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Abstract—Link scheduling is a fundamental problem in multi-
hop wireless networks because the capacities of the communica-
tion links in multihop wireless networks, rather than being fixed,
vary with the underlying link schedule subject to the wireless
interference constraint. The majority of algorithmic works on
link scheduling in multihop wireless networks assume binary
interference models such as the 802.11 interference model and the
protocol interference model, which often put severe restrictions
on interference constraints for practical applicability of the link
schedules. On the other hand, while the physical interference
model is much more realistic, the link scheduling problem under
physical interference model is notoriously hard to resolve and
been studied only recently by a few works. This paper conducts
a full-scale algorithmic study of link scheduling for maximizing
throughput capacity or minimizing the communication latency
in multihop wireless networks under the physical interference
model. We build a unified algorithmic framework and develop
approximation algorithms for link scheduling with or without
power control.

Index Terms—Link scheduling, physical interference model,
maximum (concurrent) multiflow, approximation algorithm,
maximum independent set.

I. INTRODUCTION

Link scheduling is a fundamental problem in multihop

wireless networks because the capacities of the communication

links in multihop wireless networks, rather than being fixed,

vary with the underlying link schedule subject to the wire-

less interference constraint. Precisely, we model a multihop

wireless network by a triple (𝑉,𝐴, ℐ), where 𝑉 is the set of

networking nodes, 𝐴 is the set of direct communication links

among 𝑉 , and ℐ is the collection of sets of links in 𝐴 which

can transmit successfully at the same time. Each set in ℐ is

referred to as an independent set. A (fractional) link schedule

is a set

𝑆 = {(𝐼𝑗 , ℓ𝑗) ∈ ℐ × ℝ+ : 1 ≤ 𝑗 ≤ 𝑘} .
A schedule 𝑆 represented above is split into 𝑘 time intervals of

length ℓ1, ℓ2, ⋅ ⋅ ⋅ , ℓ𝑘 respectively. In the 𝑗-th time interval, all

the links in 𝐼𝑗 are scheduled to transmit. The value
∑𝑘

𝑗=1 ℓ𝑗

is referred to as the length (or latency) of 𝑆, ∣𝑆∣ is called the

size of 𝑆, and the function 𝑐𝑆 ∈ ℝ
𝐴
+ given by

𝑐𝑆 (𝑒) =

𝑘∑
𝑗=1

ℓ𝑗 ∣𝐼𝑗 ∩ {𝑒}∣ , ∀𝑒 ∈ 𝐴

is called the link load function supported by 𝑆. The value

𝑐𝑆 (𝑒) is the total transmission time of the link 𝑒 throughout

the duration of the schedule 𝑆. If the length of 𝑆 is at most

one, the function 𝑐𝑆 gives rise to a link capacity function.

The optimization of wireless link scheduling has several

variants. Link scheduling for maximizing throughput capacity

have the following two variants:

∙ Maximum Multiflow (MMF): Given a multihop wireless

network (𝑉,𝐴, ℐ) and a set of end-to-end communication

requests specified by source-destination pairs, find a link

schedule 𝑆 of length at most one such that the maximum

multiflow subject to the capacity function 𝑐𝑆 is maxi-

mized.

∙ Maximum Concurrent Multiflow (MCMF): Given a

multihop wireless network (𝑉,𝐴, ℐ) and a set of end-

to-end communication requests specified by source-

destination pairs together with their demands, find a link

schedule 𝑆 of length at most one such that the maximum

concurrent multiflow subject to the capacity function 𝑐𝑆

is maximized.
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Link scheduling for minimizing latency is the following opti-

mization problem:

∙ Shortest Fractional Link Schedule (SFLS): Given a

multihop wireless network (𝑉,𝐴, ℐ) and a link demand

function 𝑑 ∈ ℝ
𝐴
+, find a link schedule 𝑆 of shortest length

such that 𝑐𝑆 = 𝑑.

The following two problems are closely related to link schedul-

ing:

∙ Maximum Independent Set of Links (MISL): Given a

multihop wireless network (𝑉,𝐴, ℐ) and a subset 𝐴′ ⊆
𝐴, find a set 𝐼 ∈ ℐ contained in 𝐴′ with maximum size.

∙ Maximum Weighted Independent Set of Links
(MWISL): Given a multihop wireless network (𝑉,𝐴, ℐ)
and a link weight (or demand) function 𝑑 ∈ ℝ

𝐴
+, find a set

𝐼 ∈ ℐ with maximum total weight 𝑑 (𝐼) =
∑

𝑎∈𝐼 𝑑 (𝑎).

