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Abstract—In this paper, we study the average, the probability
density function and the cumulative distribution function of the
harvested power. In the study, the signals are transmitted from
multiple sources. The channels are assumed to be either Rician
fading or Gamma-shadowed Rician fading. The received signals
are then harvested by using either a single harvester for simul-
taneous transmissions or multiple harvesters for transmissions
at different frequencies, antennas or time slots. Both linear and
nonlinear models for the energy harvester at the receiver are
examined. Numerical results are presented to show that, when a
large amount of harvested power is required, a single harvester
or the linear range of a practical nonlinear harvester are more
efficient, to avoid power outage. Further, the power transfer
strategy can be optimized for fixed total power. Specifically, for
Rayleigh fading, the optimal strategy is to put the total power
at the source with the best channel condition and switch off
all other sources, while for general Rician fading, the optimum
magnitudes and phases of the transmitting waveforms depend on
the channel parameters.

Index Terms—Cumulative distribution function, energy har-
vesting, fading channels, nonlinear distortion, probability density
function, shadowing.

I. INTRODUCTION

As a promising solution to the energy shortage problem

in portable devices, wireless energy harvesting allows for

sustained operation. In wireless energy harvesting, the portable

device is equipped with an energy harvester and thus, it

can collect energy from either dedicated or ambient sources

to replenish its energy supply. For example, in [1], energy

harvesting from ambient radio frequency signals in several

commonly used frequency bands was investigated. The amount

of power available from such ambient sources is often at

the scale of milli-watts or micro-watts [2]. Also, in [3],

signals transmitted by peer nodes in the same network were

used as ambient sources for energy harvesting at the idle

nodes. The ambient energy harvesting depends heavily on the

radio environment where the harvester operates and when it

operates. Although one may perform scheduling or take other
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measures for best performance [4] - [6], there is still great

uncertainty in the amount of ambient energy. For applications

that require regular power supply, such as mobile services, this

uncertainty is not desirable. In these applications, dedicated

sources can be used. For example, in [7], a power beacon

was proposed that constantly broadcasts wireless power in

a cellular network for harvesting. These power beacons are

deployed in conjunction with base stations to provide power

coverage and signal coverage in the network. In [8], a hybrid

access point was proposed where the access point broadcasts

wireless power in the downlink followed by data transmission

using the harvested energy in the upper link in a time-division

duplex manner. In [9], simultaneous wireless information and

power transfer was proposed, where the wireless signal is

either switched in the time domain or split in the power domain

to provide signal transmission and power transfer using the

same wireless carrier.

All these works have provided very useful solutions to the

energy supply problem of portable devices. However, an im-

portant issue that has been largely ignored in these works is the

amount of harvested energy available to the portable device for

operation and its modeling. Firstly, most wireless signals suffer

from fading and/or shadowing during the transmission [10].

This makes the received signal random. This randomness will

affect the amount of the harvested energy. Such randomness

was investigated in [11] in terms of battery recharging time,

but with limited discussion. Secondly, the received energy

will only become usable when it is converted by an energy

harvester. Hence, the harvester characteristics will determine

the amount of the harvested energy. Most existing works

assumed a linear input-output relationship for the energy har-

vester [4] - [9]. However, practical harvesters have nonlinear

relationships. For example, based on two practical harvesters

in [12] and [13], reference [14] proposed a logarithmic input-

output relationship. Also, using [12] and other references [15]

- [18], a rational input-output relationship was proposed in

[19]. In both the logarithmic and rational relationships, the

output saturates when the input increases, while in the linear

relationship, the output does not. Finally, a single source with

a single energy harvester may not be enough for energy supply.

Therefore, multiple sources and/or multiple harvesters can

be used. For example, two rectifiers operating at different

frequencies can be used [18]. Multiple antennas can also be

used to harvest more energy from either multiple sources or a

single source [20]. As well, one can use one energy harvester

to harvest energies from multiple sources, such as co-channel

interference [21], [22]. The number of energy sources and the

number of energy harvesters will determine the amount of the
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harvested energy. None of these issues have been thoroughly

investigated in the literature.

In this paper, we will fill this gap in the literature by

providing a comprehensive framework on the analysis and the

modeling of the amount of harvested power at the portable

device. In the analysis, we consider the case when the wireless

signal suffers from Rician fading as well as the case when the

wireless signal suffers from both Rician fading and Gamma

shadowing. The first case occurs in applications when power

transfer is performed in a short distance such that shadowing

can be ignored, while the second case occurs in applications

when power transfer is performed in longer distances such that

the shadowing effect needs to be included. Both linear energy

harvester (LEH) and nonlinear energy harvester (NLEH) are

studied. The average, the probability density function (PDF)

and the cumulative distribution function (CDF) of the har-

vested power are derived. Based on this derivation, the power

outage probability is calculated. Also, optimal power transfer

strategies that maximize the average harvested power are dis-

cussed. Numerical results are presented to show that different

power transfer strategies should be used for different channel

conditions and different harvesters in order to maximize the

average harvested power. Our results also show that the power

outage probability depends on the number of sources, the

channel condition and the harvester characteristics, giving us

guidelines on how to choose these parameters to meet the

outage requirement. The main contributions of this work can

be summarized as follows:

• We study the effect of Rician fading and/or Gamma

shadowing on the amount of harvested power. In the

study, we provide a comprehensive analytical framework

by deriving the average, the PDF and the CDF of the

harvested power for the case when multiple sources or

multiple harvesters are used. These results have not been

obtained in the literature.

• We examine the effect of the harvester characteristics on

the amount of the harvested power. To the best of the

authors’ knowledge, this is the first time that the input-

output relationship of practical energy harvesters is taken

into account in the modeling of harvested power.

• We provide useful guidance on the design of wireless en-

ergy harvesting systems by examining the power outage

requirement for communications and the optimal power

transfer strategies for energy harvesting.

The rest of the paper is organized as follows. In Section II,

the system model used in the analysis is introduced. Section III

studies the case when the wireless signal suffers from fading.

Section IV studies the case when the wireless signal suffers

from both fading and shadowing. In Section V, applications of

the results obtained in Sections III and IV are discussed using

the probability of power outage and the power transfer strategy.

Numerical examples are presented in Section VI. Finally, some

concluding remarks are made in Section VII.

II. SYSTEM MODEL

Consider a wireless energy harvesting system where there

are I energy sources and I is the total number of sources

with I > 1. Each source transmits an energy signal with a

complex amplitude of xi = ωie
jψi , where i = 1, 2, · · · , I

is the source index, j =
√
−1, ωi is the magnitude and ψi

is the phase of the transmitted waveform, respectively. Note

that for energy transfer ωi and ψi could be any values, while

for information transmission with modulation they are discrete

values determined by the constellation. These signals suffer

from either Rician fading or Gamma-shadowed Rician fading

in the channels. The faded/shadowed signals are received and

then harvested by either a single harvester for simultaneous

transmissions or multiple harvesters for transmissions over

different frequencies, antennas or time slots.

