
1

Wireless EEG System Achieving High Throughput

and Reduced Energy Consumption Through

Lossless and Near-Lossless Compression

Guillermo Dufort y Álvarez, Federico Favaro, Federico Lecumberry, Álvaro Martı́n, Juan P. Oliver,

Julián Oreggioni, Ignacio Ramı́rez, Gadiel Seroussi and Leonardo Steinfeld.

Abstract—This work presents a wireless multi-channel EEG
recording system featuring lossless and near-lossless compression
of the digitized EEG signal. Two novel, low-complexity, efficient
compression algorithms were developed and tested in a low-
power platform. The algorithms were tested on six public EEG
databases comparing favorably with the best compression rates
reported up to date in the literature. In its lossless mode, the
platform is capable of encoding and transmitting 59-channel EEG
signals, sampled at 500 Hz and 16 bits per sample, at a current
consumption of 337 µA per channel; this comes with a guarantee
that the decompressed signal is identical to the sampled one. The
near-lossless mode allows for significant energy savings and/or
higher throughputs in exchange for a small guaranteed maximum
per-sample distortion in the recovered signal. Finally, we address
the trade-off between computation cost and transmission savings
by evaluating three alternatives: sending raw data, or encoding
with one of two compression algorithms that differ in complexity
and compression performance. We observe that the higher the
throughput (number of channels and sampling rate) the larger
the benefits obtained from compression.

I. INTRODUCTION

MONITORING brain activity can play an important role

in understanding the functioning of the human brain,

as well as in potentially improving our quality of life [2]. The

electroencephalogram (EEG) is one of the main tools used

for studying brain activity. However, current standard EEG

systems are wired and uncomfortable, and are mainly used

in static settings in clinical practice. In order to enable EEG

recordings in daily-life activities, EEG technology needs to

become wearable (wireless, low weight, and small size), which

requires low-power operation and energy-efficient wireless

data transmission.

Although a bandwidth ranging from 0.5 Hz to 60 Hz is suffi-

cient for many EEG applications [3], much higher frequencies

(up to 500 Hz) are required in other cases [2], [3]. In addition,

the current miniaturization of analog front-ends (AFE) for

acquiring EEG signals enables the simultaneous recording of

hundreds of channels [4], [5]. As a consequence, handling

This work is a substantially extended and improved version of [1]. It was
partially funded by CSIC-UDELAR (Comisión Sectorial de Investigación
Cientı́fica, Universidad de la República, Uruguay), ANII (Agencia Nacional
de Investigación e Innovación, Uruguay) and CAP-UDELAR (Comisión
Académica de Posgrado, Universidad de la República, Uruguay).

The authors are with Universidad de la República, Montevideo, Uruguay.
Gadiel Seroussi is also with XPERI Corp., CA, USA.

high data rates efficiently is essential for high-performance

EEG recorders.

In this scenario, data compression becomes a key factor

in a wireless EEG platform, not only for reducing power

consumption (usually driven by the transmission), but also to

overcome wireless technology limitations [6]. For example,

a system with 64 channels, 16-bits per sample, at 1 kilo-

samples per second (ksps), requires a payload data rate of

1 Mbps, which is a throughput attainable by Bluetooth but

not by other low-power transmission protocols such as IEEE

802.15.4. Moreover, common low-power transmission pro-

tocols available at this moment are unable to support 256

channels (payload data rate of 4 Mbps).

EEG data acquired for clinical purposes is often required

to be processed, transmitted and stored without distortion;

this establishes the need for lossless compression algorithms,

in which the decompressed digital signal is identical to the

originally captured one. If the preceding requirement is relaxed

to allow a small, prescribed maximum per-sample distortion

on the recovered signal, we arrive at the so called near-lossless

setting. The near-lossless setting allows for significantly higher

data rates and/or number of channels, with a user-controlled

maximum sample reconstruction error given by a parameter

δ. This configuration guarantees that the reconstructed value

of each sample differs by up to δ quantization levels from

the originally acquired sample. Several lossless, near-lossless

and lossy methods (the latter case refers to distortion levels

that are only guaranteed on average, in contrast to per-sample)

have been proposed during the past 20 years for EEG and

other biomedical signals [6]–[12]. We review the most relevant

literature in Section III.

The impact of EEG compression on the overall energy con-

sumption of an electroencephalograph is driven by two factors

that are generally opposed: the better the compression ratio,

the more energy saved on transmission, but the more complex

the compression algorithm, the greater the energy consumed in

computing. In this paper we present two novel low-complexity

EEG compression algorithms and evaluate this trade-off in

actual hardware. To this end we define in Section II a low-

power platform suitable for wireless EEG where we implement

the compressors. The algorithms, which are inspired on the

same statistical model as [10], are presented in Section III.

Both admit lossless and near-lossless variants, and require

only basic operations, which can be readily implemented using

2

Fig. 1. Wireless EEG recording system block diagram.

discrete logic blocks as part of a custom System on Chip (SoC)

such as the ones described in [13], [14].

We analyze the aforementioned trade-off by means of

simple models for the power consumption invested in data

compression and that spent in data transmission, which al-

lows for extrapolating the system performance to different

hardware platforms. This analysis and experimental evaluation

of the models is presented in Section IV. In Section V, we

experimentally evaluate the compression performance of the

proposed platform, and we report on the power consumption

obtained with different compression alternatives and different

configurations of sampling rate and number of channels. The

results show that, for high throughput settings, the compres-

sion algorithms yield significant power savings. For example,

the transmission of a raw 59-channel EEG signal sampled at

500 Hz and 16 bits per sample resolution over a Bluetooth

link consumes approximately 28.2mA, while compressing

and transmitting the same signal consumes about 2mA less.

Moreover, the reduction in the transmitted data rate due to

compression allows for the use of the so-called sniff mode

of Bluetooth making the current consumption drop to 19.9mA

(sniff mode falls short of bandwidth to transmit the raw signal).

In addition to power saving we also evaluate the compression

performance of the two proposed algorithms on public EEG

databases, obtaining results that are competitive with state

of the art EEG compressors. Conclusions are presented in

Section VI.

II. LOW-POWER PLATFORM

The EEG platform, depicted in figures 1 and 2, comprises an

analog front-end (AFE), an analog to digital converter (ADC),

a low-power processor, a Bluetooth (BT) radio transceiver and

a power supply subsystem. All modules are powered by a 3.3V

dc source. The analog EEG signal is acquired from a set of

electrodes and fed into the AFE.

The AFE and ADC stages in our platform comprise two

off-the-shelf RHD2132 chips from Intan Technologies. Each

RHD2132 chip is able to acquire, amplify, digitize and trans-

mit via a Serial Peripheral Interface (SPI) up to 32 channels at

30 ksps each. The RHD2132 chip features low input referred

noise (2.4µVrms
1.), programmable bandwidth and low power

operation. For instance, the total current consumption of the

two chips to acquire 64 channels at 500 sps/ch is 1.8 mA and

at 1 ksps/ch it is 2.1 mA.

1The thermal noise level is less than 200 nV/
√

Hz with a 1/f noise
corner of 2.3 Hz [15]

Fig. 2. Low-Energy High-Throughput EEG Wireless System.

