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Abstract—We study the image retrieval problem at the wireless
edge, where an edge device captures an image, which is then
used to retrieve similar images from an edge server. These can be
images of the same person or a vehicle taken from other cameras
at different times and locations. Our goal is to maximize the accu-
racy of the retrieval task under power and bandwidth constraints
over the wireless link. Due to the stringent delay constraint of the
underlying application, sending the whole image at a sufficient
quality is not possible. We propose two alternative schemes based
on digital and analog communications, respectively. In the digital
approach, we first propose a deep neural network (DNN) aided
retrieval-oriented image compression scheme, whose output bit
sequence is transmitted over the channel using conventional
channel codes. In the analog joint source and channel coding
(JSCC) approach, the feature vectors are directly mapped into
channel symbols. We evaluate both schemes on image based re-
identification (re-ID) tasks under different channel conditions,
including both static and fading channels. We show that the JSCC
scheme significantly increases the end-to-end accuracy, speeds
up the encoding process, and provides graceful degradation
with channel conditions. The proposed architecture is evaluated
through extensive simulations on different datasets and channel
conditions, as well as through ablation studies.

Index Terms—Deep learning, Internet of Things, image re-
trieval, joint source-channel coding, person re-identification.

I. INTRODUCTION

I
NTERNET of Things (IoT) devices are becoming in-

creasingly widespread. These small specialized computers

are present in offices, streets, and homes. Their main goal

is to continuously sense their environment, and send the

measurements through a wireless channel to an edge server,

which performs data collection and further processing. Typical

approach in most IoT applications is to convey all the mea-

surements from the IoT devices to an edge server, where state-

of-the-art machine learning algorithms are used to analyse the

collected data. However, in some applications, the volume of

the measurement data (e.g., images, videos or LIDAR data) is

large, and transmitting it to the server at the required quality

may not be feasible within the limited latency requirements,

e.g., in autonomous driving, surveillance, drones, etc. On the

other hand, as the computational capabilities of IoT devices

advance, they can process the data locally before offloading it

to a server. In some cases the desired inference tasks can be

carried out locally, which is beneficial as the IoT devices have

access to the original data, rather than its quantized version at

the edge server, due to the lossy compression and transmission

over the wireless channels.
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Fig. 1: An illustration of the retrieval problem at the edge.

A CCTV camera takes a picture of a pedestrian or a car,

and processes the image locally to obtain a low-dimensional

signature, which is then sent through a wireless channel to

an edge server that performs identification based on a large

database it has access to.

In this work, we study machine learning at the wireless

edge. In particular, we focus on distributed inference over

a wireless channel, where a centrally-trained algorithm is

deployed on IoT devices to perform inference over-the-air. One

of the machine learning tasks for which remote inference is

essential is retrieval. In autonomous vehicles, drones, or in

surveillance systems, agents try to identify objects, vehicles,

or humans in their environment through their sensory data.

The goal in image retrieval is to identify a query image of a

person or a vehicle recorded locally by matching with images

stored in a large database (gallery), typically available at the

edge server (cf. Fig. 1). We emphasize that the retrieval task

cannot be performed locally at the edge device regardless of its

computational power. This is because the centralized database

is available only at the edge server, hence, some sensory data

has to be transmitted to the edge server. The fundamental

question we want to answer in this paper is what part or

function of data must be transmitted, and how.

A trivial response to these questions would be to convey

the image to the edge server at the best quality possible.

The server first reconstructs the image, and performs the

retrieval task with a state-of-the-art retrieval algorithm. Note,

however, that a significant part of the image content may not

be relevant for the retrieval task, therefore the original image is

not needed at the server. Indeed, novel approaches to retrieval

employ deep neural networks (DNNs) as feature encoders that

map input images to a low-dimensional feature space, such

that vectors extracted from the same identities are similar,

despite different views or occlusions. Accordingly, we employ

DNNs for extracting features that are then transmitted over the

wireless link.

We propose two approaches to convey the feature vectors to

the edge server. In the conventional “digital” approach, feature

vectors are first compressed, and encoded with a channel code

for reliable transmission. The features that are most relevant

for the retrieval task are extracted and transmitted depending



2

on the capacity and the reliability of the channel between the

edge device and the server. To improve the efficiency of this

approach, we design a retrieval-oriented image compression

scheme, which compresses the feature vectors depending on

the available bit budget. This “separate” data compression and

channel transmission scheme assumes reliable communication

over the channel. Such scenario is typically difficult to achieve

in practice, especially for short blocklengths considered in this

work, imposed by the strict delay limitations. Alternatively,

we consider a joint source and channel coding (JSCC) ap-

proach, where the feature vectors are directly mapped into

channel input symbols, and the noisy channel output is used

by the server to retrieve the most relevant images, without

involving any explicit channel code. This can be considered

as “analog” communication since the feature vectors are not

converted into bits at any stage. For the JSCC approach,

we employ an architecture based on DNNs, similar to the

novel DeepJSCC [2], [3], which has recently been introduced

for wireless image transmission. Our results show that the

JSCC scheme can outperform the highly optimized feature

compression scheme even if we assume the availability of

capacity-achieving channel codes for the digital scheme. To

the best of our knowledge, this is the first work to study

image retrieval over a wireless channel. Our specific technical

contributions can be summarized as follows:

• We propose a novel retrieval-oriented image compression

scheme, which combines a retrieval baseline with a fea-

ture encoder, followed by scalar quantization and entropy

coding. To estimate the distribution to be used for the

entropy coder, we introduce a density model based on a

Gaussian mixture.