A. Harvested Power

If all the sources transmit signals simultaneously in the

same frequency band, only a single harvester is required to

harvest the energy. The received signal at this harvester can

be expressed as

y =
I
∑

i=1

xihi + n (1)

where hi is the fading coefficient from the i-th source to

the energy harvester and n is the additive white Gaussian

noise (AWGN). The channel gains hi in the simultaneous

transmissions are different because the signals are from dif-

ferent sources. In our paper, we assume Rician fading such

that hi is a circularly symmetric complex Gaussian random

variable with mean si = ϵie
jφi and variance 2α2

i and its real

and imaginary parts are independent of each other, ϵi is the

magnitude of the mean, ϕi is the phase of the mean, and

n is a complex Gaussian random variable with mean zero

and variance 2β2as well as independent real and imaginary

parts. This is the case when the harvester harvests energy from

simultaneous transmissions, such as two-way relaying or non-

orthogonal multiple access, or from co-channel interference

[21], [22]. This is also the case when the power beacons

proposed in [7] are deployed in several locations to provide

power coverage for the whole network such that one portable

device may be served by several power beacons or when

distributed antenna systems are adopted, similar to [23] but

for power transfer.

Using (1), the received power or the input power of the

energy harvester is given by

Pn = |y|2 = |
I
∑

i=1

xihi + n|2 (2)

and the harvested power is given by

Po = f(Pn) (3)

where f(x) is the input-output relationship of the energy

harvester to be discussed later. In this case, only one energy

harvester is required to collect energies from multiple sources.

On the other hand, if these sources operate in different

frequency bands, on different antennas or during different time

slots, I energy harvesters, or one harvester for I times, are
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required to collect all these energies. The received signal at

the i-th energy harvester can be given by

yi = xihi + ni (4)

where ni is the AWGN at the i-th energy harvester as

a complex Gaussian random variable with mean zero and

variance 2β2, and all the other symbols are defined as be-

fore. This is, for example, the case when rectennas tuned at

different frequencies [18] or multiple antennas [20] are used to

increase the amount of harvested energy, or when the energy

is accumulated from transmissions in different time slots.

Using (4), the received or input power of the i-th energy

harvester can be obtained as

Pi = |yi|2 = |xihi + ni|2 (5)

and the total harvested power after combining all output power

of the I energy harvesters is

Po =

I
∑

i=1

fi(Pi) (6)

where fi(x) is the input-output relationship of the i-th energy

harvester. Note that, in practice, to transfer a fixed amount of

energy, we can choose to send it at the full power and collect

it using a single energy harvester, or we can choose to split

it into several smaller signals and collect them using multiple

harvesters. The purpose of this paper is to derive the statistical

models of the output power Po in different cases to provide

theories for these design issues. Before doing this, we need to

discuss the input-output relationship of the energy harvester.

B. Energy Harvester Models

In most existing works on energy harvesting, the LEH

model has been used. In this case, one has the input-output

relationship of the energy harvester as [4] - [9]

f(x) = ηx (7)

where η is the conversion efficiency of the energy harvester

and x is the input power.

An important assumption here is that the conversion effi-

ciency is a constant that is independent of the input power.

However, many measurement data have revealed that the

conversion efficiency actually depends on the input power.

Consequently, the relationship between the input power and

the output power is nonlinear. For example, in reference [19],

after examining dozens of practical energy harvesters, the

conversion efficiency of the energy harvester was given as a

function of the input power η(x) = p2x
2+p1x+p0

q3x3+q2x2+q1x+q0
, where

p0, p1, p2, q0, q1, q2, q3 are constants determined by curve-

fitting in [19]. Thus, for these energy harvesters [12], [15]

- [18], the input-output relationship will be [19]

f(x) = η(x)x =
p2x

3 + p1x
2 + p0x

q3x3 + q2x2 + q1x+ q0
. (8)

From (8), unlike the linear model where the output power

increases linearly with the input power, the output power of the

nonlinear model actually approaches an upper limit of p2/q3
when the input power increases, due to the nonlinear distortion
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Figure 1. Comparison of measurement, the proposed model (9) and the
existing model [19].

or saturation. In another independent work [14], using two

measurement data in [12] and [13], the authors also proposed a

nonlinear model as f(x) =
M

1+e−a(x−b)
−MΩ

1−Ω , where Ω = 1
1+eab

and a, b and M are constants determined by curve-fitting in

[14]. This model also captures the nonlinear characteristics

of the energy harvester. However, these two models are not

mathematically tractable for the derivations of the average,

the PDF and the CDF of Po that are of interest in this paper.

Thus, we propose a simpler nonlinear model as a modification

to the model in (8) by

f(x) =
ax+ b

x+ c
− b

c
(9)

where a, b, c are constants determined by standard curve-

fitting, similar to [19] and [14]. Compared with the linear

model in (7), the proposed model in (9) can describe the

nonlinear distortion or saturation, similar to those in [14] and

[19]. Compared with the nonlinear models in [14] and [19],

the proposed model in (9) is more mathematically tractable for

the derivation of the average, PDF and CDF of the harvested

power, as will be shown later. Thus, it is simpler. Also, (7)

can be derived from (8) by removing the higher order terms

in the numerator and denominator, when x is very small. This

is the case in energy harvesting, as the input power is usually

quite small. Also, the term of b
c is added to make the output

power zero when the input power is zero.

Fig. 1 compares the measurement data with the proposed

model in (9) and the nonlinear model in [19]. The upper part of

the figure uses the data from [12, Fig. 19], while the lower part

of the figure uses data from [15, Fig. 5]. The fitted parameters

of the proposed model are a = 2.463, b = 1.635, c = 0.826
for [12] with a root mean squared error (RMSE) of 0.009737

and a = 0.3929, b = 0.01675 and c = 0.04401 for [15] with

a RMSE of 0.0003993. The fitted parameters of the nonlinear

model in [19] are p2 = 0.1328, p1 = 0.08107, p0 = 0.3493,

q3 = 0.03764, q2 = 0.8472, q1 = 0.7269 and q0 = 0.5604 for

[12] with a RMSE of 0.01731 and p2 = 1.137, p1 = −0.5553,

p0 = 0.1115, q3 = 0.4175, q2 = 0.8971, q1 = 2.079 and

q0 = 0.5249 for [12] with a RMSE of 0.000788. The fitting
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errors of the proposed (9) and the nonlinear model in [19]

are comparable. For example, [19] has a RMSE of 0.000788,

while (9) has a RMSE of 0.0003993, for [15]. In the following,

we will use (9) and denote it as the NLEH model. Although

the LEH model is an ideal model, we will still consider it

in the following for two reasons. Firstly, the LEH model is a

simple model that can provide a good approximation to the

linear range of a practical nonlinear harvester. Secondly, most

existing works on wireless energy harvesting have assumed

the LEH model. By deriving results for the LEH model, it is

easier for these existing works to gain insights.

