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Abstract: As the key component of aero-engines and industrial gas turbines, a bearing’s working
temperature at high speed is close to 300 °C. The measurement of an engine bearing’s temperature
is of great significance to ensure flight safety. In this study, we present a wireless LC conformal
temperature sensor for bearing temperatures, which integrates silver on the bearing surface in
situ through a screen-printing process. This process makes Ag film (9912-K FL) firmly adhere to
the bearing surface and realizes wireless measurements for bearing temperatures in situ. A high-
temperature holding experiment of the prepared sensor was conducted, and the results showed
that the sensor can work stably for 10 h at 300 °C. We tested the designed wireless LC conformal
temperature sensor at 20–270 °C. The results showed that the proposed temperature sensor attained
as good accuracy and stability in the temperature range 20–270 °C. The sensitivity of the temperature
measurements was 20.81 KHz/°C when the bearing rotateds, the maximum repeatability was 0.039%,
the maximum uncertainty was 0.081%, and the relative error was stable within 0.08%.

Keywords: Ag film (9912-K FL); wireless sensor; bearing temperature; screen-printed; tempera-
ture sensor

1. Introduction

The temperature change of a bearing directly affects its lifespan and stability; thus,
bearing condition monitoring technology is of great significance to the fault prediction
and normal operation of engines [1–6]. Bearings are an important rotating component
of engines. An engine bearing must bear a temperature of 150 °C. In the future, engine
bearings are expected to run stably above 250 °C to improve flight efficiency [7–10]. To pre-
vent disasters caused by structural failure due to high temperatures, sensors must measure
high temperatures in harsh environments; for example, for heat resistance monitoring of
spacecrafts at high temperatures, high-temperature testing of rotary bearings, and rotation
testing of high-speed shafts of aircraft engines, disc brakes, and jet engines [11–13]. The
integration of wireless passive sensors on dynamic balance bearings for telemetry is a
current development trend of bearing parameter measurement [14–16], which is integrated
on a dynamically balanced ball bearing and operates in a test setup, simulating the operat-
ing conditions of a dual compressor turbocharger [17]. Wireless micro electromechanical
systems (MEMS) temperature sensors, with a high working temperature, constant sensi-
tivity, and high manufacturing yield, are widely used in measurement systems [18–20].
Scott et al. [21] introduced a wireless MEMS dual piezoelectric wafer temperature sensor
that can dynamically test the actual bearing temperature value of helicopter bearings at
different speeds.

Wang [4] reported a fiber Bragg grating (FBG)-based sensor for the simultaneous
measurement of a train bearing’s temperature. The sensor had a high temperature sensitiv-
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ity of 35.165 pm/°C at a temperature range 20–100 °C. Henao-Sepulveda [5] presented a
wireless technique to directly monitor the temperature of bearing cages at a temperature
range 20–80 °C. The wireless transmission of signals was achieved using RF technology.
Draney [8] used a miniaturized prototype and an oscillator/modulation-based sensing
approach. By making the oscillator components temperature-dependent, temperature
data were frequency modulated onto the oscillator signal. Janssens [22] proposed a novel
automatic fault detection system using infrared imaging, focusing on bearings of rotating
machinery. The system was able to distinguish between eight different conditions with
an accuracy of 88.25%. Joshi [23] proposed two temperature telemeters as a condition-
monitoring instrument for bearings. They can reflect the change in bearing cage tempera-
ture with rotational speed and torque, and the maximum temperature can reach 100 °C.
Yan [24] proposed a wireless temperature sensor based on printed circuit board (PCB)
materials. The temperature-sensitive structure of the sensor comprised a dielectric-loaded
resonant cavity and a patch antenna for the transmission of temperature signals. Zhou [25]
proposed a measurement method for the temperature distribution of the inner and outer
rings of a bearing based on the fiber Bragg grating, and a bearing test rig was established
to measure the temperature of the bearing rings at multiple points.

The commonly used wireless temperature sensing systems (temperature sensors)
include surface acoustic waves (SAW), microwave wireless temperature sensors, and in-
ductance and capacitance (LC) [26–30]. The temperature sensor based on the resonant
inductance capacitance (LC) circuit did not require a power supply or physical lead con-
nection [31,32]. Because of the small size and stability of LC sensors, they are especially
suitable for short-distance transmission tests in harsh industrial environments. Thus far,
several studies have successfully promoted wireless LC-based sensing technology and
expanded its applications in many fields [33–36]. MD [37,38] introduced a new type of
high temperature dynamic viscosity sensor that is used for on-site condition monitoring of
engine lubricating oil. The sensor is also applicable for RF ball bearing cage temperature
telemeters in the high-speed turbocharger, in which the temperature-dependent LC energy
storage circuit is attached to the bearing cage, and the fixed receiving coil of the axial
displacement is used for wireless monitoring.