• We propose an autoencoder-based architecture and train-

ing strategy for robust JSCC of feature vectors, gen-

erated by a retrieval baseline, under noisy, fading, and

bandwidth-limited channel conditions.

• We perform extensive evaluations under different signal-

to-noise ratio (SNR) and bandwidth constraints, and show

that the JSCC scheme outperforms the digital approach

even with capacity-achieving channel codes. Moreover,

its performance exhibits graceful degradation when the

test and training SNRs do not match. The JSCC scheme

is shown to outperform its digital counterpart also over

fading channels, even if we assume the availability of

channel state information for the digital scheme only.

• We evaluate the proposed schemes on various surveil-

lance tasks, and show that the performance close to the

noiseless bound can be achieved even under very harsh

SNR and bandwidth constraints, whereas the digital ap-

proach falls short of this performance even with idealistic

capacity-achieving channel codes.

• Our results show that, in general, it is not possible to sepa-

rate inference tasks from the communication scheme, and

the end-to-end performance can be improved significantly

by designing the communication and learning algorithms

jointly. We provide a comprehensive analysis of different

architectures and training strategies that will serve as solid

baselines for future research in wireless edge learning.

In this paper we extend our previous work [1] by consider-

ing different wireless channel models to show the generaliza-

tion of our method and we validate the methods by extensive

evaluations on new datasets. We provide a comparison of

different architectures and training methods for wireless image

retrieval. In our digital model we introduce a new, simpler, but

equally effective density model based on a Gaussian mixture.

II. RELATED WORK

A. Machine Learning at the Wireless Edge

With the increasing computational capabilities of edge de-

vices, many recent studies consider executing machine learn-

ing tasks across edge devices. Many of these works focus on

the training stage, which is particularly challenging due to

the distributed nature of data available at edge nodes, and the

typically limited communication resources (please see [4]–[9]

and references therein).

Instead, in this work, we focus on the inference phase,

assuming that the training can be run centrally. This approach

requires centralized availability of the training data. Prior

works on distributed inference at the wireless edge have

focused on classification tasks using DNNs. Authors of [10]–

[15] suggest splitting neural network architectures into two

parts to reduce the computational workload at the edge device.

In this work we do not consider computational limitations

of the device, and perform the forward pass over the DNN

locally, at the edge device, which was shown in [15] to reduce

the bandwidth necessary to transmit the information for the

classification task. Digital schemes for distributed inference,

e.g. [11], [13], limit the amount of information (e.g., the

number of bits) that can be conveyed to the edge server,

but ignore the energy and latency cost of communications,

and potential errors that may be introduced. However, in

practice, reliable transmission of the feature vectors, even if

they are highly compressed, requires an accurate estimate of

the channel state at the edge device, and a very reliable error

correction code. However, not only such a separate approach is

suboptimal, but also channel codes introduce significant error

probability at short blocklengths, especially in the absence of

accurate channel state information. Analog schemes based on

JSCC have recently been considered in [12], [14], [15], and

they were shown to outperform separate approaches, but they

focus on the classification task using low-resolution images.

This significantly reduces the amount of information to be

transmitted, as the task is to distinguish between a finite

set of known classes. In contrast, in the retrieval and re-

identification tasks, we require high resolution images, and

have to cope with unknown set of identities, thus the feature

vectors have to convey significantly more information. Unlike

in the classification, the retrieval task cannot be performed

locally at the edge device due to its limited computational

resources and data transmission to the edge server is needed.

B. Person and Vehicle Retrieval

Person and vehicle retrieval tasks have been extensively

studied [16]–[22]. They share the same motivation to allow

for a better and more reliable recognition of people and
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vehicles, mainly targeting surveillance applications. The most

successful recent approaches for image retrieval problems

are based on convolutional neural networks, and recent tech-

niques include part classifiers [16], [17], creating bias-invariant

feature vectors [18], [22], using attention models [20], and

analyzing images at different scales [23], [24]. Despite the

popularity of triplet loss in both areas [19], [25], designs

based on softmax cross-entropy have also been successfully

implemented [21].

C. Joint Source-Channel Coding (JSCC)

According to Shannon’s separation theorem [26], perform-

ing source and channel coding separately achieves theoretical

optimality guarantees in the asymptotic infinite blocklength

regime. This theorem holds under average power constraint

and a single-letter additive distortion constraint, e.g., average

mean-square error between the samples of the input and output

sequences. However, in practice, we are limited by finite

blocklengths due to complexity and latency constraints; and

JSCC is known to outperform separate schemes in practical

scenarios. Many JSCC schemes have been proposed [27]–

[29], but these have not found application in practice as they

are too complex and specific to the underlying source and

channel distributions. Moreover, they do not provide sufficient

improvement to justify the introduced increase in the system

complexity, as well as the loss of modularity. More recently,

JSCC schemes based on autoencoders [30], which are DNNs

aimed at unsupervised data coding, have been introduced [2],

[3], [31], [32], and are shown to provide comparable or better

performance than state-of-the-art digital schemes.

JSCC for remote inference problems is much less studied.

