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Abstract—This paper considers the transmission of confidential
data over wireless channels. Based on an information-theoretic for-
mulation of the problem, in which two legitimates partners com-
municate over a quasi-static fading channel and an eavesdropper
observes their transmissions through a second independent quasi-
static fading channel, the important role of fading is character-
ized in terms of average secure communication rates and outage
probability. Based on the insights from this analysis, a practical
secure communication protocol is developed, which uses a four-
step procedure to ensure wireless information-theoretic security:
(i) common randomness via opportunistic transmission, (ii) mes-
sage reconciliation, (iii) common key generation via privacy am-
plification, and (iv) message protection with a secret key. A rec-
onciliation procedure based on multilevel coding and optimized
low-density parity-check (LDPC) codes is introduced, which allows
to achieve communication rates close to the fundamental security
limits in several relevant instances. Finally, a set of metrics for as-
sessing average secure key generation rates is established, and it is
shown that the protocol is effective in secure key renewal—even in
the presence of imperfect channel state information.

Index Terms—Information-theoretic security, low-density
parity-check (LDPC) codes, secrecy capacity, secret key agree-
ment, wireless channels.

I. INTRODUCTION

A. Motivation

T
HE issues of privacy and security in wireless communica-

tion networks have taken on an increasingly important role

as these networks continue to flourish worldwide. Traditionally,

security is viewed as an independent feature addressed above

the physical layer, and all widely used cryptographic protocols

(e.g., RSA and AES) are designed and implemented assuming

the physical layer has already been established and provides an

error-free link. In contrast with this paradigm, there exist both

theoretical and practical contributions that support the poten-

tial of physical layer security ideas to significantly strengthen

the security of digital communication systems. The basic prin-

ciple of information-theoretic security—widely accepted as the
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Fig. 1. Example of a wireless network with potential eavesdropping. Terminals
T and T communicate with a base stationS over a wireless medium (channels
A andB). By listening to the transmissions of terminal T (through channelC),
terminal T may acquire confidential information. If T wants to exchange a se-
cret key or guarantee the confidentiality of its transmitted data, it can exploit the
physical properties of the wireless channel to secure the information by coding

against terminal T .

strictest notion of security—calls for the combination of crypto-

graphic schemes with channel coding techniques that exploit the

randomness of communication channels to guarantee that the

messages sent cannot be decoded by a third party maliciously

eavesdropping on the wireless medium (see Fig. 1).

The theoretical basis for this information-theoretic approach,

which builds on Shannon’s notion of perfect secrecy [1], was

laid by Wyner [2] and later by Csiszár and Körner [3], who

proved in seminal papers that there exist channel codes guaran-

teeing both robustness to transmission errors and a prescribed

degree of data confidentiality. In the 1970s and 1980s, the im-

pact of these works was limited, partly because practical wiretap

codes were not available, but mostly because a strictly positive

secrecy capacity in the classical wiretap channel setup requires

the legitimate sender and receiver to have some advantage over

the attacker in terms of channel quality. Moreover, almost at the

same time, Diffie and Hellman [4] published the basic principles

of public-key cryptography, which was to be adopted by nearly

all contemporary security schemes.

More recently, there has been a renewed interest for infor-

mation-theoretic security, arguably due to the work of Maurer

[5], who proved that even when the legitimate users (say Alice

and Bob) have a worse channel than the eavesdropper (say Eve),

it is possible for them to generate a secret key through public

communication over an insecure yet authenticated channel. The

advent of wireless communications, which are particularly sus-

ceptible to eavesdropping because of the broadcast nature of the

transmission medium, has also motivated a closer analysis of

the secrecy potential of wireless networks. Hero [6] introduced

space–time signal processing techniques for secure communi-

cation over wireless links, and Goel and Negi [7], [8] investi-

gated achievable secret communication rates taking advantage
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of multiple-input multiple-output communications. Parada and

Blahut [9] established the secrecy capacity of various degraded

fading channels. Barros and Rodrigues [10] provided a detailed

characterization of the outage secrecy capacity of slow fading

channels, and they showed that fading alone guarantees that in-

formation-theoretic security is achievable, even when the eaves-

dropper has a better average signal-to-noise ratio (SNR) than

the legitimate receiver—without the need for public commu-

nication over a feedback channel or the introduction of artifi-

cial noise. The ergodic secrecy capacity of fading channels was

derived independently by Liang et al. [11], Li et al. [12], and

Gopala et al. in [13] and power and rate allocation schemes for

secret communication over fading channels were presented.

In spite of the numerous theoretical contributions, the gen-

eral problem of physical-layer coding and modulation schemes

for both reliable and secure communication over Gaussian and

fading wiretap channels has not received much attention. There

is still no general framework to draw on, even as we witness

sustained advances in the area of capacity-achieving coding and

modulation for Gaussian and fading channels [14], [15]. Much

of previous work for the wiretap channel stems from the early

work in [2] and [16] and is studied more extensively by Wei

[17], who shows how to encode secret information using cosets

of certain linear block codes. More recently, this general notion

has been extended by Thangaraj et al. [18], and later by Liu et al.

[19], where it was shown how low-density parity-check (LDPC)

codes can achieve the secrecy capacity of the erasure wiretap

channel asymptotically, and how this class of codes can be used

to provide perfectly secret communications at rates below the

secrecy capacity for other channels. Thangaraj et al. [18] also

showed how the joint problems of reliability and security in-

teract in a code and how capacity approaching codes for the

reliability problem can be used to meet the reliability and se-

curity requirements of the wiretap channel. Several authors re-

cently proved the existence of coding schemes for various gen-

eralized wiretap channel scenarios [20], [21]. In particular, the

possibility of coding methods based on LDPC codes was shown

in [22].

Since designing wiretap codes for Gaussian and fading chan-

nels appears to be beyond the capabilities of current coding tech-

niques, we focus on the somewhat less difficult problem of gen-

erating secret keys for secure communication over Gaussian and

wireless channels. The key generation/distribution problem in

wiretap channels falls under the general problem of key gen-

eration from correlated source outputs, which has been exten-

sively studied in an information-theoretic context [5], [23], [24].

The objective of secure key distribution is for Alice and Bob to

agree on a common -bit key about which Eve’s entropy is max-

imal. In key distribution, the bits can be unknown to Alice be-

fore transmission, which is in sharp contrast to secure message

communication where Alice has a -bit message that she wants

to communicate to Bob. Powerful tools, such as common ran-

domness, advantage distillation, and privacy amplification, were

developed in the context of secret key agreement over wiretap

channels [23], [25] and will be discussed, as they form the basis

for much of the practical secret key agreement protocol pro-

posed in this paper. Most key agreement protocols require some

level of interactive communication between Alice and Bob to

arrive at a common yet secret key [5], where the exchange of

information is by way of a parallel, error-free public channel

between Alice and Bob used during the key agreement phase

[26]. One key advance in this paper is that we focus exclusively

on protocols that require only one-way feedforward communi-

cation from Alice to Bob across the noisy wireless channel, thus

obviating the need for a noiseless, authenticated public channel.

B. Main Contributions and Organization of the Paper

In the following, we summarize the main contributions of this

work.