In this study, a wireless LC conformal temperature measurement sensor was demon-
strated for the temperature measurement of bearings. Through a screen-printing process,
the Ag film was firmly integrated on the bearing surface in situ. The stable electrical prop-
erties of the Ag film at high temperatures allowed the sensor to maintain a high accuracy
and stability in the test temperature range of 20–270 °C. The high temperature rotating
experimental platform also verified the superior performance of the designed wireless LC
conformal temperature sensor.

2. Experiment
2.1. Materials

ESL 9912-K FL is a fine-line printing silver conductor with a wide range of applica-
tions, such as chip resistors, consumer hybrids, potentiometers, and heaters. It exhibits
excellent line resolution printing with 75 micrometer wide lines. Due to the wide firing
temperature range, this conductor may be processed onto a variety of substrates including
glass, porcelain enameled steel (PES), alumina, and special ceramics. The levelling time of
ESL 9912-K FL is 5–10 min at 20 °C and the drying time is 10–15 min at 125 °C. Furthermore,
the firing temperature is 850 °C on alumina/beryllia/ceramics.

2.2. In Situ Fabrication of a Wireless LC Conformal Temperature Sensor

As shown in Figure 1, preparation of the wireless LC conformal temperature sensor
included the following steps:

Design the pattern and size of the metal screen for printing, with 325 metal screen
meshes, an aperture size of 45 microns, and a thickness of 20 microns;
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A. Clean the test bearing surface with alcohol and a dust-free cloth. Integrate silver
paste (9912-K FL) in situ on the surface of the inner ring of the test bearing using the
screen-printing process to form a spiral inductor with an inner diameter of 20 mm,
outer diameter of 24 mm, line width of 1 mm, and a line pitch of 1 mm, with two
turns in total;

B. Place the test bearing into a muffle furnace for sintering and maintain 850 °C for
30 min;

C. After completion, take out the bearing and let it stand for cooling, and use a multimeter
to measure whether the coil is conducting;

D. Connect the test bearing with the ceramic rod using a high-temperature-resistant
non-conductive adhesive and place the connected test bearing and ceramic rod on the
heating table at 80 °C for 2 h followed by 150 °C for 3 h. The ceramic rod is 20 mm
in diameter and 350 mm in length;

E. Construct the antenna using 1 mm diameter copper wire; the antenna diameter is ap-
proximately 40 mm, and the antenna utilizes an SMA-KE deflection angle connector;

F. Connect one end of the ceramic rod to the coupling of the motor and the other end to
the supporting bearing.
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Figure 1. Fabrication of a printed temperature sensor using screen printing.