Distributed hypothesis testing problem over a noisy commu-

nication channel has been recently introduced in [33] using

an information theoretic formulation and considering the type

II error exponent as the performance measure. Here, the

goal is to make a decision on the joint distribution of the

samples observed by a remote observer and those observed

by the decision maker. Similarly to our setting, the observer

communicates to the decision maker over a noisy channel. It

is shown that, while the optimality of separation holds for the

problem of testing against independence, where the alternative

hypothesis is the product of the marginal distributions of the

remote and local samples, separation is suboptimal in general,

when testing against arbitrary joint distributions.

III. METHODS

In this work we propose two approaches for performing

retrieval over wireless channels: digital (separate) and JSCC

(joint) approaches. In both cases, we consider the transmission

of the feature vectors, which are a low-dimensional represen-

tation of identities of the items to be retrieved e.g., humans,

vehicles (Section III-B), and have to be sent over bandwidth-

limited wireless channels. Due to the channel limitations,

features cannot be transmitted in a lossless fashion, and have

to be compressed. The recovered noisy feature vectors at

the receiver are compared to the feature vectors of images

previously collected from other edge cameras, called the

gallery, in order to find the nearest neighbour.

A. Channel Model

We assume that the edge device is connected to the edge

server through an additive white Gaussian noise (AWGN)

channel. We consider static as well as slow fading channel.

For both approaches presented in this work, we assume that

the channel model is known during training, and remains the

same during inference.

The AWGN channel is characterized as follows: given a

channel input vector x ∈ C�, consisting of � complex channel

input symbols G8 , the output y ∈ C� is given by y = x + z,

where I8 ∼ CN(0, f2) are the independent and identically

distributed (i.i.d.) elements of the noise vector z ∈ C�, 8 =

1, . . . , �. An average power constraint is imposed on the input

vectors, such that 1
�

∑�
8=1 |G8 |2 ≤ % = 1; which, in the case of

a static AWGN channel, translates into a maximum received

SNR of SNR = 10 log10 ( 1
f2 ) in dB scale.

In the slow fading scenario, we consider a single-tap

Rayleigh fading channel model, where all the transmitted

symbols experience the same channel gain. That is, given

the channel input vector x ∈ C�, the corresponding output

vector y ∈ C� is given by y = ℎx + z, where ℎ ∼ CN(0, f2
ℎ
)

and I8 ∼ CN(0, f2) are drawn from independent zero-mean

complex normal distributions with variances f2
ℎ

and f2, re-

spectively. We impose the same average input power constraint

of % = 1 as in the AWGN case. For each transmitted feature

vector we use a single gain ℎ, which characterizes the slow

fading behaviour. The maximum average SNR is evaluated by

SNR = 10 log10 (
f2
ℎ

f2 ) dB, while for all the experiments shown

in this paper we set f2
ℎ
= 1, which corresponds to the same

average received power as in the static AWGN channel model.

B. Retrieval Baseline

Following the state-of-the-art retrieval methods [17], [21]

we employ the ResNet-50 network [34], pretrained on Ima-

geNet [35], for feature extraction. This ensures that similar

results can be expected in different setups. In more detail, we

use ResNet-50 with batch normalization (BN) layers applied

after each convolutional layer. As input, we use images resized

to a common 256×128 resolution with bicubic interpolation for

person datasets and 128 × 128 resolution for vehicle datasets.

For the last layer we use average pooling across all the feature

maps, which results in a 2048-dimensional feature vector.

During training we use stochastic gradient descent (SGD) with

a learning rate of 0.01 and a momentum of 0.9. We also

apply !2 regularization, weighted by 5 ·10−4 to the ResNet-50

parameters. We refer to this architecture as the feature encoder.

C. Digital Transmission of Compressed Feature Vectors

This approach is based on the assumption that a certain

number of bits can be reliably conveyed to the edge server

for each image. In practice, however, this is highly chal-

lenging to achieve. Ultra-reliable channel codes require large

blocklengths even in the static AWGN setting, and accurate

channel estimation and feedback in the slow-fading case. In

our simulations, we assume capacity-achieving channel codes,

which will serve as a bound on the performance of practical

digital schemes.
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Fig. 2: The digital transmission scheme. Input is transformed into a feature vector, which is compressed using a DNN. At the

receiver, latent representation is classified into IDs to compute the loss during training only. Arithmetic coding and channel

coding is bypassed during training.

An overview of the proposed digital scheme is shown in

Fig. 2. We first extract features using the retrieval baseline

described in Section III-B as feature encoder. The resulting

feature vector is compressed into as few bits as possible

through lossy compression followed by arithmetic coding.

The compressed bits are then channel coded, with introduced

structured redundancy to combat channel impairments.

The lossy feature compressor consists of a single fully-

connected layer for dimensionality reduction, followed by

quantization. On the receiver side we use the quantized latent

representation as a feature vector, which is passed through a

fully-connected layer for ID classification. Note that the IDs

and their classification are used for calculating the loss during

training only. During retrieval, the IDs are not known and the

feature vectors are used for nearest neighbour search. This has

been shown to perform well in the re-ID community [16]–[22].

To enable an end-to-end differentiable approach, we utilize

the well-known quantization noise [36] to model the quan-

tization process. Specifically, instead of rounding the latent

representation to the nearest integer, in the training phase

we add the uniform noise to each element of the latent

representation as follows:

&(z) = z + U
(

−1

2
,
1

2

)

, (1)

where &(·) is the approximated quantization operation, z is the

latent representation, and U(·, ·) is the uniform noise vector.