The majority of algorithmic works on link scheduling in

multihop wireless networks assume binary interference mod-

els such as the 802.11 interference model and the protocol

interference model. Under a binary interference model, a set

of links are conflict-free (i.e., belong to ℐ) if they are pairwise

conflict-free. As a result, link scheduling under the binary

interference model can employ the classic graph-theoretical

tools such as graph coloring for algorithm design and analysis.

Two widely adopted binary interference models are the 802.11

interference model and the protocol interference model. Under

either of these two interference models, the networking nodes

in 𝑉 are typically assumed to lie in a planar region. Each

node is associated with a circular communication range and

a circular interference range centered at this node. Under the

802.11 interference model, the transmission from a node 𝑢

to a node 𝑣 succeeds if 𝑢 and 𝑣 are within each other’s

communication range, and neither of 𝑢 and 𝑣 is within the

interference range of any other node transmitting or receiving

at the same time. Under the protocol interference model,

the transmission from a node 𝑢 to a node 𝑣 succeeds if

𝑣 is within the communication range of 𝑢 but is outside

the interference range of any other node transmitting at the

same time. But the binary interference model has to put a

conservation and sometimes severe restrictions on interference

ranges for practical applicability of the link schedules. The

inefficiency of binary protocols compared to the physical

model is well documented and has been shown theoretically

as well as experimentally [13], [29], [32].

The physical interference model is more realistic and ac-

curate than the binary interference model. Under the physical

interference model, when a node 𝑢 transmits a signal at power

𝑝, the power of this signal captured by another node 𝑣 is

𝑝 ⋅ 𝜂 ∥𝑢𝑣∥−𝜅, where ∥𝑢𝑣∥ is the Euclidean distance between

𝑢 and 𝑣, 𝜅 is path-loss exponent (a constant between 2 and 5

depending on the wireless environment), and 𝜂 is the reference

loss factor. The value 𝜂 ∥𝑢𝑣∥−𝜅 is referred to as the path-

loss factor of the pair (𝑢, 𝑣). The signal quality perceived

by a receiver is measured by the signal to interference and

noise ratio (SINR), which is the quotient between the power

of the wanted signal and the total power of unwanted signals

and the ambient–both internal and external–noise. In order to

correctly interpret the wanted signal, the SINR must be no

less than certain threshold 𝜎. There are two variants of the

physical interference model: with or without the power control.

In the variant without power control, the power assignment

𝑝 : 𝑉 × 𝑉 → ℝ+ is pre-specified. Typically, the pre-specified

power assignment is monotone (i.e., for any two pairs (𝑢, 𝑣)

and (𝑢′, 𝑣′) with ∥𝑢𝑣∥ ≤ ∥𝑢′𝑣′∥, 𝑝 (𝑢, 𝑣) ≤ 𝑝 (𝑢′, 𝑣′)) and

sublinear (i.e., for any two pairs (𝑢, 𝑣) and (𝑢′, 𝑣′) with

∥𝑢𝑣∥ ≤ ∥𝑢′𝑣′∥, 𝑝 (𝑢, 𝑣) / ∥𝑢𝑣∥𝜅 ≥ 𝑝 (𝑢′, 𝑣′) / ∥𝑢′𝑣′∥𝜅). The

set 𝐴 consists of all pairs (𝑢, 𝑣) satisfying that

∥𝑢𝑣∥ ≤
(
𝜂𝑝 (𝑢, 𝑣)

𝜎𝜉

)1/𝜅

.

A set 𝐼 of links are independent (i.e., 𝐼 ∈ ℐ) if and only if all

links in 𝐼 transmit simultaneously with the power assignment

𝑝, the SINR of each link in 𝐼 is above 𝜎. In the variant with

power control, all nodes can adjust their transmission power to

any value in a give set 𝑃 . Let 𝑝max and 𝑝min be the maximum

and minimum of 𝑃 respectively. Then, 𝐴 consists of all pairs

(𝑢, 𝑣) satisfying that

∥𝑢𝑣∥ ≤
(
𝜂max𝑝∈𝑃 𝑝

𝜎𝜉

)1/𝜅

.

