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Wireless fluorescence capsule for 
endoscopy using single photon-
based detection
Mohammed A. Al-Rawhani, James Beeley & David R. S. Cumming

Fluorescence Imaging (FI) is a powerful technique in biological science and clinical medicine. Current 
FI devices that are used either for in-vivo or in-vitro studies are expensive, bulky and consume 
substantial power, confining the technique to laboratories and hospital examination rooms. Here 
we present a miniaturised wireless fluorescence endoscope capsule with low power consumption 
that will pave the way for future FI systems and applications. With enhanced sensitivity compared 
to existing technology we have demonstrated that the capsule can be successfully used to image 
tissue autofluorescence and targeted fluorescence via fluorophore labelling of tissues. The capsule 
incorporates a state-of-the-art complementary metal oxide semiconductor single photon avalanche 
detector imaging array, miniaturised optical isolation, wireless technology and low power design. 
When in use the capsule consumes only 30.9 mW, and deploys very low-level 468 nm illumination. The 
device has the potential to replace highly power-hungry intrusive optical fibre based endoscopes and 
to extend the range of clinical examination below the duodenum. To demonstrate the performance of 
our capsule, we imaged fluorescence phantoms incorporating principal tissue fluorophores (flavins) and 
absorbers (haemoglobin). We also demonstrated the utility of marker identification by imaging a 20 µM 

fluorescein isothiocyanate (FITC) labelling solution on mammalian tissue.

White light endoscopy (WLE), has been a standard technique for diagnosis of disease pathology in the upper and 
lower part of the gastrointestinal (GI) tract for several decades1,2. However, until recently, the small bowel was an 
obscure region requiring invasive intervention for diagnosis and treatment. �is changed a�er the approval of 
capsule endoscopy (CE) for medical use by the US Food and Drug Administration (FDA) in 20013,4. Similar to 
WLE, CE uses white light imaging (WLI) and is potentially capable of viewing ailments including tumours, obscure 
gastrointestinal bleeding and Crohn’s disease within the small bowel3,5,6. However, both WLE and CE su�er from 
low detection rate. �is drawback was overcome for the upper GI tract and duodenum by the introduction of 
multimodal imaging endoscopy that employs WLI, �uorescence imaging (FI) and narrow band imaging (NBI) in 
combination to signi�cantly improve the detection rate from 53% to 90%2,7–9. New methods of improving detec-
tion rates within the lower part of the GI tract by means of so�ware processing and 3D representation of captured 
WLI video are also being investigated. Robotic technologies to control capsule position and therefore enhance 
diagnostic and therapeutic capability are also being studied10–12. In this study, we focus on �uorescence imaging 
as a modality that has great promise for integration with current standard capsule endoscopy for the small bowel.

Fluorescence endoscopy exploits the natural phenomenon whereby speci�c molecules (�uorophores) absorb the 
excitation energy of blue light (380–500 nm wavelength) and then re-emit some of that energy in the form of green 
light (490–590 nm)13. �ese �uorophores can occur naturally within human tissue (endogenous) and are utilised 
in auto�uorescence endoscopy, or can be introduced externally as labels to the biological system (exogenous) for 
use in targeted-�uorescence endoscopy7,14. Auto�uorescence endoscopy (AFE) takes advantage of the fact that 
the concentration of endogenous �uorophores such as �avin adenine dinucleotide (FAD) and other extracellu-
lar matrices such as collagen and elastin in cancerous tissue can be up to three times lower than that of normal  
tissue7,15–17. An advantage of AFE is that it avoids introduction of foreign material, eliminating the risk of toxicity 
or other unwanted interaction with the biological system under investigation14. However naturally-occurring 
�uorophores occur in very low concentrations and exhibit very low quantum yield, limiting the e�ectiveness of 
AFE; for example FAD, the main contributor to auto�uorescence emission exhibits a quantum yield of only 7%18,19.
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An alternative approach, which enhances the e�ectiveness of �uorescence endoscopy, involves binding exog-
enous label �uorophores exhibiting very high quantum yield (e.g. 90% in the case of �uorescein isothiocyanate 
(FITC)) to areas of interest. By contrast to AFE, the �uorescent response from labelled diseased areas signi�cantly 
exceeds that of surrounding healthy tissue, such that higher emission indicates a potentially diseased area, thus 
increasing the detection probability and speci�city of early-stage abnormalities13,14,20,21. A �uorescently-labelled 
antigen which preferentially binds to tumours is introduced into a patient’s GI tract, thus making diseased areas 
more visible to a �uorescence-sensitive camera14,22–24. In the work done by14 a �uorescently-labelled peptide was 
developed which binds speci�cally to high grade dysplasia in the gut. Imaging of cancerous cells via binding of 
FITC to integrins on the cell surface has been demonstrated25,26. It has been shown that colon cancers can be 
imaged using two labelled mucins, one binding to cancerous cells, other to healthy cells27. �e use of FITC-labelled 
dendrimers bound to cancerous cells in imaging has also been successfully validated28,29.

