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ABSTRACT | Edge computing is an emerging concept based

on distributed computing, storage, and control services closer

to end network nodes. Edge computing lies at the heart of

the fifth-generation (5G) wireless systems and beyond. While

the current state-of-the-art networks communicate, compute,

and process data in a centralized manner (at the cloud), for

latency and compute-centric applications, both radio access

and computational resources must be brought closer to the

edge, harnessing the availability of computing and storage-

enabled small cell base stations in proximity to the end

devices. Furthermore, the network infrastructure must enable

a distributed edge decision-making service that learns to

adapt to the network dynamics with minimal latency and

optimize network deployment and operation accordingly. This

paper will provide a fresh look to the concept of edge com-

puting by first discussing the applications that the network
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edge must provide, with a special emphasis on the ensu-

ing challenges in enabling ultrareliable and low-latency edge

computing services for mission-critical applications such as

virtual reality (VR), vehicle-to-everything (V2X), edge artificial

intelligence (AI), and so on. Furthermore, several case studies

where the edge is key are explored followed by insights and

prospect for future work.

KEYWORDS | Edge computing; edge intelligence; URLLC;

vehicle-to-everything; virtual reality.

I. I N T R O D U C T I O N

The ever-increasing requirements of wireless services

in Media & Entertainment (M&E) as well as in health-

care and well-being demands are transforming the way

that the data are communicated and processed. Future

networks are anticipated to support a massive number of

connected devices requesting a variety of different ser-

vices such as mobile video streaming, virtual reality (VR),

and augmented reality (AR), as well as mission-critical

applications. Such services require data, computation, and

storage to be performed more often with ultrahigh success

rate and minimal latency. Multiaccess edge computing

(MEC) has emerged as an infrastructure that enables data

processing and storage at the network edge as a means to

cut down the latency between the network nodes and the

remote servers that typically existed in cloud computing

architectures [1]. Instead, edge computing can be provided

as a service at the network edge to minimize the service

latency and network complexity and save the device nodes’

energy and battery consumption.

Edge networking in cellular systems aims to efficiently

provide the required connectivity, data access, bandwidth,

and computation resources to end devices [2], [3]. Edge
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base stations (BSs) in the proximity of network users will

not only relay content from and to the network core but

will also help execute the users’ processing tasks, provide

customized content and computing services, and control

the connectivity and interaction between the coupled net-

work nodes.

In essence, the performance of edge computing is pre-

dominantly assessed through two main components, com-

munication between the edge server and the end device,

and the processing at the edge server. Furthermore, several

optimization aspects are considered to optimize these two

components. Optimizing the communication part can be

explored through wireless bandwidth and power alloca-

tion, edge server selection, computation task distribution,

task splitting, and partial task offloading. For the process-

ing part, computation cycle allocation, task queuing and

prioritization, joint computing, and predictive computing

are critical factors to optimize the computing efficiency.

The focus of the fifth-generation (5G) cellular networks

has shifted from merely increasing the data communica-

tion rate to providing service-specific performance guaran-

tees in terms of ultrareliability and low latency. This shift

is fueled by the emergence of new use cases that require

genuine support to critical and latency-sensitive com-

munication services. Nonetheless, ultrareliability and low

latency are often seen as contradictory requirements [4],

compeling the use of distinctive set of tools to be efficiently

realized. Yet, these individually challenging per se require-

ments are anticipated to be met together for networks of

diverse topologies and heterogeneous services.

This paper discusses the feasibility and potential of pro-

viding edge computing services with latency and reliability

guarantees, supported by the enablers illustrated in Fig. 1.

In particular, it first sheds light on the services that can

be offered from edge computing networks. It follows by

looking into how ultrareliable low-latency communication

(URLLC) contributes to and benefits from edge comput-

ing. This paper proceeds by presenting the selected use

cases that reflect the interplay between edge computing

and URLLC. Finally, this paper ends with our concluding

remarks and future works.

II. E D G E C O M P U T I N G S E RV I C E S

Legacy network architectures relied on centrally located

and centrally controlled servers with high computational

and storage powers to provide on-demand computing to

network devices [5]. These servers could support a high

number of network nodes over a large geographical area.

However, the large distance between the cloud computing

server and the end-user device results in higher service

latency. Moreover, the centralized architecture limited the

ability to provide context-aware service and to preserve the

user data privacy. Future wireless networks are evolving

toward supporting a new set of applications that require

minimal latency and high level of service personalization.

This motivated the shift toward distributed networking

architectures where the network resources are available

close to users at the network edge. Edge computing aims

to provide computing, content, and connectivity services

closer to the data source and consumption points. It

is applicable to scenarios with different network envi-

ronments and use cases. This diversity led to several

implementations that did not follow the specific stan-

dard or interoperability. The European Telecommunica-

tions Standards Institute (ETSI) has been working on

solving this issue by providing an efficient standardized

MEC that can be integrated across several applications

and service providers [6]. MEC also enables providers to

deploy edge computing services on top of wireless mobile

networks. This will allow cellular operators to integrate

computing into the services provided to their users. In this

regard, the term edge networking refers to the action and

process of serving a user or device at the network edge.

A. Content at the Edge

The idea of leveraging the network edge as a content

storage has gained popularity in the last few years [7]. The

existing popularity patterns on the contents requested by

network users motivated in developing proactive networks.

A proactive server can predict popular contents, prefetch

them from the core network, and have them stored and

readily available at the network edge, hence cutting down

delivery times once users request them. Proactive networks

require efficient methods to predict the popularity of the

content to be cached, as well as high storage capacity to

cache this content. Edge caching not only minimizes the

service latency but also the load on the backhaul network

by prefetching the popular content in the off-peak times

[8]–[10]. Furthermore, we envision that the notion of edge

content will be extended to include new types of data that

can be served from the network edge to support the new

use cases. One application to which the future network

edge will provide information is the distributed machine

learning (ML) application. The tight latency requirements

and the need for minimizing the information exchange

mandate the development of distributed machine intelli-

gence schemes in which edge servers play a major rule.

Edge ML [11], [12] will allow end users to locally develop

their own ML models instead of relying on centralized

approaches. However, “ML applications” rely on informa-

tion from other network nodes that affect their state and

utility. The network edge role here will be to bring the

information necessary for enhancing or complementing the

local model close to the user.

B. Computing at the Edge

Processing is becoming an important commodity to

cellular applications as content. The use of applications

ranging from smart factory, self-driving vehicles, to VR and

AR is growing day by day and is becoming more resource

greedy and less latency tolerant. While part of the comput-

ing load of these applications is served using their local

2 PROCEEDINGS OF THE IEEE



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Elbamby et al.: Wireless Edge Computing With Latency and Reliability Guarantees

Fig. 1. Breakdown of key URLLC enablers for edge computing, exemplified over an Industry 4.0/Smart Factory ecosystem that includes

cyber–physical systems, IoT, and MEC.

processing units, constraints on size, portability, battery

lifetime, or lack of full access to task data limit the ability to

locally execute computing tasks. Edge computing promises

to pool powerful yet proximate computing resources at

the network edge, as well as to provide connectivity and

seamless information exchange between the neighboring

nodes. It is also set to allow for the realization of various

5G verticals that require low-latency and high-reliability

computing, such as VR and mission-critical Internet of

Things (IoT) applications. Yet, there are several compo-

nents that need to be addressed to realize low-latency and

high-reliable edge computing. Executing computing tasks

at the edge often requires the task data to be offloaded

to the edge server before execution. This introduces a

communication delay that adds to the service latency.

In addition, how to queue and schedule the computing

tasks at the edge server plays a major role in the queuing

and processing latency. Our vision is that the availability of

more data and computing power will shape how the edge

network performs computing. Similar in vein to proactive

content caching, where knowledge of users’ preferences

and future interests allow for prefetching of their content,

data availability and ML will help to speed up the com-

puting tasks of network nodes. Predicting vehicles’ future

locations and path allows the edge network to proactively

render and deliver its high-definition (HD) live map. In VR

applications, predicting users’ future field of view (FoV)

allows rendering the corresponding part of its 360◦ frame

with minimal latency. Several other enablers are vital to

achieve ultrareliable and low-latency computing, such as

task replications, parallel, and coded computing, which

will be addressed in detail in Section II-C.