• Role of fading; we analyze the impact of quasi-static fading

on wireless channels in terms of information-theoretically

secure communication rates, and we highlight the benefit

of fading towards achieving nonzero secure communica-

tion rates.

• Opportunistic secret key agreement; based on the insight

provided by the aforementioned analysis, we propose an

opportunistic secret key agreement protocol, which ex-

ploits the fluctuations of the fading coefficients to generate

information theoretically secure keys.

• Coding algorithm; we present a practical algorithm for the

secret key agreement protocol based on multilevel coding

and LDPC codes.

• Performance evaluation; we introduce a set of reasonable

metrics to assess the performance of the protocol, and we

analyze the secure communication rates achievable by the

protocol in asymptotic regimes.

• Impact of channel state information; we extend the secret

key agreement protocol to allow for imperfect channel state

information (CSI), and we show its effectiveness in secure

key renewal.

The rest of this paper is organized as follows. In Section II,

we study the impact of fading on the secure communication

rates that are achievable over quasi-static wireless channels, thus

shedding light on how to design opportunistic secret key agree-

ment protocols. Section III describes one such opportunistic se-

cret key agreement protocol in detail and presents a reconcilia-

tion procedure based on multilevel coding and LDPC codes. In

Section IV, we analyze the performance of the protocol, both

analytically in asymptotic regimes and through simulation, and

we discuss the impact of imperfect CSI. Concluding remarks are

provided in Section V.

II. INFORMATION-THEORETIC SECURITY

OVER WIRELESS CHANNELS

A. Wireless System Setup

We consider the wireless system setup depicted in Fig. 2,

where a legitimate user (Alice) wants to send messages to an-

other user (Bob). Alice encodes a message block, represented

by the random variable (RV) , into a codeword, represented

by the RV , for transmission over the channel. Bob observes

the output of a discrete-time Rayleigh-fading channel (the main

channel) given by



BLOCH et al.: WIRELESS INFORMATION-THEORETIC SECURITY 2517

Fig. 2. Wireless wiretap channel setup.

where is a circularly symmetric complex Gaussian RV

with zero-mean and unit-variance representing the main channel

fading coefficient and is a zero-mean circularly sym-

metric complex Gaussian noise RV.

A third party (Eve) is also capable of eavesdropping on

Alice’s transmissions. Eve observes the output of an indepen-

dent discrete-time Rayleigh-fading channel (the eavesdropper’s

channel) given by

where denotes a circularly symmetric complex Gaussian

RV with zero-mean and unit-variance representing the eaves-

dropper’s channel fading coefficient and denotes a zero-

mean circularly symmetric complex Gaussian noise RV.

It is assumed that the channel input, the channel fading

coefficients, and the channel noises are all independent. It is

also assumed that both the main channel and the eavesdropper’s

channel are quasi-static fading channels, that is, the fading co-

efficients, albeit random, are constant during the transmission

of an entire codeword ( and

) and, moreover, independent from codeword to

codeword. This corresponds to a situation where the coherence

time of the channel is large.

The codewords transmitted by Alice are subject to the average

power constraint

and the average noise powers in the main channel and the eaves-

dropper’s channel are denoted by and , respectively.

Consequently, the instantaneous SNR at Bob’s receiver is given

by

and its average value corresponds to

Likewise, the instantaneous SNR at Eve’s receiver is given by

and its average value can be written as

Since the channel fading coefficients are zero-mean complex

Gaussian RVs and the instantaneous SNR , it follows

that is exponentially distributed, specifically

(1)

and

(2)

Let the transmission rate between Alice and Bob be

, the equivocation rate of Eve be

, and the error probability ,

where denotes the sent messages and denotes Bob’s

estimate of the sent messages. Notice that the secrecy condition

used here (and in [2], [3]) is weaker than the one proposed by

Maurer and Wolf in [27] or Narayan and Csiszár in [28], where

the information obtained by the eavesdropper is negligibly

small not just in terms of rate but in absolute terms. Maurer and

Wolf showed that the notions could be used interchangeably

for discrete memoryless channels, and this result was very

recently extended to the Gaussian case [29].

In general, one is interested in characterizing the rate-equiv-

ocation region, defined as the set of pairs such that

for all there exists an encoder–decoder pair satisfying

, , and . Here, however, we

focus on the secrecy capacity of the channel, which corre-

sponds to the maximum transmission rate such that .

B. Impact of Fading on Secure Communications

In this subsection, we study the impact of fading on the

secrecy capacity of this wireless system by considering two

metrics: average secrecy capacity and probability of outage of

secrecy capacity. We assume that Alice and Bob have perfect

knowledge of the main channel fading coefficient and that

Eve also has perfect knowledge of the eavesdropper’s channel

fading coefficient. These assumptions are realistic for the

slow-fading wireless environment under consideration: both

receivers can always obtain close to perfect channel estimates

and, additionally, the legitimate receiver can also feed back the

channel estimates to the legitimate transmitter. Moreover, we

assume that Alice and Bob also have partial knowledge of the

eavesdropper’s channel fading coefficient. This corresponds,

for instance, to the situation where Eve is another active user

in the wireless network (e.g., in a time-division multiple-access
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Fig. 3. Normalized average secrecy capacity versus  , for selected values of  . Thinner lines correspond to the normalized average secrecy rate capacity of
a Rayleigh-fading channel while thicker lines correspond to the secrecy capacity of a Gaussian wiretap channel. Normalization is performed with respect to the
capacity of an AWGN channel with SNR equal to  .

(TDMA) environment), so that Alice can estimate the eaves-

dropper’s channel during Eve’s transmissions.

Nevertheless, we shall see that the probability of outage of

secrecy capacity allows, in principle, to consider also situations

where no CSI about the eavesdropper’s channel is available to

Alice and Bob. This case corresponds to the situation where Eve

is a purely passive and malicious eavesdropper in the wireless

network.

We start by deriving the secrecy capacity for one realization

of a pair of quasi-static fading channels with complex noise and

complex fading coefficients. For this purpose, we recall the re-

sults of [30] for the real-valued Gaussian wiretap channel, where

it is assumed that Alice and Bob communicate over a standard

real additive white Gaussian noise (AWGN) channel with noise

power and Eve’s observation is also corrupted by Gaussian

noise with power , i.e., Eve’s receiver has a lower

SNR than Bob’s receiver. The input power is constrained ac-

cording to . For this instance, the se-

crecy capacity is given by

(3)

where

and

denote the capacity of the main channel and of the eaves-

dropper’s channel, respectively. From this result, we can derive

the instantaneous secrecy capacity for the wireless fading

scenario defined in Section II-A.

Lemma 1: The secrecy capacity for one realization

of the quasi-static complex fading wiretap-channel is given by

if

if
(4)

Proof: See Appendix A.

1) Average Secrecy Capacity: If perfect CSI of the eaves-

dropper’s channel is available to Alice, the coding scheme can

be adapted to every realization of the fading coefficients. There-

fore, in principle, any average secure communication rate below

the average secrecy capacity of the channel

is achievable.