For investigations based on either endogenous or exogenous �uorophores, �uorescence endoscopes employ 
either a tungsten halogen light or short-arc xenon lamp source to generate the required narrowband (380–500 nm) 
excitation wavelength17,23,30 which is passed via an optical �bre bundle to the tip of the endoscope probe. Increasing 
illumination intensity will enhance imaging sensitivity, but will also tend to increase the rate of phototoxic reactions 
and photobleaching of the �uorophores themselves19. Hence FDA safety restrictions limit illumination power to 
2 mW14. A very sensitive imager is therefore required to keep illumination power and �uorophore concentration 
low and within safe limits14,23.

Current �uorescence endoscopes use externally �tted charge-coupled device (CCD) imagers. �ese devices 
are not suitable for capsule integration since they are fabricated in specialised processes that preclude integration 
of the required interface electronics on to a single chip. CCDs are o�en cooled to increase signal to noise ratio and 
the corresponding sensitivity hence they are cumbersome and power hungry. Images are obtained via the afore-
mentioned �bre-optic bundle probe that is capable of accessing only the oesophagus and duodenum. �e optical 
system required for a FI system is also complex and di�cult to implement within a capsule31–33.

Here we present a miniaturised wireless �uorescence endoscope that overcomes these challenges. Figure 1 shows 
in exploded form the capsule system that we have implemented and characterised. �e device uses a range of tech-
nological innovations without which it would not be possible. We use a single photon avalanche detector (SPAD) 
array that is fully compatible with mainstream complementary metal oxide semiconductor (CMOS) technology. 
CMOS technology is an important method for miniaturisation and integration in biomedical applications34,35. A 
system-on-chip methodology has been adopted to deliver a chip that fully integrates the imager, high voltage power 
generation and the required addressing and data acquisition circuits. �e highly sensitive SPAD generates a pulse 
in response to each photon impacting the active area of the device, thus allowing individual photons generated 
by auto�uorescence to be counted. A cheap and compact light emitting diode (LED) is used for illumination at 
468 nm – much simpler than in existing systems. �e illumination power of the LED is only 78 µ W, and the SPAD 
imager has su�cient sensitivity to work at these very low light levels. �e device incorporates a miniature optical 
interference block that isolates the probe and �uorescence wavelengths, facilitating �uorescence imaging. �e 
block contains optical collimation for the light source, the objective lens and �lters. �e system is completed with 
a wireless transmitter operating in the European industrial, scienti�c and medical (ISM) band at 868 MHz, and 
an external receiver pack. �e �nal capsule relies on two 1.5 V button cells for power.

To illustrate a potential application of the integrated SPAD imager for capsule endoscopic �uorescence imaging 
we carried out two sets of experiments to validate the potential of using the capsule for auto�ourscence imaging 
or targeted �uorescence imaging. Firstly, we imaged a phantom of endogenous �uorophores to demonstrate the 
potential for auto�uorescence imaging (AFI) of tissue. Secondly we imaged exogenous �uorophores to illustrate 
the potential for targeted �uorescence imaging of areas of interest via �uorophore labelling.

Results
Optical system. An optical interference block is necessary to separate the excitation light source emission from 
the emitted �uorescence signal to be detected by the imager. Noise due to optical crosstalk must be minimised13. 