C. Control at the Edge

Most of the existing cloud and edge computing archi-

tectures rely on centralized decision-making schemes that

require all the network nodes to send their local states

data to a central controller. Instead, distributed decision-

making, in which the decision-making process is distrib-

uted among the edge servers, will allow for low latency

and privacy-preserving operation [13], which is essential

for mission-critical applications. Indeed, the control of

the network devices’ performance requires policies that

adapt to their local states. This can be challenging for

scenarios where the local state dynamically varies due to

the highly dynamic environment or due to the nature of

the application, such as in mission-critical applications.

Reinforcement learning (RL) solutions can provide effi-

cient control policies that maximize the system rewards

by finding policies that map those dynamically changing

states into actions. These decision-making policies need

to consider the effect of actions on the environment and

update the reward accordingly. In centralized architec-

tures, classical RL is often performed offline, not taking

into account reliability in decision-making, for example,

under noisy feedback. Edge control can provide robust

decision-making, where multiagent RL architectures can

be used to provide communications’ efficient methods

that take latency and reliability into account in dynamic

and mission-critical environments. Latency stems from the

local state exchanges between edge devices, in which the

overhead due to the state exchange increases exponentially

with the number of devices. This can be addressed using

the mean-field game (MFG) theory [14], which can tackle
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Table 1 Challenges and Enablers of Realizing Low Latency and High Reliability in Wireless Edge Computing

this by approximating the average state as a collection of

agents’ instantaneous states.

III. U R L L C E N A B L E R S A N D C H A L L E N G E S

A. URLLC Overview

The prime focus of the recent groundswell of

mission-critical applications, such as autonomous vehi-

cles, immersive VR/AR experiences, industrial automation,

and robotics, is to provide services with guaranteed high

reliability and low latency. Therein, latency deductions

in channel estimations, information exchange among the

network elements, decision-making, computation tasks’

completion, and memory access within devices have the

utmost importance. Along with them, guaranteed low

latency in operations, ensuring connectivity, and speed-

precision-and-accuracy of computations are essential to

assure the reliability of mission-critical applications. Due to

the on-device constraints on storage, processing capability,

and availability and accessibility of network resources, it is

mandatory to utilize the edge servers to maintain the qual-

ity of service in mission-critical applications. To support

the communication among user devices within mission-

critical applications and the edge servers, URLLC, which

has been introduced as one of the main services in 5G

systems, plays a pivotal role. In this section, we identify the

key enablers of reliability and low latency in wireless edge

computing networks and the challenges toward realizing

each of them. Moreover, in Table 1, we summarize the

issues and enablers of providing latency and reliability

guarantees in wireless edge computing networks, as well

as the applications and use cases that these enablers are

targeting.

B. URLLC Enablers for Edge Computing

1) Low-Latency Enablers: There are several components

that contribute to latency in edge networking. In this

regard, enabling low latency requires several techniques

to be implemented and integrated together at different

levels of edge networking systems. At the communica-

tion level, proximity-based computing and millimeter-

wave (mmWave) links play major roles in reducing task

offloading latency from edge devices to servers by reducing

distance attenuation and providing broad bandwidth with

high directionality, respectively. In addition, mmWave also

enables wireless backhauling [19], [20] that facilitates

edge servers’ prefetching popular content with low latency.

At the processing level, proactive computing provides sig-

nificant latency reduction while maximizing resource effi-

ciency by avoiding repetitive and redundant on-demand

computing [17], [21], [22]. Next, coded computing is

effective in reducing parallel computing latency, which

eliminates the dependence of processing tasks, thereby

minimizing the worst case latency due to a straggling task.

Last but not least, ML is crucial in supporting low-latency

mission-critical applications, by empowering edge servers

and devices to locally carry out their decision-making.

Low-Latency Enabler 1 (High-Capacity mmWave Links):

Driven by the spectrum shortage below 6 GHz, com-

munications in the radio frequencies (RFs) encompass-

ing the electromagnetic spectrum from 30 to 300 GHz,

i.e., the mmWave or International Telecommunications

Union (ITU)’s extremely high-frequency (EHF) band, have

been attracting growing attention [23]–[25], to the point

of being currently considered the most important tech-

nology to achieve the 10-Gb/s peak data rates foreseen

for the upcoming 5G systems [26]. Having abundantly

available spectrum, the main appeal of mmWave com-

munications comes from the use of generous bandwidths

that ranging from 0.85 GHz in the 28-GHz band to

5 GHz in the 73-GHz band are more than ten times

greater than long-term evolution (LTE)’s 20-MHz cellular

channel [27] and grant an important channel capacity

increase [28].

However, signal propagation at these frequencies is

harsh and inherently different from that at the microwave
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band [29], experiencing: 1) higher pathloss for equal

antenna gains due to a stronger atmospheric attenua-

tion whereby signals are more prone to being absorbed

by foliage and rain; 2) higher penetration losses as

mmWaves are blocked when trying to pass through walls,

buildings, or obstacles; and 3) higher transmit power

consumptions than in lower bands to preserve an equal

signal-to-noise ratio (SNR) unless directional antennas

together with advanced signal processing that includes

massive multiple-input–multiple-output (MIMO) [30] and

beamforming (BF) techniques are used. Notably, due to the

shorter wavelengths in mmWave bands, it is possible to

pack more antennas at the transmitter and receiver devices

and, thanks to the spatial degrees of freedom afforded,

use analog or hybrid BF—fully digital BF implies hav-

ing one dedicated RF chain per antenna which currently

discourages its use in mmWaves due to the unaffordable

power consumption and costs—to build a radiation pattern

with narrow beams which will be subsequently steered

toward the receivers, while the energy radiated through

the sidelobes is minimized or negligible.

To administer high-capacity links with mmWaves, trans-

mitters’ and receivers’ main lobes need to be precisely

aligned toward each other if favored with a clear, unob-

structed, line-of-sight (LOS) path. In practice, when

a mobile user equipment (MUE) is in the connected state,

uplink (UL) control channels are used to periodically feed-

back to the BS of its best transmit beam index; similarly,

downlink (DL) control channels are used to report MUE’s

best transmit beams. Data transmission is then performed

through the best beam pair. However, during initial access

(IA) and handover, i.e., in random access, such information

on the best beams is not available, which hinders taking

full benefit from BF. Henceforth, in analog BF, to discover

and then maintain the best transmit–receive beam pairs,

a series of techniques referred to as beamtraining or beam-

searching is applied. Then, beam tracking is performed

to adapt the BF, e.g., due to MUE’s movement leading

to transmitter–receiver beam misalignments. Nevertheless,

a full new directional channel discovery process will need

to be triggered if the signal-to-interference-plus-noise ratio

(SINR) drops below a certain threshold due to, e.g., block-

ages and/or interference [31]. As analog BF employs a

single RF chain, it is challenging to adjust the beam to

channel conditions, leading to some performance loss.

Moreover, analog BF does not provide multiplexing gains

as it can only operate a single data stream. Therefore,

to bring all the benefits of mmWave while benefiting

from multiplexing gains for MEC, MIMO hybrid BF archi-

tectures, which strike a balance between performance,

complexity, and power consumption, should be consid-

ered. Finally, as adaptive BF requires precise channel state

information (CSI), one of the key challenges for mmWave

to work as a low-latency enabler for MEC lies on the

availability of expedited CSI acquisition schemes together

with directionality-aware mobility and beam management

procedures [32].

In Section III-B2, a series of reliability enablers will be

discussed to reduce the delay incurred to counteract the

intermittent blockages and temporal disruptions of the

mmWave channel. Largely, these techniques are in line

with the idea of overbooking radio resources as protection

against channel vulnerability [33] or to consider risk-

sensitive approaches [34].

Low-Latency Enabler 2 (Proximity-Based Computing):

Reducing the distance between the application and the

MEC server is a key latency enabler. This idea is motivated

by the concept of bringing the transmitter and the receiver

closer to one another yielding capacity improvements [24].