Remark 1: The average secrecy capacity is easily computable

numerically. It can be shown (see the proof of Lemma 2 in Ap-

pendix C) that

(5)

where

(6)

and is the exponential-integral function.

Fig. 3 compares the average secrecy capacity of a quasi-static

fading channel to the secrecy capacity of a classic wiretap

Gaussian channel. Strikingly, one observes that the average

secrecy rate of the fading channel is indeed higher than or

close to the secrecy capacity of the Gaussian channel. One

also observes that, in contrast to the situation of the Gaussian

channel, the average secrecy rate of the fading channel is

nonzero even when the average SNR of the main channel is

lower than the average SNR of the eavesdropper’s channel.

These observations underline once again the potential of fading

channels to secure the transmission of information between two

legitimate parties against a possible eavesdropper.

2) Outage Probability of Secrecy Capacity: The secrecy ca-

pacity of a quasi-static Rayleigh-fading channel can also be

characterized in terms of outage probability.
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Proposition 1:

Proof:

where the last equality exploits the fact that

. The expressions of and are given

by (2), and the result follows from simple algebra.

Based on this result, it becomes immediately clear that for

average SNRs and on the main channel and the eaves-

dropper’s channel, respectively, the probability of strictly posi-

tive secrecy capacity is

(7)

It is also useful to express this probability in terms of parame-

ters related to user location. Using the fact that and

[31], we have that for distance between Alice

and Bob, distance between Alice and Eve, and path-loss ex-

ponent , the probability of strictly positive secrecy capacity is

(8)

Remark 2: When (or ) then

(or ). Conversely, when

(or ) then (or

). This confirms the intuition that greater

security is achieved when Eve is further away from Alice

than Bob. It is also interesting to observe that to guarantee the

existence of a nonzero secrecy capacity with probability greater

than then it follows from (7) and (8) that

In particular, a nonzero secrecy capacity exists even when

or , albeit with probability less than .

We are now ready to characterize the outage probability

i.e., the probability that the instantaneous secrecy capacity is

less than a target secrecy rate . The operational signifi-

cance of this definition of outage probability is twofold. First, it

provides the fraction of fading realizations for which the wire-

less channel can support a secure rate of bits/channel use.

Second, it provides a security metric for the situation where

Alice and Bob have no CSI about the eavesdropper. In this case,

Alice has no choice but to set her secrecy rate to a constant .

By doing so, Alice is assuming that the capacity of the wiretap

channel is given by . As long as , Eve’s

channel is worse than Alice’s estimate, i.e., , and the

wiretap codes used by Alice ensure perfect secrecy. Otherwise,

if then and information-theoretic security

is compromised.

Proposition 2: From Proposition 1, the outage probability for

a target secrecy rate is given by

(9)

It is illustrative to examine the asymptotic behavior of the

outage probability for extreme values of the target secrecy rate

. From (9) it follows that when

and when , we have that , such that it be-

comes impossible for Alice and Bob to transmit secret informa-

tion (at very high rates).

Also of interest is the asymptotic behavior of the outage prob-

ability for extreme values of the average SNRs of the main

channel and the eavesdropper’s channel. When , (9)

yields

and in a high-SNR regime , i.e., the outage

probability decays as . Conversely, when

and confidential communication becomes impossible.

Fig. 4 depicts the outage probability versus , for selected

values of and for a normalized target secrecy rate equal to

. Observe that the higher the lower the outage probability,

and the higher the higher the probability of an outage. More-

over, if , the outage probability decays as . Con-

versely, if the outage probability approaches one.

The relationship between outage and distance is highlighted in

Fig. 5.

The outage probability is also convenient to analyze the situ-

ation where Alice might only have imperfect estimates and

of the gains of the main and eavesdropper’s channels, re-

spectively. We can reasonably assume that Bob cooperates with

Alice, which allows her to obtain a perfect estimate of the main

channel fading coefficient. Hence, , where is

the true fading coefficient of the main channel. Unfortunately,

Eve may not be as helpful and Alice’s knowledge of the eaves-

dropper’s channel fading is more likely to be noisy. In order

to assess the performance of our protocol under more realistic

conditions, we model Alice’s estimate of Eve’s fading coeffi-

cient by

where is the true fading coefficient and is a zero-mean

complex Gaussian noise with known variance per dimension.

In the absence of additional information allowing Alice to

refine her estimation, we have to resort once again to outage
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Fig. 4. Outage probability versus  , for selected values of  and for a normalized target secrecy rate R = 0:1. Normalization is performed with respect to
the capacity of an AWGN channel with SNR equal to  .

Fig. 5. Outage probability versus d =d for selected values of  and for a normalized target secrecy rate R = 0:1. The path-loss exponent is � = 0:4 and
normalization is performed with respect to the capacity of an AWGN channel with SNR equal to  .

analysis. If Alice communicates by blindly assuming that her

estimation is accurate, an outage occurs whenever Alice under-

estimates the gain of the eavesdropper’s channel and attempts

to achieve a secure communication rate not supported by the

channel.

Proposition 3: The probability of outage is upper-bounded

by

(10)

Proof: See Appendix B.

This upper bound on the outage probability is a decreasing

function of the variance of the channel estimation error , so

that the higher the lower the outage probability. This coun-

terintuitive result stems from the fact that, at moderate values of

the variance of the channel estimation error, Alice tends to con-

sistently underestimate the true wiretap fading coefficient. Con-

sequently, she consistently attempts to communicate at secure

rates lower than what the true instantaneous secrecy capacity of

the channel would allow.

C. Opportunistic Secret Key Agreement

In principle, secure communications over wireless

quasi-static fading channels can be achieved with codes

designed for the Gaussian wiretap channel; however, although

the secrecy capacity of the Gaussian wiretap channel has

been fully characterized [30], the design of practical coding

schemes is still an open problem. In contrast, previous results

on secret key agreement by public discussion [5] and privacy
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Fig. 6. Flowchart of the opportunistic protocol.

amplification [25] support the idea that the generation of in-

formation-theoretically secure keys from common randomness

is a somewhat less difficult problem, suggesting a four-step

approach to secure communications: randomness sharing,

information reconciliation, privacy amplification, and secure

communication.

• Opportunistic randomness sharing. To share random-

ness, Alice transmits discrete random symbols, represented

by the RV , over the wireless channel. Bob and Eve

observe correlated symbols, represented by the RVs

and , respectively. In theory, as long as Eve and Bob do

not share the same information, the amount of secrecy that

Alice and Bob can distill from their common randomness

is nonzero [5]; however, we are interested in designing a

one-way secret key agreement protocol requiring commu-

nications from Alice to Bob only. Therefore, the common

randomness must be such that .

Clearly, this is the case if randomness is shared when the

secrecy capacity of the wireless channel is strictly posi-

tive. Therefore, provided perfect CSI of the eavesdropper’s

channel is available, Alice and Bob should opportunisti-

cally exploit the fluctuations of the instantaneous secrecy

capacity with time, and they should attempt to share

randomness only when is sufficiently large. Specif-

ically, in the remainder of the paper, we take the set of

fading realization for which an opportunistic

transmission of randomness is performed to be

(11)

The threshold ensures that a minimum amount of secrecy

can be distilled from the randomness while the threshold

ensures that the correlation between Alice and Bob’s data

is high enough. We shall see in Section III-B that the latter

condition is required for practical algorithms. Finally, let

us emphasize that, the behavior of the protocol is governed

by the fading realizations in the set and, therefore,

by a probability of outage, although we assume perfect

CSI of the eavesdropper’s channel. This connection will

be established explicitly in Section IV.