Figure 1. Exploded 3D view of the wireless �uorescence capsule endocope. 
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�e block is designed to accommodate the excitation and emission wavelengths of both FAD �uorophore (460 nm 
excitation, 520 nm emission) and FITC (480 nm excitation, 520 nm emission) that are used in this work to prove 
the principles of auto�uorescence and targeted-�uorescence imaging respectively. Other �uorophores have emis-
sion properties suitable for detection by a silicon SPAD, but FAD and FITC have the same emission wavelength 
and a similar excitation wavelength, so we could demonstrate the function of our device with the same choice of 
�lters. A table of �uorophores and their optical characteristics is given in the supplementary section to illustrate 
our choice (see Supplementary Table 1). Clearly di�erent embodiments of the device could choose di�erent �lter 
sets as required.

�e 11 mm H ×  9.6 mm L ×  8.6 mm W aluminium optical block incorporates an excitation source LED (468 nm, 
15o emission angle), a convex excitation lens with a focal length of f =  3 mm, a f =  10 mm achromatic objective 
lens, a 3mm diameter excitation �lter (430–490 nm), a 9 mm diameter single-edge dichroic beam-splitter (506 nm), 
and a 9 mm �uorescence emission �lter (513–555 nm). �e spectral characteristics of the optical �lters and beam 
splitter are shown in Fig. 2.

Supplementary Fig. 1. illustrates the optical block’s operation. Excitation light from the LED passes through the 
excitation �lter that rejects the portion of the LED spectrum that extends into the �uorescence emission band. �e 
�ltered narrow LED beam is then focused by the excitation lens onto the beam splitter with an angle of incidence 
within the 45° ±  5° required for re�ection. �e re�ected beam then passes through the objective lens resulting in 
a 67° illumination angle of the excitation beam at the object plane. �e �uorescent emission from the sample is 
focused by the achromatic lens onto the SPAD imager’s active area. Crosstalk from the illumination wavelength 
is minimised by passing the �uorescent emission through the beamsplitter (which re�ects the illumination wave-
length) and �uorescence emission �lter.

Electronic system. �e chip that forms the core component of the capsule is an application speci�c integrated 
circuit (ASIC) that incorporates a 32 ×  32 single-photon avalanche diode (SPAD) array along with a charge-pump 
based power supply, addressing and pulse counting circuitry. �e capsule also incorporates a low-power illumina-
tion LED, a Field-Programmable Gate Array (FPGA) controller and an ultra-high frequency (UHF) radio trans-
mitter and antenna. �e electronic system is illustrated in Fig. 3a. �e operation of the capsule can be explained as 
follows: Illumination from the blue LED within the block causes the �uorophores within the tissue under exami-
nation to �uoresce. �e resulting �uorescent emission is focused onto the SPAD imager’s active area, resulting in a 
series of pulses from each pixel that are counted by digital counters. �e image obtained, consisting of an array of 
pulse counts, is read by the FPGA controller state machine and transmitted wirelessly to an external radio receiver, 
data logger and accompanying PC so�ware that allow the images obtained from the capsule to be stored, displayed 
and processed (see supplementary Fig. 2 and note 1).

�e ASIC was fabricated in a 0.35 µ m high voltage mixed-signal triple-well CMOS process (Fig. 4a). Each array 
pixel consists of an SPAD detector and readout circuitry (supplementary Fig. 3). �e on-chip charge-pump gen-
erates the SPADs’ bias voltage, adjustable between 3–37.9 V by varying the frequency of an external digital clock, 
from the 3 V battery supply in the capsule36. Biasing the SPAD array above its 18.5 V breakdown voltage in this 
way causes the array to operate in Geiger mode whereby each SPAD generates a pulse in response to each photon 
arriving at its active area. �e chip uses a “rolling shutter” readout scheme, in which one column of 32 SPADs is 
powered up at a time, and the resulting pulse output is counted by the 32 (16-bit) digital counters. A row decoder 
and multiplexer permit serial readout from the counters.

In order to demonstrate the technology’s suitability for use in capsule format, we packaged the optical, elec-
tronic and wireless systems and batteries into a 16 mm diameter, 48 mm length capsule as shown in Fig. 3b,c, and 
discussed in supplementary note 2.