This formulation ensures a good approximation of quantization

during training, whereas we perform rounding to the nearest

integer during inference.

In order to optimize the arithmetic coder, we estimate the

distribution of the quantized outputs. We assume that the

elements @ of vector q = &(z) are i.i.d. with some probability

mass function (PMF) ?(@). To model this PMF, we propose

a simple yet flexible solution using a mixture of Gaussians.

We first approximate ?(@) as a continuous-valued probability

density function ?2 (@) as follows:

?2 (@) =
 
∑

:=1

U:
1

f:
√

2c
4
− 1

2

(

@−`:
f:

)2

, (2)

where  is the number of mixtures, f: are mixture scales,

`: are mean values, and U: are the corresponding mixture

weights. In our experiments we set  = 9, which we empiri-

cally found to perform the best. Then, in order to evaluate our

PMF ?(@) at discrete values @ ∈ Z, we integrate ?2 (@) over
[

@ − 1
2
, @ + 1

2

]

to obtain:

?(@) =
∫ @+ 1

2

@− 1
2

?2 (G)3G = �2
(

@ + 1

2

)

− �2
(

@ − 1

2

)

, (3)

where �2 is the cumulative density function of the distribution

?2 (@).
We remark that, here we learn the distribution of the quan-

tized feature vectors, but unlike recent works [37], [38] , we do

not consider adaptive probability model and do not introduce

another neural network to predict parameters {U: , `: , f: } of

the mixture. The reason for that is the proposed simple model

performs sufficiently well, and we want to avoid introducing

any communication overhead by sending additional parameters

per image. Instead, we use the available bandwidth for sending

quantized feature vectors only.

With the model presented above, we can easily estimate the

PMF of the quantized vector q, which can be directly used to

feed the arithmetic coding engine in the test phase, but also

to evaluate the average approximate entropy over the dataset

in our loss function, which we define as a weighted sum of

two objectives:

! = ;24 − _ · log2 ?(q), (4)

where ;24 is the cross-entropy between the predicted class

(identity) and the ground truth for the retrieval task. The

second component of the loss function corresponds to the em-

pirical Shannon entropy of the quantized vector, representing

the average length of the output of the arithmetic encoder.

Such formulation allows for a smooth transition between the

retrieval accuracy and number of bits necessary to send the

feature vector in a lossy fashion. Moreover, minimizing the

entropy term is equivalent to maximizing the likelihood of

?(@), which corresponds to increasing the certainty of our

model, and allows a satisfactory fit of our approximated
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distribution to the true underlying distribution of the discrete

symbols.

We apply the same settings discussed in Section III-B

to train the feature encoder, the fully-connected classifier

and the density model. We train the whole network for 20

epochs, reduce the learning rate to 0.001 and train for further

30 epochs. We initialize our mixture parameters as follows:

U: =
1
 

, `: = 0, f: = :2, : = 1, 2, . . .  . To ensure the

convergence during training, in the first epochs we prioritize

the ;24 loss term by setting the weight parameter _8 at epoch

8 as:

_8 = min

(

_
8

� − 20
, _

)

, 8 = 1, . . . , �, (5)

where � > 20 is the total number of epochs. In our experi-

ments we use _ ∈ [10−5, 10−2], and � = 50.

In the inference phase we use the arithmetic encoding

engine to transmit the information with a channel code. Note

that any channel code can introduce errors, there is therefore

an inherent trade-off between the compression rate and the

channel coding rate under a given constraint on the channel

bandwidth, i.e., the number of channel symbols that can be

transmitted to the edge server per image pixel. Compress-

ing the feature vector further leads to increased distortion,

and hence, reduced retrieval accuracy, but also allows to

introduce more redundancy, and hence, increased reliability

against noise. In general, the optimal compression and channel

coding rates depend on the retrieval accuracy-compression

rate function of the compression scheme and the error-rate of

the channel code. To simplify this task, we assume capacity-

achieving channel codes, which provides an upper bound on

the performance that can be achieved by any digital scheme

that uses the above architecture.

D. JSCC of Feature Vectors

In this section, we propose an alternative JSCC approach,

called JSCC AE, and illustrated in Fig. 3. We use the baseline

feature encoder as before to produce the feature vector for a

given query image. The feature vector is mapped directly to

the channel input symbols via a multi-layer fully-connected

JSCC encoder (Fig. 4a). We set the dimensionality of the

channel input vector to 2� real symbols, which corresponds

to the available channel bandwidth of � complex values. In

this work we consider small values of � modeling stringent

delay constraints of the underlying surveillance applications.

This low-dimensional representation is normalized to satisfy

the average power constraint of % = 1, and transmitted over

the AWGN channel. The noisy channel output vector at the

receiver is mapped back to the high-dimensional feature space

by a JSCC decoder (Fig. 4b). The distance between the query

feature vector and the feature vectors stored in the gallery set

is calculated to find the nearest neighbours.

