (ReLU) stimulates the conver-
gence of stochastic gradient descent and hence is
used as an output activation function. To reduce the
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prediction loss, MSE is chosen as an appropriate
loss function. To calculate the gradients, multiple
optimizers are available, and depending on the per-
formance comparison of the different optimizers,
adaptive moment estimation (ADAM) is chosen.
The training iterations are then repeated over many
epochs for loss minimalization. Performance of the
DL method is compared with the existing online
learning and online prediction methods [19]. Fig. 4
illustrates the averaged MSE prediction for the
various models. It is noticed that the DL based
techniques can outperform the recently proposed
Grassmannian prediction model (GPM) [20], lin-
ear popularity prediction model (PPM) [19], auto
regressive (AR) prediction model [21], weighted
follow-the-leader (FTL) [19], weighted follow-the-
regularized leader model (FoReL) [19], and mean
guessing prediction model [22] for MSE. It is ob-
served from Fig. 4 that DL has the high prediction
accuracy, since it has the least MSE value i.e. the
value of MSE for the proposed DL algorithm is
0.025, while while the MSE value for GPM, PPM,
mean guessing, FTL, FoReL and AR are 0.06, 0.07,
0.09, 0.16, 0.36 and 0.45 respectively.

AR GPM PPM MeanGuess FTL DL FoReL
10

-2

10
-1

10
0

M
S

E

AR

GPM

PPM

MeanGuess

FTL

DL (proposed)

FoReL

Fig. 4: Figure illustrates the average MSE predic-
tion for various algorithms.

Fig. 5 shows the relationship between the hid-
den layers in DL model versus MSE. The total
number of SBS and users are assumed to be 5

Fig. 5: MSE versus number of hidden layers with
N = 500.

and 20 respectively. The DNN consists of an input
layer, five hidden layers and an output layer. The
five hidden layers have 1000, 1000, 3000, 3000 and
1000 neurons. The content library size is fixed at
500 files (N ). When the number of hidden layer
is one, the model is referred to as a simple neural
network (NN) and, it is observed that as we increase
the number of layers in the DL model, the MSE
reduces further and results in better performance.

VI. FEDERATED CACHING

One of the most promising distributed learning
algorithms is the emerging FL framework. The data
is collected and stored at multiple edge nodes,
and a model is trained from the distributed data
without sending the data from the nodes to a central
node. This variant of distributed learning (model
training) from a federation of edge nodes is known
as FL [9]. In FL based caching the users are
collaboratively trained to increase the overall speed.
In the general setting, the caching strategy should
be a function of the past requests and requests from
neighboring SBSs. This leads to a complex online
functional optimization problem, which is mathe-
matically intractable and may lead to more complex
algorithms. Therefore, before attempting to solve
a general problem, it is natural to get insights on
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the general problem by solving a relatively simpler
problem. This simplification is done by making
suitable assumptions on the structure of the caching
strategy. In addition, the motivation of using a
linear combination of caching strategies come from
online learning literature with iid (independent and
identically distributed) data. A natural extension
of the above to non-iid correlated requests is to
use weighted average of the past strategies, and
optimize the weights. Thus in the following section,
we have assumed the structure mentioned in the
following section for the caching strategy.

In this section, a FL based caching method is
proposed which is assumed to be a weighted com-
bination of past caching strategies of neighboring
SBSs. The system model consists of M SBSs and
U users and the library size is assumed to consist
of F files of different sizes. The requests across
SBSs and time is assumed to be correlated. The
data available at the SBS b at time T is denoted by
ZT
b,1 ⊆ ZT

b,1, which includes demands of SBS b until
time slot T , and the data shared by the neighboring
SBSs. The caching policy at the end of time slot
t−1 for each file f , is given by πb,f,t. The weighted
average of a sequence of caching strategies πb,t

from time slot t = T − τ + 1 to T is given by

π̄b,T+1 :=

T∑
t=T−τ+1

αb,tπb,t, (1)

where αb,t’s are the non-negative weights that sat-
isfy

∑T
t=T−τ+1 αb,t = 1. The caching strategy has

been taken as a weighted linear combination of
all the neighboring SBSs caching strategies and
the past caching strategies. where the map jb :
Nb → {1, 2, . . . , |Nb|}, and the weights are chosen
to be non-negative with the constraint given by∑