Electronic system performance evaluation. �e ASIC’s performance was evaluated independently of 
the imaging system. In dark conditions, a single SPAD (Fig. 4b) has an average pulse count of approximately 
12.3 kcps when biased by the charge pump at 4 V above its breakdown voltage for around 80% of the SPADs, while 
the remainder exhibit an average count of 45 kcps. �ose pixels with a high dark count rate (DCR) are randomly 

Figure 2. Optical block characteristics. Optical characteristics of �lters and beam splitter.
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distributed. �e photon detection probability of the array (PDP: the probability of a photon impacting on a given 
SPAD’s active area resulting in an electrical pulse output) increases proportionally with increasing illumination 
intensity over a spectral bandwidth of 400 nm and 800 nm, as shown in Fig. 4c.37. At the �uorescence emission 
peaks of FAD and FITC (520 nm and 525 nm respectively) the SPAD shows a PDP in excess of 30% with no post 
process treatment of the silicon chip surface. When the SPAD array was illuminated directly using collimated 
white light it proved capable of detecting illumination levels as low as 19 pW/cm2 for an exposure time of 10 ms. 
�e ASIC draws 1.79 mA on average at 3 V and 1 frames per second (FPS). �e total power consumption of the 
capsule is 30.9 mW (see Supplementary note 3).

Autofluorescence and fluorescence measurement. As an initial demonstration of our imager’s capa-
bilities, we induced and detected �uorescence from a selection of readily available biological and manufactured 
materials. In addition to being present in human tissue, �uorophores also occur naturally in plant cells38. O�ce 
photocopier paper incorporates �uorescent brightening agents to improve whiteness39.

�e imager was placed in a dark environment at a distance of 11 mm from the sample under examination and 
the average count rate per second was recorded from each of the 1024 pixels. In order to determine the imager 
response due to optical crosstalk between the LED and detector, an initial measurement was taken with the illu-
mination LED powered but no sample present, producing a photon count of c. 18.1 kcps. A sample of aluminium 
foil was then used to evaluate the imager’s response to re�ected illumination light, resulting in a pulse count of c. 
18.4 kcps. White grapes generated a pulse count of c. 20.4 kcps, an apple produced c. 20.6 kcps, while �uorescent 
emission from the skin of the thumb of one of the authors resulted in a c. 26.7 kcps photon count. White printer 
paper generated a c. 22.3 kcps response (Fig. 5).

Given the previously observed 12.3 kcps DCR measurement, the pulse count with no sample present indicates 
an optical crosstalk count of c. 5.8 kcps. �e c. 0.3 kcps increase in response to the re�ective foil sample over that 
obtained with no sample present indicates the imager’s response to re�ected illumination light is modest. Given 
that the observed response from the foil is due to a combination of DCR, crosstalk and re�ection, it is clear that 
any additional response in excess of this level from a particular sample is a result of induced �uorescence emission. 
�is is indeed the case for the apple, grape, skin and paper samples, clearly demonstrating the imager’s capacity to 
induce and detect auto�uorescence from both biological samples and a manufactured �uorescent brightening agent.

Autofluorescence imaging with FAD. We demonstrate the auto�uorescence imaging capability of our 
system by using FAD �uorophore to mimic the main endogenous contributor to the auto�uorescence emission 
spectrum of human tissues40. 5 ml of a FAD solution was placed in a horizontally positioned polystyrene culture 
�ask, the underside of which was covered in optically-absorbent tape with a 3 mm high T-shaped cutout (see 
supplementary Fig. 4a). �e imager was directed upwards towards the cutout, which was positioned 22 mm from 
the capsule lens. With 78 µ W excitation provided by the LED at the sample surface, 12.5 µ M was the minimum 
concentration at which the T-shape was detectable (see supplementary Fig. 4a and Fig. 6a).

In AF detection, an excess amount of haemoglobin present within living tissue is considered an indicator of 
abnormality in the tissues as a consequence of neoplasia. As haemoglobin tends to be a photon absorber41,42, its 
presence reduces the amount of auto�uorescence emission. To assess the impact of haemoglobin absorption, we 
added 0.5 mg to each (5 ml) FAD solution. �e addition of the haemoglobin does not obviously alter the image at 
each concentration of FAD (Fig. 6b), but as can be seen in Fig. 6c, the average count rates of every image shows 
that haemoglobin absorption reduces the measured photon count.

Imaging of exogenous fluorophores. As previously discussed, exogenous �uorophores may be attached 
to areas of interest in biological systems to enhance imaging capability.