In order to train our network, the most straightforward strat-

egy would be to perform end-to-end training, taking images

from the dataset as an input, and training both the feature

encoder and the JSCC autoencoder jointly, in an end-to-end

fashion, with cross-entropy loss between the ID predictions

and the ground truth (as shown in Fig. 3). However, our

experimentation in Section IV-F shows that this approach leads

to suboptimal performance. Alternatively, we propose traininig

each component of the network separately at first, and, once

the feature encoder and the JSCC autoencoder are pretrained

individually, they are combined and trained jointly. Therefore,

our training strategy, which we refer to as )1,2,3, consists of

three steps: feature encoder pretraining ()1), JSCC autoencoder

pretraining ()2), and end-to-end training ()3). In the first step,

)1, we attach a single fully-connected layer at the end of the

feature encoder that maps 2048-dimensional feature vectors

directly to the ID predictions. We pretrain the feature encoder

for 30 epochs with a batch size of 16, using cross-entropy

between the ID predictions and the ground truth as the loss

function. In the second step, )2, we freeze the pretrained

feature encoder, and use it to extract features from all the

images in the training dataset. We use these features as inputs

to the proposed autoencoder network. We train the autoencoder

using the !1-loss between the feature vectors and the vectors

reconstructed by the JSCC decoder. It is trained with SGD for

200 epochs with a learning rate 0.1, reduced to 0.01 after 150

epochs, and momentum of 0.9. We apply !2 regularizer to the

autoencoder model, weighted by 5 · 10−4. Finally, in the third

step, )3, we train the whole network jointly, the autoencoder

and the feature encoder, for 30 epochs, using the cross-entropy

loss with a learning rate 0.001, and for further 10 epochs with

a learning rate of 0.0001, applying the same optimizer and !2

regularization as in the previous two steps.

Along with )1,2,3 we evaluate four alternative training

strategies. The first one, denoted by )3, corresponds to the

end-to-end training of the entire network (feature encoder

+ JSCC autoencoder + classifier) in a single training step.

The second method, )1,2, consists of the feature encoder

pretraining, )1, followed by the JSCC autoencoder training,

)2 to reconstruct feature vectors with !1 as the distortion

measure. This method corresponds to using a JSCC scheme

whose goal is to reconstruct the feature vector as reliably

as possible without taking into account the accuracy of the

retrieval task. After )2, the feature encoder and the autoencoder

are combined as in Fig. 2, but the joint training step, )3, is

not performed. The third method, )1,3, consists of the feature

encoder pretraining, )1, followed by joint training of the entire

network, )3. Finally, )1,3 + !1 approach is different from the

)1,3 in that it combines the cross-entropy loss and !1 loss, in

the joint training phase.

Note that, we opted for an architecture that employs a

distinct feature encoder and a separate JSCC autoencoder

to transmit the feature vector over the channel. We have

then trained these components in multiple training steps. It

is possible to introduce a simpler architecture with a single

JSCC encoder at the edge device that maps the query image

to the channel input vector. Thus, no decoding is required

at the receiver, and the retrieval task is directly performed

using the noisy channel symbols. To compare our method to

this straightforward approach, we introduce JSCC FC, which

follows the same structure as in Fig. 3, except that the JSCC

encoder is replaced by a single fully-connected layer and the

JSCC decoder is removed. We train the whole network end-
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Fig. 4: Proposed JSCC encoder and JSCC decoder archi-

tecture for the JSCC scheme illustrated in Fig. 3. At the

encoder, dimensionality reduction is performed by the first

fully-connected layer, which is inverted at the decoder.

to-end for 50 epochs with cross-entropy loss, learning rate of

0.01, reduced to 0.001 after 30 epochs, and a momentum of

0.9. We also apply !2 regularization, weighted by 5 · 10−4, to

all the parameters, including ResNet-50, feature encoder and

fully-connected classifier.

IV. RESULTS

In this section we evaluate the performance of the proposed

JSCC AE and JSCC FC architectures, and compare with that

of the digital scheme presented in Section III-C, as well as

the ideal channel scenario with unlimited channel resources,

where full, noiseless feature vectors can be transmitted over

the channel. We first discuss the experimental setup and the

dataset used for the evaluations.

A. Experimental Setup

For the JSCC AE and JSCC FC schemes we vary chan-

nel SNRs for training, between SNRCA08= = −12dB and

SNRCA08= = ∞dB, which corresponds to zero noise power.

Training and test SNRs are the same unless stated otherwise.

In the digital scheme, we experiment with different dimen-

sionality of the latent representation, between 64 and 512,

estimate and minimize its entropy in the training phase by

varying the value of parameter _. In the testing phase we

perform rounding to the nearest integer on each element of the

latent representation and arithmetic coding, which is based on

the probabilistic model learned by the entropy estimator, as

described in Section III-C. This model assigns a probability

estimate to each quantized symbol, which is then passed to

the arithmetic encoder. We note that the proposed digital

scheme is a variable-length encoder. Therefore, for a given

fixed communication rate to the server, one has to determine

the _ coefficient that meets the rate constraint for each image.

Instead, we fix the _ coefficient and calculate the average

number of bits required to encode the latent representations of

the test images. We then evaluate the corresponding channel

SNR to deliver these many bits to the receiver, assuming

capacity-achieving channel codes. This is the upper bound

on the real performance as practical codes are far from the

capacity bound in the short blocklength regime. This model

may correspond to sending multiple images together, and

hence, the performance is determined by the average rate

across many test images, rather than their individual rates.

For digital transmission over a fading channel, we consider

two scenarios. In the first one, we assume perfect channel

state information available at both the transmitter and the

receiver. Then, for each query image and a corresponding

random channel gain, we identify the _ parameter that results

in a bit rate that is as close as possible from below to the

corresponding channel capacity. Then, we find the average

accuracy across many random queries and channel conditions,

following the underlying fading distribution. In the second

scenario, we fix the _ parameter, and for each query image and

the corresponding random channel condition, we compare the

required bit rate of the query image and the channel capacity.