A set 𝐼 of links are independent (i.e., 𝐼 ∈ ℐ) if and only if

there exists a transmission power assignment to the links in 𝐼

with values in 𝑃 satisfying that when all links in 𝐼 transmit

simultaneously, the SINR of each link in 𝐼 is above 𝜎. In

either variant, the independence number 𝛼 of ℐ refers to the

size of a largest independent set in ℐ, i.e., 𝛼 = max𝐼∈ℐ ∣𝐼∣.

The link scheduling problem under physical interference

model is notoriously hard to resolve. The non-locality and

the additive nature of interference in the physical interference

model renders traditional techniques based on graph coloring

inapplicable. Because of such technical challenge, most of

the approximation bounds obtained in the literature are either

trivial or grow linearly with the number of links. In this
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paper, we conduct a full-scale algorithmic study of MMF,

MCMF, SFLS, and MWISL in multihop wireless networks

under physical interference model. For any fixed monotone

and sublinear power assignment, we show that all of MWISL,

SFLS, MMF, and MCMF have a polynomial 𝑂 (ln𝛼)-

approximation algorithm. For power control with unlimited

maximum transmission power, we show that all of MWISL,

SFLS, MMF, and MCMF also have a polynomial 𝑂 (ln𝛼)-

approximation algorithm. For power control with 𝑃 be the

bounded set of possible values of transmission power of all

nodes, our achieved approximation bounds involve the power

diversity 𝛽 of 𝑃 , which is the smallest value 𝑘 such that there

exists a partition of 𝑃 into 𝑘 subsets in each of which any

two elements differ by a factor of at most two. Note that

𝛽 ≤ 1 + log
max𝑝∈𝑃 𝑝

min𝑝∈𝑃 𝑝
.

We show that all of MWISL, SFLS, MMF, and MCMF
have a polynomial 𝑂 (𝛽 ln𝛼)-approximation algorithm. In

particular, in practical networks with constant power diversity

𝛽, all of them have a polynomial 𝑂 (ln𝛼)-approximation

algorithm.

The remaining of this paper is organized as follows. In

Section II, we review the literature on link scheduling in

multihop wireless networks. In Section III, we build a uni-

fied framework of developing approximation algorithms for

MWISL, SFLS, MMF and MCMF from an approximation

algorithm for MISL in any multihop wireless network under

any interference model. In Section IV, we present our ap-

proximation algorithms for MISL, MWISL, SFLS, MMF,

and MCMF in multihop wireless networks under the physical

interference model. In Section V, we summarize this paper

and describe some open problems for further studies.

II. RELATED WORKS

There are a vast quantity of literature on network capacity

of random wireless networks formed by a uniform or Poisson

planar point process, under both protocol interference model

and physical interference model. The asymptotics of network

capacity in static wireless networks were studied in [1], [10],

[14], [15], [23], [25], [28], [35], and the asymptotics of

network capacity in mobile wireless networks were studied

in [4], [14], [27], [34], [36]. However, as these results were

largely non-algorithmic and restricted to networks with a

well-behaving topology and traffic pattern such as uniform

distribution, they do not directly help in understanding the

capacity of arbitrary networks.

Link scheduling under the binary interference model is now

fairly well understood [2], [5], [19], [21], [22], [24], [37],

[40]. On the other hand, only some preliminary results on

link scheduling under the physical interference model have

been obtained very recently by a few research works. There

are two variants of the link scheduling under the physical

interference. In link scheduling with power control, the power

assignment is part of the solution. In link scheduling with

fixed power assignment, the power assignment is pre-specified.

Typically, the pre-specified power assignment is oblivious, in

other words, the transmission power of the sender of each link

depends only on the path-loss factor of the link. There are

three common oblivious power assignments. In the uniform

power assignment, all senders of the links have the same

transmission power; in the linear power assignment, the sender

of a link transmits at a power proportional to the link’s path-

loss factor; in the square-root power assignment, the sender

of a link transmits at a power proportional to the square-

root of the link’s path-loss factor. Note that all these three

oblivious power assignments are monotone and sublinear. The

advantage of oblivious power assignments is their simplicity

which allows for simple implementation. However, for any

oblivious power assignment there exists an instance of 𝑚 links

which are independent with power control but requires Ω(𝑚)

time-slots with this power assignment [8], [31].

The link scheduling problems which have been studied are

either the problem MISL which seeks a maximum number

of independent links of a given set of links, or the problem

Shortest Link Schedule (SLS) which seeks a partition of

a given set of links into the fewest independent sets. With

uniform power assignment, both MISL and SLS are NP-

hard [11]. With power control, MISL is also NP-hard [3].