With the low proximity between the application and the

MEC server, over-the-air latency that has a significant con-

tribution to the end-to-end (E2E), sometimes dominating

the computing latency, can be greatly minimized.

Network densification, the concept of dense deployment

of small cells, remote radio units, and relay heads which

has been an attractive research interest during recent

years [35]–[40], plays a major role in proximity-based

computing. While boosting the capacity and coverage,

the dense deployment of access points offers the opportu-

nity of introducing additional computing resources at the

network edge. Henceforth, the user devices in the network

are capable of uploading their computational tasks to

access points and download the corresponding outputs

after the processing with high data rates yielding lower

latencies.

Another proximity-based computing technique is

mobility-assisted MEC. Therein, networks of connected

vehicles, unmanned autonomous vehicle (UAV), and

robots with high processing power can assist the

computational tasks of the users [41], [42]. The high

processing power of the above-mentioned devices that are

dedicated to users provides low computational latencies.

Moreover, their flexible connectivity with the users due

to the mobility and high data rates therein due to the

proximity offer lower communication latencies, yielding

reduced E2E latencies.

Computing location swapping is another proximity-

based computing method. Therein, groups of users coexist

in either physical (located close by) or virtual spaces

(interact and/or share computing tasks). In this regard,

proximity alone provides low communication latency, yet

it could yield poorly utilized computational resources.

Combining the user groups in virtual space and their phys-

ical locations, some users can swap their associated MEC

servers to improve both computing and communication

latencies, resulting in better E2E performance [43].

Although the proximity-based computing enables low

latency in MEC, the concept itself brings up new challenges

to the network design and resource optimization therein.

The increased interference is one of the challenges in both

network densification and computing location swapping.

Due to the limited availability of both communication and

computation resource, increased interference may degrade

both UL and DL communications, yielding increased E2E
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latency [44]. In this regard, interference avoidance, man-

agement, and mitigation techniques as well as use of

higher frequency channels are viable remedies. Another

challenge is the frequent handover due to the dynamics

of environment and user mobility [44], [45]. While han-

dover may incur undesirable latencies, the concept of

multiconnectivity (MC) can be utilized, in which users

receive computing assistance from several MEC servers.

Low-Latency Enabler 3 (Edge Machine Learning): Infer-

ence (or prediction) capabilities with low latency are one

of the main reasons for ML to be popular in MEC as well as

several other communication applications such as coding,

BF, resource optimization, caching, scheduling, routing,

and security [18], [46]–[48]. While the majority of the ML-

based communication system design literature is rooted

in the centralized and offline ML techniques, the upturn

of mission-critical applications for a massive number of

connected devices demands for the intelligence at the

network edge [11], [49]. In contrast to conventionally

centralized ML designs, the edge ML is capable of gen-

erating inference within an instance at the edge devices,

presenting the opportunity to greatly reduce the E2E

latency in MEC applications. Such intelligence at the edge

devices can predict the uncertainties in channel dynam-

ics, communication and computation resource availability,

interference, and network congestion at the local devices,

explore and learn about the network environment with

minimal additional signaling overheads, and characterize

and model the network behavior in which the system

performance is analyzed. At the MEC servers, such prior

knowledge provides the opportunities to smartly schedule

their computing resources and share the results with the

corresponding user devices. Furthermore, at the events of

connectivity losses, edge ML at the user devices allows the

decision-making within the devices using the forecast on

system behaviors, allowing uninterrupted end-user service

experiences. This ability to operate offline/off-grid can

reduce the number of latency-critical parallel tasks at the

MEC server, in which network-wide end-user experience is

improved.

The challenge of enabling low latency in MEC via edge

ML relies on the training latency and inference accuracy

therein. In the distributed setting, each edge device lacks

the access to the large global training data set, in which

training over local data can degrade the inference accuracy.

To improve the inference accuracy, edge ML devices may

need often cooperation among one another or with a

centralized helper, which incurs additional overheads and,

thus, increased training latency. In this regard, further

investigations need to be carried out to optimize the

tradeoff between training latency and inference accuracy

depending on the design architectures, communication

models, and application requirement.

Low-Latency Enabler 4 (Proactive Computing): Although

edge computing is capable of minimizing the latency

induced due to the high propagation delay of cloud com-

puting, it still experiences the delay due to offloading the

task data to the edge server, processing delay, as well as

queuing delay for both operations. While these delays are

inevitable in some cases, there exist situations in which

the task has already been executed before for another

user at a different time. Take, for example, an AR case in

which visitors of a specific spot in an exhibition or museum

request a specific task of augmenting an object to the

view of this spot or the task of object identification

by multiple vehicles in intelligent transportation systems

(ITSs). Executing these tasks redundantly each time it is

requested is certainly not resource efficient and is causing

higher delays to these tasks as well as other tasks sharing

these resources. Here, executing and caching the results

of these tasks in advance, such that they are served when

requested with minimal latency, can be a major latency

minimizer.

The ideas of prefetching tasks [50] and proactive com-

puting [21], [22] aim to develop techniques that learn

and predict which tasks are to be requested in the future

and precompute them. Indeed, the success of proactive

computing lies on a well-aimed choice of which tasks to

proactively compute and which are to leave for real-time

processing. Essentially, this involves developing efficient

prediction methods that study the popularity patterns of

the computing tasks to decide on which tasks to prefetch.

The idea also relies on the availability of storage capabili-

ties at the edge servers [51].

Low-Latency Enabler 5 (Parallel and Coded Computing):

The computing task data can be distributed over multiple

servers in different edge computing scenarios, for example,

in a smart vehicle scenario where the navigation map

data can be partly stored in several edge servers. Parallel

execution of computing tasks over multiple servers sig-

nificantly impacts the efficiency and speed of task exe-

cution. Moreover, it eliminates the need to collect the

full task data set in a single entity. For example, partial

offloading can be performed where only a partition of

the task is offloaded to where its required input data are

available [5]. The implementation of parallel computing

depends on the correlation between the task partitions,

i.e., only partitions that are not dependent on each other

can be executed in parallel, whereas the dependent tasks

have to be executed sequentially. Task dependence graph

models and task partitioning [5], [15] are used to tackle

the interdependence between the different task partitions.

A challenge in realizing parallel computing, however,

is the resulting high interserver communication load.

Moreover, it suffers from the straggling effect, where a

missing result from a single node delays the entire com-

putation process. The concept of coded computing has

shown to address both of these challenges [16]. Through

exploiting the redundancy in the task partitions’ execution

at different servers, coded multicast messages, e.g., via

maximum distance separable (MDS) codes, can be used to

deliver the results of the missing partitions simultaneously

to multiple servers. This approach significantly reduced the

amount of data that has to be communicated between the
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servers, at the expense of more redundant task executions

at each server. Coded computing also helps in minimizing

the overall computing latency through minimum latency

codes. In a conventional parallel computing task, each

server executes a partition of the task and returns its

result to the client. In this model, one delayed or failed

partition will cause a delay or failure to the entire task.

Alternatively, by generating redundant task data that are

coded combinations of the original task data and executing

these coded tasks, the result can be recovered by decoding

the data from only a subset of the servers, eliminating

the effect of a delayed or failed result. Optimizing the

creation of the redundant coded tasks enables an inverse

linear tradeoff between the computing latency and the

computing load [52].

2) High-Reliability Enablers: For MEC to fulfill its role

and run applications on devices behalf, i.e., offloading the

computing, it needs to be able to operate below stringent

latency values, which are unachievable in traditional

mobile cloud computing (MCC) systems or too demanding

to be run locally due to excessive computational and

communication power

In this regard, to exploit both the high capacity of 5G

mobile connections and the extensive computing capabili-

ties located at the edge cloud, the concept of reliability is

introduced with a twofold interpretation. In the first place,

we find the classical notion of reliability related to error-

robustness guarantees. As such, it allows to be tackled at

different layers, including the reliability of the wireless link

at the physical layer (PHY). Another fundamental notion

of reliability, which has been widely adopted for wireless

communications and standardization bodies as the Third

Partnership Project (3GPP), is that of reliability understood

as a probabilistic bound over the latency.