III. FADING SIGNALS

In this section, we derive the average, the PDF and the CDF

of the harvested power for the case when the wireless signals

suffer from Rician fading only.

A. Single Harvester

In this case, multiple sources are harvested by a single

energy harvester. Thus, the output power for the LEH model

becomes

PSL1 = ηPn (10)

and the output power for the NLEH model becomes

PSN1 =
aPn + b

Pn + c
− b

c
. (11)

From (1), the received signal y is a complex Gaussian random

variable with

µ = E{y} =
I
∑

i=1

xisi

2σ2 = E{|y − µ|2} = 2
I
∑

i=1

|xi|2α2
i + 2β2. (12)

Thus, Pn = |y|2 is a non-central chi-square random variable

[24]. Using (10) and the PDF and CDF of Pn, the PDF and

CDF of the output power for the LEH model can be derived

via the variable transformation y = ηx as

fPSL1
(y) =

1

2ησ2
e
−

η|µ|2+y

2ησ2 I0(

√
y|µ|

√
ησ2

) (13)

FPSL1(y) = 1−Q1

( |µ|
σ
,

√
y

√
ησ

)

(14)

respectively, where I0(·) is the zero-th order modified Bessel

function of the first type [25] and Q1(·, ·) is the first-order

Marcum Q function [10].

Also, using (11), the PDF and CDF of the output power

for the NLEH model can be derived using the variable

transformation y = ax+b
x+c − b

c as

fPSN1(y) =
1

2σ2
e−

|µ|2+cy/(a− b
c
−y)

2σ2 I0

(

√

cy

a− b
c − y

|µ|
σ2

)

ac− b

(a− b
c − y)2

(15)

FPSN1(y) = 1−Q1





|µ|
σ
,

√
cy

√

(a− b
c − y)σ



 (16)

respectively.

Finally, the average output power for the LEH model can

be calculated as

E{PSL1} = η[|
I
∑

i=1

xisi|2 + 2

I
∑

i=1

|xi|2α2
i + 2β2] (17)

by using the moments of a non-central chi-square random

variable |y|2 [24]. For the NLEH model, the average output

power can be calculated as

E{PSN1}=
1

2σ2

∫ ∞

0

(
ax+ b

x+ c
−b
c
)e−

|µ|2+x

2σ2 I0(

√
x|µ|
σ2

)dx (18)

where we have used the PDF of Pn. To obtain a closed-form

expression, first, the approximation to the Bessel functions

proposed in [26] is used as

I0(x) ≈
n0
∑

l=1

Γ(n0 + l)n1−2l
0

Γ(l + 1)2Γ(n0 − l + 1)
(
x

2
)2l (19)

where Γ(·) is the Gamma function [25] and 2n0 is the order

of a Chebyshev polynomial used to approximate the Bessel

function [26]. It was reported in [26] that this approximation

is very accurate for small values of x, which is the case for the

wireless signal received by the energy harvester. For example,

for I0(x), the error is less than 4% when 0 < x < 12 and

n0 = 20 [26, Fig. 2]. We use n0 = 20 in the following.

Then, using (19) in (18) and solving the integral using [27,

eq. (3.383.10)], one has

E{PSN1} ≈ a− b

c
+
b− ac

2σ2
e−

|µ|2

2σ2 + c
2σ2

n0
∑

l=0

Γ(n0 + l)n1−2l
0

Γ(l + 1)Γ(n0 − l + 1)
(
c|µ|2
4σ4

)lΓ(−l, c

2σ2
) (20)

for the NLEH model, where Γ(·, ·) is the upper incomplete

Gamma function [25]. Next, we study the case when multiple

harvesters are used.

B. Multiple Harvesters

In this case, I energy harvesters, or one energy harvester

for I times, are used to collect energies. If the LEH model is

used, the harvested power is given by

PML1 =
I
∑

i=1

ηiPi (21)

where ηi is the conversion efficiency of the i-th energy

harvester, and if the NLEH model is used,

PMN1 =

I
∑

i=1

[

aiPi + bi
Pi + ci

− bi
ci

]

(22)

where ai, bi and ci are the constants for the i-th energy

harvester.

From (4), yi is a complex Gaussian random variable with

µi = E{yi} = xisi

2σ2
i = E{|yi − µi|2} = 2|xi|2α2

i + 2β2 (23)

Thus, Pi = |yi|2 in (21) and (22) is a non-central chi-square

random variable.
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Using the linearity of expectation and the moments of

the non-central chi-square random variables Pi, the average

harvested power for the LEH model can be derived as

E{PML1} =
I
∑

i=1

[ηi|xi|2|si|2 + 2ηi|xi|2α2
i + 2β2ηi]. (24)

Similarly, the average harvested power for the NLEH model

can be derived by using (19) and [27, eq. (3.383.10)] as

E{PMN1}≈
I
∑

i=1

(ai −
bi
ci
) +

n0
∑

l=0

I
∑

i=1

Γ(n0 + l)n1−2l
0 ( ci|µi|

2

4σ4
i

)l

Γ(l + 1)Γ(n0 − l + 1)

bi − aici
2σ2

i

e
−

|µi|
2

2σ2
i

+
ci

2σ2
i Γ(−l, ci

2σ2
i

) (25)

where all the symbols are defined as before. Next, we derive

the PDF and CDF.

For (21), the output power can be rewritten as

PML1 =
I
∑

i=1

ηiσ
2
i ti (26)

where ti is a non-central chi-square random variable with

vi = 2 degrees of freedom and non-centrality parameter

δi =
|xi|

2|si|
2

σ2
i

. Thus, PML1 is a sum of weighted non-central

chi-square random variables. The exact PDF of PML1 has

been derived in [28]. However, its form is not mathemat-

ically convenient, as it requires the calculation of a series

whose converging rate needs to be controlled by choosing

two parameters heuristically, in addition to the complicated

coefficients of the series that need to be determined. Thus,

we look for mathematically convenient approximations to the

distribution of PML1. One such approximation was proposed

in [29], where a non-central chi-square distribution was used

to approximate the sum PML1. This approximation is still

relatively complicated, as the CDF of a non-central chi-square

random variable does not have a closed-form expression except

for some special cases. A simpler alternative is moment-

matching. To use this method, the mean and variance of PML1

can be derived from (21) using moments of a non-central chi-

square random variable as

m1 = E{PML1} =

I
∑

i=1

ηiσ
2
i [vi + δi]

m2 = E{(PML1 −m1)
2} =

I
∑

i=1

(ηiσ
2
i )

2[2vi + 4δi] (27)

where vi and δi are the degree of freedom and the non-

centrality parameter of ti, respectively, as given before. By

matching them to the mean and variance of a Gamma distri-

bution, one has the Gamma approximation as

fPML1(y) ≈
1

θkML1

ML1 Γ(kML1)
ykML1−1e

− y
θML1 (28)

FPML1(y) ≈
1

Γ(kML1)
γ(kML1,

y

θML1
) (29)

where kML1 =
m2

1

m2
and θML1 = m2

m1
from kML1θML1 = m1

and kML1θ
2
ML1 = m2, and γ(·, ·) is the lower incomplete
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Figure 2. Comparison of different approximations to the CDF of PML1 in
(26).