Figure 3. Electronic System. (a) Complete system block diagram illustrating the electronic con�guration 
and radio link to the external base station. (b) Packaged pill. (c) 14 mm diameter PCBs hosting: (top) UHF 
transmitter and helical antenna, (middle) Lattice SiliconBlue FPGA controller and (bottom) imager ASIC.
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To assess the system’s capacity to image one such �uorophore, a 5 ml solution of FITC was measured at varying 
concentrations. �e signal from a 100 nM FITC solution using a 10 ms gate time and 78 µ W LED illumination is 
detectable (Fig. 7a). To demonstrate the ability to image a �uorescently labelled area of interest within a biological 
system, we used a sample of porcine intestinal tissue immersed in 5 ml of a 20 µ M FITC solution, covered by a 
T-mask as described previously (Fig. 7b).

In order to model �uorescence imaging of �uorophores binding to areas of interest, we imaged FITC-coated 
45 µ m diameter polystyrene microparticles (Polysciences Europe, Germany). Figure 7c shows the image of a 
line of microparticles obtained from an Olympus BX51 microscope (Olympus Corporation, Japan) equipped 
with a cooled-CCD Hamamatsu C11440 camera (Hamamatsu, Japan). Figure 7d shows the image of the same 
line of �uorescent microparticles obtained from our imager. In order to demonstrate the ability to di�erentiate a 
�uorescently-labelled area from tissue, we injected a line of �uorescent microparticles on a glass slide, then placed 
a sample of porcine intestinal tissue on top (see supplementary Fig. 4b). �e presence of the gut reduces the signal 
hence the phantom more accurately replicated the FITC concentrations that would be needed in practice. �e 
SPAD array imager was directed upwards to obtain the image show in Fig. 7e.

Discussion
We have demonstrated a highly miniaturised, low-power, wireless �uorescence imaging capsule with the poten-
tial for use in gastro-intestinal medicine. Lower power consumption is necessary for battery operation. We have 

Figure 4. Capsule implementation. (a) Photograph of the 3.7 mm ×  3.7 mm ASIC chip. �e imager active 
area is 2.4 mm ×  2.4 mm. �e ASIC incorporates: 32 ×  32 SPAD pixels, controllable charge pump (3–37.9 V), 
column multiplexer, 32× (16-bit) digital pulse counters and readout multiplexer. (b) Detail of a single SPAD 
pixel. (c) Measured PDP of the SPAD peaks at 475 nm which is suitable for auto�uorescence emission between 
490–590 nm.

Figure 5. Fluorescence emission intensities of biological and manufactured materials. 
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successfully miniaturised a sensitive �uorescence imager, along with associated power supply and readout cir-
cuitry, on to a single CMOS chip, thus minimising size and component count. We have overcome the challenge of 
developing an imager with su�ciently low power consumption to be powered using small batteries by developing 
a photon-counting imager o�ering high sensitivity without the need for a power-hungry and bulky cooling system 
required by CCDs43. We have additionally developed low-powered wireless transmission, data acquisition and 

Figure 6. Results obtained using FAD phantoms. (a) Images of a feature (the letter T) taken by the capsule 
system for a 5 ml of FAD �uorophore solution at di�erent concentrations, (b) shows images for same feature 
a�er adding 0.5 mg of haemoglobin to each one. Measurement at 10 ms SPAD gate time. (c) Average pulse count 
with and without haemoglobin absorption.

Figure 7. Results of �uorescence imaging on FITC solution and FITC coated beads. (a) A histogram of 
count rates for a 5 ml FITC at varying concentrations. (b) Image of a T-shape mask covering a sample porcine 
small-intestine immersed in 5 ml of a 20 µ M FITC solution. (c) Image of �uorescent microparticles taken by 
�uorescence-enabled microscope. (d) Image of �uorescent microparticles taken by SPAD imager. (e) Image of 
microparticles placed on the surface of a sample of porcine intestine.
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power management systems such that the entire system has an average power consumption of only 30.9 mW, and 
hence is capable of being powered by small batteries for su�cient time to traverse the human intestine.

Furthermore, the use of a CMOS SPAD has enabled our device to achieve sensitivity as low as 19 pW/cm2 
using a 10 ms exposure time. �is result compares favourably with a high performance CMOS photodiode with 
a sensitivity of 4 nW/cm2 43. Owing to the sensitivity of the SPAD array, we are therefore able to use very low level 
illumination with a simple LED.