Understood in its most classical form, it is common

that a toll in return for ensuring high reliability will have

to be paid in the form of additional/increased delays.

For instance, at the PHY layer, the use of parity, redun-

dancy, and retransmission will increase the latency. Also,

in multiuser environments, allocating multiple sources to

a single user while clearly beneficial at an individual level

could potentially impact the experienced latency of the

remaining users.

Next, we will set forth some of the enablers for both

notions of reliability.

High-Reliability Enabler 1 (Multiconnectivity): Compared

to wired transmissions, in wireless environments, tem-

porary outages are common due to impairments in the

SINR. These originate from, among others, stochasticity

of the wireless channels, fluctuating levels of interfer-

ence, or mobility of the MUEs. The term MC [53] encom-

passes several techniques developed with the overarch-

ing aim of enhancing effective data rates and the mobil-

ity robustness, i.e., the reliability, of wireless links. For

that purpose, MC exploits different forms of diversity to

cut down on the number of failed handovers, dropped

connections, and, generally speaking, radio-link failures

(RLFs) that might cause service interruptions [54], [55].

MC solutions are classified as intrafrequency or interfre-

quency, i.e., depending on whether they operate using the

same frequency or, otherwise, combine multiple carrier fre-

quencies. Examples of the former include coordinated mul-

tipoint (CoMP) [56] transmissions and single-frequency

networks (SFNs) [57]. CoMP involves a set of tech-

niques that exploit rather than mitigating intercell inter-

ference (ICI) to improve the performance at the cell

edge. On performing joint processing, dynamic point selec-

tion (JP/DPS) or coordinated scheduling and beamform-

ing (CS/CB) in the UL/DL, BSs operate effectively as

if assembled in a distributed multiple antenna system.

SFNs embody a form of synchronous multicell transmis-

sion whereby various sources use the same time and

frequency resource to noncoherently transmit signals to

a receiver. The multiple received copies will be then con-

structively combined if their propagation delays are tightly

bounded or, else, will induce intersymbol interference

(ISI) [58].

As for interfrequency MC, carrier aggregation (CA) [59]

and dual connectivity (DC) are its most noteworthy exam-

ples. In CA, contiguous or noncontiguous component

carriers, possibly allocated to several different BSs, are

combined and the scheduling and interference manage-

ment orchestrated over these frequency bands aiming to

enhance the resulting system’s capacity. As for DC, this

framework provides the solutions for interfrequency, het-

erogeneous networks (HetNets) scenarios, and different

wireless standards MC so that a user equipment (UE) will

be simultaneously connected, respectively, in two different

frequencies, to two different types of BSs or two differ-

ent wireless standards [60]. Recently, the idea of DC for

mmWave and microwave bands has been proposed [36],

[61] as an effective approach to facilitate cellular mmWave

IA [62] as well as mmWave handover [63]. In such a man-

ner, mmWave and sub-6-GHz DC can team together to aug-

ment the reliability of the mmWave working as a fallback

to compensate eventual mmWave channel vulnerability,

e.g., to blocking events. Finally, the benefits of integrating

communication interface diversity for reliability purposes

are also studied in [64] in the context of machine type

communications (MTCs).

SFN operation is proposed in use case 6 detailed in

Section IV-B. The goal is to protect against mmWave

channel intermittence by increasing the rate of those links

between the millimeter-wave access points (mmAPs) and

the virtual reality players (VRPs) that, otherwise, would

jeopardize the immersive experience.

High-Reliability Enabler 2 (Task Replication): While MC

can boost the reliability in the presence of channel fluctua-

tions, it requires coordination between the different servers

that are connected to the end user. However, when coor-

dination is not possible, reliability can still be enhanced

through the task replication. Similar to packet replication

in data communication, a user can offload a computing
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task to multiple servers that are not connected to each

other and receive the result from whichever has the result

ready first. This mechanism provides more guarantees of

task execution, at the expense of reduced system capacity,

due to the underutilization of computing servers. One

realization of this concept is proposed in [65], namely,

hedged request is when the user sends one replica of the

task to the server that is believed to be most suitable and

then follows by sending another replica to an additional

server after some delay. Completion pending remaining

requests are canceled once a result is received from any

server.

While task replication can be efficient in ensuring the

reliability in the case of channel dynamics, it incurs signif-

icant additional load. To combat this, one can offload the

task to an additional server only when the delay from the

first server exceeds a certain threshold [65] This approach

is investigated in [17]. Therein, it is shown that imposing

such a condition can significantly curb the latency variabil-

ity without inducing much additional load.

High-Reliability Enabler 3 (Federated Machine Learning):

While performing ML inference at the network edge yields

low latency, distributed training of their ML models across

different edge nodes improves the inference reliability.

To be specific, each learning agent optimizes its ML model

during the training phase so as to maximize the inference

accuracy over locally available training data. The mea-

sured inference accuracy at the training phase is, however,

not always identical to the inference accuracy at the test

phase, primarily because of unseen training data samples.

This accuracy gap is known as the generalization error

that measures the inference reliability under unseen data

samples [66]. A straightforward way to reduce the gener-

alization error is exchanging training data samples among

edge nodes. Data exchange, however, incurs extra commu-

nication and computation cost and may not be available

for user-generated private data. To address this problem,

federated learning (FL) has recently been proposed [67],

[68], in which edge nodes exchange and aggregate their

local ML models, thereby preserving data privacy, avoiding

extra computation, and reducing communication overhead

when ML model sizes are sufficiently smaller than data

sizes.

FL is still a nascent field of research, calling for code-

signing communication, computation, and ML architec-

tures [11], [49]. For instance, the original FL algorithm

has the communication payload size being proportional to

the ML model sizes and thus cannot deal with deep neural

network (NN) models. Proper model compression and

parameter quantization techniques are thus needed while

trading the increased communication efficiency off against

the reduced accuracy. Furthermore, the server in current

FL algorithms simply aggregates uploaded local models,

although it has higher computation resources compared

to the edge devices. Along with these FL architectures,

computing task offloading, task scheduling, and resource

allocations should be jointly optimized toward achieving

reliability under uncertainties on MEC operations, includ-

ing unseen data samples, channel fluctuations, and time-

varying communication and computation resources.

High-Reliability Enabler 4 (Extreme Event Control): As

mentioned previously, one reliability notion is the proba-

bility of violation or failure over a latency bound, which

can be mathematically expressed as Pr(Latency > Lbound).

This probability ranges from 10−3 to 10−9 depending

on the mission-critical application in 5G networks [69].

To meet the ultrareliability requirements, we should focus

on the extreme events with very low occurrence prob-

abilities. However, in classical communication systems,

the designed approaches are based on the expected met-

rics, e.g., average rate and average latency, in which

the random event realizations with higher probability

distribution function (PDF) values dominate the system

performance. In other words, the conventional average-

based approaches are inadequate for enhancing reliability

performance, and instead, we need to take into account

the metrics or statistics, which are related to or affect

the extreme events, such as: 1) worst case measurement,

e.g., largest latency in the network; 2) tail/decay behavior

of the complementary cumulative distribution function

(CCDF); 3) very low bound violation probability; and 4)

threshold deviation and its higher order statistics, e.g.,

variance, while designing the URLLC-enabled MEC sys-

tems. To analytically analyze these metrics and statistics,

extreme value theory (EVT) [70], [71] is a useful method-

ology for mathematical characterization and, thus, pro-

vides a powerful framework for extreme event control. Let

us introduce the fundamental theorems in EVT as follows,

which characterize the aforementioned metrics and their

statistics.

Theorem 1 (Fisher–Tippett–Gnedenko Theorem [70]):

We consider n independent and identically distributed

(i.i.d.) samples from a random variable X, i.e., X1, · · · ,

Xn
i.i.d.
∼ X and define Zn := max{X1, · · · , Xn}. If Zn

converges to a nondegenerate distribution as n → ∞,

we can approximate the limit as a generalized extreme

value (GEV) distribution that is characterized by a location

parameter µ ∈ R, a scale parameter σ > 0, and a shape

parameter ξ ∈ R.

Among them, the shape parameter governs the GEV

distributions’ tail behaviors [71], which are sorted into

three types depending on the value of ξ.