Gamma function [25]. Also, one can match them to the

mean and variance of a Gaussian distribution for the Gaussian

approximation.

Fig. 2 compares different approximations to the CDF of

PML1 in (26). In this figure, we set xi = 1, 2α2
i = si =

0.1i mW , β2 = −40 dBm, and η = 0.3. One sees that

the Gamma distribution provides the highest overall accuracy.

Since it also has a simpler CDF, in the following, we will use

the Gamma approximation in (28) and (29) for PML1.

For the output power of the NLEH model in (22), we also

use moment-matching approximations. In this case, one can

obtain the mean and variance from (22) as

r1=E{PMN1} =
I
∑

i=1

r1i

=
I
∑

i=1

[(ai −
bi
ci
) +

bi − aici
2σ2

i

e
−

|µi|
2

2σ2
i

+
ci

2σ2
i

n0
∑

l=0

Γ(n0 + l)n1−2l
0

Γ(l + 1)Γ(n0 − l + 1)
(
ci|µi|2
4σ4

i

)lΓ(−l, ci
2σ2

i

)]

r2=E{(PMN1 − r1i)
2}

=
I
∑

i=1

[−(ai −
bi
ci

− r1i)
2 +

(bi − aici)
2

2σ2
i ci

e
−

|µi|
2

2σ2
i

n0
∑

l=0

Γ(n0 + l)n1−2l
0

Γ(l + 1)Γ(n0 − l + 1)
(
ci|µi|2
4σ4

i

)lΨ(l + 1, l,
ci
2σ2

i

)] (30)

where we have used (19), [27, eq. (3.383.10)] and [27, eq.

(3.383.5)] in the derivation, and Ψ(·, ·, ·) is the confluent

hypergeometric function [27]. We have found by trying several

distributions that the Rician distribution gives a good approx-

imation in this case. The Rician approximations to the PDF

and CDF of PMN1 can be derived as

fPMN1
(y) ≈ y

σ2
R

e
−

y2+v2
R

2σ2
R I0(

yvR
σ2
R

) (31)

FPMN1
(y) ≈ 1−Q1(

vR
σR

,
y

σR
) (32)
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Figure 3. Comparison of different approximations to the CDF of PMN1 in
(22).

where vR and σR satisfy the moment-matching equations of

r1 = σR
√

π
2L 1

2
(− v2R

2σ2
R
) and r2 = 2σ2

R+v
2
R−

πσ2
R

2 L2
1
2

(− v2R
2σ2

R
),

and they can be solved to give vR =
√

r2 + r21 −
4r21

πL2
1
2

(−r0)

and σR = r1√
π
2 L 1

2
(−r0)

, with r0 being determined by the

equation
r2+r

2
1

r21
= 4(1+r0)

πL 1
2
(−r0)

, and Li(·) is the Laguerre

polynomial [27].

Fig. 3 compares different approximations to the CDF of

the output power in (22). In the comparison, we set xi = 1,

2α2
i = si = 0.1i mW , β2 = −40 dBm, and a = 2.463,

b = 1.635, c = 0.826 for the NLEH. One sees that the

Rician approximation has the highest accuracy. Thus, in the

following, we will use the Rician approximation for the output

power of the NLEH model in (31) and (32).

C. Special Case of Rayleigh Fading

In this case, one has si = 0 for i = 1, 2, · · · , I . This will

simplify some expressions.

Specifically, for the single harvester, the output power of

the LEH model has

E{PSL1} = η[2
I
∑

i=1

|xi|2α2
i + 2β2] (33)

fPSL1(y) =
1

2ησ2
e
− y

2ησ2 (34)

FPSL1(y) = 1− e
− y

2ησ2 . (35)

The output power of the NLEH model has

E{PSN1} = a− b

c
+
b− ac

2σ2
e

c
2σ2 [−Ei(− c

2σ2
)] (36)

fPSN1
(y) =

1

2σ2
e
− cy

2ησ2(a− b
c
−y)

ac− b

(a− b
c − y)2

(37)

FPSN1(y) = 1− e
− cy

2σ2(a− b
c
−y) (38)

where Ei(·) is the exponential integral [25].

For the multiple harvesters, the output power of the LEH

model has

E{PML1}=2
I
∑

i=1

ηi|xi|2α2
i + 2

I
∑

i=1

ηiβ
2 (39)

fPML1
(y)=

I
∑

i=1

I
∏

j=1,j ̸=i

1

2ηiσ2
i − 2ηjσ2

j

e
− y

2ηiσ
2
i (40)

FPML1(y)=
I
∑

i=1

I
∏

j=1,j ̸=i

2ηiσ
2
i

2ηiσ2
i − 2ηjσ2

j

[1− e
− y

2ηiσ
2
i ] (41)

where we have used the result on the sum of exponential

random variables [30]. The output power of the NLEH model

has

E{PMN1}=
I
∑

i=1

[ai −
bi
ci

− (bi − aici)

2σ2
i

e
ci

2σ2
i Ei(− ci

2σ2
i

)] (42)

fPMN1(y)=
1

2π

∫ ∞

−∞

I
∏

i=1

ϕi(jv)e
−jvydv (43)

FPMN1
(y)=

1

2π

∫ ∞

−∞

I
∏

i=1

ϕi(jv)
e−jvy

jv
dv (44)

respectively, where we have used the characteristic

function method to derive the distribution of

a sum of random variables and ϕi(jv) =

ciai−bi
2σ2

i
e
jv(ai−

bi
ci

)+
ci

2σ2
i

∑∞
k=0(

ciai−bi
2σ2

i
)k(jv)k+1γ(−k −

1, jv(ai− bi
ci
)) is derived by using the Taylor series expansion

of the exponential function and the definition of lower

incomplete Gamma function.

IV. SHADOWED FADING SIGNALS

In this case, the wireless signals experience both fading and

shadowing. This is the case when the power transfer distance

is large such that the shadowing effect cannot be ignored, as

the effects of fading and shadowing depend on the distance

between the transmitter and the receiver [31]. A widely

used model for shadowing is the lognormal distribution [10].