A major issue in �uorescence imaging, and a key aspect of high-sensitivity imaging, lies in separating the weak 
�uorescence emission from the illumination light. We have succeeded in miniaturising the optical �lter system 
used in �uorescence microscopy to a size suitable for capsule use. As is the case for �uorescence microscopy, our 
experiments have shown that stray light from the illumination source is a contributor to the background level of our 
system. Although our miniaturised optical block implements band pass �lters with a transmission of <  0.00008% 
at the �lter stop band, some stray light that is not de�ected by the beam splitter �nds its way to the detector. �e 
measured stray light count rate (SLCR) is c. 18.1 kcps (see Fig. 7a).

We have successfully demonstrated our system’s ability to induce and detect �uorescence from both exogenous 
and endogenous �uorophores above the 18.1 kcps SLCR �oor. We have shown the ability to measure a solution 
of FITC �uorophore at concentrations as low as 100 nM in 5 ml samples. We have also demonstrated our system’s 
ability to image a �uorophore-labelled tissue sample by means of FITC-coated polystyrene microparticles placed 
on porcine intestinal tissue. We successfully imaged concentrations as low as 20 µ M, a favourable sensitivity 
compared with the 100 µ M concentration used in14. �e experiment was conducted using the low illumination 
level emitted from the LED. As well as saving power, as discussed earlier, the low light level reduces the risk of 
phototoxic reactions and photo bleaching of the �uorophore14,44. �e low illumination power (78 µ W) yielded a 
signal-to-noise ratio (SNR) of 0.23 dBcr at 100 nM FITC concentration (the dBcr is de�ned to be 10 log10(CR/
(SLCR), where CR is the count rate).

Our device has been extensively characterised against a range of materials, including human skin. In order to 
test the potential for using the device in the gut, we adopted the approach of using phantoms to validate the perfor-
mance of the capsule in a similar manner to work described in45–47. We used FAD with a concentration similar to 
those described in earlier work46 and47. �e results show that the minimum detectable concentration was 12.5 µ M 
at an image-object distance of 2.2 cm using the 78 µ W illumination intensity. Using these settings we found that 
the image sensor responded to increasing FAD concentration up to a maximum count rate of 19.6 kcps in a typical 
pixel. �e signal saturation occurs when the available illumination can no longer excite further �uorescence (i.e. all 
the available light has been absorbed or scattered away). Whilst more light could be made available by increasing 
the illumination power, in practice the stray light in the system begins to dominate. �e settings we use therefore 
represent an e�ective compromise between safe illumination levels, system power consumption, SNR, and wide 
molecular concentration range of sensitivity to FAD. We have also shown that presence of haemoglobin and the 
consequent optical absorption can be detected by our imager at concentrations as low as 0.01 g/ml. �is result is 
comparable with the 0.012 g/ml minimum required to di�erentiate healthy and cancerous tissue as reported by42.

Development from a laboratory prototype into a commercially viable device would bene�t from further per-
formance enhancements in sensitivity, resolution and miniaturisation. �ere is potential to reduce the SPAD DCR 
with consequent improvement in SNR. Work presented by48 reported SPAD structures with a DCR as low as 100 
cps. SNR may be further enhanced by introducing a light-absorbing “noise terminator” into the optical block to 
attenuate stray light from the illumination source49. Furthermore, sensitivity may be enhanced by introducing 
micro-lenses to the SPAD array, already common practice in CMOS-based imagers. It has been suggested that 
introducing micro-lenses can increase SPAD array gain by excess of a factor of 1050. �e working distance of the 
imager from the sample is determined by the optical design. Future work would lead to optimisation of the optical 
geometry. Our data suggests that new labelling protocols using FITC to provide a positive tone contrast as opposed 
to a weaker negative tone contrast from FAD may be superior.

�e imager’s 32 ×  32 resolution is su�cient to demonstrate this new diagnostic tool, but is relatively low. �e 
resolution may be enhanced by utilising a smaller feature-size ASIC technology.