• Key generation: reconciliation and privacy amplifica-

tion. When the estimated fading realizations are such that

the secrecy capacity or main channel capacity are too small

(i.e., ), Alice and Bob communicate to

generate a secure key from the shared randomness previ-

ously obtained. Key generation is performed in two steps.

First, Alice and Bob “reconcile” their randomness, that is,

they correct the discrepancies in their random values by ex-

changing additional error-correction information. Second,

Alice and Bob distill secret bits from the corrected data

using a technique called privacy amplification. Both pro-

cedures are detailed in Section III.

• Secure communication. Alice and Bob can finally use

their secret key to transmit messages, using either a

one-time pad to ensure perfect secrecy or any symmetric

cypher.

The flowchart of the opportunistic protocol is shown in

Fig. 6. Note that the randomness sharing and privacy am-

plification steps rely on a perfect estimation of the fading

coefficients to calculate the instantaneous secrecy capacity and

correctly estimate the amount of secrecy to distill. We shall see

in Section IV that this assumption can be somewhat alleviated

to consider a more realistic situation where only imperfect CSI

(or a conservative estimate) is available for the eavesdropper’s

channel.

III. PRACTICAL ALGORITHMS FOR SECRET-KEY AGREEMENT

In this section, we describe in detail the various steps of the

protocol presented in the previous section. To ease the pre-

sentation, we present the protocol for a real Gaussian wiretap

channel, which corresponds to a single realization of the fading

coefficients and coding over one dimension only
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in the wireless setup of Section II. Its performance in the

quasi-static fading case is then evaluated in Section IV.

A. Secure Communication Protocol

The existence of common information between Alice and

Bob is the essential ingredient for secret key agreement. In a

wiretap scenario, Alice can generate this shared randomness by

transmitting a sequence of independent

and identically distributed (i.i.d.) realizations of a discrete RV

over the main channel, which provides Bob and Eve with se-

quences of correlated continuous RVs

and , respectively.

The channel noise introduces discrepancies between Bob’s

received symbols and Alice’s symbols , and Bob’s es-

timate of Alice’s symbols is erroneous.

Therefore, the first step is for Alice and Bob to correct the errors

before any further processing. In the context of secret key gen-

eration, this operation is called “reconciliation” and it requires

an additional exchange of information between Alice and Bob.

Little can be said in general about Eve’s knowledge of the rec-

onciliation messages, and we have to make the worse case as-

sumption that this information is fully available to Eve. Note that

reconciliation can be viewed as a special case of source coding

with side information, where Alice compresses her source sym-

bols and Bob decodes them with the help of correlated side

information . The Slepian–Wolf theorem [32] yields a lower

bound on the total number of bits which have to be ex-

changed

(12)

Practical reconciliation algorithms introduce an over-

head and require the transmission of

additional bits. Alternatively, the recon-

ciliation can also be characterized by its efficiency which is

defined as

(13)

and the number of bits required for reconciliation is therefore

(14)

At the end of the reconciliation step, Alice an Bob share with

high probability the common sequence with entropy

. The sequence is then compressed into a binary

sequence of length . As discussed in Section III-B, for our

application to the Gaussian wiretap channel, we use Multilevel

Coding (MLC) and Multistage Decoding (MSD) to reconcile

and correct the differences between and . Our algorithm is a

more efficient version of the information reconciliation method

of [26].

Privacy amplification allows Alice and Bob to extract a se-

cret key from the binary sequence . Its principle is to apply

a well-chosen compression function

to the bit sequence , such that the eavesdropper ob-

tains negligible information about the final -bit sequence .

In practice, this can be achieved by choosing at random within

a family of universal hash functions [33], as stated in the fol-

lowing theorem.

Theorem 1: [25, Corollary 4] Let be the

random variable representing the bit sequence shared by Alice

and Bob, let be the random variable representing the total

information about available to the eavesdropper, and let

be a particular realization of . If the Rényi entropy (of order

) is known to be at least and Alice and Bob

choose as their secret key, where is a hash func-

tion chosen at random from a family of universal hash functions

, then

(15)

The total information available to Eve consists of the se-

quence received during the first stage of the protocol, as

well as the additional bits exchanged during reconciliation, rep-

resented by the random variable . As shown in [34, Theorem

5.2], for any we have

with probability (16)

The quantity represents the number of bits in-

tercepted by Eve during reconciliation, which is at most

. Evaluating is in general

still difficult; however, conditioned on the typicality of the

bit sequence, and are equal

[27]. Hence, if is large

is a good lower bound of , and choosing

(17)

with guarantees that Eve’s uncertainty on the key is such

that

with probability

For our protocol, we use standard families of hash functions

[33], [35].

Finally, the secret key generated can be used to

secure Alice’s message, using either a one-time pad for perfect

secrecy or a standard secret key encryption algorithm. As shown

by (15), Eve’s uncertainty about the key can

be made as close to as desired.

Since the amount size of the key generated from common

randomness is proportional to bits per

symbol, we choose the random variable such that the mutual

information is maximized. Ideally, Alice should

choose achieving the capacity of the main

channel, which is possible only with continuous Gaussian

random variables; however, the discrete support and the

probability mass function of can always be optimized so that

approaches the channel capacity

with arbitrary precision. For instance, for a fixed size
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of the support, this optimization can be performed with the

algorithm proposed in [36]. Alternatively, a good approxima-

tion of the optimum can be obtained by expanding a uniformly

spaced support by a

factor , and using a Maxwell–Boltzmann probability

distribution

(18)

Remark 3: Even though is not a convex function

of and , the optimization seems to be relatively insensitive to

the initialization of the optimization. should be large enough

not only to ensure that approaches

within the required precision, but also to be compatible with the

reconciliation algorithm, as discussed in Section III-B.

Remark 4: In the above, we apply the results of [25], [32],

[34], which were only proven for discrete RVs, whereas

and are continuous RVs; however, it should be noted that

these continuous RVs only appear as conditioning RVs in ex-

pressions such as or where is discrete,

and therefore, the various results still hold. For instance,

can be quantized into a discrete RV such that ap-

proaches with arbitrary precision as , and the

Slepian–Wolf theorem still holds.

B. LDPC Code Construction for Gaussian Reconciliation

In this subsection, we develop an efficient reconciliation ap-

proach for the second step of the key agreement protocol. The

reconciliation of binary random variables has been extensively

studied and several efficient methods have been proposed [37],

however, little attention has been devoted to the practical rec-

onciliation of nonbinary random variables [26]. As stated pre-

viously, given a nonbinary RV with distribution given by

(18) and an RV obtained by sending through an addi-

tive Gaussian channel with noise variance , gain , and

power constraint , the goal is to generate a minimum amount

of (parity) information that Alice needs to send to Bob so that

can be recovered from .