1) When ξ > 0, the GEV distribution has a heavy-tailed

CCDF that is more weighted than an exponential

function.

2) When ξ = 0, the GEV distribution has a light-tailed

CCDF that has a thinner tail than an exponential

function.

3) When ξ < 0, the GEV distribution has a short-tailed

CCDF that has a finite upper endpoint at z = µ−σ/ξ.

When ξ ≥ 0, the upper endpoint of the CCDF approaches

infinity.
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Theorem 2: (von Mises Conditions [71]): In Theorem 1,

the characteristic parameters (µ, σ, ξ) of the approximated

GEV distribution can be asymptotically found as per µ =

lim
n→∞

F−1
X (1 − 1/n), σ = lim

n→∞

(1/nfX (F−1
X (1 − 1/n))), and

ξ = −1 − lim
x→∞

([1 − FX(x)]f ′

X(x)/[fX (x)]2).

Theorem 3: (Pickands–Balkema–de Haan Theorem [70]):

Consider the random variable X in Theorem 1 and a

threshold d. As d → F−1
X (1), the CCDF of the excess value

Y |X>d = X − d > 0 can be approximated as a generalized

Pareto distribution (GPD) whose mean and variance are

σ̃/(1 − ξ) and (σ̃2/(1 − ξ)2(1 − 2ξ)), respectively.

Analogous to the GEV distribution, the GPD is charac-

terized by a scale parameter σ̃ > 0 and a shape parameter

ξ ∈ R. In Theorems 1 and 3, ξ is identical, while σ =

σ̃ + ξ(µ − d). Note that Theorems 1 and 2 provide a way

to characterize the worst case metric and its tail behavior,

whereas Theorem 3 is directly related to the bound viola-

tion and its statistics. Since the characteristic parameters

of the GEV distribution and GPD are identical or related,

the results of these three theorems are complementary to

one another.

Nevertheless, some tradeoffs and dilemmas exist when

we apply the results of EVT and estimate the charac-

teristic parameters. For example, we need to trade off

data availability, which affects the performance, conver-

gence speed, and estimation accuracy. Specifically, given

N i.i.d. realizations of X (i.e., N/n realizations of Zn),

larger n theoretically gives the better approximation of

the GEV distribution but slows down the convergence of

parameter estimations due to the less availability of data

samples of Zn. The similar tradeoff between high threshold

d and availability of threshold-exceeding data can be found

in Theorem 3. Additionally, if the distribution of X, e.g.,

delay of a single user, is unknown beforehand, this agnostic

makes Theorem 2 difficult to characterize the network-

wide largest delay. Fortunately, thanks to the mature devel-

opment in the ML field, the aforementioned issues can be

tackled by using the ML approaches, in which unsupervised

learning provides a way to infer a mathematical expression

of the unknown distribution, while the lack of available

data is addressed in an FL manner by aggregating and

averaging the estimated characteristic parameters of all

distributed devices.

IV. A P P L I C AT I O N S A N D U S E C A S E S

In this section, we elaborate on some of the prospec-

tive services and applications for which offloading their

computing tasks to the edge significantly improves their

performance in terms of latency and reliability. In par-

ticular, we focus on two scenarios where offloading task

computing to the network edge will be beneficial: 1) when

end users have limited computing capabilities, e.g., VR

head-mounted devices (HMDs) and 2) when end users

have sufficient computing and energy resources but are

accessible only to a fraction of the entire information for

the computation input, e.g., vehicular edge computing sce-

narios. We follow by presenting different edge computing

use cases in which the URLLC enablers are utilized.

A. Edge Computing Applications

1) Extended Reality: Extended reality (XR) is an

umbrella term that covers all virtual or combined real-

virtual environments, including VR, AR, and mixed reality

(MR). These environments differ in the nature of the

content a user sees or interacts with. While VR describes

environments where users are fully immersed in a virtual

world, AR refers to the view of a virtual environment that

is merged or supplemented by elements or inputs from the

real world. AR can be categorized as a special case of the

more general MR, which refers to the environments that

mix together real and virtual elements that can interact

with each other.

XR is anticipated to be one of the leading applications to

leverage edge computing. Providing high-quality XR expe-

rience comes with high computation resource demand.

At the same time, XR applications are highly sensitive

to delay. Typically, a maximum E2E delay, also known

as motion-to-photon (MTP) delay, of 15–20 ms can be

tolerated in VR. Higher delay values trigger what is known

as motion sickness, resulting from a visual-motor sensory

conflict. This makes it unrealistic to rely on remote cloud

servers for processing. On the other hand, processing

XR locally on the user device has several complications.

First, XR devices, such as HMDs and smartphones, are

often equipped with limited computing capabilities. This

limitation is due to the device size, manufacturing cost,

as well as the heat generated from powering the device.

Second, running applications on different types of devices,

with different hardware, operating systems, and platforms

is a challenging task. For these reasons, existing stand-

alone XR devices often provide limited content quality.

Standalone VR headsets operate with reduced frame res-

olution and frame rate [72], whereas AR headsets, such

as Microsoft HoloLens, restrict the amount of renderable

polygons [73].

For these reasons, the success of XR requires providing

high computation and storage resources close to the end

users. In this regard, edge computing is an intuitive solu-

tion to provide such services [74]. Today’s most powerful

VR headsets rely on edge computers to perform sophisti-

cated rendering. However, wired connections are still used

between the headsets and the edge servers due to the

high rate requirement of VR applications. This limits the

mobility and convenience of VR users and hence decreases

the Quality of Experience (QoE).

The need for a better XR QoE and the advancement

in wireless communication capabilities motivate the devel-

opment of wireless XR systems that incorporate powerful

edge computers and high-capacity wireless links [18],

[74]–[77]. The mmWave communication can provide large

spectrum and high data rates, making it a solid candidate
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for wireless XR. Moreover, the directionality of mmWave

links allows for leveraging multiuser transmission tech-

niques, such as multicasting and broadcasting to deliver

common and correlated content to multiple users in a

way that minimizes the communication delay. However,

directional mmWave links suffer outages due to signal

blockage. This affects the link signal quality and increases

the channel variability and, hence, decreases the link

reliability. MC can be a viable solution to provide robust

mmWave communication. Using MC, an XR user maintains

multiple simultaneous communication links with multiple

servers.

2) Vehicular Edge Computing and V2X/V2V for ADAS:

Future autonomous driving vehicles comprised as nodes of

the Internet of Vehicles (IoV), a larger mobility network

which can be considered as an extended application of the

IoT to ITSs [78], will operate as hubs, integrating multiple

technologies and consuming and producing massive vol-

umes of data [79]. The advanced driver-assistance systems

(ADASs) to be equipped in these vehicles, especially those

pertaining to the area of traffic safety, heavily depend on

reliable and instantaneous decision-making processes that

hinge on inputs from multiple sensory data sources, includ-

ing laser imaging detection and ranging (LIDAR), automo-

tive radar, image processing, and computer vision [80]. As

an example, we can think of successful object identification

from LIDAR point clouds or speed and trajectory prediction

for dynamic objects moving within a vehicle’s vicinity.

Hereof, it is essential that these vehicles are equipped

with powerful computing and processing capabilities to

swiftly handle high data volumes rather than solely relying

on cloud services that, in the above-mentioned example,

may classify the objects or predict trajectories from raw

data with higher accuracy but, possibly, incurring to do

so in unacceptable delays. Moreover, for next-generation

ADAS, it is envisaged that vehicles will communicate with

each other as well as with an increasingly intelligent road-

way infrastructure through the use of vehicle-to-everything

(V2X) and vehicle-to-vehicle (V2V) communications, ulti-

mately exploiting high-capacity mmWave links [81], [82].

Consequently, the cumbersome volume of locally gener-

ated data could be exacerbated by the acquisition of data

from the environment and the surrounding vehicles.