The processor block consists of a Texas Instruments

MSP432P401R microcontroller, a 32-bit ARM Cortex-M4F

microcontroller with a maximum clock frequency of 48 MHz,

with 256 kB of Flash and 64 kB of RAM memory. This chip

features a typical power consumption of 4.6 mA in active mode

and offers severals modes of low-power operation, called sleep

mode, where its power consumption can be as low as hundreds

of nanoamperes. In addition, this microcontroller includes a

rich set of peripherals including the SPI serial port used in

our platform to communicate with both RHD2132 chips, the

UART serial port to communicate with the BT radio and a

timer to control the sampling frequency.

The BT radio transceiver core is a module based on a

CC2564 chip by Texas Instruments. This is a dual mode

module that supports Bluetooth 4.1 in low energy mode (BLE)

and basic (BR) or enhanced data rate (EDR) mode. Our

prototype uses the EDR mode with serial port profile (SPP);

this allows for high throughput configurations, e.g. 31 channels

at 1 ksps/ch, which would not be affordable with BLE 4.1.

The processor embedded software is responsible for re-

ceiving the sample data, running the compression algorithm,

and transmitting the compressor output to the BT module. A

round-robin with interrupts architecture is adopted, where in-

terrupt service routines (ISR) are extensively used to exchange

(transmit and receive) data, and keep the processor in sleep

mode while no processing is needed. The microcontroller’s

timer is used to trigger a new sample acquisition. The samples

(one from each channel), received via the SPI interface,

are stored in a input buffer. Once the input samples of all

channels are received, the compression algorithm is executed.

The compressor output is stored in an output buffer to be

transferred to the BT module through the UART interface.

Once completed, the microcontroller enters in sleep mode.

In order to asses our platform using a controlled setup,

the software module responsible for receiving the sample data

from the RHD2132 chips via SPI is replaced by a Test Double.

The Test Double module supplies data that is either received

via a USB interface from a PC (Section IV-A) or read directly

from the processor memory (Section V).

3

III. EEG COMPRESSION ALGORITHMS

The lossless, real time and low power requirements of

our platform impose severe restrictions on the latency and

computational resources of its embedded software.

To start, the real time requirement rules out any method

that requires two or more passes over the whole dataset. Other

methods perform two or more passes on blocks of data. If B
is the length of the block and fs is the sampling frequency,

this results in a lag of B/fs seconds. This is the case of the

MPEG-4 audio lossless coding standard [16] (ALS), which

has also been applied to biomedical signal compression [17].

Unfortunately, the block sizes required for ALS to be effective

(above 2048 samples) result in lag of several seconds for

typical EEG applications. This is also the case of transform-

based methods such as [18]–[20], which use different kinds of

linear transforms to remove correlation both spatially (between

different electrodes across the scalp) and temporally (between

samples at different sampling times).

In the case of transforms, there are additional computational

issues. First, the number of operations per sample scales

superlinearly with the number of channels C and the length of

the block B. This is at least proportional to C logC for Fast

Wavelet or Fourier transforms applied only to inter-channel

decorrelation, (BC) log(BC) when such transforms are ap-

plied to multi-channel blocks as in [19], and as high as (BC)3

(the cost of performing a Singular Value Decomposition) for

adaptive transform methods such as [20]. A higher number of

operations translates directly into a higher power consumption,

rendering the aforementioned methods unsuitable for low-

power applications. Also, for real-time transmission, the allow-

able computational complexity cannot exceed the maximum

number of operations that can be performed by the hardware

within a sampling period Ts = 1/fs. Moreover, transform

methods require the complete block to be stored in memory,

thus imposing higher memory requirements on the hardware;

even in-place integer-based transforms would normally require

at least 2BC bytes of buffer size for 16 bit samples (for

minimum lag, a double-buffer strategy should be used, thus

doubling that number).

Finally, methods such as [19]–[22] use an arithmetic

coder [23] which is significantly more computationally de-

manding than more specialized ones such as the Golomb-Rice

coder [24].

At the time of this writing and to the best of our knowledge,

the method that offers the best compression ratio reported in

the literature is the algorithm described in [10]. This is a low-

latency, low-complexity algorithm (the complexity actually

grows linearly in storage and number of operations with

respect to the number of channels), with controllable per-

sample distortion. Thus, we choose [10] as our starting point;

the algorithms developed hereafter in this work involve non-

trivial modifications of this method with the goal of making

it suitable for implementation on a low-power microcontroller

with minimum computational and memory requirements. In

Section V we discuss why [10] is not directly applicable in

such environment.

As most EEG compression algorithms, the method in [10]

exploits temporal and spatial sample correlations. These are

induced by natural properties of the target signal such as tem-

poral continuity, natural correlation of neural activity across

regions, and spatial smoothing due to the different layers of

tissue that separate the source signals (the neurons) from the

point where they are measured (the electrodes).

The essence of the algorithm (see Figure 3) is summarized

below (see [10] for further details). Later on, we elaborate

on the components of the algorithm that have been modified

significantly.

• The coding stage is predictive: both encoder and decoder

predict the value of each sample from previously encoded

samples; the actual value is described to the decoder by

encoding the difference with respect to the prediction

using the Golomb-Rice code (see, e.g., [25]).

• Channel samples are encoded in a pre-specified order

following a tree; the root channel is predicted using past

samples only, whereas all other channels have a parent

channel (corresponding to their parent in the tree) that

“helps” them, meaning that the past (and present) infor-

mation about the parent channel is used for predicting the

present sample of the child channel.

• Each sample prediction is a weighted average of a set of

linear predictions of different orders, which are combined

using an exponential weighting [26] scheme to form a

final prediction.

• All these linear predictions are adaptive; they are updated

in an online fashion using an efficient implementation

of a multi-channel Recursive Least Squares (RLS) algo-

rithm [27].

The performance and memory constraints of the target plat-

form make the RLS algorithm used in [10] infeasible for high

throughput scenarios and, in general, not very competitive in

energy consumption (see discussion in Section V). Instead, we

use a multi-channel extension of a simple integer-based, adap-

tive, single-channel prediction algorithm originally proposed

by Speck in [28]. This extension, detailed in Subsection III-A,

is an original contribution of this work. It turns out that

although a compressor implemented with this predictor is

significantly less complex, and thus requires a fraction of the

resources, it still attains a performance similar to that of a

full-fledged floating-point RLS implementation (see Table II

in Section V-B). As an additional contribution, we propose,

in Subsection III-B, an efficient integer implementation of

the exponential weighting algorithm, which further improves

the performance of the predictor. These tools, together with

a cautious selection of a reduced set of predictors and other

computation savings described in Subsection III-C, result in a

very simple and efficient compression algorithm that we refer

to as MCS (Multi-Channel Speck). In Subsection III-D, by

replacing the adaptive predictors by fixed ones, we derive a

significantly faster algorithm at the cost of some compression

performance degradation, termed MCF (Multi-Channel Fixed).

In Subsection III-E we describe a near-lossless encoding

scheme that applies to both MCS and MCF.

4

Fig. 3. Compression algorithm of [10]. LEFT: block diagram of the prediction scheme; here xi(n) refers to the value of channel i at discrete time n, xℓ is
the “helper” (parent) channel of xi, P is the maximum order of the predictors, x̂p

i is the p-th order prediction of xi and x̂i is the final prediction for that
channel. RIGHT: sample tree used when deciding which channel helps which; the root channel is encoded with no help.