However, this model often leads to mathematical intractability

due to the logarithm operation in the exponent. An alternative

shadowing model that is mathematically more tractable is

the Gamma distribution [32]. This model can lead to the

generalized K distribution for the composite Gamma-Gamma

channels [33]. We assume the Gamma model for shadowing

in this paper. Then, the average fading power α2
i follows a

Gamma distribution with PDF

fα2
i
(x) =

1

Γ(ki)θ
ki
i

e
− x

θi (45)

where ki and θi are the shape and scale parameters of α2
i ,

respectively.

A. Single Harvester

The results when the wireless signal only suffers from

Rician fading have been derived in Section III. When the

signals experience both Rician fading and Gamma shadowing,
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Figure 4. Comparison of different approximations to the CDF of σ2 in (12).

we only need to average out the fading power in those

expressions. To do this, the distribution of σ2 is required. From

(12), it is a weighted sum of I Gamma random variables. The

exact distribution of σ2 can be derived by using the results in

[34]. However, this expression is complicated. Thus, we resort

to approximations. Fig. 4 compares different approximations to

the distribution of σ2 using moment-matching. In the figure,

we set xi = 1, ki = 2, α2
i = 0.05i mW , θi = α2

i /ki and

β2 = −40 dBm. One sees that the Gamma approximation has

the highest accuracy. Thus, we use the Gamma approximation

in the following as

fσ2(x) ≈ 1

Γ(kσ)θ
kσ
σ

xkσ−1e−
x
θσ (46)

where kσ =
d21
d2

, θσ = d2
d1

, and d1 =
∑I
i=1 |xi|2kiθi + β2

and d2 =
∑I
i=1 |xi|4kiθ2i are the mean and variance of σ2,

respectively.

Using (46), the PDF and CDF for the output power of the

LEH model can be derived as

fPSL2
(y) ≈

n0
∑

l=0

ηΓ(n0 + l)n1−2l
0 (y|µ|

2

4η )l

θkσσ Γ(kσ)Γ2(l + 1)Γ(n0 − l + 1)

(
η|µ|2 + y

2η
θσ)

kσ−2l−1
2 Kkσ−2l−1(

√

2η|µ|2 + 2y

ηθσ
) (47)

FPSL2
(y) =

∫ y

0

fPSL2
(t)dt (48)

where we have used the approximation in (19) followed by

[27, eq. (3.471.9)], and Kk−2l−1(·) is the (k−2l−1)-th order

modified Bessel function of the second type.

Similarly, the PDF and CDF for the NLEH model can be

derived as

fPSN2
(x) ≈

n0
∑

l=0

(ac− b)Γ(n0 + l)n1−2l
0 ( (cy|µ|2/4)l

(a− b
c−y)

l+2

θkσσ Γ(kσ)Γ2(l + 1)Γ(n0 − l + 1)

(
|µ|2+ cy

a−b
c−y

2
θσ)

kσ−2l−1
2 Kkσ−2l−1(

√

2|µ|2+2 cy
a−b

c−y

θσ
) (49)

FPSN2
(y) =

∫ y

0

fPSN2
(t)dt. (50)

The average harvested power for the LEH model can be

derived from (17) as

E{PSL1} = η[|
I
∑

i=1

xisi|2 + 2
I
∑

i=1

|xi|2kiθi + 2β2]. (51)

The average harvested power for the NLEH model can be

derived as

E{PSN2} ≈
n0
∑

l=0

Γ(n0 + l)n1−2l
0 ( |µ|

2

4 )l

θkσσ Γ(kσ)Γ2(l + 1)Γ(n0 − l + 1)
∫ ∞

0

[
ax+ b

x+ c
− b

c
]xl(

|µ|2 + x

2
θσ)

kσ−2l−1
2

Kkσ−2l−1(

√

2|µ|2 + 2x

θσ
)dx. (52)

B. Multiple Harvesters

When multiple harvesters are used, we need to find the dis-

tribution of σ2
i first. Since σ2

i = |xi|2α2
i +β

2, we approximate

it as a Gamma distribution with PDF

fσ2
i
(x) ≈ 1

Γ(pi)q
pi
i

xpi−1e
− x

qi (53)

where pi =
(|xi|

2kiθi+β
2)2

|xi|4kiθ2i
and qi =

|xi|
4kiθ

2
i

|xi|2kiθi+β2 . Using (24),

the average harvested power for the LEH model can be derived

as

E{PML2}= t1=
I
∑

i=1

[ηi|xi|2|si|2+2ηi|xi|2kiθi+2β2ηi] (54)

by averaging (24) over α2
i . Also, the average harvested power

for the NLEH model can be derived as

E{PMN2} = e1 ≈
I
∑

i=1

e1i =

I
∑

i=1

n0
∑

l=0

Γ(n0 + l)n1−2l
0 (|µi|2/4)l

Γ2(l + 1)Γ(n0 − l + 1)Γ(pi)q
pi
i

∫ ∞

0

[
aix+ bi
x+ ci

− bi
ci
]xl(

|µi|2 + x

2
qi)

pi−2l−1

2

Kpi−2l−1(2

√

|µi|2 + x

2qi
)dt. (55)

The derivations of the exact PDF and CDF are challenging

for both the LEH and NLEH models. We use moment-

matching approximations. The means of PML2 and PMN2 are
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Figure 5. Comparison of different approximations to the CDF of the output
power with both fading and shadowing.

given in (54) and (55), respectively. We need their variances

too. They can be derived as

t2 = E{(PML2 − t1)
2} =

I
∑

i=1

[4η2i |xi|2|si|2kiθi + 4ηik
2
i θ

2
i + 4ηikiθ

2
i ] (56)

e2 = E{(PMN2 − e1)
2} ≈

I
∑

i=1

n0
∑

l=0

Γ(n0 + l)n1−2l
0 (|µi|2/4)l

Γ2(l + 1)Γ(n0 − l + 1)Γ(pi)q
pi
i

∫ ∞

0

[
aix+ bi
x+ ci

− bi
ci

− e1i]
2xl(

|µi|2 + x

2
qi)

pi−2l−1

2

Kpi−2l−1(2

√

|µi|2 + x

2qi
)dt. (57)

Fig. 5 shows different approximations to the output power

of the LEH and NLEH models when both Rician fading and

Gamma shadowing occur. In the figure, we set xi = 1, ki = 2,

α2
i = 0.05i mW , θi = α2

i /ki and β2 = −40 dBm. For the

LEH model, the Gamma approximation has the highest accu-

racy, while for the NLEH model, the Rician approximation

has the highest accuracy. Thus, we can approximate the PDF

and CDF of PML2 as

fPML2
(y) ≈ 1

Γ(kML2)θ
kML2

ML2

xkML2−1e
− y

θML2 (58)

FPML2
(y) ≈

γ(kML2,
y

θML2
)

Γ(kML2)
(59)

where kML2 =
t21
t2

, θML2 = t2
t1

and t1 and t2 are given in (54)

and (56), respectively. Similarly, the PDF and CDF of PMN2

can be approximated as

fPMN2
(y) ≈ y

σ2
MN2

e
−

y2+v2
MN2

2σ2
MN2 I0(

yvMN2

σ2
MN2

) (60)

FPMN2
(y) ≈ 1−Q1(

vMN2

σMN2
,

y

σMN2
) (61)

where the parameters of vMN2 and σMN2 can be calculated

in a way similar to those in (31) and (32), except that r1 and

r2 are replaced by e1 and e2 respectively.