1) Multilevel LDPC Codes for Slepian–Wolf Compression:

We assume here that Alice and Bob have access to the outcomes

and of in-

stances of the random variables and , respectively. Next,

Alice sends Bob additional information to help him recover

based on , and we assume without restriction that Bob re-

covers a binary description of . Each element of is uniquely

described by an -bit label . We introduce

labeling functions , ,

which associate to any element of the th bit of its binary

label. As suggested in [38], Alice generates the additional in-

formation for Bob by computing syndromes of the sequence

according to some binary codes.

Given the particular Gaussian correlation considered here,

the reconciliation of and is similar to a coded modula-

tion scheme, where Alice transmits her data over a Gaussian

channel using a pulse-amplitude-modulation scheme. Most

standard modulation techniques such as bit interleaved coded

Fig. 7. Principle of MLC/MSD reconciliation in the caseM = 2.

modulation (BICM) [39] or multilevel coding/multistage de-

coding (MLC/MSD) [40] schemes can therefore be adapted

for reconciliation. In the case of a BICM-like reconciliation,

a single syndrome is computed on an interleaved version of

the bit sequence , whereas in the case of

MLC/MSD-like reconciliation, the syndromes of the subse-

quences are computed

successively, as illustrated in Fig. 7. Because of the similarity

with a coded modulation scheme, the support of the RV

will be referred to as a constellation.

In what follows, we describe a reconciliation algorithm

adapted from the last scheme. This choice is motivated by the

fact that BICM is known to be suboptimal over the Gaussian

channel; hence, the reconciliation of the RVs and

with a BICM-like scheme always requires strictly more than

additional bits per symbol. Moreover, MLC/MSD

is based on several component codes and, therefore, it offers

more flexibility on the code design than BICM [41].

The proposed reconciliation algorithm is an MLC/MSD-like

reconciliation that uses binary LDPC component codes. Other

classes of codes, such as turbo codes, could be used as well;

however, LDPC have already proved their worthy performance

for error correction and side information coding [42]. More-

over, the belief-propagation algorithm can easily be general-

ized to account for the correlation between the subsequences

. We use the following

notation to describe the algorithm:

• ( , );

• represents the number of check nodes at the th level

( depends on the rate of the code used at level

and is discussed in Section IIII-B.2);

• denotes a message from the variable node

to the check node

of the th level in the th iteration, and similarly,

denotes a message from the check node to the variable

node of the th level in the th iteration;

• denotes the set of all check nodes connected to the

variable node of the th level, and denotes the set

of all variables nodes connected to the check node of

the th level;

• is the syndrome bit associated to the check node .

The levels are decoded successively, and the update equa-

tions of the messages in the th iteration of the belief propagation
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at a given level are

if
(19)

if
(20)

(21)

where we define as shown in (22) at the bottom of the

page. It can be shown that if the Tanner graphs of the LDPC

component codes do not contain cycles, the values con-

verge to the true a posteriori log-likelihood ratios

(23)

in a finite number of iterations. Finally, the decision on the value

of is made based on the sign of . In practice, even

when the Tanner graphs contain cycles, this belief-propagation

algorithm performs reasonably well.

The only difference between (19)–(21) and the standard up-

date rules of belief propagation is the term , which takes

into account both the intrinsic information available from the

observation as well as the extrinsic information available

from the decoding of the other levels . Equation (22) is

similar to the update rule of a single-input single-output (SISO)

demodulator; however, it should be noted that it involves the

joint probability (and not the conditional probability

) to account for the nonuniform distribution of the sym-

bols in . In theory, it should be sufficient to decode each level

only once, however, in practice, performing several iterations

between the levels might help improve the performance of the

overall scheme. These practical issues are discussed in Sec-

tion III-B.2. Finally, let us point out that the algorithms de-

scribed in [42]–[44] are special cases of this general algorithm.

2) Code Rate Assignment: The optimal code rates required

at each level are those enforced by MSD.

In fact, from the chain rule of entropy we have

(24)

Hence, the bits per symbol required for reconcilia-

tion can be obtained by disclosing successively

bits per symbol. The optimal code rate required at each level

is therefore

(25)

Equation (24) guarantees the optimality of the reconciliation

scheme for any labeling; however, the practical efficiency of the

reconciliation strongly depends on the mapping used. In fact,

the performance of the reconciliation relies on our ability to con-

struct capacity approaching codes for all levels , which might

not be possible if the required code rates are too low. We in-

vestigated several labeling strategies and realized that the nat-

ural binary mapping was the best compromise. This mapping

assigns to each symbol the -bit representation of

. Note that is the least significant bit

of the -bit representation. Fig. 8 shows the rates required for

a constellation of size , with symbols and probabilities given

in Table I, as a function of .

The optimal rates of the two uppermost levels are equal to

over a wide range of SNRs, which greatly simplifies code

design by effectively requiring only two codes. We carried

out extensive simulations, and observed that for any value

of the SNR, adjusting the constellations size to satisfy

requires at most two codes

while is maintained within a hundredth of a bit of its

maximum value.

The natural mapping has the property of preserving the sym-

metry on the probability distribution of the random variable

(26)

In the first stage of the algorithm, when the bits of the th

level are decoded, this property implies that the equivalent

channel seen by the bits is output-symmetric and that these bits

are also uniformly distributed. Consequently, the probability

of decoding error is the same for linear LDPC codes and

LDPC coset codes, which allows us to use linear LDPC codes

designed with the standard density evolution method [45]. This

property does not hold when decoding the following levels,

however, recent results suggest that linear LDPC codes may

still perform well with our coset coding scheme [46]. In order to

further simplify the code design, we use irregular LDPC codes

optimized for antipodal signaling over the AWGN channel as

(22)
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Fig. 8. Optimal code rates required for the constellation of Table I.

TABLE I
CONSTELLATION OPTIMIZED TO MAXIMIZE I(X;Y ) AT AN SNR OF 13 dB

component codes. The block length used is and the

Tanner graphs are randomly generated while avoiding cycles

of length two and four. Despite this long block length, the

performances of all constructed codes are still well below those

of their ideal capacity achieving counterparts, therefore, perfect

error correction is only achieved by lowering the code rates at

each level. Unfortunately, reducing the rate of all component

codes discloses far too many bits; however, as described below,

a careful choice of the code rate that takes into account multiple

iterations between levels makes it possible to maintain a good

level of efficiency.

Our practical code rate assignment is based on an analysis

of the decoding process using Extrinsic Information Transfer

(EXIT) charts [47]. Although a theoretical result sustaining

EXIT charts does not exist for the Gaussian channel, they

emerge as a convenient tool to predict the exchange of in-

formation between the demappers and decoders involved in

an iterative decoding scheme. The predictions are based on

how much extrinsic information can be computed from

a priori information for each demapper or decoder.

There is no closed-form expression neither for the EXIT curve

of the demapper characterized by (22) nor for the

LDPC EXIT curve for 100 iterations; however,

they can be obtained via Monte Carlo simulations assuming

Gaussian a priori information [47]. Examples of transfer curves

are shown in Fig. 9. We observed that low-rate codes gather

extrinsic information at a slower pace than high-rate codes,

therefore, we decided to correct all errors by reducing the rate

Fig. 9. Iterative decoding trajectory averaged over 10 realizations.

of the highest rate code and by using iterations between levels

to compensate for the poor performance of the lower rate code.