A. Multi-Channel extension of the Speck algorithm

We consider a discrete time m-channel signal, m > 1. We

denote by xi(n) the i−th channel (scalar) sample at time in-

stant n, n ≥ 1, and we refer to the vector (x1(n), . . . , xm(n))
as the vector sample at time instant n. We assume that all

scalar samples are quantized to integer values in a finite

interval X .

A general linear predictor of order p for a sample xi(n)
as a function of the past samples of the same channel i,
xi(1) . . . xi(n− 1), is defined as

x̂p
i (n) =

p
∑

k=1

ai,kxi(n− k) , (1)

where (ai,k : k = 1, . . . , p) are real coefficients. The Speck

algorithm2 defines ai,k = âi,k/K as a rational number, where

(âi,k : k = 1, . . . , p) are integer coefficients and K is an

integer normalization constant (usually a power of two, so

that division by K can be carried out using bitwise-operators).

The coefficients âi,k are sequentially adapted upon comparing

the prediction x̂p
i (n) with the actual sample xi(n); we omit

the dependence of âi,k and ai,k on xi(1) . . . xi(n − 1) for

the sake of notation relief. The coefficient initialization and

adaptation steps in the original single-channel scheme of [28]

are specified next.

• Initialization: The coefficients âi,k are initialized as

âi,k = K /p+

{

1, k ≤ K% p ,
0, otherwise ,

(2)

where K/p and K%p denote integer quotient and remain-

der, respectively.

• Adaptation: Let ǫi(n) = xi(n)− x̂i(n) be the prediction

error at time n, and sgn(ǫi(n)) its sign. If ǫi(n) = 0,

no adaptation takes place; otherwise, the coefficients âi,k
associated to the largest and smallest (signed) past p
samples (xi(n − k) : k = 1, . . . , p) are respectively

decreased and increased by sgn(ǫi(n)); ties are broken

2The definition in [28] applies to digital images; our description is a
straightforward adaptation to one-dimensional signals.

by some fixed policy, e.g., choosing the coefficients with

smallest index.

The preceding initialization and update procedures ensure

that the coefficients ai,k add up to unity for all i; notice,

however, that some of them may become negative.

In the scheme proposed in [10], the prediction x̂p
i (n) for

channel i depends on the p most recent samples of channel i,
the p most recent samples of its parent or helper channel ℓ,
and the current sample of channel ℓ, which is encoded before

xi(n). Thus, we have

x̂p
i (n) =

p
∑

k=1

ai,kxi(n− k) +

p
∑

k=0

bi,kxℓ(n− k), (3)

where ai,k and bi,k are (adaptive) real coefficients.

A straightforward extension of the Speck algorithm could

be defined by applying its initialization and update proce-

dures to the concatenation of (âi,k : k = 1, . . . , p) and

(b̂i,k : k = 0, . . . , p) in terms of the concatenation of

samples from both channels, (xi(n − k) : k = 1, . . . , p) and

(xℓ(n − k) : k = 0, . . . , p). However, we have observed that

this direct extension results in a poor performance when the

mean values of channels i and ℓ differ significantly.

Instead, we apply it to centered versions of the channels,

which we obtain by subtracting from each channel an on-line

estimation of its mean, x̄i(n), given by,

x̄i(n) = (1− β)x̄i(n− 1) + βxi(n), (4)

where 0 < β < 1 is a parameter. Although there is no known

theoretical prediction performance guarantee (not even for the

single channel Speck predictor), we have obtained very good

results in practice (see Section V-B).

To implement (4) using integer-only arithmetic, we define

an auxiliary variable si(n)
∆
= β−1x̄i(n) and rewrite (4) as

si(n) = β−1x̄i(n− 1)− x̄i(n− 1) + xi(n)

= si(n− 1)− x̄i(n− 1) + xi(n).

Now the recursion is expressed only in terms of additions and

subtractions. By choosing β to be a negative integer power of

two, β = 2−b, we get x̄i(n) = si(n) ≫ b (where ≫ denotes

a bitwise arithmetic shift-right operation).

5

B. Fast exponential weighting

Exponential weighting, a key feature in the predictive per-

formance of our algorithm, is a well-studied method with a

solid theoretical justification [26]. In this scheme, the final

prediction of a sample is a weighted average of the outputs of

a set P of predictors working in parallel,

x̂i(n) =

∑

r∈P wr(n)x̂
r
i (n)

∑

r∈P wr(n)
, (5)

where wr(n) is a positive weight that decays exponentially

with the average absolute prediction error of predictor r at

time n, denoted ēr(n). Specifically, we define

wr(n) = 2max{0,smax−cnēr(n)} , (6)

where ēr(n) is estimated using the exact same method and

parameters of (4) on the sequence er(i) = |ǫr(i)|, i < n,

of past absolute errors from predictor r, smax is a constant,

and cn is a pre-scaling factor that is doubled or halved at

each time step if W =
∑

r wr(n) falls respectively below or

above a range [Wmin,Wmax]; we fix Wmin = 1 and Wmax =
|P|2(smax−1) (this is, half the value that W would take if all the

|P| predictors had their weights set to their maxima; see (6)).

The above weighting scheme and its efficient implementation

make up the second significant algorithmic contribution of this

paper.

C. Additional performance improvements

A significant portion of the computational cost of the

compression algorithm is spent on the update of its adaptive

parameters. At the same time, we have observed that the

adaptive parameters (Speck coefficients, predictor weights)

tend to stabilize after a while, changing only when the

statistical properties of the signal change significantly (e.g.,

at the beginning of a seizure). In order to avoid unnecessary

updates, we track the performance of the overall scheme, and

update the Speck coefficients and/or the predictor weights only

when we observe a significant performance deterioration. In

the case of the Speck coefficients, we update the coefficients

of a predictor only when er(n) > ēr(n), with er(n) and

ēr(n) as defined following (6). In the case of the predictor

weights, we update them every T (n) samples. We begin with

T (0) = 1. If none of the weights is effectively modified

at time n, then T (n + 1) = min{2T (n), Tmax}. Otherwise,

T (n + 1) = max{T (n)/4, 1}. The next update will be

attempted at time n+ T (n+ 1).
In order to keep the computational complexity low, we

selected a reduced ensemble of predictors that we have ob-

served empirically to yield a good prediction performance.

Specifically, the individual predictors (before weighting) used

in the MCS algorithm are the following:

• a fixed 1st order predictor: x̂i(n) = xi(n−1),
• a 4th order single-channel Speck predictor,

• a 2nd order multi-channel Speck predictor,

• a 4th order multi-channel Speck predictor.

Although the performance of the first predictor is in general

poor compared to that of the other three, it provides robustness

and fast adaptation to sudden statistical changes in the signal.

Fig. 4. Current consumption and throughput measurement setup.

D. MCF: Multi-Channel Fixed predictors

A significant speed up to the overall algorithm can be

obtained at a cost of some compression degradation by re-

placing the adaptive Speck predictors with a set of simple

fixed predictors that tend to work well on continuous signals:

• 1st order: x̂i(n) = xi(n− 1),
• 2nd order: x̂i(n) = 2xi(n− 1)− xi(n− 2),
• 3rd order: x̂i(n) = 3xi(n− 1)− 3xi(n− 2)+xi(n− 3),
• bilinear: x̂i(n) = xi(n− 1) + xℓ(n)− xℓ(n− 1).