C. Special Case of Rayleigh Fading

In Rayleigh fading, some expressions in the previous two

subsections can be simplified by setting si = 0. Specifically,

for the single harvester using the LEH model, one has

E{PSL2} = 2η[
I
∑

i=1

|xi|2kiθi + β2] (62)

fPSL2
(y) =

1

ηθ
kσ+1

2
σ Γ(kσ)

(
y

2η
)

kσ−1
2 Kkσ−1(2

√

y

2ηθσ
) (63)

FPSL2
(y) =

√
2πyθ

kσ−
1
2

σ√
ηΓ(kσ)

Γ(2kσ − 1

2
)[K2kσ−1(

√

2y

ηθσ
)

L2kσ−2(

√

2y

ηθσ
)+K2kσ−2(

√

2y

ηθσ
)L2kσ−1(

√

2y

ηθσ
)](64)

where the first equation is obtained by letting si = 0 in (51),

the second equation is obtained by letting µ = 0, solving the

integral using [27, eq. (3.471.9)] and using the transformation

y = ηx, while the last equation is obtained by integrating the

second equation from 0 to y and solving the integration using

[27, eq. (6.561.4)], and Lv(·) is the modified Struve function

of the v-th order [27].

For the single harvester using the NLEH model, one has

E{PSN2}=a−
b

c
+
b−ac
θσ/2

(

√

2c

θσ
)k−1S−kσ,kσ−1(

√

2c

θσ
) (65)

fPSN2
(y) =

1

θ
kσ+1

2
σ Γ(kσ)

(
cy

2(a− b
c − y)

)
kσ−1

2

Kkσ−1(2

√

cy

2θ(a− b
c − y)

)
ac− b

(a− b
c − y)2

(66)

FPSN2
(y) =

√
2πcyθ

kσ−
1
2

σ
√

a− b
c − yΓ(kσ)

Γ(2kσ − 1

2
)

[K2kσ−1(

√

2cy

θσ(a− b
c−y)

)·L2kσ−2(

√

2cy

θσ(a− b
c−y)

)

+K2kσ−2(

√

2cy

θσ(a− b
c−y)

)L2kσ−1(

√

2cy

θσ(a− b
c−y)

)](67)

where the first equation is obtained by letting µ = 0 in (52)

and solving the integral using [27, eq. (6.565.7)], S−k,k−1(·)
is the Lommel function [27], and the second equation and the

third equation are obtained in a similar way to those in (63)

and (64).

For the case when multiple harvesters are used, one has the
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results for the LEH model as

E{PML2} =

I
∑

i=1

[2ηi|xi|2kiθi + 2β2ηi] (68)

fPML2
(y) =

1

2π

∫ ∞

−∞

I
∏

i=1

ϕi(jv)e
−jvydv (69)

FPML2(y) =
1

2π

∫ ∞

−∞

I
∏

i=1

ϕi(jv)
e−jvy

jv
dv (70)

where the first equation is obtained by setting si = 0
in (54), the characteristic function is derived as ϕi(jv) =

e
1

4jvηθi

(2jvηθi)ki/2
W

−
ki
2 ,−

ki−1

2

( 1
2jvηθi

) by using the definition and

[27, eq. (6.643.6)], and W
−

ki
2 ,−

ki−1

2

(·) is the Whittaker func-

tion.

Similarly, for multiple harvesters, the results for the NLEH

model are given by

E{PMN2} =

I
∑

i=1

[ai −
bi
ci

+
bi − aici
θi/2

(

√

2ci
θi

)ki−1

S−ki,ki−1(

√

2ci
θi

)] (71)

fPMN2(y) =
1

2π

∫ ∞

−∞

I
∏

i=1

ϕi(jv)e
−jvydv (72)

FPMN2
(y) =

1

2π

∫ ∞

−∞

I
∏

i=1

ϕi(jv)
e−jvy

jv
dv (73)

where the first equation is obtained by setting µi = 0 in (55)

and solving the integral using [27, 6.565.7], and ϕi(jv) =

e
jv(ai−

bi
ci

)

θ
ki+1

2
i Γ(ki)

∫∞

0
e
jv

bi−aici
x+ci (x/2)

ki−1

2 Kki−1(2
√

x
2θi

)dx. The

analytical expressions for the NLEH model are generally

more complicated than those for the LEH model. They can

be further simplified for some special cases. For example, one

has f(x) = ax+b
x+c − b

c = a− b
c +

b−ac
x+c . When the input power

x is very small, using the Taylor series expansion of 1
1+x

and ignoring the higher order terms, one has 1
1+x ≈ 1 − x.

One can derive f(x) ≈ ac−b
c2 x. Thus, the expressions for the

NLEH model can be simplified by letting η = ac−b
c2 in those

for the LEH model, when the input power is very small. Since

these results are quite straightforward, they are not presented

here to make the paper compact. From the system design’s

point of view, the NLEH model is similar to the LEH model

or the practical harvester has a linear range around x = 0,

with an equivalent conversion efficiency of η = ac−b
c2 .

Note that the above results include the noise power 2β2 in

the harvested power. In most literature on energy harvesting

(see [36] and references citing it), the noise as a source of

energy is not considered. This is because these references

have assumed that the noise is negligible, such as equation

(13) in [36]. Without this assumption, the noise energy can

be harvested in the same way as the transmitted energy.

Physically, the noise cannot be removed from the transmitted

energy and hence will be harvested along with the transmitted

energy from the received signal. Mathematically, if the square

of the received signal is ergodic, its statistical average can

be approximated by its temporal average. Since its statistical

average includes the noise variance and its temporal average is

actually the power, the harvested power will include the noise

variance. Our results are general enough to include [36] as a

special case when 2β2 equals 0 or is small.

V. OUTAGE AND POWER TRANSFER STRATEGY

A. Outage Probability

The first application of the preceding results is the calcula-

tion of the probability of power outage. For energy harvesting

communications, since the harvested power is a random vari-

able, it is possible that the available power may drop below

the required power, causing a power outage. This probability is

defined as Pr{Po < T0}, where Po is the harvested power in

(3) or (6) and T0 is the required transmission power. Thus, we

can use the CDF derived in the previous two sections directly

to calculate the power outage probability.