Let us now illustrate how code rates can be chosen based on

an example. Suppose that the SNR is 13 dB, for which a good

choice of the constellation is given in Table I. In theory, one

needs two ideal codes with rate and . Instead, we
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TABLE II
EFFICIENCY RESULTS

use a code with rate at the first level and look for a high

rate code that gathers enough extrinsic information to start the

decoding process and correct all errors with a priori informa-

tion of . As shown in Fig. 9, a code with rate is a

good compromise. It is interesting to note that despite the ap-

proximations made in the computation of the EXIT curves, the

real decoding trajectory is close to the expected behavior.

3) Efficiency Results: The results obtained for various values

of the SNR are summarized in Table II. For each SNR, the size

of the constellation , the position of constellation points, and

the probability distribution are optimized according to the pro-

cedure described earlier. This ensures that

bits and limits the number of required codes to two. Let

us point out that our method achieves good efficiency provided

that the following two conditions are met. First, the constellation

size required to maximize must be so that

two LDPC codes can be used. Second, the code rates required

cannot be too small, so that we can construct good finite length

codes. This limits the applicability of the algorithm to situations

where the SNR is above 2 dB.

IV. PERFORMANCE EVALUATION

A. Performance Metrics for Secure Communications

The information-theoretically secure rates of the secret key

agreement protocol can be assessed only if the keys are used in

conjunction with a one-time pad. However, in principle, the pro-

tocol could also be tailored to standard encryption algorithms

offering computational complexity. Although no information-

theoretic security can be guaranteed in this latter case, com-

bining a physical-layer key-generation technique with a sym-

metric encryption scheme can still be a valid way of enhancing

security. In fact, key-generation rates can be substantially higher

than those offered by public-key schemes; moreover, keys gen-

erated from the physical layer are independent from one another,

which ensures that the security of the system is re-initialized at

each round of key-generation. An attacker who gains access to

one key would be none the wiser once the key is renewed. Based

on these considerations, we evaluate the performance of the op-

portunistic protocol using the following metric.

Definition 1: The average1 -secure throughput of a

secret key agreement protocol is the average number of cypher-

text bits transmitted per channel use, when the cyphertext is ob-

tained with a symmetric encryption scheme such that the ratio

of secret key bits used per cyphertext bit is .

In the above definition, the secret key bits generated do not

contribute to since the keys themselves do not convey any

1The average is taken over all channel realizations.

information. The case corresponds to the situation where

one bit of secret key is used for each bit of cyphertext. Without

loss of generality, we can assume that the encryption scheme

is a one-time pad, and therefore, measures an average

communication rate with perfect security. When ,

loses all significance in terms of information-theoretically se-

cure communication rate; however, if is the key length re-

quired by an encryption scheme, the corresponding key renewal

rate is channel uses.

Unlike wiretap coding, where messages are transmitted di-

rectly and securely, secret key agreement requires additional

communication to distill a key and send an encrypted message.

Here, since we do not assume the existence of an additional

public and error-free channel, parts of the available communi-

cation rate have to be sacrificed for that purpose. We formalize

this constraint by introducing the following metric.

Definition 2: The average -communication throughput

is the average number of message bits per channel used

that can be transmitted in addition to the message required for

reconciliation and privacy amplification and to the messages

encrypted with the keys.

Clearly, and are not independent and, by defini-

tion, take only positive values. We are now ready to characterize

the maximum secure throughput of the protocol.

To simplify the notation, we use the following conventions.

For a given parameter depending on the fading real-

izations and a set of fading realizations, we let

denote the average of over . We also assume that

the coherence time of the channel is large enough, so that the

block length is large and the parameters , of privacy am-

plification can be neglected, and that Alice and Bob can always

communicate over the main channel at rate close to the capacity.

Proposition 4: The maximum secure throughput

achievable by the opportunistic secret key agreement protocol

is

subject to

(27)

where denotes the complement of in and

is imposed by the reconciliation algorithm.

Proof: When the fading realizations ,

opportunistic transmission is performed. From (17), we know

that the average number of key bits extractable per channel use

is
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and, therefore, the average secure throughput is

(28)

From (14), we also know that the average number of bits per

channel use that have to be transmitted for reconciliation is

(29)

The average number of bits per channel use required by privacy

amplification depends on the number of bits required to identify

a given universal hash function within its family. The minimum

size of a family of universal hash functions

is known to be at least [48], and identifying a

given function therefore requires the transmission of

bits; however, no hashing scheme is known to achieve this bound

for any , therefore, we consider the more realistic situation

where the identification requires the transmission of bits.

For instance, this can be achieved with the following family

[35]:

GF (30)

where is defined as distinct bits of the product

in a polynomial representation of GF . Consequently, the

average number of bits per channel use required by privacy am-

plification is

(31)

Based on our assumption that Alice and Bob can always com-

municate at a rate equal to the capacity of the main channel, the

average number of bits available for communication in addition

to the opportunistic transmissions is

(32)

Therefore, the communication throughput is obtained by sub-

tracting (28)–(31) from (32), and recalling that yields

the desired result.

B. Asymptotic Performance Analysis

Obtaining analytical expression for the optimal performance

of the opportunistic communication protocol is nontrivial on

several accounts. First, the simplification of the expression

in Proposition 4 requires the characterization of the tradeoff

between and (or ) for an arbi-

trary RV . For a given , we have observed that

the Maxwell–Boltzmann distribution of (18) yields a smaller

than most other distributions, but for every pair of

fading realizations the parameters and have to

be optimized, which makes the analytical characterization

intractable. Second, the optimal performance depends on the

maximization over the parameters and .

Therefore, the following analysis considers a (suboptimal)

protocol where the random symbols sent over the channel during

the opportunistic transmissions are chosen from a quadrature

amplitude modulation (QAM) constellation with uniform prob-

ability. We also assume that reconciliation is performed with

efficiency for all SNRs, and we fix . To simplify

the notation, we denote by .

Proposition 5 (Adapted From [49]): Let be the capacity

of a complex AWGN channel with input power constraint ,

and let . If the input symbols are chosen

uniformly at random in a square QAM constellation with

points and uniform spacing along each dimension, where is

optimized such that , then the mutual information

between the input and the output bounded as

with independent of

and the entropy of is bounded as

Using these inequalities in the equations of Proposition 4, and

noting that we obtain the

bounds shown in (33)–(35) at the bottom of the page, and

(36)

(37)

(38)

1) Secrecy-Limited Regime: This regime corresponds to the

situation where , and therefore, the secrecy capacity

over the wireless channel is mainly limited by the capacity of

the eavesdropper’s channel.

Theorem 2: In the secrecy-limited regime, the secure

throughput is bounded from below as

(39)

Proof: By definition of and we have

and when (40)

Hence, we can take in (35) and (35) is positive for

small enough.