We report on this algorithm, termed MCF, alongside MCS, in

Section V.

E. Near-lossless encoding

In a near-lossless setting each prediction error, ǫi(n), is

mapped before encoding to a quantized version, ǫ̃i(n), defined

as

ǫ̃i(n) = sign(ǫi(n))

⌊

|ǫi(n)|+ δ

2δ + 1

⌋

, (7)

where ⌊z⌋ denotes the largest integer not exceeding z. This

quantization guarantees that the reconstructed value, x̃i(n) ,
x̂i(n) + ǫ̃i(n)(2δ + 1), differs by up to δ from xi(n). All

model parameters and predictions are calculated with x̃i(n)
in lieu of xi(n), on both the encoder and the decoder side.

Thus, the encoder and the decoder calculate exactly the same

prediction for each sample, and the distortion originated by

the quantization of prediction errors remains bounded in

magnitude by δ (in particular, it does not accumulate over

time).

IV. MODELING OF POWER CONSUMPTION

In this section we analyze and model the effect of different

compression algorithms on the power consumption of the

proposed platform. The power consumption of the AFE and

ADC stages depends exclusively on the input data rate, i.e.,

the sampling frequency and number of channels. We thus

focus on the power consumption of the processor block, which

depends on the complexity of the compression algorithm, and

on the power consumption of the BT radio block, which

depends on the data rate output by the compressor. In the

following subsections we propose simple models for the power

consumption of each of these two blocks and we assess these

models by measuring current consumption on actual hardware.

A. Measurement setup

The general setup used to measure the current consumption

of both the processor and the BT radio is presented in Figure 4.

A shunt resistor is placed in series with the dc power (3.3 V)

6

0.9877

Fig. 5. Current consumption vs. data rate for processor (MCF, lossless
compression) and BT models.

to measure the current consumption. The voltage drop across

the shunt is amplified and acquired with a 12-bits ADC board

connected to a PC. The data is fed to the platform via a USB

interface from a PC, and the data rate is controlled by the

combination of an internal timer of the processor and hardware

flow control, used to signal the PC when a new sample can be

received. Upon completing the compression of a vector sample

the processor enters in sleep mode until the timer expires.

The EEG data used to perform the experiments reported in

this section and in Section V are taken from three different

public databases, each obtained from a different subject, with

a different acquisition hardware, and a different number of

channels. The EEG signals, all originally sampled at 1 kHz,

were downsampled to obtain 250 Hz and 500 Hz versions. We

provide detailed information on these databases in Section V.

B. Processor power consumption

The current consumption of the microcontroller can be

accurately estimated as the sum of the current consumption

of active and sleep modes weighted by the respective duty-

cycle. Therefore, since the execution times for both MCS and

MCF are of linear order in the number of scalar samples, the

current consumption of the processor block is presumably well

approximated by a linear function of the input data rate.

To confirm this assumption, we executed the compression

algorithms for different configurations of sampling rate and

number of channels, and we measured the active and sleep

time for the duty-cycle computation using the EnergyTrace+

tool included in the Code Composer Studio v6.1.2 (CCS)

integrated development environment (IDE) from Texas In-

struments. The current consumption during the active mode

was measured while continuously compressing data, with the

sleep mode disabled. The sleep mode current was measured

by forcing the microcontroller into this state. The results were

4.27 mA for active mode and 1.13 mA for sleep mode.

The bottom dotted line in Figure 5 shows the estimated

current consumption for the lossless MCF algorithm together

with a linear fit as a function of the input data rate. As can be

seen, the model fits the data very well. The remaining curves

in Figure 5 are discussed in the sequel.

C. BT radio power consumption

The power consumption of BT depends on the state of the

link, which can be any of idle, connected, or transmitting.

Figure 6 shows samples of current consumption over time

0 22 44 66 88 109 131 153 175
0

20

40

60

80

Time (ms)

C
u
rr

e
n
t
(m

A
)

(a)

0 5 10 15 20 25 30 35 40
0

20

40

60

80

Time (ms)

C
u
rr

e
n
t
(m

A
)

(b)

0 5 10 15 20 25 30 35 40
0

20

40

60

80

Time (ms)

(c)

0 5 10 15 20 25 30 35 40
0

20

40

60

80

Time (ms)

C
u
rr

e
n
t
(m

A
)

(d)

0 5 10 15 20 25 30 35 40
0

20

40

60

80

Time (ms)

(e)

Fig. 6. Current consumption vs. time for different Bluetooth transmission
states: (a) idle, (b) connected, (c) transmitting, (d) connected with sniff mode,
and (e) transmitting with sniff mode. Comparing (b) with (d), and (c) with
(e), an important reduction of current consumption peaks can be seen while
the system operates with sniff mode.

for each of these states; the curves are characteristic of BT

communications [29].

BT links in active state (i.e., connected and transmitting

states) require periodic exchanges of packets in order to keep

the connection active and synchronized. These transmissions

can be seen as the peaks in the plot of Figure 6b; transmissions

with actual payload can be seen as pulses in Figure 6c.

In sniff mode, the BT device transmits/receives only at

certain regular time intervals and during a specific period.

This allows the radio to enter a low-power mode between

transmissions, which results in an energy saving in exchange

for a smaller maximum attainable throughput and slightly

larger latency. The power consumption in sniff mode for a

sleep time period of 30 ms is shown in figures 6d and 6e;

we notice a reduction in the number of current consumption

peaks with respect to figures 6b and 6c.

To evaluate the current consumption of the BT radio alone,

we modify the setup of Figure 4 by feeding the processor

directly from the voltage source and measure the current drain.

The processor is set to send the input samples directly to the

BT radio (no compression) and to control the sampling rate as

explained before, so that the output data rate coincides with

the input data rate.

Figure 5 shows the current consumption of the BT radio

for different configurations of sampling rate and number of

channels, as a function of the data throughput, for both BT

with sniff mode off and on. The figure also shows, in dashed

lines, the plots of a linear regression for each of the sniff

modes; we observe an excellent fit in both cases.

The power models presented here can be extrapolated to

7

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500
0

4

8

12

16

20

24

28

32

Throughput (kbps)

C
u
rr

e
n
t
(m

A
)

Total (estimated)

Total (measured)

Fig. 7. Current consumption vs. input data rate for total measured and
estimated current consumption (upper points correspond to BT sniff mode
off, and lower points to BT with sniff mode on).

newer standards or technologies, such as BLE 5 or Wi-Fi.

This can be done by plugging into the model the power

consumption vs. throughput curve of the new wireless device

or chipset.