Also, using the expression of outage and the CDF derived,

useful insights for practical system designs can be obtained.

For example, from (14) and (16), when a single harvester

is used for Rician faded signals, the outage decreases when

σ increases. Thus, from (12), one must increase I , |xi|2 or

α2
i in the system to reduce outage. Also, increasing η for

LEH and (ac− b)/c2 for NLEH can reduce the outage. From

(29), when multiple linear harvesters are used for Rician faded

signals, the outage decreases when m1 increases. Thus, from

(27), one can increase I , ηi, σ
2
i , |xi|2 or |si|2 to reduce the

outage. Similarly, from (59), when multiple linear harvesters

are used for Gamma-shadowed Rician fading signals, the

outage decreases when t1 increases. Thus, the outage of the

system can be reduced by increasing I , ηi, |xi|2, |si|2, ki, or

θi from (54).

B. Power Transfer Strategy

The second application of our results is to find the optimal

power transfer strategy that maximizes the average harvested

power, subject to the constraint that the total transferred

power is fixed for all sources. Mathematically, the optimization

problem is given by

{x̂1, · · · , x̂I} = max
x1,··· ,xI

{E{Po}}, where
I
∑

i=1

|xi|2 = P. (74)

This can only be solved for the LEH model and the NLEH

model with Rayleigh fading. For the NLEH model with

general Rician fading, exhaustive search has to be performed

to find the optimum values.

1) LEH model with single harvester: For the LEH model

using a single harvester, when there is only Rician fading,

one has the average harvested power in (17), which can be

rewritten as

E{PSL1} = η[
I
∑

i=1

(ϵ2i + 2α2
i )ω

2
i + 2

I
∑

i=1

i−1
∑

j=1

ωiωjϵiϵj cos(ψi + ϕi − ψj − ϕj) + 2β2] (75)
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where ωi, ψi, ϵ and ϕi are the magnitude and phase of the

transmitting waveform, the magnitude and phase of the line-

of-sight in Rician channels, respectively. Since cos(θ) ≤ 1, the

optimum values of ψi satisfies cos(ψi + ϕi − ψj − ϕj) = 1,

or ψi = −ϕi for i = 1, 2, · · · , I . In this case, one has

J = η[
I
∑

i=1

(ϵ2i + 2α2
i )ω

2
i + 2

I
∑

i=1

i−1
∑

j=1

ωiωjϵiϵj + 2β2]

= η[ω∆ωT + 2β2] (76)

where ω = [ω1 ω2 · · · ωI ], ∆ij = ϵiϵj when i ̸= j and

∆ij = ϵ2i + 2α2
i when i = j. Since ∆ is a real symmetric

matrix, and the constraint
∑I
i=1 |xi|2 = P is equivalent to

ωBωT = 1, where B is a real diagonal matrix with 1
P on the

diagonal lines, according to [35], the optimum values of ωi
are the eigenvector corresponding to the largest eigenvalue of

B
−1

∆.

Theorem 5.1: For the LEH model using a single harvester

in Rician fading, the maximum average harvested power is

η(λmax + 2β2), where λmax is the largest eigenvalue of

B
−1

∆. The optimum phases of the waveforms are ψi = −ϕi,
and the optimum magnitudes of the waveforms are ω = vmax,

where vmax is the eigenvector corresponding to the largest

eigenvalue of B−1
∆.

In the special case when there is only Rayleigh fading, si =
0. The average harvested power using a single harvester with

Rayleigh fading only is derived from (75) as E{PSL1} =
η[
∑I
i=1(2α

2
i )ω

2
i+2β2]. Thus, the maximum average harvested

power is given by 2ηPα2
î
+ 2β2, where î = max

i=1,2,··· ,I
{2α2

i }
and which is achieved by letting ω2

i = P when i = î and

ω2
i = 0 when i ̸= î. Thus, in Rayleigh fading channels, the

best power transfer strategy is always to transmit the full power

at the source with the best channel condition and switch off

all other sources.

In the case when both Rician (or Rayleigh) fading and

Gamma shadowing occur, similar results can be obtained,

except that α2
i should be replaced by kiθi in the matrix ∆.

2) LEH model with multiple harvesters: For the LEH

model using multiple harvesters, when there is only Rician

fading, the average harvester power is given by (24) to give

E{PML1} =

I
∑

i=1

ηi(ϵ
2
i + 2α2

i )ω
2
i + 2

I
∑

i=1

ηiβ
2

= ωAωT + 2
I
∑

i=1

ηiβ
2 (77)

where A is a diagonal matrix with the i-th element on the

diagonal line given by A(i, i) = ηi(ϵ
2
i + 2α2

i ). Since B
−1

is also a diagonal matrix with P on the diagonal line, the

index of the largest eigenvalue of B−1
∆ is actually given by

î = max
i=1,2,··· ,I

{ηi(ϵ2i + 2α2
i )}. The eigenvector corresponding

to the largest eigenvalue is [0 0 · · ·
√
P · · · 0], where the

î-th element is the only non-zero element.

Theorem 5.2: For the LEH model using multiple har-

vesters in Rician fading channels, the maximum average

harvested power is ηî(ϵ
2
î
+ 2α2

î
)P + 2

∑I
i=1 ηiβ

2, where

î = max
i=1,2,··· ,I

{ηi(ϵ2i + 2α2
i )}. The optimum magnitudes of

the waveforms are ω2
i = P , when i = î, and ω2

i = 0, when

i ̸= î. The phases of the waveforms do not affect the harvested

power.

In the special case of Rayleigh fading, one has from

(77) E{PML1} = 2
∑I
i=1 ηiα

2
iω

2
i + 2

∑I
i=1 ηiβ

2. Thus, the

maximum average harvested power is given by 2ηîPα
2
î
+

2
∑I
i=1 ηiβ

2, where î = max
i=1,2,··· ,I

{2ηiα2
i } and which is

achieved by letting ω2
i = P when i = î and ω2

i = 0 when

i ̸= î.

When there are both Rician fading and Gamma shadowing,

similar results apply, except that α2
i are replaced by kiθi in

A.

3) NLEH model with single harvester: When the NLEH

model is used with a single harvester in Rayleigh fading

channels, the average harvested power is given by (36). Denote

g(x) = xex[−Ei(−x)]. It can be shown that g(x) is a mono-

tonically increasing function of x. Thus, the maximization

of the average harvested power in (36) is equivalent to the

maximization of 2σ2. Since one has (12), which is again a

quadratic form of ωi, one sees that the results for the LEH

model in Rayleigh fading can be applied here.

Theorem 5.3: For the NLEH model using a single harvester

in Rayleigh fading channels, the maximum average harvested

power is given by a − b
c + b−ac

2σ̂2 e
c

2σ̂2 [−Ei(− c
2σ̂2 )], where

2σ̂2 = 2Pα2
î
+ 2β2 and î = max

i=1,2,··· ,I
{2α2

i }. The optimum

magnitudes are ω2
i = P when i = î and ω2

i = 0 when i ̸= î.