3. Results and Discussion

The test bearing after the sintering of the Ag film is shown in Figure 2a. The film
thickness was 13.64 µm, as shown in Figure 2b. The Ag film was tightly connected to
the bearing base, as shown in Figure 2c. To study the microstructure of the prepared
LC temperature sensor, the characteristics of Ag Films under different high temperature
holding conditions were observed. The surface morphology and microstructure of Ag
films after high temperature sintering were observed using scanning electron microscopy
(SEM), as shown in Figure 3. Figure 3a shows the SEM images of the Ag film at different
magnifications. The Ag film prepared by screen printing was formed by bonding ultrafine
silver powder with an organic binder. In the sintering process, the organic components in
the film gradually volatilized, and the ultrafine silver powder combined at high temperature
to form a dense network structure. Figure 3b shows the SEM image of the Ag film after
long-term high-temperature testing. With the increase in test duration, the gap between
the Ag grains decreased and the grains fused better, forming a denser Ag film. The crystal
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structure is shown in the X-ray diffraction (XRD) diagram in Figure 4. Through the analysis
of the mode using the Origin software, the diffraction peak was confirmed at 2θ. The
purity of the silver formation at 38.2◦, 44.4◦, 64.6◦, and 77.59◦ corresponded to the (111),
(200), (220), and (311) planes of the face-centered cubic (FCC) structure, respectively. In
addition, it was confirmed that at 2θ, the purity of alumina formed at 25.62◦, 35.21◦, 52.64◦,
57.60◦, 61.41◦, and 68.34◦ corresponded to the (110), (112), (220), (132), (332), and (130)
planes of the face-centered cubic (FCC) structure, respectively. Moreover, comparing the
XRD patterns at 3 h and 10 h of sintering, the purity levels of silver and alumina were
essentially unchanged. This demonstrates that the metallic silver can function stably at a
high temperature for an extended duration [39]. In addition, the sensor was characterized
using an X-ray diffractometer (Japan Rigaku Miniflex), in which the scanning angle ranged
from 20◦ to 80◦, the scanning speed was 2 ◦/min, and the test target was copper.
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To verify the performance of the wireless LC conformal temperature sensor, we con-
structed a platform for the wireless measurement of bearing temperatures based on an
LC temperature sensor, which mainly comprised a motor, antenna, test bearing, support
bearing, thermocouple, heating plate, temperature control panel, and network analyzer,
as shown in Figure 5a. The antenna, test bearing, and supporting bearing were placed in
a muffle furnace, and the motor was kept at room temperature. The muffle furnace con-
trolled the ambient temperature of the antenna and test bearing, and the network analyzer
(starting frequency of 135 MHz, cut-off frequency of 160 MHz, and 2000 measurement
points) was used to measure the coupling between the antenna and test bearing at different
temperatures and rotating speeds. The signal was transmitted wirelessly by testing the
electromagnetic coupling between the antenna and LC circuit. As the temperature varied,
the capacitance changed, which in turn led to changes in the characteristic frequency of
the LC equivalent circuit [40–42]. The antenna and bearing transmitted signals wirelessly
through the electromagnetic coupling between coils, as shown in Figure 5b. The coupling
between the antenna and coil at different angles was simulated using the ANSYS software,
as shown in Figure 5c. The simulation results showed that coupling at different angles had
almost no influence on the characteristic frequency of the antenna, which indicated that
the designed wireless LC conformal temperature sensor can realize wireless temperature
measurement in a rotating environment. When the sensor was coupled with the antenna,
the reflection coefficient (Γ) at the antenna end, S11 parameter, impedance (Zin) and sensor
resonance frequency ( f ) can be expressed as Equations (1)–(4) [43,44]. The circuit equivalent
model of the sensor is shown in Figure 5b, where Ra, La, and Ca represent the equivalent
resistance, equivalent inductance, and equivalent capacitance of the antenna equivalent
circuit, respectively. Rs , Ls , and Cs represent the equivalent resistance, equivalent induc-
tance, and equivalent capacitance of the LC equivalent circuit, respectively. M represents
the mutual inductance coupling coefficient between the two circuits.

Γ =
Zin − Z0

Zin + Z0

∣∣∣∣
Z0=50Ω

(1)

S11 = 20 log(|Γ|) (2)
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Zin = Ra + jωLa +
(ωM)2

Rs + jωLs − j
ωCs

(3)

f =
1√

LsCs
(4)
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Figure 5. (a) Wireless LC temperature sensor and its application in a wireless measurement system
of bearing temperature; (b) wireless transmission of temperature signal; (c) coupling between the
antenna and coil at different angles simulated using ANSYS.

According to Equations (1)–(4), a change of ambient temperature in the sensor will
lead to a change of the characteristic frequency and S11. Thus, by analyzing the frequency
and S11 parameter, the temperature signal in the high temperature rotational environment
can be wirelessly measured. The S11–frequency parameter curve of the antenna terminal
at different rotating speeds at room temperature is shown in Figure 6a. By observing and
analyzing the graph, it can be seen that the frequency and S11 parameter fluctuated slightly
with the rotating speed, which proves that the proposed wireless LC conformal temperature
sensor is effective in the wireless temperature measurement of bearings. We measured the
temperature at 20–270 °C at 0–60 rpm on the developed test platform and obtained the
S11–frequency parameter curves of the antenna at different temperatures using the network
analyzer, as shown in Figure 6b. By observing the change law of the curve, it can be seen
that the characteristic frequency of the antenna decreased gradually and the S11 parameter
increased gradually with an increase in temperature.
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The frequency variation with temperature at different rotating speeds was measured.
The fitting curve of discrete points of the frequency variation with temperature at different
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rotating speeds is shown in Figure 7a. Variation of the S11 parameter with temperature at
different rotating speeds was also measured. The fitting curve of discrete points of the S11
parameter with temperature at different rotating speeds is shown in Figure 7b. It can be seen
from the graph that the frequency variation with temperature demonstrated good linearity
at different rotational speeds, while S11 had poor linearity with temperature. In addition,
the sensitivity of the frequency variation with temperature was k = 20.68 kHz/°C, and
the sensitivity of the S11 parameter variation with temperature was k = 0.0067 dB/°C.
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The frequency at different rotational speeds and the stability of S11 with temperature
were analyzed, as shown in Figure 8. From the observation curves, it can be seen that
frequency and S11 were stable with a change in temperature in the static state (0 rpm),
and the stability of frequency was better than that of S11. In a rotating environment
(60 rpm), the frequency maintained good stability with a change in temperature, while S11
showed significant fluctuations with a change in temperature. Therefore, in this study, we
characterized the temperature by analyzing the frequency change.