D. Joint processor and BT radio power consumption

Figure 7 shows current consumption measurements of the

processor and BT radio blocks for algorithm MCF and differ-

ent configurations of number of channels and sampling rate,

as a function of the input data rate, both for sniff mode off

and on. The figure also shows an estimation of the current

consumption calculated as the sum of separate estimations for

the processor and BT radio blocks. For the former estimate,

we determined the input data rate as a function of the sampling

frequency and the number of channels for each evaluated EEG

signal, and used the model described in subsection IV-B. For

the latter, we determined the output data rate by compressing

offline each evaluated EEG signal, and applied the model of

subsection IV-C. The estimates match the actual measurements

in all cases. We also notice that the current consumption does

not follow a linear relation with the input data rate, mainly

because some of the tested EEG signals are more compressible

than others. Specifically, let R denote the compression ratio

(CR) achieved by a compression algorithm A for an EEG

signal, defined as the average number of bits of encoding per

scalar sample, and let s denote the input data rate in bits per

second. Then, our estimate Ĉ(A) of the current consumption

for the processor and BT radio blocks takes the form

Ĉ(A) = αcs+ αr

Rs

nbits

+ γc + γr , (8)

where nbits is the sample resolution in bits, αc and αr are the

linear coefficients of the models for the current consumption

of the processor and BT radio blocks, respectively, and γc and

γr are the independent terms in these linear models. For an

alternative compression algorithm A′ with compression ratio

R′, where R′ > R (worse), and model parameters α′
c, γ′

c, with

α′
c < αc (less complex), Equation (8) determines a threshold

on R′ −R,

R =
nbits

αr

(

γc − γ′
c

s
+ αc − α′

c

)

, (9)

such that algorithm A is more energy efficient than A′, i.e.,

C(A) < C(A′), as long as R′ − R > R. As expected, R
decreases with αr. For high throughputs, i.e., large s, the

prevalent term in (9) is driven by the proportion between

αc−α′
c and αr, where the first term depends on the hardware

that executes the compressor and the difference in algorithm

complexity, while the second term depends on the wireless

communication technology.

V. EXPERIMENTAL PERFORMANCE EVALUATION

We conduct experiments to evaluate the compression per-

formance of MCS and MCF, their execution time and storage

requirements in our low power platform, and the power con-

sumption and the data throughput attainable by the platform

using each of the algorithms. Both algorithm were initially

developed for a desktop computer and the source code later

ported to our platform and compiled with the GNU v4.8.4

(Linaro) compiler. For comparison purposes, we also ported

and tested on our platform a C implementation of the algorithm

in [10], which we refer to as FLO4. In this implementation,

the maximum predictor order (P in (3)) is set to 4, rather than

7 as in [10], to make the memory requirements fit the MSP432

RAM. This order reduction causes a small compression per-

formance deterioration, which we report on in Section V-B,

but it allows for testing FLO4 in our platform.

All the EEG signals used in the experiments reported here

are taken from publicly available databases:

• DB1a and DB1b [30], [31]: 64-channel, 160 Hz, 12bps

EEG of 109 subjects using the BCI2000 system. Record-

ings are divided in 2-minute motor imagery task (DB1a)

and 1-minute calibration (DB1b).

• DB2a and DB2b [32] (BCI Competition III): 118-

channel, 1k Hz, 16bps EEG of 6 subjects performing

motor imagery tasks (DB2a). DB2b is a 100 Hz down-

sampled version of DB2a.

• DB3 [33] (BCI Competition IV): 59-channel, 1k Hz,

16bps EEG of 7 subjects performing motor imagery tasks.

• DB4 [34]: 31-channel, 1k Hz, 16bps EEG of 15 subjects

performing image classification and recognition tasks.

The measurement setting for power consumption evaluation

is that presented in Section IV. Specifically, we used 21, 31,

and 59 channel EEG signals from databases DB2,3 DB4, and

DB3, respectively. EEG signals at 250 Hz and 500 Hz were

obtained by downsampling the original data.

A. Compression time and memory usage

TABLE I
PLATFORM PERFORMANCE DEPENDING ON THE COMPRESSION

ALGORITHM VERSION (δ = 0).

Alg. Number of Proc. time per Max. sampling RAM usage
channels sample (ms) rate (sps) (kB)

MCS 21 0.432 2313 11.7
MCS 31 0.593 1686 14.8
MCS 59 1.232 812 23.4

MCF 21 0.286 3496 8.6
MCF 31 0.418 2394 10.1
MCF 59 0.826 1211 14.4

3We picked the channels that comprise the international 10-20 system [35].

8

To measure the compression time, the processor was iso-

lated from the rest of the system and the software was modified

so that the input samples were read from FLASH memory

and the compression output was written to RAM memory.

The time measurements were performed with the Count Event

tool (included in the CCS IDE), counting machine cycles

between two breakpoints and then obtaining the elapsed time

by dividing the cycle count by the clock frequency. The clock

frequency of the MSP432 was set at 48 MHz in all cases.

The platform performance, in terms of processing time and

memory usage, is detailed in Table I for MCS and MCF.

The third column shows the measured average time required

to process all channels and the fourth column indicates the

computed maximum sampling rate (calculated assuming that

the microcontroller is always in active mode).

Results indicate that MCF shows a speedup of 40–50%

relative to MCS, and also a lower usage of RAM memory

(showed in column five). On the other hand, the FLASH

memory usage is nearly constant in all cases, 27.5 kB and

26.6 kB for MCS and MCF, respectively.

Table I reports on the lossless versions of the compression

algorithms (δ = 0). The near-lossless versions (δ > 0) do not

increase the memory usage, and they increase the processing

time by less than 3%.

Both MCS and MCF execute much faster than FLO4; the

average compression time per scalar sample (CTPS) of FLO4

is almost 10 times larger than that of MCS on our platform. On

a desktop PC (Intel i7, single threaded, 3.4GHz), the CTPS,

measured including file I/O transfer, is more than 6 times

larger for FLO4 than for MCS. For implementations of [10]

setting P = 3 and P = 2, referred to as FLO3 and FLO2,

the compression performance is not clearly better than that

of MCS (see Section V-B) and, still, the CTPS on the same

PC is 4.9 and 3.6 times larger than for MCS, respectively.

Compared to the reference implementation of ALS4 configured

for compression ratio optimization (command line parameter

-7), MCS is 160 times faster than ALS executing on the

same PC. The command line parameter -z3 of the ALS

implementation results, in general, in a slight degradation

of the compression performance with respect to the results

reported in Table II (see Section V-B), but the execution time

is greatly reduced; even in this case, MCS is still more than

13 times faster.

B. Compression performance

For each database, each data file was compressed separately

and the overall compression ratio (CR), in bits per sample

(bps), was calculated as L/Ns, where Ns is the sum of the

number of scalar samples over all files of the database, and L
is the sum of the number of bits over all compressed files of

the database; smaller CRs are better.

Table II shows the CRs and average CTPSs of MCS

and MCF compared to those of FLO4, FLO3, FLO2, those

reported in [10], and those obtained for ALS [16] (ALS attains

the best CRs in [16], [19], [20], [36] for the same databases);

4http://www.nue.tu-berlin.de/menue/forschung/projekte/beendete projekte/
mpeg-4 audio lossless coding als

TABLE II
COMPRESSION RATIO IN BITS PER SAMPLE (SMALLER IS BETTER) OF

MCS, MCF ALGORITHMS FOR DIFFERENT DATABASES (δ = 0) AND

AVERAGE CTPS (µS). COMPARISON WITH STATE OF THE ART.

Algorithm DB1a DB1b DB2a DB2b DB3 DB4 CTPS

MCS 4.82 4.94 5.34 6.97 5.47 3.81 0.08
MCF 5.09 5.18 5.96 7.41 5.90 4.35 0.05
FLO4 4.74 4.82 5.30 6.98 5.46 3.64 0.51
FLO3 4.76 4.85 5.36 7.03 5.51 3.72 0.39
FLO2 4.82 4.91 5.74 7.06 5.67 4.23 0.29
[10] 4.70 4.79 5.21 6.93 5.42 3.58 0.92
[16] 5.37 5.45 5.69 7.69 5.99 3.73 1.07

[16]

Fig. 8. Average compression ratio (bps) vs. complexity (CTPS).

these results are summarized in Figure 8, which shows the

total average CR vs. average CTPS.