If the capacity is lower than the bit rate required by the

compression scheme, we assume the transmission is failed.

We then calculate the fraction of successful transmissions and

multiply it by the average accuracy of the queries whose

compressed feature vector can be successfully transmitted, for

a given _. Note that, there is a trade-off between the accuracy

loss due to compression and the outage over the channel. The

higher _ values results in more compact representations of the

feature vector, and hence less accurate retrieval performance

even if they can be successfully conveyed to the server. Higher

_ values relaxes the compression constraint, but may result

in higher loss over the channel. Note that, we report only

the results for the _ values that lead to the highest average

accuracy for each average SNR.

To train our model we used NVIDIA GeForce RTX 2080Ti

GPU. A single end-to-end training of our digital model took

approximately 35 minutes, which was similar to the training

time of the JSCC FC. For JSCC AE, the training took

approximately 20 minutes, 3 minutes, and 30 minutes for )1,

)2, and )3, respectively. Please note that )1 has to be performed

only once, as this step does not depend on the channel model.
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Fig. 5: Performance comparison of the proposed three schemes over AWGN and slow fading channels for a range of channel

SNRs and bandwidth � = 64. Our JSCC AE scheme achieves the best retrieval accuracy over the whole range of tested SNRs

and for all three re-ID image retrieval datasets.
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B. Datasets

In order to measure the performance of the retrieval task,

we employ three widely used datasets:

CUHK03 [39] is a benchmark for person retrieval that

contains 14096 images of 1467 identities taken from two

different camera views. The dataset was captured with six

surveillance cameras and each identity within the dataset is

represented by an average of 4.8 images per each of the two

camera views. We use the labeled variant of the dataset, where

each image of the pedestrian was manually cropped by a

human.

Market-1501 [40] contains 32217 images of 1501 pedestri-

ans taken from a total of six cameras in front of a supermarket

at Tsinghua University. Five out of six cameras are high-

resolution cameras and the remaining one is low-resolution.

Training and testing splits proposed by the authors contains

12936 and 19732 images, respectively. 750 identities are

additionally selected as a query set containing 3368 images

(maximum of 6 per person). The dataset is different from

CUHK03 in that it contains junk images capturing only partial

pose and distractors presenting small fragments of pedestrian

appearance or irrelevant objects.

VeRi [41], [42] is a vehicle retrieval dataset. It contains over

50000 images of 776 vehicles captured by 20 cameras within

24 hours over the area of 1km2. Each identity is captured by

2-18 cameras in different viewpoints, occlusions, resolutions,

and lighting conditions. All the images within the dataset are

annotated with attributes, brands and colors, but in this work

we do not utilize this information, and focus on retrieving the

identity only based on the image.

The evaluation measure for all the datasets is the top-1

retrieval accuracy, which calculates the fraction of correct IDs

at the top of the ranked list retrieved for each query.

C. Performance for Different Methods

We plot the accuracy achieved by various schemes as a func-

tion of the test SNR in Fig. 5. For these experiments we use the

bandwidth of 64, which corresponds to the transmission of 64

complex symbols through the channel. One can see that JSCC

AE outperforms the digital scheme in all considered scenarios.

For CUHK03 dataset the digital approach is not able to recover

the noiseless accuracy even at SNR = 15dB, whereas the

proposed JSCC AE scheme obtains accuracy close to the

ideal channel baseline at around 10dB for the AWGN channel.

JSCC FC follows JSCC AE very closely, but the increase in

the performance provided by the autoencoder is visible for

all the SNRs considered, which proves the superiority of the

proposed architecture in comparison to the relatively simpler

JSCC FC. The lower accuracy of JSCC FC may stem from the

fact that the noise directly affects the low-dimensional feature

vector, while the autoencoder-based scheme introduces certain

level of denoising, which improves the feature estimates at

the receiver. In Fig. 5a, we also show that feature decoding is

not beneficial for the digital scenario. An alternative scheme,

which we called Digital w/ decoding (capacity achieving),

follows the same training strategy as discussed in Section

III-C, but we further introduce a fully-connected decoder. This

decoder is placed before the fully-connected classifier, and

maps low-dimensional quantized latents back to the original,

2048-dimensional feature vector space. We show that this

decoding step brings no improvement to the digital scheme

performance, compared to the scenario without decoding. This

result was consistent across all the datasets, but to avoid clutter

we show it only in Fig. 5a. Another observation is that the

relative performances of the three schemes are similar for all

the datasets considered, while JSCC FC seems to perform

worse for the Car VeRi dataset, and even surpassed by the

digital scheme at SNR = 10dB.

Fading channels introduce additional perturbation to the

channel symbols, reducing the accuracy of all the proposed ap-

proaches. Similarly to the AWGN channel, JSCC AE achieves

the best performance across all three datasets and the average

SNR values considered in this paper. The digital scheme

performs worse when the channel state information is not

available (which is also the case for the JSCC schemes). We

have also included the performance of the digital scheme when

perfect channel state information is available. We observe that

even in this case the proposed JSCC AE scheme outperforms

the digital alternative. JSCC FC closely follows JSCC AE

at the low SNR regime, but its performance saturates to a

level significantly below that of JSCC AE, and even below the

digital scheme for the CUHK03 dataset. This result further val-

idates the denoising interpretation of the autoencoder structure

in JSCC AE, which becomes even more critical in recovering

the noisy feature vector in the presence of channel fading.