Indeed, vehicular edge computing will play a pivotal

role to support delay-sensitive as well as future emerging

multimedia-rich applications in vehicular networks, which

is buttressed by the growing body of literature devoted

to the area of content-centric applications of vehicular

MEC [83]–[86] which are frequently combined with ML

to provide reliability as edge analytics [87] to leverage

huge volume of information [86] or to provide an inte-

grated framework for dynamic orchestration of network-

ing, caching, and computing resources in next-generation

vehicular networks [88].

Being not nearly as tightly constrained by size or by

the access to a power supply as their counterpart IoT

Fig. 2. Edge ML architectural splits. (a) Data split. (b) Model split.

devices or smartphones, the computational and storage

capabilities in vehicular terminals could allow them to run

locally or collaboratively, using vehicles as the infrastruc-

tures for communication and computation as proposed

in [89], resource-hungry applications.1 In this regard, pro-

vided that computing and processing capabilities may not

be the limiting factor, a second advantage of running these

applications in the network edge is substantiated by the

availability of data collected from multiple vehicles in edge

servers. Access to this information raw or preprocessed

can augment individual vehicles’ situational awareness

by extending their own sensing range. Resorting to edge

contents can thus provide a bigger picture at acceptable

delays.

The latter idea is exemplified in the third use case in

Section IV-B where the information from different vehicles

is combined in the network edge following FL principles

and used to refine a global model for transmission queue

length distribution for the purpose of providing ultrareli-

able low-latency V2V communications.

B. Use Cases

Next, we present different case studies in which the

URLLC enablers are utilized in edge computing settings.

Use Case 1 (Edge Computing for Federated Machine Learn-

ing): As addressed in Sections III-B1 and III-B2, edge ML

is envisaged to be a key enabler for URLLC, in which both

inference and training processes of ML models, e.g., NNs,

are pushed down to the network edge [11]. This direction

of edge ML has been fueled by FL [67], [68], [91]–[94]

under a data split architecture [see Fig. 2(a)], where

edge devices collectively train local models with their own

user-generated data via a coordinating edge server that

aggregates locally computed model updates, referred to as

model state information (MSI). The MEC framework can

further improve FL by codesigning with training architec-

tures and algorithms. In view of this, on the one hand, each

1However, the longer product’s life span in the automotive indus-
try (according to the U.S. Department of Transportation since 2018,
the average age of on-the-road vehicles is over 11 years [90]) could
quickly turn onboard central processing unit (CPU)/graphical processing
unit (GPU) processing capabilities obsolete.
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Fig. 3. Communication cost and inference accuracy of FL and FD

with or without FAug in the MNIST classification problem, where

each device stores a five-layer convolutional NN (CNN). For FAug,

the conditional GAN consists of a four-layer generator NN and

another four-layer discriminator NN. (a) Communication cost.

(b) Test accuracy.

edge device is able to optimize the MSI type depending

on the NN model size and channel quality. As done in

FL, one can exchange the model parameter MSI whose

payload size is proportional to the model size, which is

not feasible for deep NNs under poor channel conditions.

Alternatively, one can exchange model output MSI whose

payload size is independent of the model size, referred to

as federated distillation (FD) [95]. As shown in Fig. 3(a),

this fundamentally results in FDs incomparably smaller

communication payload per MSI exchange than FL and can

thereby better cope with poor channel conditions.

On the other hand, the edge server can assist in the

training process by exploiting its extra computation and

communication resources. A compeling example is to rec-

tify the non-IID training data set incurred by the user-

generated nature of data, in which entirely uncorrelated

(nonidentical) and/or too similar (nonindependent) data

samples across devices negate the benefit of distributed

training [96]. To this end, in federated augmentation

(FAug) [95], the edge server first collects a few seed

samples from edge devices and oversamples them (e.g.,

via Google’s image search for visual data) through its

fast connection to the Internet. Then, the edge server can

utilize its high computing power for training a generative

model (e.g., conditional generative adversarial network

(GAN) [97]). Downloading the trained generator empow-

ers each device to locally augment deficient data samples

until reaching an IID training data set. With FAug, both FL

and FD yield higher test accuracy as shown in Fig. 3(b),

at the cost of slight increase in communication cost as

shown in Fig. 3(a).

Finally, a very deep NN (e.g., Inception V4 NN model

consuming 44.3 GB [98]) cannot fit into a single device’s

memory and has to be partitioned into multiple segments

stored across edge devices and server, i.e., model split

[see Fig. 2(b)]. Here, the model’s local and offloaded

computations should be orchestrated over wireless links

by optimizing the partitioning strategy based on the NN’s

topology and constituent layers. This calls for a novel MEC

framework that takes into account not only communica-

tion and computation resources but also NN forward and

backward propagation dynamics intertwined with channel

dynamics.

Use Case 2 (Extreme Event-Controlled MEC): For the

extreme event-controlling computation and communica-

tion codesign in [99] and [100], we studied a multiuser

MEC scenario as shown in Fig. 4, in which multiple

MEC servers with different computation capabilities are

deployed. In this setting, the UE manages its local resource

(i.e., total power budget) for computation and communi-

cation, i.e., task offloading, while the MEC server sched-

ules its computational resources for the UEs’ offloaded

tasks. Herein, we consider the length of the task queue

as a latency measurement since queuing latency can be

reflected by the queue length. For the reliability concerns,

we are concerned about the bound violation probability

and higher order statistics of threshold deviation as high-

lighted in high-reliability enabler 4. In this regard, we first

impose a constraint on the queue length2 bound violation

probability as

lim
T→∞

1

T

T�
t=1

Pr
�
Q(t) > d

�
≤ ǫ ≪ 1 (1)

where d and ǫ are the given bound and tolerable vio-

lation probability, respectively. Let us further focus on

the excess value over the bound d, which is denoted by

X(t)|Q(t)>d = Q(t) − d > 0. By applying Theorem 3,

we approximate the exceedances as a GPD with the char-

acteristic parameters (σ̃, ξ). The mean and variance are

E
�
X(t)|Q(t) > d

�
≈ (σ̃/1 − ξ) and Var

�
X(t)|Q(t) >

d
�
≈ (σ̃2/(1 − ξ)2(1 − 2ξ)), respectively. We can find that

the smaller σ̃ and ξ, the smaller the mean value and

2The notation Q generalizes the lengths of all task queues at the
UEs and MEC servers.
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Fig. 4. Extreme Event-Controlled MEC architecture.

variance. Since the approximated GPD is just characterized

by the scale and shape parameters, we impose thresholds

on these two parameters, i.e., σ̃ ≤ σ̃th and ξ ≤ ξth.

Subsequently, applying the two parameter thresholds and

Var(X) = E[(X)2] − E[X]2, we consider the conditional

constraints on the mean and second moment of the excess

queue length

lim
T→∞

1

T

T�
t=1

E
�
X(t)|Q(t)>d

�
≤

σ̃th

1 − ξth
(2)

lim
T→∞

1

T

T�
t=1

E
�
[X(t)]2|Q(t)>d

�
≤

2
�
σ̃th

�2�
1 − ξth

��
1 − 2ξth

� .

(3)

Considering the three requirements mentioned earlier for

the extreme events, we trade off the UE’s computation

power and communication power in the extreme

event-controlling computation and communication

codesign.

The effectiveness of characterizing threshold deviation

by the Pickands–Balkema–de Haan theorem, i.e., Theo-

rem 3, is verified in Fig. 5(a). Therein, Pr(Q > d) =

3.4 × 10−3 with d = 3.96 × 104. Additionally, in contrast

with the schemes without edge computing and without

local computation capability, the extreme event-controlling

approach achieves the better performance in terms of the

extreme event-related metrics shown in Fig. 5(b) and (c),

in the considered MEC system.