MCS shows CRs that are very similar for some databases

and higher (worse) than those of FLO4 in some cases. This

deterioration is expected, due to the various simplifications

made to lower the complexity of MCS, which, as detailed

in Section V-A, results in a large efficiency gain. The com-

pression performance of FLO3 is worse than that of MCS in

half of the tested databases, and for FLO2 the compression

performance is worse than that of MCS in almost all cases.

As mentioned, however, the CTPS of MCS is still much lower

than that of FLO3 and FLO2.

A compression performance deterioration is also observed

in MCF with respect to MCS, due to the use of fixed predictors

instead of adaptive ones, which, on the other hand, yielded

important reductions in memory and time requirements as

discussed in Subsection V-A. Notice, however, that the per-

TABLE III
COMPRESSION RATIO (BITS PER SAMPLE) OF MCS AND MCF

ALGORITHMS FOR DIFFERENT DATABASES (SMALLER IS BETTER).

δ DB1a DB1b DB2a DB2b DB3 DB4

MCS 0 4.82 4.94 5.34 6.97 5.47 3.81
MCS 1 3.38 3.48 3.85 5.38 3.99 2.70
MCS 2 2.79 2.86 3.23 4.66 3.35 2.30
MCS 5 2.04 2.08 2.37 3.57 2.45 1.83
MCS 10 1.62 1.64 1.86 2.75 1.91 1.58

MCF 0 5.09 5.18 5.96 7.41 5.90 4.35
MCF 1 3.63 3.69 4.39 5.83 4.35 3.02
MCF 2 3.03 3.06 3.70 5.10 3.66 2.53
MCF 5 2.27 2.26 2.73 3.94 2.70 1.98
MCF 10 1.82 1.81 2.08 3.10 2.08 1.67

9

formance of MCF is still superior to that of the best algorithm

reported in [16], [19], [20], [36] for all the databases except

DB4. Comparing the CR of MCS with the original sample

resolution for each database we observe that the amount of

data that needs to be transmitted is reduced by a factor of at

least 2.3 times, for DB2b, and up to 4.2 times, for DB4. The

above conclusions are evident by inspecting Figure 8.

Finally, Table III shows near-lossless results for δ =
{1, 2, 5, 10}, including δ = 0 from Table II as a reference,

for both MCS and MCF.

C. Power consumption vs. throughput

Fig. 9 shows the current consumption of the platform (com-

pression plus transmission) as a function of the data throughput

for several values of the distortion parameter δ (shown next to

the curve), different sampling rates (different color lines), and

different number of channels (different markers). The curves

on top correspond to BT with sniff mode off and the ones on

the bottom to BT with sniff mode on. Fig. 9a shows the results

for MCS and Fig. 9b for MCF. Current consumption was

obtained by averaging the consumption during a time window

between 20 and 80 seconds in the process of compressing

and transmitting 20,000 samples; for each configuration of

sampling rate and number of channels, the same EEG data

file was used as input for both algorithms and for all values

of δ. The dashed lines represent the current consumption of

the BT radio alone transmitting raw (uncompressed) data.

We observe that the proposed low-power platform is able

to perform lossless compression of a 59-channel acquisition

at a rate of 500 sps, with a current consumption of 19.9 mA,

that is 337 µA per channel (marked as 1 in Figure 9). Using

near-lossless compression with distortion δ = 2, in the same

setting, results in almost 10% reduction in current consumption

(marked as 2 in Figure 9). On the other hand, for 31 channels,

a sampling rate of 1000 sps can be attained with a consumption

of 590 µA/ch (marked as 3 in Figure 9).

Figure 9 illustrates the trade-off analyzed in Section IV-D

between power invested in compression and power saved in

data transmission. For very low data rates compressing does

not pay off. For larger throughputs, however, the savings in

transmission exceed the cost of compression, resulting in a

reduction of up to 10% in current consumption. The figure

also shows that the overall power consumption for MCF is in

general smaller than for MCS, despite the compression perfor-

mance of the latter being better. As explained in Section IV-D,

this result depends on the specific hardware setting and the

EEG compressibility.

The experiment also shows that, for a given current con-

sumption, the proposed compression scheme results in a

substantial increase in the maximum attainable throughput.

For example, a budget of 24 mA allows for an uncompressed

throughput of 265 ksps (see 4 in Figure 9), while the use of the

MCF algorithm allows for throughputs of up to approximately

315 ksps for δ = 0 (marked as 5 in Figure 9) and 400 ksps

for δ = 2 (marked as 6 in Figure 9). In other words, using

data compression we obtain an increase in throughput of 19%

with the lossless setting and 51% with the near-lossless one.

VI. CONCLUSIONS

We have presented a successful implementation, in a low-

power wireless platform, of two lossless/near-lossless mul-

tichannel EEG compression algorithms that offer different

levels of complexity and compression performance. We used

these implementations to evaluate, experimentally, the energy

saving and the increment in attainable throughput derived

from the reduction in the amount of data transmitted; these

turn out to be very significant for large throughput scenarios.

Both algorithms are computationally efficient, yet they attain

compression ratios that are very competitive with the best ones

reported in the literature, which make them attractive also in

other settings such as offline EEG compression.

Future work includes evaluating our low-power platform

with other physiological signals such as electrocardiograms

(ECG), for which the compression algorithm proposed here

yields very promising results [10]. Another future objective

is to develop a custom System on Chip using one of our

algorithms to further reduce power consumption.

REFERENCES

[1] G. Dufort, F. Favaro, F. Lecumberry, A. Martin, J. P. Oliver, J. Oreggioni,
I. Ramirez, G. Seroussi, and L. Steinfeld, “Wearable EEG via lossless
compression,” in 2016 38th Annual International Conference of the

IEEE Engineering in Medicine and Biology Society (EMBC), Aug 2016,
pp. 1995–1998.

[2] V. Mihajlović, B. Grundlehner, R. Vullers, and J. Penders, “Wearable,
wireless EEG solutions in daily life applications: What are we missing?”
IEEE Journal of Biomedical and Health Informatics, vol. 19, no. 1, pp.
6–21, Jan 2015.

[3] A. J. Casson, D. C. Yates, S. J. M. Smith, J. S. Duncan, and
E. Rodriguez-Villegas, “Wearable electroencephalography,” IEEE En-

gineering in Medicine and Biology Magazine, vol. 29, no. 3, pp. 44–56,
May 2010.

[4] F. Zhang, J. Holleman, and B. Otis, “Design of ultra-low power
biopotential amplifiers for biosignal acquisition applications,” IEEE

Transactions on Biomedical Circuits and Systems, vol. 6, no. 4, pp.
344–355, 2012.

[5] T. Y. Wang, M. R. Lai, C. M. Twigg, and S. Y. Peng, “A fully reconfig-
urable low-noise biopotential sensing amplifier with 1.96 noise efficiency
factor,” IEEE Transactions on Biomedical Circuits and Systems, vol. 8,
no. 3, pp. 411–422, June 2014.