The nonlinear error (en) of the sensor was analyzed, and five groups of tests were
conducted at different rotational speeds within 20–270 ◦C, as shown in Figure 8. Linearity is
an important index used to describe the static characteristics of a sensor, and the nonlinear
error (en) was calculated based on a fitted straight line. By considering the linear fitting
of data as a reference line, the nonlinear error of the sensor at different rotational speeds
was analyzed. As can be seen from Figure 9, the frequency maintained good linearity with
a change in temperature at different rotational speeds, and the sensitivity of the sensor
increased slightly with an increase in rotational speed.

Subsequently, the repeatability (eR) and uncertainty (U) of the sensor were analyzed,
and five groups of tests were conducted at different rotational speeds within 20–270 ◦C, as
shown in Figures 10 and 11. The repeatability and uncertainty represented the dispersion
and randomness of the sensor test results, which were important indices to determine
whether the sensor operated stably over time. The sensor’s repeatability error (eR) was
expressed as a percentage comparing the maximum non-repetition output error (∆max)
and full-scale output (yES). Uncertainty (U) included Class A uncertainty (UA) and Class
B uncertainty (UB). UA was caused by a measurement error, whereas UB was caused by
an instrument error. The maximum repeatability (eR) was 0.039 %, and the maximum
uncertainty (U) was 0.081 % (170 °C, 0 rpm). The repeatability (eR) and uncertainty (U)
values of several groups of temperature tests at different rotational speeds did not fluc-
tuate noticeably with an increase in rotational speed, which indicates that the rotational
speed caused little interference to the wireless temperature measurement and proved
the effectiveness of the proposed wireless LC conformal temperature sensor in a rotating
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environment. At the same speed, repeatability (eR) and uncertainty (U) did not change
noticeably with an increase in temperature, which indicates that the proposed wireless LC
conformal temperature sensor maintained good stability throughout the temperature range
in a rotating environment.
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Further, the relative error of frequency variation with temperature at different rota-
tional speeds was analyzed, as shown in Figure 12. The relative error of frequency was
stable within 0.08 % for increasing temperature and rotational speed. The proposed wire-
less LC conformal temperature sensor had a high measurement accuracy throughout the
temperature range and was not affected by rotational speed.

In order to further prove the stability of the designed sensor in long-term high-
temperature measurement, we carried out a high-temperature holding experiment at
300 ◦C for 10 hours and recorded the frequency characteristic curve of the antenna every
hour with a network analyzer. As shown in Figure 13, the frequency still kept good stability
under long-term high-temperature measurements, while S11 gradually increased with time.
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4. Conclusions

In this study, we proposed a wireless measurement method for a conformal tempera-
ture sensor for bearing. The Ag film was firmly integrated on the bearing surface in situ
using a screen printing process. The temperature signal was transmitted wirelessly through
electromagnetic coupling between the antenna and inductance coil. A change in the test
bearing’s temperature led to a change in the characteristic frequency of the antenna, which
was measured using a network analyzer. The high-temperature holding experiment was
conducted to verify whether the sensor could function stably in high-temperature environ-
ments. The results showed that the proposed wireless LC conformal temperature sensor
could function stably at 300 °C for 10 h. The LC temperature sensor was tested at 20–270 °C
with a high temperature rotating experimental platform. The results showed that the sensor
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achieved good linearity and accuracy in under bearing rotation. The sensitivity of the
sensor was 20.81 KHz/°C, and the relative error was kept within 0.08 %. The sensor could
function stably during the test, with a maximum repeatability of 0.039 % and maximum
uncertainty of 0.081%. Compared with previous wireless bearing temperature measure-
ment systems, the wireless LC conformal temperature sensor proposed in this study had a
higher temperature measurement range and accuracy and successfully functioned under
the measured conditions for an extended period.
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