With uniform power assignment, Halldórsson and Wattenhofer

[18] and Wan et al. [38] obtained independently constant-

approximation algorithms for MISL, the latter of which having

better approximation bound. With fixed power assignment

which is sublinear and length-monotone, Halldórsson and

Mitra [17] gave a constant-approximation algorithm for MISL
very recently. Other weaker (or even false) results on MISL
with fixed power assignment have been obtained in [3], [11],

[12] and [41]. With power control, Wan et al. [39] obtained an

𝑂 (𝛽)-approximation algorithm, where 𝛽 is the power diver-

sity. With power control but without noise (which is equivalent
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to unlimited maximum transmission power), Kesselheim [20]

developed a constant-approximation algorithm for MISL very

recently. When the physical interference model is adopted,

particular attention should be paid to the assumption on the

ambient noise, which is one of the major technical obstacle

in achieving guaranteed approximation bound. The absence

of noise effectively results in the single-hop wireless network

in which every pair of nodes can directly with each other.

Hence, any approximation bound without noise can only

apply to single-hop wireless networks, but not to general

multihop wireless networks. Other weaker results on MISL
with power control have been obtained in [9] and [16].

These constant-approximation for MISL lead immediately to

logarithmic approximation for SLS with the corresponding

power assignments. Recently, Halldórsson and Wattenhofer

[18] claimed a constant-approximation for SLS with uniform

power assignment. But their algorithm (and its proof in Lemma

8 in [18]) is wrong, and the claim has been retracted by the

authors very recently. Other weaker results on SLS have been

obtained in [7] and [33].

Chafekar et al. [7] developed bi-criteria approximation

algorithms for maximizing the throughput capacity. Due to

the technical challenge caused by the noise, they compared

the throughput rate guaranteed by their algorithms to the

optimum rate possible if slightly lower power levels are

used. With uniform transmission power or linear transmission

power, the approximation bound is 𝑂 (log Λ), where Λ is

the ratio between the longest link length and the shortest

link length; with power control, the approximation bound is

𝑂 (log Λ ⋅ log Γ), where Γ is the ratio between the highest

transmission power and the lowest transmission power. Note

that the bound 𝑂 (log Λ) may grow linearly with the number

of links in general. In addition, the above approximation

bounds are not the conventional ones as they are not compared

to optima of the original instances, but to the smaller-valued

optima of some restricted instances.

III. GENERAL ALGORITHMIC REDUCTIONS IN

ARBITRARY WIRELESS NETWORKS

In this section, we build a unified framework of developing

approximation algorithms for MWISL, SFLS, MMF and

MCMF from an approximation algorithm for MISL. This

framework is applicable to any multihop wireless network

under any interference model. Throughout this section, a

multihop wireless network is represented by a triple (𝑉,𝐴, ℐ)

MISL

MCMF

SFLS

MMF

MWISL

Fig. 1. Polynomial algorithmic reductions: the two reductions to MISL
expand the approximation ratios by a logarithmic factor, and the three
reductions to MWISL are approximation-preserving.

as described in Section I, and the independence number of ℐ
is denoted by 𝛼. Our algorithmic framework is described in

the next theorem.

Theorem 1: Suppose that MISL has a polynomial 𝜇-

approximation algorithm. Then,

1) MWISL, MMF and MCMF all have a polynomial

𝑒 (1 + ln𝛼)𝜇-approximation algorithm, where 𝑒 ≈
2.718 is the natural base.

2) SFLS has a polynomial (1 + 𝜇 ln𝛼)-approximation al-

gorithm.

The proof of Theorem 1 involves the polynomial algorith-

mic reductions illustrated in Figure 1. The three reductions

to MWISL from SFLS, MMF and MCMF respectively are

approximation-preserving, while the two reductions to MISL
from MWISL and SFLS respectively increases the approx-

imation ratio by a logarithmic factor. The three reductions

to MWISL use the ellipsoid method for linear programming

together with an approximate separation oracle. This same

reduction is a generalization to Theorem 4.1 in [37], which

assumes either 802.11 interference model or the protocol

interference model. However, the same algorithm and its

analysis can be extended to an arbitrary interference model.