Use Case 3 (EVT/FL Ultrareliable Low-Latency V2V Com-

munication): The idea of how to combine EVT and FL

to enable URLLC in vehicular communication networks,

referred as extFL, is discussed in our preliminary

study [101] and illustrated in Fig. 6. Here, vehicles observe

their queue length samples and utilize the tail distribution

of queue lengths at the vehicular transmitters over the

whole edge network to optimize their transmission deci-

sions such that the worst case queue lengths are minimized

while ensuring reliability in terms of queuing latency. The

analytical parametric model of the aforementioned tail

Fig. 5. (a) Tail distributions of the excess queue length and the approximated GPD of exceedances, (b) 99th percentile of the queue length,

and (c) mean and standard deviation of exceedances over the 99th percentile queue length, versus processing density.
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Fig. 6. Operational structure of EVT parametric FL (extFL).

distribution is obtained via EVT. Naturally, the evalua-

tion of the above-mentioned parameters is carried out

by gathering all queue length samples at a central con-

troller, the MEC server, with the additional costs of com-

munication and computation overheads. In contrast to

the centralized approach, here, FL is used to reduce the

communication payload by allowing individual vehicles to

learn the tail distribution by exchanging a simplified model

(two gradient values) instead of their raw local queue

length samples, i.e., enabling URLLC with the aid of ML

at the edge devices.

The goal is thus to minimize the network-wide power

consumption of a set of vehicular user equipments (vUEs)

while ensuring low queuing latencies with high reliability.

However, there still exist worst case vUEs experiencing

high latencies with a low probability whose performance

losses are captured by extreme events pertaining to vehi-

cles’ queue lengths exceeding a predefined threshold with

nonnegligible probability. The principles of EVT character-

ize the tail distribution of the queue lengths exceeding a

predefined threshold by a GPD with two parameters scale

and shape. The concepts in maximum likelihood estimate

(MLE) are used along FL to estimate the scale and shape

parameters of the queue tail distribution locally at each

vUE over the queue length samples. Therein, occasionally,

local estimations and the gradients of MLE known as local

model at each vUE are shared with the MEC server. The

MEC server does model averaging and shares the global

model with the vUEs to update their local estimations.

Using the knowledge of the tail distribution over the

network, the transmit power of each vUE is optimized to

reduce the worst case queuing delays.

Fig. 7(a) compares the amount of data exchanged and

the achieved V2V communication reliability of extFL with

a centralized tail distribution estimation model, denoted as

CEN. Note that the CEN method requires all vUEs to upload

all their queue length samples to the RSU and to receive

the estimated GPD parameters. In contrast, in extFL, vUEs

upload their locally estimated learning models and receive

the global estimation of the model. As a result, extFL

yields equivalent or better end-user reliability compared

with CEN for denser networks while reducing the amount

of data exchange among vUEs and the RSU. The worst

case vUEs’ queue lengths, i.e., queue lengths exceeding

q0, are compared in Fig. 7(b). Here, the mean indicates

the average queuing latency of the worst case vUEs, while

the variance highlights the uncertainty of the latency.

As the number of vUEs increases, it can be noted that both

the mean and the variance in extFL are lower than that

in CEN. The reason for the above-mentioned improvement

is the reduced training latency in extFL over CEN.

Use Case 4 (Deep Reinforcement Learning for Optimized

Edge Computing Task Offloading): The task offloading

decision-making in edge computing networks is a chal-

lenging task in the presence of environmental dynamics.

This situation is aggravated in ultradense networks, where

solutions to break the curse of dimensionality is desper-

ately needed. In [102] and [103], a discrete-time Markov

decision process was adopted to model the problem of

expected long-term MEC performance optimization in an

ultradense radio access network, where a number of BSs

are available for computation task offloading. For a rep-

resentative wireless charging-enabled MUE, whether to

execute an arriving computation task at the local mobile
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Fig. 7. Comparison between CEN and extFL. (a) Amount of data

exchanged between RSU and VUEs (left axis) and the achieved

reliability (right axis). (b) Mean and variance of the worst case VUE

queue lengths.

device or to offload the task for edge server execution via

one of the BSs should adapt to the environmental dynamics

in an intelligent manner. These environment dynamics may

consist of random computation task arrivals, time-varying

communication qualities between the MU and the BSs, and

the sporadic energy availability at the mobile device. The

challenges for the problem-solving lie in the lack of any

a priori knowledge of any environment dynamic statis-

tics along with the high-dimensional state space. A deep

RL technique shows the power of achieving an optimal

solution.

More specifically, the objective of the MUE is to minimize

an expected infinite-horizon discounted cost given by

Q(s, a) = E

�
∞�

t=1

(γ)t−1 · c
�
st, at

�
|s1 = s, a1 = a

�
(4)

where γ ∈ [0, 1) is the discount factor, while the immediate

cost c
�
st, at

�
after performing an action at under a state

st at each time slot t takes into account the incurred task

execution delay and the penalty of failing to process an

arriving computation task. Once we obtain the optimal

Q-function, the optimal action a∗ can be made by the MUE

following a∗ = arg mina Q(s, a) under a state s. Instead

of using a conventional Q-learning to find the optimal

Q-function, we resort to a deep-Q network (DQN) [104]

Q(s, a;θ) to approximate Q(s, a) with θ being the set

of parameters of the NN. The procedure of the deep RL

for MEC performance optimization is briefly depicted as

in Fig. 8.

In Fig. 9, we compare the average cost performance

from the Proposed deep RL algorithm with three base-

lines as follows.

1) Local: Whenever a computation task arrives,

the MUE executes it at the local mobile device using

the queued energy units.

2) Server: All arriving computation tasks are offloaded

to the edge server for computing via the BSs with the

best communication qualities.

3) Greedy: When the computation task queue as well

as the energy queue are not empty at a time slot,

the MUE decides to execute the task locally or at the

cloud to achieve the minimum immediate cost.

We configure a DQN of one hidden layer with 512 neurons.

The replay memory is assumed to have a capacity of 5000

and we select the size of the mini-batch as 100. From

Fig. 9, we can clearly see that compared to the baselines,

the deep RL algorithm realizes the best performance at

average cost. A higher task arriving probability ρ indicates

a longer average task execution delay and, hence, a larger

average cost. As the average energy arrival rate increases,

the average cost improves due to the decreased failure of

processing an arriving computation task.

Use Case 5 (Edge ML-Enabled 360◦ VR Multicast Trans-

mission): Our previous work in [18] considered merging

ML and mmWave multicasting to optimize the proactive

wireless streaming of FoV-based HD 360◦ videos in a

multiuser VR environment with low-latency guarantees.

Hereof, the use of edge ML to predict users’ FoV in advance

is pivotal to leverage interuser correlations and curb the

latency. These predicted correlations will ultimately drive

both how contents are transmitted and the BF decisions at

the mmWave BSs.

A VR theater scenario consisting of a network of

VR users watching different HD 360◦ VR videos streamed

in the mmWave band over a set of distributed small cell

base stations (SBSs) is studied. The SBSs will report users’

six-degree-of-freedom (6DoF) pose as well as CSI and pro-

duce multiple spatially orthogonal beams to serve shared

FoV video content to a group of users (multicast) or a

single beam (unicast) following the scheduling decisions

adopted at the edge controller. By optimizing video frame

admission and user scheduling, the goal is to provide a

highly reliable broadband service for VR users that deliver
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Fig. 8. Illustration of deep RL for mobile edge computing performance optimization.

HD videos with a latency that is below the MTP latency

limits with very high probability.

To achieve this proactive content transmission and per-

form a head movement pattern recognition predicting

users’ upcoming tiled-FoV, a sequential learning model

based on gated recurrent units (GRUs) [105], [106] is

selected. Specifically, GRUs are a form of recurrent neural

networks (RNNs) that include a double gating mecha-

nism to govern the impact of past hidden states over

the new output states and effectively tackle long-term

dependences. To that purpose, an architecture based on

two layers of GRU cells with a hidden state size equal to

512 separated by a rectified linear unit (ReLU) activation is

stacked. The output is then fed to a serial-to-parallel (S/P)

layer and to a dense neural layer. Given the multilabel

nature of the learning model, a sigmoid activation layer

Fig. 9. Average cost per time slot versus average energy arrival

rate under MILD (ρ=0.3) and HEAVY (ρ=0.5) task arrival probabilities,

respectively, represented with solid and dashed lines.

maps the N -sized dense output to the N logits, one for

each tile in the equirectangular (EQR) projection of the

360◦ VR video frame, which are binarized with a cutoff

layer such that

�yfp
u,n =

	
1, σ(W dh

(2)
f + bd)n ≥ γth

0, otherwise
(5)

where W d and bd are the weights and biases of the dense

fully connected layer, respectively, and γth is the threshold

value for the cutoff layer. The predicted FoV for a user u

and frame index fp = f + TH is retrieved as �N fp
u = {n ∈

[1, ..., N ]: �yfp
u,n = 1}.