The case with general Rician fading cannot be solved and

its optimum values have to be found using exhaustive search.

4) NLEH model with multiple harvesters: When the NLEH

model is used with multiple harvesters in Rayleigh fading

channels, the average harvested power is given by (42). We can

use the Lagrange multiplier to find the optimum solution. First,

the function g(x) can be curve-fitted as g(x) ≈ 0.98x+0.12
x+0.86

for 0 < x < 30. Then, one needs to maximize the objective

function

W =

I
∑

i=1

(ai−
bi
ci
)+

I
∑

i=1

(bi−aici)
0.98ci+0.12(ω2

i 2α
2
i+2β2)

ci+0.86(ω2
i 2α

2
i+2β2)

+λ(P −
I
∑

i=1

ω2
i ) (78)

where λ is the Lagrange multiplier and we have used the

approximate g(x) and the expression of 2σ2
i in (42). Using

(78), the optimum values can be derived as

ω2
i =

√

1.2α2
i ci(aici − bi)/λ0 − ci − 1.72β2

1.72α2
i

(79)

with λ0 = (

∑I
i=1

√
1.2α2

i
ci(aici−bi)

1.72α2
i

P+
∑I

i=1
ci+1.72β2

1.72α2
i

)2. Again, for the general

case of Rician fading, their optimum values have to be found

by exhaustive search. Some numerical examples will be shown

in the next section.
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Figure 6. Outage probability vs. T0 for I = 2 and K = 1 when there is
Rician fading.
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Figure 7. Outage probability vs. T0 for I = 6 and K = 1 when there is
Rician fading.

VI. NUMERICAL RESULTS AND DISCUSSION

In this section, some numerical examples are given to show

the power outage probability under different conditions and the

optimal power transfer strategy for specific system settings.

Figs. 6 and 7 show the outage probability vs. T0 when there

is only Rician fading. In these figures, xi = 1, K = |si|
2

2α2
i
= 1

is the Rician K factor of the i-th channel, α2
i = 0.05i mW ,

β2 = −40 dBm, η = 0.3 for the LEH model and a = 2.463,

b = 1.635, c = 0.826 for the NLEH model. Several observa-

tions can be made from Fig. 6. Firstly, for the LEH model,

the use of a single harvester has a smaller outage probability

than the use of multiple harvesters when T0 > −12 dBm,

indicating that one should use a single harvester when the

required transmission power is large. This is explained as

follows. Comparing (2) with (5), one sees that the input

powers of multiple harvesters only contain the squared terms

of the input power of a single harvester. This can also be

seen by comparing E{PSL1} and E{PML1} and assuming

negligible noise. Thus, a single harvester harvests more power
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Figure 8. Outage probability vs. T0 for I = 2 and K = 1 when there are
both Rician fading and Gamma shadowing.

to give a smaller outage. Similarly, for the NLEH model,

when T0 > −8 dBm, it is better to use a single harvester.

Secondly, comparing LEH and NLEH models, the LEH model

has a smaller outage probability when T0 > −6 dBm and a

larger outage when T0 < −6 dBm, for a single harvester. For

multiple harvesters, the LEH model always has a larger outage

probability. This implies that the NLEH model has advantage

for multiple harvesters or for smaller transmission power. This

is because the NLEH model suffers from nonlinear saturation

when the input power is too large so that it is advantageous

to split the total power into several smaller signals or use a

smaller transmission power. Fig. 7 shows the outage at I = 6.

One sees that the outage probability has decreased in all cases,

because more sources lead to more harvested power. Also,

for multiple harvesters, the curve for the LEH model crosses

with the curve for the NLEH model when T0 = 0 dBm.

When the threshold is large and increases, the NLEH model

cannot provide enough harvested power and hence, its outage

approaches the limit of 100% outage in a much faster rate than

the LEH model. Consequently, the two curves cross.

Fig. 8 shows the outage probability vs. T0 when both

Rician fading and Gamma shadowing occur. In this figure,

xi = 1, K = |si|
2

2α2
i

= 1 is the Rician K factor of the

i-th channel, α2
i = 0.05i mW , ki = 2, θi = α2

i /ki,
β2 = −40 dBm, n0 = 20, η = 0.3 for the LEH model

and a = 2.463, b = 1.635, c = 0.826 for the NLEH

model. Similar observations can be made. These results give

very useful design guidelines for wireless power transfer. For

example, if the required transmission power of the portable

device is large, one should use a single harvester or a practical

nonlinear energy harvester with a linear range as large as

possible. Otherwise, one should use multiple harvesters or

the nonlinear range of the practical energy harvesters. Also,

simulation results for outage above 10−6 (outage below 10−6

requires an excessively long time and hence is not simulated)

are shown using the circle markers in Figs. 6 - 8. One sees

that the simulation matches well with the analysis in most

cases. When the threshold is smaller than -12 dBm, there is
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a noticeable difference between simulation and analysis for

multiple harvesters in Fig. 8. This agrees with the observations

from Fig. 5. Practical values of the required transmission

power are often larger than -12 dBm so that this will not

cause problems.

Table I shows the maximum average harvested power in

mW followed by the optimum magnitudes for (ω1) when two

sources transmit and (ω1, ω2) when three sources transmit, ob-

tained by exhaustive search. We set ki = 2, α2
i = 0.05i mW ,

θi = α2
i /ki, β

2 = −40 dBm, η = 0.3, a = 2.463, b = 1.635,

c = 0.826 in the search.

One sees from Table I that the average harvested power

increases with I , as expected, as more sources lead to more

harvested power. Also, shadowing slightly reduces the average

harvested power, except for LEH, as we set α2
i = kiθi in the

search. Also, the maximum average harvested power using

a single harvester is always larger than that using multiple

harvesters, as the input power of a single harvester is larger

than the sum of those of multiple harvesters. It can be shown

that these values are the same as those predicted by the

theorems derived above, when available.

VII. CONCLUSION

In this paper, we have analyzed the power harvested from

multiple wireless signals experiencing either Rician fading or

Gamma-shadowed Rician fading. Both the LEH and NLEH

models have been studied. The analytical expressions for the

average harvested power, the PDF and CDF have been derived.

Using these expressions, the power outage probability has

been calculated and the optimal power transfer strategy has

been discussed. Numerical results have shown that, when the

required transmission power of the harvesting device is large,

it is favorable to use the linear range of a practical nonlinear

harvester or a single harvester. Also, for Rayleigh fading

channels, the optimal power strategy is to put the total power

in the source with the best channel condition and switch off

all other sources, while for general Rician fading channels, the

optimal strategy can be obtained by choosing the magnitude

and the phase of the transmitting waveform based on the

channel parameters.
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