Remark 5: This result is somewhat disappointing since the

lower bound can be negative; however, in practice, by using a

(33)

(34)

(35)
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Maxwell–Boltzmann distribution for the random symbols in-

stead of a uniform distribution, we can expect to be small.

Hence, the secure throughput achievable by the protocol in the

secrecy-limited regime should be close to the average secrecy

capacity of the channel.

2) Communication-Limited Regime: By opposition to the se-

crecy-limited regime, this regime corresponds to the case where

, and therefore the secrecy capacity is mainly limited

by the capacity of the main channel.

Theorem 3: In the communication-limited regime, the secure

throughput achievable by the opportunistic secret key agreement

protocol is such that

(41)

Moreover, this throughput is achievable by choosing such that

and in this case

when (42)

Before proving the result, we introduce a proposition that pro-

vides bounds for and depending on .

The proof of the proposition is given in Appendix C.

Proposition 6: The average value of the main channel ca-

pacity over the set can be bounded as follows:

(43)

Likewise, the average value of the wiretap channel capacity over

the can be bounded as follows:

(44)

Proof of Theorem 3: By using the inequalities of Proposi-

tion 6 in (35), we obtain the following lower bound on (34):

(45)

For any , to satisfy the constraint in the maximization of

Proposition 4, it suffices to take such that

(46)

For any , we can choose such that , and

for large enough. Since

when

the left-hand side of (46) converges to

when (47)

From Proposition 1, the right-hand side of (46) is equal to

(48)

therefore, we can always choose (independent of ) such that

(46) is satisfied when . Substituting such a in (43)

and (44), we have

and

when . Using this in (36) and (38), we obtain the

second part of the theorem

when (49)

The first part of the theorem follows by recalling that

and when .

Remark 6: For , the result of Theorem 3 states that,

in the communication-limited regime, the information-theoretic

secure rates achievable by the protocol scale as , and

therefore as . Hence, even if secret key agreement incurs

a rate penalty compared to the direct use of wiretap codes, this

penalty is a constant fraction of the average secrecy capacity.

C. Simulation Results

In this subsection, we use Monte Carlo simulations to es-

timate the secure throughput achievable by the protocol. As

shown in Table II, our reconciliation algorithm achieves an

efficiency above 90% as soon as the SNR of the main channel

is above 2 dB. Moreover, extensive simulations show that using

a (two-dimensional) Maxwell–Boltzmann distribution of the

random symbols during the opportunistic transmissions allows

to achieve

with (50)

Therefore, all simulations are obtained using these values for

, , and ; however, for simplicity we

set , , and we optimize over . This choice

of parameters provides only an approximation of the achiev-

able secure throughput, but this will be sufficient to confirm the

analytical results of the previous section, and, given the good

performance of the reconciliation algorithm presented in Sec-

tion III-B, we can expect the real performance to be quite close.

The average secure throughput for achievable by the

opportunistic protocol is shown Fig. 10. As expected, the pro-

tocol is in general suboptimal since most of the main channel ca-

pacity has to be sacrificed for key agreement. In the secrecy-lim-

ited regime, as predicted in the previous section, all additional

communications required for reconciliation, privacy amplifica-

tion, and secure communication can be performed when the se-

crecy capacity is zero. In this case, and the protocol in-

curs little loss of secure communication rate. On the contrary,

in the communication-limited regime, the secure rate achievable
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Fig. 10. Average secure throughput (thin lines) and average secrecy capacity (thick lines). All throughputs are normalized to the channel capacity of a Gaussian
channel with same average SNR  .

Fig. 11. Secure throughput for various values of �.

by the protocol are much lower than the secrecy capacity of the

channel.

Fig. 11 shows the secure throughputs obtained for different

values of . For small values of , the difference in behavior of

the protocol in the secrecy-limited and communication-limited

regimes is amplified, and the increase of the secure throughput

with the changes radically as soon as must be used.

Strictly speaking, the protocol does not provide any informa-

tion-theoretic security in this regime, since the keys generated

are used to encode several bits. Nevertheless, this result shows

that the protocol provides an efficient and potentially fast way of

exchanging information-theoretically secure keys. In this mode

of operation, it could be tailored with standard secure encryp-

tion algorithms (such as AES with 192 bits) to strengthen the

current level of security of wireless communications.

D. Mitigating the Effects of Imperfect CSI

In this last subsection, we consider the situation described in

Section II, where Alice has perfect CSI about the main channel

fading coefficient, but only partial CSI about the eavesdropper’s

channel fading coefficient. As mentioned in the preceding sub-

section, Alice has little choice but to apply the opportunistic pro-

tocol blindly, and the keys generated have length

(51)

Unfortunately, the lower bound on Eve’s Rényi entropy is in

reality

(52)
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Fig. 12. Impact of imperfect CSI. Thicker lines represent the estimated average secrecy capacity. The diamond lines (�) represent Alice’s targeted average se-
cure throughput with her imperfect CSI, the square lines ( ) and circle lines (�), respectively, represent the true average secure throughput and average leaked
throughput. All throughputs are normalized to the channel capacity of a Gaussian channel with same average SNR  .

Therefore, from Theorem 1, Eve’s uncertainty on the final key

is

(53)

Clearly, when , Alice unnecessarily re-

duces her secure throughput, but this does not compromise the

secrecy of the key; however, when ,

Alice underestimates the information leaked to the eavesdropper

and subsequently generates keys whose entropy is not max-

imum.

Until now, we have assumed that the parameter was chosen

such that . To mitigate the effect of imperfect CSI, let us

now consider the situation where and let use define

From (53), we see that as long as ,

the lower bound on approaches exponen-

tially as .

The introduction of imperfect CSI and the use of the pa-

rameter slightly modify the expression of communication

throughput given in Proposition 4. is now given by

subject to

(54)

Contrary to the situation where perfect CSI is available, the

average secure throughput defined above is not sufficient to

characterize the security of the system. In fact, it only represents

Alice’s targeted secure communication rate, which might be

different from the true secure communication rate. Hence, we

need to introduce the true average secure throughput and

the average leaked throughput defined as

(55)

(56)

where

(57)

(58)

These expressions cannot be computed in close form but can be

obtained with Monte Carlo simulations. We show in Fig. 12 the

results obtained for an estimation noise variance of and

when and (i.e., the safety parameter

).

Interestingly, as already pointed out in Section II-B2, when

Alice has a bad estimation of the eavesdropper’s channel fading

coefficient, and if the main channel SNR is large, most of

the keys generated are still secure. This unexpected behavior

is created by the asymmetry of the distribution ,

which forces Alice to underestimate the eavesdropper fading

coefficient most of the time. On the other hand, when the esti-

mation of the wiretap CSI improves, the impact of imperfect

CSI is somewhat mitigated by increasing the parameter ,

which simply plays the role of a safety margin and reduces

the length of the generated keys. By increasing , the average

leaked throughput can be made arbitrarily small, at the cost of a

decreased secure throughput. Fig. 13 shows the results obtained

for . When , the secure throughput loss

is negligible, however, this slight increase in suffices to
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Fig. 13. Mitigation of imperfect CSI. Thicker lines represent the estimated average secrecy capacity. The diamond lines (�) represent Alice’s targeted average
secure throughput with her imperfect CSI, the square lines ( ) and circle lines (�), respectively, represent the true average secure throughput and average leaked
throughput. All throughputs are normalized to the channel capacity of a Gaussian channel with same average SNR  .

ensure the secrecy of the keys generated. The mitigation is less

effective when , and a further increase of would be

necessary to reduce the leaked throughput.