The detail of the reduction and its proof can be found in [37]

and is omitted here. The detailed reductions to MISL from

MWISL and SFLS respectively are given below. Let 𝒜 be

a polynomial 𝜇-approximation algorithm for MISL. We will

present a polynomial (1 + 𝑒𝜇 ln𝛼)-approximation algorithm

for MWISL and a polynomial (1 + 𝜇 ln𝛼)-approximation

algorithm for SFLS, both of which employ the algorithm 𝒜.

Theorem 1 then follows immediately from these algorithmic

reductions.
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We first describe our polynomial (1 + 𝑒𝜇 ln𝛼)-

approximation algorithm for MWISL. Let 𝑑 ∈ ℝ
𝐴
+ be

the given link demand function. We sort the links in 𝐴 in the

decreasing order of the demands: 𝑎1, 𝑎2, ⋅ ⋅ ⋅ , 𝑎𝑚. Then, we

greedily partition 𝐴 into subsets 𝐴1, 𝐴2, ⋅ ⋅ ⋅ , 𝐴𝑘 following

this order satisfying that in each that in each subset 𝐴𝑗 with

1 ≤ 𝑗 ≤ 𝑘 the demand of the heaviest link is at most 𝑒

times the demand of the lightest link. After that, we apply

the algorithm 𝒜 on each 𝐴𝑗 with 1 ≤ 𝑗 ≤ 𝑘 to select an

independent set 𝐼𝑗 of links in 𝐴𝑗 . Finally, we output the

set 𝐼 which is the heaviest one among these 𝑘 independent

sets and the singleton independent set {𝑎1}. Clearly, the

algorithm runs in polynomial time. Below, we show that 𝐼 is

a (1 + 𝑒𝜇 ln𝛼)-approximate solution.

Let 𝐼∗ be a maximum weighted independent set in ℐ. We

claim that for each 1 ≤ 𝑗 ≤ 𝑘,

𝑑 (𝐼∗ ∩𝐴𝑗) ≤ min

{
𝑒𝜇,

∣𝐼∗ ∩𝐴𝑗 ∣
𝑒𝑗−1

}
𝑑 (𝐼) .

Indeed,

𝑑 (𝐼∗ ∩𝐴𝑗) ≤ ∣𝐼∗ ∩𝐴𝑗 ∣ ⋅ max
𝑎∈𝐴𝑗

𝑑 (𝑎)

≤ 𝜇 ∣𝐼𝑗 ∣ ⋅ 𝑒 min
𝑎∈𝐴𝑗

𝑑 (𝑎)

≤ 𝑒𝜇 ∣𝐼𝑗 ∣min
𝑎∈𝐼𝑗

𝑑 (𝑎)

≤ 𝑒𝜇 ⋅ 𝑑 (𝐼𝑗)
≤ 𝑒𝜇 ⋅ 𝑑 (𝐼) .

It’s easy to prove by induction that for each 𝑎 ∈ 𝐴𝑗 , 𝑑 (𝑎) ≤
𝑑 (𝑎1) /𝑒

𝑗−1. Therefore,

𝑑 (𝐼∗ ∩𝐴𝑗) ≤ ∣𝐼∗ ∩𝐴𝑗 ∣ ⋅ max
𝑎∈𝐴𝑗

𝑑 (𝑎)

≤ ∣𝐼∗ ∩𝐴𝑗 ∣ 𝑑 (𝑎1)
𝑒𝑗−1

≤ ∣𝐼∗ ∩𝐴𝑗 ∣
𝑒𝑗−1

𝑑 (𝐼) .

So, our claim holds.

Now, we show that

𝑑 (𝐼∗) ≤ 𝑒 (1 + 𝜇 ln𝛼) 𝑑 (𝐼) .

If 𝛼 ≤ 𝑒, then

𝑑 (𝐼∗) = 𝛼 ⋅ 𝑑 (𝐼) ≤ 𝑒 ⋅ 𝑑 (𝐼) .

So, we assume that 𝛼 > 𝑒. By the previous claim, we have

⌈ln𝛼⌉−1∑
𝑗=1

𝑑 (𝐼∗ ∩𝐴𝑗)

≤ (⌈ln𝛼⌉ − 1) 𝑒𝜇 ⋅ 𝑑 (𝐼)
≤ (𝑒𝜇 ln𝛼) 𝑑 (𝐼)

and
𝑘∑

𝑗=⌈ln𝛼⌉
𝑑 (𝐼∗ ∩𝐴𝑗)

≤ 𝑑 (𝐼)

𝑘∑
𝑗=⌈ln𝛼⌉

∣𝐼∗ ∩𝐴𝑗 ∣
𝑒𝑗−1

≤ 𝑑 (𝐼)
1

𝑒⌈ln𝛼⌉

𝑘∑
𝑗=⌈ln𝛼⌉+1

∣𝐼∗ ∩𝐴𝑗 ∣

=
𝛼

𝑒⌈ln𝛼⌉ ⋅ 𝑑 (𝐼)
≤ 𝑒 ⋅ 𝑑 (𝐼) .