[6] A. M. R. Dixon, E. G. Allstot, D. Gangopadhyay, and D. J. Allstot,
“Compressed sensing system considerations for ECG and EMG wireless
biosensors,” IEEE Transactions on Biomedical Circuits and Systems,
vol. 6, no. 2, pp. 156–166, April 2012.

[7] H. Mamaghanian, N. Khaled, D. Atienza, and P. Vandergheynst, “Com-
pressed sensing for real-time energy-efficient ECG compression on wire-
less body sensor nodes,” IEEE Transactions on Biomedical Engineering,
vol. 58, no. 9, pp. 2456–2466, Sept 2011.

[8] C. J. Deepu, C. H. Heng, and Y. Lian, “A hybrid data compression
scheme for power reduction in wireless sensors for IoT,” IEEE Trans-

actions on Biomedical Circuits and Systems, vol. 11, no. 2, pp. 245–254,
April 2017.

[9] S. A. Imtiaz, A. J. Casson, and E. Rodriguez-Villegas, “Compression in
wearable sensor nodes: Impacts of node topology,” IEEE Transactions

on Biomedical Engineering, vol. 61, no. 4, pp. 1080–1090, April 2014.

[10] I. Capurro, F. Lecumberry, Á. Martı́n, I. Ramı́rez, E. Rovira, and
G. Seroussi, “Efficient sequential compression of multi-channel biomed-
ical signals,” IEEE Journal of Biomedical and Health Informatics,
vol. 21, no. 4, pp. 904–916, July 2017.

[11] E. Spanò, S. D. Pascoli, and G. Iannaccone, “Low-power wearable
ECG monitoring system for multiple-patient remote monitoring,” IEEE

Sensors Journal, vol. 16, no. 13, pp. 5452–5462, July 2016.

[12] R. Rieger and J. T. Taylor, “An adaptive sampling system for sensor
nodes in body area networks,” IEEE Transactions on Neural Systems

and Rehabilitation Engineering, vol. 17, no. 2, pp. 183–189, April 2009.

10

50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500
12

14

16

18

20

22

24

26

28

Throughput (kbps)

S
up

pl
y

cu
rr

en
t (

m
A

)
(a)

y = 0.0185x + 19.07

δ=0
δ=2
δ=1

δ=0

δ=1

δ=2

δ=0

δ=1

δ=2

y = 0.027x + 11.13

δ=0
δ=1
δ=2

δ=0

δ=1

δ=2

δ=0

δ=1

δ=2

50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500
12

14

16

18

20

22

24

26

28

Throughput (kbps)

(b)
y = 0.0185x + 19.07

δ=0
δ=1
δ=2

δ=0

δ=1

δ=2

δ=0

δ=1

δ=2

y = 0.027x + 11.13

δ=0
δ=1
δ=2

δ=0

δ=1

δ=2

δ=0

δ=1

δ=2

Raw data

250 samples/s

500 samples/s

1000 samples/s

21Ch

31Ch

59Ch

Raw data

250 samples/s

500 samples/s

1000 samples/s

21Ch

31Ch

59Ch

1

2

3

4
5

6

Fig. 9. Current consumption vs. throughput. (a) MCS, BT (top) and BT with sniff mode on (bottom). (b) MCF, BT (top) and BT with sniff mode on (bottom).
The dashed line represents the current consumption as a function of the uncompressed data throughput.

[13] Y. Zhang, F. Zhang, Y. Shakhsheer, J. D. Silver, A. Klinefelter, M. Na-
garaju, J. Boley, J. Pandey, A. Shrivastava, E. J. Carlson, A. Wood, B. H.
Calhoun, and B. P. Otis, “A batteryless 19 muw mics/ism-band energy
harvesting body sensor node soc for exg applications,” IEEE Journal of

Solid-State Circuits, vol. 48, no. 1, pp. 199–213, Jan 2013.

[14] S. D. Pascoli, D. Puntin, A. Pinciaroli, E. Balaban, and M. Pompeiano,
“Design and implementation of a wireless in-ovo EEG/EMG recorder,”
IEEE Transactions on Biomedical Circuits and Systems, vol. 7, no. 6,
pp. 832–840, Dec 2013.

[15] R. Harrison and C. Charles, “A low-power low-noise CMOS amplifier
for neural recording applications,” IEEE Journal of Solid-State Circuits,
vol. 38, no. 6, pp. 958–965, June 2003.

[16] ISO/IEC 14496-3:2005/Amd.2:2006, Information technology—Coding
of audio-visual objects—Part 3: Audio, 3rd Ed. Amendment 2: Audio
Lossless Coding (ALS), new audio profiles and BSAC extensions.

[17] Y. Kamamoto, N. Harada, and T. Moriya, “Interchannel dependency
analysis of biomedical signals for efficient lossless compression by
MPEG-4 ALS,” in Acoustics, Speech and Signal Processing, ICASSP

2008. IEEE International Conference on, March 2008, pp. 569–572.

[18] Y. Wongsawat, S. Oraintara, T. Tanaka, and K. Rao, “Lossless multi-
channel EEG compression,” in Proc. 2006 IEEE Int. Symp. Circuits and

Systems, May 2006.

[19] K. Srinivasan, J. Dauwels, and M. Reddy, “Multichannel EEG com-
pression: Wavelet-based image and volumetric coding approach,” IEEE

Journal of Biomedical and Health Informatics, vol. 17, no. 1, pp. 113–
120, Jan 2013.

[20] J. Dauwels, K. Srinivasan, M. Reddy, and A. Cichocki, “Near-lossless
multichannel EEG compression based on matrix and tensor decompo-
sitions,” IEEE Journal of Biomedical and Health Informatics, vol. 17,
no. 3, pp. 708–714, May 2013.

[21] Z. Arnavut and H. Koak, “Lossless EEG signal compression,” in Proc.

5th Int. Conf. Soft Computing, Computing with Words and Perceptions

in System Analysis, Decision and Control, Sept 2009.

[22] K. Srinivasan, J. Dauwels, and M. R. Reddy, “A two-dimensional
approach for lossless EEG compression,” Biomedical Signal Processing

and Control, vol. 6, no. 4, pp. 387 – 394, 2011.

[23] J. Rissanen, “Generalized Kraft inequality and arithmetic coding,” IBM

Journal of Research and Development, vol. 20, no. 3, pp. 198–203, May
1976.

[24] S. W. Golomb, “Run-length encodings,” IEEE Trans. Inform. Theory,
vol. 12, pp. 399–401, Jul. 1966.

[25] B. Carpentieri, M. J. Weinberger, and G. Seroussi, “Lossless compres-

sion of continuous-tone images,” Proceedings of the IEEE, vol. 88,
no. 11, pp. 1797–1809, Nov 2000.

[26] A. Singer and M. Feder, “Universal linear prediction by model order
weighting,” IEEE Trans. Sig. Processing, vol. 47, no. 10, pp. 2685–
2699, Oct 1999.

[27] G.-O. Glentis and N. Kalouptsidis, “Efficient order recursive algorithms
for multichannel least squares filtering,” IEEE Trans. Sig. Processing,
vol. 40, no. 6, pp. 1354–1374, 1992.

[28] D. Speck, “Fast robust adaptation of predictor weights from min/max
neighboring pixels for minimum conditional entropy,” in Signals, Sys-

tems and Computers, 1995. 1995 Conference Record of the Twenty-Ninth

Asilomar Conference on, vol. 1, Oct 1995, pp. 234–238 vol.1.