Capsule size may be reduced by integrating the imager, controller and transmitter, presently implemented in 
separate chips onto a single ASIC, thus permitting the electronics to be integrated into a single PCB, as opposed to 
the 3 PCBs currently required. �e optical block may be further miniaturised via use of more advanced computer 
numerical control (CNC) machining, spark erosion or laser sintering manufacturing technology. An antenna 
integrated into the capsule wall51, as opposed to the current PCB-mounted helix would also substantially reduce 
capsule size.

Methods
Optical block. �e optical �lter was designed using Solidworks and CNC-machined in aluminium to incor-
porate an LED (ASMT-BB20, USA, Avago Technologies), a convex lens (45117, Edmund Optics), achromatic lens 
(AC060-010-A, �orlabs), an excitation �lter (FF01-452/45, Semrock, USA), single-edge dichroic beam-splitter 
(FF506, Semrock, USA), and a �uorescence emission �lter (FF01-534/42, Semrock, USA).

ASIC. �e ASIC chip was designed, simulated and laid-out using Cadence Virtuoso (Cadence Corporation, 
USA) and was fabricated using the commercially available AMS H35 high voltage process by AMS (Austria 
Microsystems, Austria). �e fabricated ASIC was evaluated and the SPADs minimum detection limit was deter-
mined using a white light source driving an integrating sphere to create a uniform illumination. �e SPAD was 
used to measure the intensity and thus determine the minimum detectable intensity that was then measured by an 
optical power meter (1936-R, Newport, USA). �e same process was used to determine the minimum detectable 
intensity for the photodiode fabricated using the same process in a separate chip.
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Control and data logging. �e image readout/transmission control state machine and charge pump clock 
divider were coded in VHDL, synthesised using Lattice IceCube so�ware (Lattice Corporation, USA), and sim-
ulated/veri�ed via Aldec ActiveHDL (Aldec Corporation, USA). Capsule end caps and the helical UHF antenna 
former were designed using Solidworks and manufactured by an Ultimaker 2 3D printer (Ultimaker Corporation, 
Netherlands).

Transmitted images from the capsule were captured by a receiver module consisting of a Melexis 71120 UHF 
receiver and end-fed dipole antenna (Melexis Corporation, Belgium), and ARM mbed embedded processor (NXP, 
Netherlands) and transferred via USB link to a Windows PC. A purpose-written MATLAB application provided 
real-time imaging and data logging, a second MATALB app permitted video playback and analysis.

Imaging. All experiments for �uorescence measurements and imaging were conducted by placing samples at 
distances between 11 mm and 22 mm from the imager by means of a micropositioner (see supplementary Fig. 4).

�e �avin solution was prepared by using FAD �uorophore (F6625, Sigma Aldrich) with phosphate bu�er 
solution that was prepared using phosphate bu�er saline (P5368, Sigma Aldrich). Five samples of 5 ml solu-
tion with concentrations varying from 12.5 µ M to 200 µ M were prepared in 25 ml polystyrene culture �asks. 
Similarly, the FITC solutions were prepared by using FITC �uorophore (46424, Sigma Aldrich) with sodium 
carbonate-bicarbonate bu�er (pH 9). �e mask for the T-shape was cut from absorbent tape (T743-2.0, �orlabs) 
and taped to the �ask.

Conclusion
We have successfully demonstrated a miniaturised auto�uorescence imaging system, su�ciently compact to be 
integrated into a capsule small enough to image the entire human GI tract, and o�ering power consumption low 
enough to allow up to 14 hours imaging and data transmission; su�cient to traverse the GI tract via peristalsis. 
We have successfully demonstrated imaging of models of both tissue auto�uorescence and �uorescent labelling of 
areas of interest. �ese �uorophores produce opposing contrast mechanisms (i.e. dark or bright regions of interest) 
demonstrating two possible diagnostic methods. �e new device creates the possibility of a diagnostic tool that 
will augment the already signi�cant advances in clinical diagnostics for the GI tract that have been made using 
white light capsule endoscopy. Two modes of deployment are presently envisaged: that of using auto�uorescence to 
identify abnormal pathology associated with tumours in the gut; and the use of markers to label malignant tissues. 
We have also identi�ed directions for future enquiry that will lead to improved imaging resolution and further 
enhanced sensitivity. In successfully demonstrating a miniaturised �uorescence imaging capsule, we open up the 
possibility of �uorescence imaging of the human intestine below the duodenum.
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