b′∈Nb
wT+1
jb(b

′ )
+ wT+1

b = 1 ∀ sBS b. The weights

wT+1
jb(b

′ )
as well as αb,t are chosen in such a way

the average cache hit is maximized. Thus assum-
ing structured cache placement, a high probability
bound on the conditional average cache hit is de-
rived using martingale difference equation (see [9]).
The insights provided by the bounds further helps
in designing iterative FL based caching strategies.
In the simulation, the demands are generated using
the Movie Lens data set. The total number of files
assumed is 800, i.e., the users can possibly request
from only these catalog of Movie Lens data. Each

5 10 15 20 25

Average Cache Size (%)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

A
v
e
ra

g
e
 c

a
c
h
e
 h

it

×104

Proposed Heuristic algorithm

Proposed Federated algorithm

Uniform alpha and optimal weights

Equal weights and optimal alpha

FTPL

follow-the-leader

LRFU

Avg LFU

Fig. 6: Average sum cache hit versus cache size.

file is chosen uniformly random with a size of 10 to
100 units. Fig. 6 shows a plot of cache hit versus
cache size for different caching algorithms. It is
observed from the figure that both the proposed
algorithms perform better than the LRFU, average
LFU, follow-the-perturbed leader (FTPL), uniform
α and optimal w, as well as uniform w with optimal
values of α. The difference here is around 104

demonstrating the benefit of using the proposed
scheme. The algorithms like LRFU, in which an
average of the past demands of each file is listed
in the decreasing order and thus the weights given
across the time does not take into account the non-
stationarity and correlation across time and hence
for a correlated data it underperforms as compared
to the proposed algorithms and results in 200 %
gain.

VII. FUTURE DIRECTIONS & CHALLENGES

To provide accurate caching strategies, huge
amount of data needs to be collected and processed
at the network edge. However, these data can
be exposed to external attackers or eavesdroppers.
Thus, storing user data at a centralized location
poses security and privacy issues. Also, with the
increasing amount of information collected through
wireless edge devices, the centralized solutions are
inherently becoming expensive. In such a scenario,
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FL plays an important role in protecting privacy-
sensitive data. FL trains statistical models on the
edge devices directly in a distributed fashion. Also
at the edge networks, FL can play as permissive
technology for collaborative model training, which
further improves performance of the edge networks.
Further, the multiple layers in DL can be trained
jointly with information centric network such that
the network performance is enhanced.

Since the time taken for the training is long, run-
ning ML algorithms with different hyperparameters
is time-consuming. High computation resources are
still required in DL to process the high-dimensional
data to train the prediction model. In addition, the
computing resources at the edge may be insufficient
to process the high-dimensional data and thus com-
putational efficiency and energy efficiency at the
edge node should be appropriately considered when
designing a ML scheme. The theoretical analysis
of the size of the dataset required for training
and evaluation on the convergence bounds of ML
architectures are still open areas to explore. So as
to make sure that DL and ML techniques work well
in real-time systems, sound theoretical bounds and
studies on all aspects are essential.

VIII. CONCLUSION

In this article ML techniques have been inte-
grated with edge caching to advance the edge
caching capabilities. This article highlights the ML
techniques which have been used to demonstrate,
model and analyze the mobile edge system and
optimizing the mobile edge computing and caching
with it. Different scenarios and the potential of
integrating ML with the edge systems has been
discussed with the help of ML methods. Results
show that the edge caching and popularity pre-
diction using ML achieves optimal performance
when compared with other algorithms. Future plau-
sible challenges have also been looked into and
wireless edge computing techniques are expected
to attract significant attention from both industry
and academics. Though, it is difficult to design
caching strategies and content popularity prediction
algorithms, given the fact that a huge amount
of data has to be handled under limited storage
capacity, dynamic network topologies and other
constraints. However, research on wireless edge

caching and content popularity prediction using
ML is a promising solution which opens up many
research challenges and opportunities in this era of
continuous data expansion.
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