Fading not only applies random attenuation to the received

signal strength, but also random rotations in the complex

plain, which makes it very difficult for the receiver to recover

the features for correct retrieval without any channel state

information. We note that, while the digital scheme suffers

significant performance loss in the absence of the channel state

information, JSCC AE seems to perform reasonably well. We

can argue that the autoencoder learns to mitigate the effect

of random fading despite the lack of explicit pilot signals.

We also provide the performance of JSCC AE, when perfect

channel state information is available at the receiver. The JSCC

decoder first divides the received signal by the channel gain:

ŷ =

y

ℎ
= x+ z

ℎ
, and reconstructs the input feature from ŷ. In this

scenario, our method is able to recover the noiseless bound at

a reasonable SNR of 15dB, and the gap between JSCC AE w/

CSI and the digital approach grows even further.

D. Performance for Different Bandwidths

In this experiment we investigate the effect of the channel

bandwidth � on the retrieval performance for the person

retrieval CUHK03 dataset, achieved by the JSCC AE scheme.

We emphasize that the previously considered bandwidth of

� = 64 is extremely limited, corresponding to extremely low-

latency communications, which may be essential for many

surveillance and security applications. The top-1 accuracy as

a function of the channel SNR is plotted in Fig. 6 for different

channel bandwidth values of 64, 128, 256, and 512. It shows

that the accuracy and robustness increases significantly with

the bandwidth, but the relative gain becomes smaller as we

approach the original feature vector dimension.
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Fig. 6: Accuracy as a function of the channel SNR for different channel bandwidths. Higher bandwidth introduces more

robustness against the channel noise.

For the fading channel, it is visible in Fig. 6b that the

proposed JSCC AE scheme without the channel state in-

formation is not able to recover the original accuracy even

for a significant bandwidth, and reaches a plateau at around

SNR = 12dB. As pointed out in Section IV-C, this may stem

from the fact that our approach cannot fully cancel the effect

of the variable channel gain. Channel estimation and feedback

techniques can be utilized to mitigate the impact of random

channel fading, as shown in Section IV-C.

E. Graceful Degradation

In this section we evaluate the behaviour of our models

on the CUHK03 dataset when the training and test SNRs

do not match. In the experiments with the digital scheme,

we assume that capacity-achieving channel codes are in use,

and the quality of the channel is always estimated correctly.

However, in practice, digital approaches suffer from the cliff

effect, which results in a sharp decrease in the performance

when the channel condition is worse than the channel state,

for which the channel code is designed. If the code rate is

above the current channel capacity, it is known that true error

probability converges to 1 [43].

On the other hand, unlike digital models, analog transmis-

sion schemes are known to achieve graceful degradation when

we are interested in the end-to-end reconstruction quality [2];

that is the average reconstruction quality smoothly decreases as

the channel conditions become worse. This behaviour is quite

beneficial, since we do not have to train multiple autoencoders,

one for each channel SNR value, or even introduce channel

estimation and feedback feature if the performance does not

critically depend on applying the same training and testing

SNRs. In the previous sections we showed the best possible

accuracy for a specific SNR, which means each data point

corresponds to a model trained specifically for that targer

SNR. In Fig. 7 we show that graceful degradation can be

achieved with the proposed JSCC AE architecture, and it

is not necessary to train a separate model for every SNR

value. Instead, we can take a model trained with a moderate

SNRCA08= and apply it to a wide range of SNRC4BC in the

inference time at the expense of a moderate loss in accuracy.

To the best of our knowledge, this is the first time graceful

degradation is demonstrated for the inference as opposed to

the average reconstruction quality that is typically considered

in the literature.

Note that the approach trained without noise (SNRCA08= =

∞dB) is not robust against the channel noise. Therefore,

its accuracy decreases much faster than for the networks

trained under different noise levels, yet it still shows graceful

degradation as the channel noise increases.

F. Training Strategy

In this section we show the superiority of )1,2,3 training

strategy by comparing to the alternative training methods

introduced in Section III-D. Note that, for the fairness of the

comparison, we perform the first step of the training, which is

the feature encoder pretraining, only once for )1,2,3, )1,2 )1,3,

and )1,3 + !1.

The evolution of the cross-entropy loss over training epochs

of the final joint training phase for different training strategies

is shown in Fig. 8. In the experiment we used the bandwidth

� = 64 and SNR=0dB. The proposed three-step training

allows to achieve much better final performance, as shown in

Table I. Here, we also shown the top-5 recognition accuracy

i.e., the correct match was listed within the top 5 ranklist

elements, and the mean average precision (mAP), which are

standard evaluation measures for the retrieval tasks. Adding

each training step increases the performance gradually, and

there is a significant difference between )3, and )1,3, as well

as between )1,3 and )1,2,3. Our three-step strategy outperforms

all three alternatives by a large margin as it converges faster

and achieves the smallest loss after the last epoch. As expected,

)3 performs the worse, since it has to learn both the retrieval
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Fig. 7: Accuracy achieved by the proposed JSCC AE scheme as a function of SNRC4BC for different SNRCA08= values for � = 64.