Hence,

𝑑 (𝐼∗) =
𝑘∑

𝑗=1

𝑑 (𝐼∗ ∩𝐴𝑗) ≤ 𝑒 (1 + 𝜇 ln𝛼) 𝑑 (𝐼) .

Therefore, 𝐼 is a (1 + 𝑒𝜇 ln𝛼)-approximate solution.

Next, we describe our polynomial (1 + 𝜇 ln𝛼)-

approximation algorithm for SFLS. Let 𝑑 ∈ ℝ
𝐴
+ be the

given link demand function. We construct a fractional link

schedule 𝑆 of 𝑑 in the following iterative manner. At each

iteration, let 𝐴′ be the subset of links 𝑒 in 𝐴 with 𝑑 (𝑒) > 0.

We apply the algorithm 𝒜 on 𝐴′ to select an independent set

𝐼 of links in 𝐴′. Let ℓ = min𝑣∈𝐼 𝑑 (𝑣), and add (𝐼, ℓ) to 𝑆.

For each link 𝑎 in 𝐼 , replace 𝑑 (𝑎) by 𝑑 (𝑎) − ℓ. Repeat this

iteration if 𝑑 ∕= 0. Since in each iteration the number of links

𝑎 with 𝑑 (𝑎) > 0 strictly decreases, the number of iterations,

or the size of the schedule 𝑆, is bounded by ∣𝐴∣. Below, we

show that 𝑆 is a (1 + 𝜇 ln𝛼)-approximate solution.

Suppose that the algorithm runs in 𝑘 iterations. For each 1 ≤
𝑗 ≤ 𝑘, let 𝑑𝑗 ∈ ℝ

𝐴
+ be the residue demand at the beginning

of the 𝑗-th iteration, 𝐴𝑗 be the set of links in 𝐴 with positive

reside demands, (𝐼𝑗 , ℓ𝑗) ∈ ℐ ×ℝ+ be the pair selected in the

𝑗-th iteration. Let 𝑑𝑘+1 ∈ ℝ
𝐴
+ be the zero-demand function.

Then,

𝑑1 (𝐴) > 𝑑2 (𝐴) > ⋅ ⋅ ⋅ > 𝑑𝑘+1 (𝐴) = 0,

and for each 1 ≤ 𝑗 ≤ 𝑘,

ℓ𝑗 ∣𝐼𝑗 ∣ = 𝑑𝑗 (𝐴)− 𝑑𝑗+1 (𝐴) .
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For each 1 ≤ 𝑗 ≤ 𝑘, let 𝛼𝑗 be the size of a maximum

independent set of links in 𝐴𝑗 , and 𝑜𝑝𝑡𝑗 be the minimum

latency of 𝑑𝑗 . Then,

𝑜𝑝𝑡𝑗 ≤ 𝑑𝑗 (𝐴) ≤ 𝛼𝑗 ⋅ 𝑜𝑝𝑡𝑗 .

and

𝑜𝑝𝑡1 ≥ 𝑜𝑝𝑡2 ≥ ⋅ ⋅ ⋅ ≥ 𝑜𝑝𝑡𝑘.

Thus,

𝑑𝑗 (𝐴) ≤ 𝛼𝑗 ⋅ 𝑜𝑝𝑡𝑗 ≤ 𝜇 ∣𝐼𝑗 ∣ ⋅ 𝑜𝑝𝑡1,

which implies

∣𝐼𝑗 ∣ ≥ 1

𝜇

𝑑𝑗 (𝐴)

𝑜𝑝𝑡1
.