V. CONCLUSION

A. Concluding Remarks

We proposed a protocol based on one-way communications

providing secure communication over quasi-static wireless

channels. This scheme opportunistically exploits the fluctua-

tions of the fading coefficients to generate information-theo-

retically secure keys, which are then used to encrypt messages

prior to transmission. We analyzed the security provided by the

protocol in the idealized case where channel state information

about the wiretap channel is available, but also showed that

secure communication is still achievable in the more realistic

situation where only imperfect channel state information can

be obtained.

The performance and complexity of the proposed scheme

rely mainly on those of the reconciliation algorithm. Our

LDPC-based reconciliation method is near-optimal over a wide

range of SNRs; however, the memory requirements and the

complexity might still be too high for embedded or low-cost

systems. In future work, we will investigate new code con-

structions that reduce the hardware requirements while still

maintaining a similar level of performance.

Let us finally mention that even though the encryption used

in our scheme could be performed with a one-time pad to ensure

perfect secrecy, the protocol may be of higher practical interest

if combined with efficient symmetric cyphers (e.g., DES, AES)

to achieve high communication rates.

B. Information-Theoretic Versus Computational Security in

Wireless Networks

Due to the many fundamental differences between classical

cryptography and information-theoretic security, it is useful to

recognize what those differences are and how they affect the

choice of technology in a wireless scenario. It is fair to state that

classical cryptographic security under the computational model

offers the following advantages:

• there are so far no publicly known, efficient attacks on

public-key systems such as RSA, and hence they are

deemed secure for a large number of applications;

• very few assumptions are made about the plaintext to be en-

coded, and security is provided on a block-to-block basis,

meaning as long as the cryptographic primitive is secure,

then every encoded block is secure;

• authentication can be achieved by means of public-key

cryptography (e.g., RSA);

• systems are widely deployed, technology is readily avail-

able and inexpensive.

On the other hand, we must consider also the following disad-

vantages of the computational model:

• security is based on unproven assumptions regarding the

hardness of certain one-way functions; therefore, systems

are insecure if assumptions are wrong or if efficient attacks

are developed;

• in general, there are no precise metrics or absolute compar-

isons between various cryptographic primitives that show

the tradeoff between reliability and security as a function of

the block length of plaintext and cyphertext messages—in

general, the security of the cryptographic protocol is mea-

sured by whether it survives a set of attacks or not;

• in general, classical ciphers are not information-theo-

retically secure if the communication channel between

friendly parties and the eavesdropper are noiseless, be-

cause the secrecy capacity of these application layer

systems is zero;

• state-of-the art key distribution schemes for wireless net-

works based on the computational model require a trusted

third party as well as complex protocols and system archi-

tectures [50].
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The advantages of physical-layer security under the informa-

tion-theoretic (perfect) security models can be summarized as

follows:

• no computational restrictions are placed on the eaves-

dropper;

• very precise statements can be made about the information

that is leaked to the eavesdropper as a function of channel

quality and block length of the messages [25];

• physical-layer security as been realized in practice through

quantum key distribution [51];

• in theory, suitably long codes used for privacy amplifica-

tion can get exponentially close to perfect secrecy [25];

• instead of distributing keys it is possible to generate

on-the-fly as many secret keys as desired.

In contrast, we have to take into consideration the following

disadvantages of information-theoretic security:

• information-theoretic security is an average-information

measure. The system can be designed and tuned for a spe-

cific level of security—e.g., with very high probability a

block is secure, but it may not be able to guarantee secu-

rity with probability ;

• it requires assumptions about the communication channels

that may not be accurate in practice. In many cases, one

would make very conservative assumptions about the chan-

nels. This is likely to result in low secrecy capacities and

low secret key or -message exchange rates, yielding high

security and reliability, yet at low communication rates;

• a few systems (e.g., quantum key distribution) are deployed

but the technology is not as widely available and is expen-

sive;

• a short secret key is still required for authentication [5].

In light of the brief comparisons above, it is likely that any

deployment of a physical-layer security protocol in a classical

system would be part of a “layered security” solution where

security is provided at a number of different layers, each with

a specific goal in mind. This modular approach is how virtually

all systems are designed today, so in this context, physical-layer

security provides an additional layer of security that does not

exist in today’s communication systems.

APPENDIX A

PROOF OF LEMMA 1

Suppose that both the main and the wiretap channel are com-

plex AWGN channels, i.e., the transmit and receive symbols are

complex and both additive noise processes are zero mean circu-

larly symmetric complex Gaussian. The power of the complex

input is constrained according to .

Since each use of the complex AWGN channel can be viewed as

two uses of a real-valued AWGN channel [52, Appendix B], the

secrecy capacity of the complex wiretap channel follows from

(3) as

per complex dimension.2

2Alternatively, this result can be proven by repeating step by step the proofs
of [30] using complex-valued random variables instead of real-valued ones.

To complete the proof, we introduce complex fading coeffi-

cients for both the main channel and the eavesdropper’s channel,

as detailed in Section II-A. Since in the quasi-static case and

are random but remain constant for all time, it is perfectly

reasonable to view the main channel (with fading) as a complex

AWGN channel [52, Ch. 5] with SNR and

capacity

Similarly, the capacity of the eavesdropper’s channel is given by

with SNR . Thus, once again based on (3) and

the nonnegativity of channel capacity, we may write the secrecy

capacity for one realization of the quasi-static fading scenario

as (4).

APPENDIX B

PROOF OF PROPOSITION 3

An outage event occurs whenever Alice overestimates the

amount of secrecy she can distill from an opportunistic trans-

mission. Therefore

Now, can be written as follows:

where is the probability density function of (see (2))

and is the probability density function of condi-

tioned on . This probability density function is noncentral

with two degrees of freedom, i.e.,

where is the zeroth-order modified Bessel function of the

first kind [53]. Thus, the probability reduces to

where is the generalized Marcum function [53].

Using standard results for integrals involving the generalized

Marcum function [54], the upper bound to the outage proba-

bility reduces to

(59)
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APPENDIX C

PROOF OF PROPOSITION 6

The main channel capacity averaged over the realization in

can be expanded as follows:

(60)

(61)

(62)

(63)

where

and

To obtain simple bounds of this expression, we introduce a

simple lemma.

Lemma 2: , we have

(64)

Proof: The upper bound in the lemma follows by inte-

grating the left-hand side by parts as

(65)

where is the exponential-integral function. The result fol-

lows by bounding the exponential-integral function as

. The lower bound follows by noting that

for , therefore

(66)

By applying the lemma on each of the two terms of the right-

hand side, we obtain

(67)

Likewise, by reversing the bounds we obtain

(68)

(69)

(70)

To bound the wiretap channel capacity averaged over the re-

alizations in we write

(71)

(72)

(73)

(74)

The result follows by noting that for any

(75)
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