Fig. 10 shows an overview of the building. The output

of the deep recurrent neural network (DRNN) is fed to

a user clustering module and the former constitutes one

of the inputs for a scheduler, the Lyapunov drift-plus-

penalty approach. In addition to our proposed scheme

MPROAC+, the performance of three reference baselines

with reactive unicast and multicast and proactive multicast

transmission capabilities, correspondingly, UREAC, MREAC,

and MPROAC is evaluated. Our proposed approach incor-

porates a penalty whereby quality is traded in exchange

for not violating a maximum latency bound. For simulation

purposes, a small size theater with the capacity of 50 users

with SBSs that are located at ceiling level in its upper four

corners is selected. Fig. 11 evaluates the impact of the

requested HD video quality by representing the average

and 99th percentile delay, the HD delivery rate and Jaccard

index measured while 30 users watch one out of the

3 available VR videos for an increasing requested video

chunk size.

Fig. 11 clearly shows the tradeoff between frame

delay and HD streaming rate. As the chunk size

increases, the average and 99th percentile delays increase
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Fig. 10. Operational structure and building blocks of the edge controller that coordinates the DRNN FoV prediction-aided proactive

content quality adaptation for the mmWave 360◦ VR video streaming.

for the different schemes. Moreover, comparing UREAC

with the other schemes, it is shown that multicasting brings

40%–50% increase in the HD rate and 33%–70% latency

reduction through the utilization of shared FoVs of differ-

ent users. By delivering the predicted frames in advance,

both MPROAC and MPROAC+ minimize the average delay

without sacrificing the HD quality rate. Moreover, our

proposed MPROAC+ scheme is shown to also keep the worst

delay values bounded due to imposing the constraint over

the latency.

The tradeoff between frame delay and quality is fur-

ther illustrated and the results for different values of the

Lyapunov parameter Vδ are compared; as Vδ increases,

the scheduling algorithm prioritizes maximizing users’ HD

delivery rate, whereas at lower values, the scheduling

algorithm prioritizes keeping the delay bounded with high

probability. This comes at the expense of having lower HD

delivery rate.

Finally, the Jaccard similarity in Fig. 11(d) illustrates the

tradeoffs between effective versus transmitted contents.

At low traffic loads, the Jaccard index is low, which is

due to the large amount of excess data delivered due to

transmitting an estimated user-/cluster-level FoV. As the

traffic load increases, the proactive schemes transmit more

real-time frames, which increases the Jaccard index. The

Jaccard index decreases again at higher traffic loads as

the effect of missed frames increases [once the average

delay is close to reaching the deadline, as can be seen

in Fig. 11(a)].

Use Case 6 (MEC-Enabled Multiuser VR Gaming Arcade):

We consider a practical use case of wireless VR to deliver

a low-latency service to the multiuser scenario of users

playing VR video games in a gaming arcade, as illustrated

in Fig. 12. This scenario, which is fully detailed in our

previous work [74], is highly demanding due to the tight

latency tolerance in VR as well as the state dynamics of

the user due to the game-specific actions taken by them-

selves or by other players that affect what content should

be shown to them. The users are served wirelessly through

multiple mmAPs wired to edge computing and storage

servers. These servers receive the users’ 3-D location coor-

dinates and their 3-D pose that consists of roll, pitch, and

yaw angles, and their game-related actions. The servers

will render the corresponding frames in HD resolution and

deliver it wirelessly to users. Hence, the latency consists

of the processing latency at the server and the communi-

cation latency to deliver the HD frames expressed as

Duf (t) = ξfu(D
cp
uf (t) + Dcm

uf (t) + τEP) (6)

where ξfu represents a binary indicator that equals 1 when

the HD video frame is delivered to VRP u and equals

0 if the low-quality (LQ) frame is delivered, Dcp
uf and

Fig. 11. (a) Average delay, (b) 99th percentile delay, (c) HD delivery rate, and (d) Jaccard index performance in sT-3v, respectively, as a

function of the HD chunk size, for V = 3 videos, K � 2 × V clusters, TH=5 frames, and Lyapunov tradeoff Vδ=1·10
8 and Vδ=1·10

9.
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Fig. 12. Representation of a group of VR gaming arcades where HD frame computation is offloaded to an MEC platform such that input

actions of the VRPs might impact the virtual environment shown to a subset of the remaining VRPs. The detailed view of the bottom arcade

also illustrates several LOS and nonline-of-sight mmWave link states, e.g., link blockage and VRP and mmAP beam misalignment.

Dcm
uf are the computing and communication delays of HD

frame f initiated from user u, respectively, and τEP is

the processing latency that accounts for the edge server

processing, storage processing, and the UL transmission of

user pose and action data. Let the computing delay Dcp
uf be

expressed as follows:

Dcp
uf (t) =



κLHD

fu

ce

+ Wuf (t)

�
zfu(t)(1 − yfu(t)) (7)

Fig. 13. Communication delay (solid lines) and computing delay

(dashed lines) for different schemes as the number of players varies

for an arcade of 16 mmAPs, each equipped with an edge computing

unit.

where ce is the computation capability of edge server e,

zfu(t) and yfu(t) indicate that the video frame f of user

u is scheduled for computing and is cached in the fog

network at time instant t, respectively, and Wuf is the

computation waiting time of HD frame f of user u in

the service queue, defined as Q(t). Furthermore, let the

communications delay Dcm
uf be given as

Dcm
uf (t) = arg min

du

D
cp

uf
(t)+du�

t′=D
cp

uf
(t)+1

�
Ttru(t′) ≥ LHD

fu

�
(8)

where the arg min function is to find the minimum number

of time slots needed for the video frame f to be delivered.

Here, we study two enablers to minimize the latency and

boost the reliability of the VR gaming experience. For the

computing latency, we investigate how prior knowledge

of users’ future pose using prediction methods affects the

computing the latency. We leverage the results from the

previous works as in [107], which states that the users’

future pose in the next hundreds of milliseconds can be

predicted with high accuracy to proactively predict, render,

and cache the users’ upcoming frames, subject to compu-

tation and storage resource availability. For the commu-

nication parts, the use of MC is considered to associate

a user with more than one mmAPs if the SINR with its

serving mmAP falls below a given threshold. Specifically,

SFN operation is considered where multiple mmAP use

the same frequency and time resource to transmit to the

intended user.

Fig. 13 compares the communications and computing

latency of our PROPOSED scheme that considers both
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enablers of proactive computing and MC, with

BASELINE-1 that does not have either of the two enablers

and BASELINE-2 that considers only proactive comput-

ing. By looking into the computing latency in Fig. 13,

we can see that the schemes with proactive computing

significantly minimizes the computing latency, whereas

a look at the communication latency shows the gain

achieved using MC. Comparing the communication latency

of BASELINE-1 and BASELINE-2 also shows that the

proactive computing, which improved the computing

performance, also slightly increases the communication

latency. This is due to having to send additional data due

to the errors in prediction, in which the correct data have

to be retransmitted in real time.

V. C O N C L U S I O N A N D F U T U R E O U T L O O K

Edge computing is an essential component of future

wireless networks, in which several challenges need to

be overcome to realize the vision of ultrareliable and

low-latency edge computing. Chief to this vision is lever-

aging multiple high-reliability and low-latency enablers

applied for different types of services and use cases.

In this paper, we have discussed edge networking ser-

vices and examined key enablers to achieve low-latency

and high-reliability networking. Moreover, we showcased

how the network resources can be optimized for a selec-

tion of use cases characterized by their shared need

for edge networking. As the vision of 5G starts to

materialize beyond its initial inception toward immi-

nent first commercial deployments, we envision a real-

ization of edge computing hand in hand with the

development of URLLC and distributed artificial intelli-

gence (AI) able to deal with dynamic and heterogeneous

environments and provide seamless computing, content,

and control services while preserving data privacy and

security. �
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