JSCC AE achieves graceful degradation with the channel SNR as opposed to the digital scheme, which suffers from the cliff

effect. Models trained at moderate SNRCA08= values achieve relatively good performance for a wide range of test SNRs values.
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Fig. 8: Comparison of training strategies through the evolution

of the cross-entropy loss in the final joint training step. The

proposed )1,2,3 is superior to the alternative approaches.

and robustness against the noise in a single training step with

randomly initialized weights. Interestingly, the convergence of

the )1,3 + !1 seems to slightly outperform the convergence

of the )1,3, thanks to the additional loss term, which forces

the reconstructed features to be similar to the original ones.

However, while this seems to speed-up the convergence of the

autoencoder network marginally, it does not affect the final

performance. The reasonable performance of )1,2 shows that

)2 allows the autoencoder to produce good reconstructions

of the feature vectors under noisy environment, but the gap

between )1,2 and )1,2,3 indicate the necessity of joint training

phase, )3, which maximizes the task performance. One may

argue that our )1,2,3 strategy is slower compared to the

TABLE I: Comparison of the retrieval performance for

different training strategies.

Method Top-1 accuracy Top-5 accuracy mAP

)3 0.225 0.409 0.195

)1,3 0.312 0.533 0.286

)1,3 + !1 0.317 0.536 0.287

)1,2 0.330 0.557 0.306

)1,2,3 0.392 0.602 0.351

alternatives, nevertheless adding the autoencoder pretraining

phase is negligible in comparison to the joint training phase

(∼ 3min vs. ∼ 1hr).

G. Comparison of Different Models

In this section we present the results of architecture search

for the JSCC autoencoder that resulted in the best performing

model presented in Fig. 4. We considered 9 models designed

as follows: both the JSCC encoder and the JSCC decoder

are built of fully-connected layers, followed by the BN and

activation layers. The only exceptions are the last layers in

the JSCC encoder and the JSCC decoder which are without

BN and activations. The first layer of the JSCC encoder maps

2048-dimensional features to 2� real-valued symbols, which

eventually forms a � complex symbols transmitted over the

channel. Similarly, the last layer of the JSCC decoder maps

2�-dimensional vectors back to the original 2048-dimensional

feature space and the remaining FC layers keep the dimension

at 2�. The evaluated architectures and results are shown in

Table II. We select the models by starting from the baseline

(denoted as A) from [1] and then removing or adding layers

from the JSCC encoder and the JSCC decoder networks to

explore the impact of depth on the overall performance.

For each model we trained the network according to the

three-step strategy described in Section III-D and performed
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TABLE II: Person retrieval accuracy for the CUHK03 dataset achieved by different models at SNR = 0dB and � = 64.

Model # JSCC encoder layers # JSCC decoder layers Activation MSE Top-1 accuracy Top-5 accuracy mAP

A 3 3 Leaky ReLU 0.204 0.382 0.602 0.354

B 3 2 Leaky ReLU 0.222 0.391 0.597 0.354

C 3 4 Leaky ReLU 0.199 0.390 0.601 0.358

D 2 3 Leaky ReLU 0.202 0.392 0.602 0.359

D 4 3 PReLU 0.181 0.383 0.589 0.343

E 4 3 Leaky ReLU 0.208 0.383 0.598 0.356

F 1 1 N/A 0.207 0.387 0.592 0.352

G 2 2 Leaky ReLU 0.206 0.387 0.592 0.352

H 1 2 Leaky ReLU 0.207 0.386 0.593 0.353

I 2 1 Leaky ReLU 0.206 0.389 0.600 0.356

evaluation on the CUHK03 dataset at SNR = 0dB, � = 64.

We also show the mean squared error between the original

feature vectors and their noisy reconstructions, after JSCC au-

toencoder pretraining )2. The results show that the differences

between the models are marginal. Model D, which corresponds

to the architecture presented in Fig. 4 and was used in the rest

of the paper, performs slightly better than the others in terms

of final retrieval performance. This model was selected also

due to its low computational cost, as it consists of only 5

fully-connected layers in total. We also used PReLU as the

activation for the model variant D, and observed that even

though it achieves better MSE in step )2, it fails to provide a

good generalization capabilities in the final step, as it overfits

to the data. Please note that the model F, does not have the

activation function, as the only layers in both the encoder, and

the decoder are the last layers, therefore, as described above,

the activation and BN are removed.

V. CONCLUSIONS

In this work, we have introduced the image retrieval

problem over wireless channels in the context of the edge

network, where wireless edge devices send queries of images

over a bandwidth and power limited channel to an edge

server that stores the image database, also called the gallery.

We first introduced a digital approach, which is based on

a novel retrieval-oriented deep image compression scheme,

and applied it to feature vectors obtained from the feature

encoder. Next, we proposed a JSCC-based scheme, where

feature vectors are directly mapped to the channel symbols

and decoded at the receiver. We showed the latter approach

not only achieves a superior retrieval accuracy at a target

channel SNR, but also provides graceful degradation with the

test SNR when it does not match the training SNR. We further

introduced JSCC FC, which is a simplified version of the

proposed model and showed that decoding is necessary at the

receiver to mitigate the effects of channel impairments. We

also proposed a novel strategy for training our JSCC scheme,

that can be adapted to other machine learning applications

performed over noisy channels. Our strategy achieves superior

performance for training the JSCC scheme. We have also

performed an extensive ablation study of different architectures

and training strategies and compared the alternatives under

various performance measures for a wide range of different

channel conditions. The results show the superiority of the

proposed architecture and the joint training approach.
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