[29] D. Macii and D. Petri, “An effective power consumption measurement
procedure for bluetooth wireless modules,” IEEE Transactions on In-

strumentation and Measurement, vol. 56, no. 4, pp. 1355–1364, Aug
2007.

[30] A. L. Goldberger, L. A. N. Amaral, L. Glass, J. M. Hausdorff, P. C.
Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C.-K. Peng, and H. E.
Stanley, “PhysioBank, PhysioToolkit, and PhysioNet: Components of a
new research resource for complex physiologic signals,” Circulation,
vol. 101, no. 23, 2000 (June 13).

[31] G. Schalk, D. McFarland, T. Hinterberger, N. Birbaumer, and J. Wolpaw,
“BCI2000: a general-purpose brain-computer interface (BCI) system,”
IEEE Trans. Biomedical Engineering, vol. 51, no. 6, pp. 1034–1043,
June 2004.

[32] G. Dornhege, B. Blankertz, G. Curio, and K. Muller, “Boosting bit
rates in noninvasive EEG single-trial classifications by feature combina-
tion and multiclass paradigms,” IEEE Trans. Biomedical Engineering,
vol. 51, no. 6, pp. 993–1002, June 2004.

[33] B. Blankertz, G. Dornhege, M. Krauledat, K.-R. Müller, and G. Curio,
“The non-invasive Berlin brain–computer interface: Fast acquisition of
effective performance in untrained subjects,” NeuroImage, vol. 37, no. 2,
pp. 539 – 550, 2007.

[34] A. Delorme, G. A. Rousselet, M. J.-M. Macé, and M. Fabre-Thorpe,
“Interaction of top-down and bottom-up processing in the fast visual
analysis of natural scenes,” Cognitive Brain Research, vol. 19, no. 2,
pp. 103 – 113, 2004.

[35] “Report of the committee on methods of clinical examination in elec-
troencephalography,” Electroencephalography and Clinical Neurophysi-

ology, vol. 10, no. 2, pp. 370 – 375, 1958.

[36] B. Hejrati, A. Fathi, and F. Abdali-Mohammadi, “Efficient lossless
multi-channel EEG compression based on channel clustering,” Biomed.

Signal Process. Control, vol. 31, pp. 295–300, 2017.

11

Guillermo Dufort y Álvarez was born in Mon-
tevideo, Uruguay. He received the computer engi-
neer degree in informatics from Universidad de la
República, Uruguay, in 2016. Since 2015, he has
been with the Instituto de Computación, Universidad
de la República. His research interests include infor-
mation theory, machine learning, and bioinformatics.

Federico Favaro was born in Montevideo, Uruguay.
He received the B.Sc degree in electrical engineering
from Universidad de la República in 2016. He is
currently a M.Sc student in electrical engineering
and a teaching assistant with the Instituto de Inge-
nierı́a Eléctrica, Universidad de la República. His
research interests include low power electronics,
digital design, embedded systems, and biomedical
applications.

Federico Lecumberry was born in Montevideo,
Uruguay. He received the B.Sc., M.Sc. and Ph.D. de-
grees in Electrical Engineering from the Universidad
de la República, Uruguay, in 2000, 2006 and 2012
respectively. He is an Associate Professor in Signal
Processing with the Instituto de Ingenierı́a Eléctrica,
Universidad de la República. He is also Principal
Investigator of the Signal Processing Laboratory at
the Institut Pasteur de Montevideo. His research in-
terests include Signal Processing, Computer Vision,
Machine Learning and Biomedical images.

Álvaro Martı́n was born in Montevideo, Uruguay.
He received the computer engineer degree and the
Ph.D. degree in informatics from Universidad de la
República, Uruguay, in 2001 and 2009 respectively.
Since 2000, he has been with the Instituto de Com-
putación, Universidad de la República. His research
interests include information theory, statistical mod-
eling, and algorithms.

Juan P. Oliver received the B.Sc., M.Sc. and Ph.D.
degrees in Electrical Engineering from the Univer-
sidad de la República, Uruguay, in 1989, 2007 and
2015 respectively. He is currently full time Associate
Professor and Head of Electronics Department with
the Instituto de Ingenierı́a Eléctrica, Universidad
de la República, Uruguay. His research interests
include the design of FPGA-based systems, low-
power techniques, embedded systems, and electrical
engineering education.

Julián Oreggioni received the B.Sc. and M.Sc.
degrees in electrical engineering from Universidad
de la República, in 2006 and 2013 respectively. He
is currently Assistant Professor with the Instituto
de Ingenierı́a Eléctrica, Universidad de la República
(Uruguay). He has more than 10 years of experience
in the electronics industry (embedded systems, M2M
apps, vending machines, agrotech, etc.), he holds
several patents and is coauthor of many technical
articles. His research interests includes ultra low-
power analog circuit and systems design and low-

power embedded systems for biomedical and agricultural applications.

Ignacio Ramı́rez received the Electrical Engineer
and the M.Sc. in Electrical Engineering degrees from
the Universidad de la República in 2002 and 2007
respectively, and the Ph.D. degree in Scientific Com-
puting from the University of Minnessota in 2012.
He is with the Universidad de la República since
1999, where he now holds an Assistant Professor
position in the Signal Processing Department. He is
categorized as a Degree 1 Researcher by the National
System of Researchers (SNI) and as a Degree 3
Professor in Mathematics by Programa de Desarrollo

de las Ciencias Básicas (PEDECIBA). His research focuses in the development
and application of Statistics, Information Theory and Optimization tools to
signal/data processing and machine learning problems.

Gadiel Seroussi (M’87 - SM’91 - F’98) received
the B.Sc. degree in electrical engineering and the
M.Sc. and D.Sc. degrees in computer science from
Technion-Israel Institute of Technology, Haifa, Is-
rael, in 1977, 1979, and 1981, respectively. From
1981 to 1987, he was with the faculty of the
Computer Science Department at Technion. From
1986 to 1988, he was a Senior Research Scientist at
Cyclotomics Inc., Berkeley, CA. In 1988 he joined
Hewlett-Packard Laboratories, Palo Alto, CA, where
he founded the Information Theory Research Group

and was its director until 2005. During the 2005—2006 academic year, he
was an Associate Director of the Mathematical Sciences Research Institute in
Berkeley, California. He returned to HP Labs in 2007, serving as a consultant
to the information theory group until 2013. He is currently with Xperi
Corp., Los Gatos, California. Since 2004, he has held a joint appointment in
Computer Science and Electrical Engineering at Universidad de la República,
Montevideo, Uruguay. He is a coauthor of the book Elliptic Curves in Cryp-
tography (1999), and a coeditor of Advances in Elliptic Curve Cryptography
(2005), both published by Cambridge University Press. His research interests
include the mathematical foundations and practical applications of information
theory, error correcting codes, data compression, audio and image processing,
and cryptography.

Leonardo Steinfeld received the B.Sc., M.Sc. and
Ph.D. degrees in Electrical Engineering from the
Universidad de la República, Montevideo, Uruguay,
in 2002, 2007 and 2013, respectively. He is currently
an Assistant Professor with the Electronics Depart-
ment at the Facultad de Ingenierı́a, Universidad de la
República (Uruguay). His primary research interests
includes low-power embedded systems and wireless
sensor networks.