Since

𝑑1 (𝐴) > 𝑑2 (𝐴) > ⋅ ⋅ ⋅ > 𝑑𝑘+1 (𝐴) = 0,

and 𝑜𝑝𝑡1 ≤ 𝑑1 (𝐴), there exists a unique index 𝑡 satisfying

𝑑𝑡 (𝐴) ≥ 𝑜𝑝𝑡1 > 𝑑𝑡 (𝐴). Thus,

𝑡−1∑
𝑗=1

ℓ𝑗 +
𝑑𝑡 (𝐴)− 𝑜𝑝𝑡1

𝑑𝑡 (𝐴)− 𝑑𝑡+1 (𝐴)
ℓ𝑡

=

𝑡−1∑
𝑗=1

𝑑𝑗 (𝐴)− 𝑑𝑗+1 (𝐴)

∣𝐼𝑗 ∣ +
𝑑𝑡 (𝐴)− 𝑜𝑝𝑡1

∣𝐼𝑡∣

≤
𝑡−1∑
𝑗=1

𝑑𝑗 (𝐴)− 𝑑𝑗+1 (𝐴)
1
𝜇

𝑑𝑗(𝐴)
𝑜𝑝𝑡1

+
𝑑𝑡 (𝐴)− 𝑜𝑝𝑡1

1
𝜇

𝑑𝑡(𝐴)
𝑜𝑝𝑡1

= 𝜇 ⋅ 𝑜𝑝𝑡1
⎛
⎝𝑡−1∑

𝑗=1

𝑑𝑗 (𝐴)− 𝑑𝑗+1 (𝐴)

𝑑𝑗 (𝐴)
+
𝑑𝑡 (𝐴)− 𝑜𝑝𝑡1

𝑑𝑡 (𝐴)

⎞
⎠

≤ 𝜇 ⋅ 𝑜𝑝𝑡1
∫ 𝑑1(𝐴)

𝑜𝑝𝑡1

1

𝑥
𝑑𝑥

= 𝜇 ⋅ 𝑜𝑝𝑡1 ln 𝑑1 (𝐴)

𝑜𝑝𝑡1

≤ 𝜇 ⋅ 𝑜𝑝𝑡1 ln𝛼1

≤ 𝜇 ⋅ 𝑜𝑝𝑡1 ln𝛼.

In addition, we have

𝑜𝑝𝑡1 − 𝑑𝑡+1 (𝐴)

𝑑𝑡 (𝐴)− 𝑑𝑡+1 (𝐴)
ℓ𝑡 +

𝑘∑
𝑗=𝑡+1

ℓ𝑗

=
𝑜𝑝𝑡1 − 𝑑𝑡+1 (𝐴)

∣𝐼𝑡∣ +

𝑘∑
𝑗=𝑡+1

𝑑𝑗 (𝐴)− 𝑑𝑗+1 (𝐴)

∣𝐼𝑗 ∣

≤ 𝑜𝑝𝑡1 − 𝑑𝑡+1 (𝐴) +

𝑘∑
𝑗=𝑡+1

(𝑑𝑗 (𝐴)− 𝑑𝑗+1 (𝐴))

= 𝑜𝑝𝑡1 − 𝑑𝑘+1 (𝐴)

= 𝑜𝑝𝑡1.

Hence,
𝑘∑

𝑗=1

ℓ𝑗

=

𝑡−1∑
𝑗=1

ℓ𝑗 +
𝑑𝑡 (𝐴)− 𝑜𝑝𝑡1

𝑑𝑡 (𝐴)− 𝑑𝑡+1 (𝐴)
ℓ𝑡

+
𝑜𝑝𝑡1 − 𝑑𝑡+1 (𝐴)

𝑑𝑡 (𝐴)− 𝑑𝑡+1 (𝐴)
ℓ𝑡 +

𝑘∑
𝑗=𝑡+1

ℓ𝑗

≤𝜇 ⋅ 𝑜𝑝𝑡1 ln𝛼+ 𝑜𝑝𝑡1

=(1 + 𝜇 ln𝛼) 𝑜𝑝𝑡1.

Thus, 𝑆 is a (1 + 𝜇 ln𝛼)-approximate solution.

We remark that if the link demand function 𝑑 ∈ ℝ
𝐴
+ is

integral, then the fractional link schedule produced by our

polynomial (1 + 𝜇 ln𝛼)-approximation algorithm for SFLS
is also integral. In particular, our polynomial (1 + 𝜇 ln𝛼)-

approximation algorithm for SFLS is also a our polynomial

(1 + 𝜇 ln𝛼)-approximation algorithm for SLS. We also would

like to point out the polynomial approximation-preserving

reduction from SFLS to MWISL together with the first

part of Theorem 1 can lead to a polynomial 𝑒 (1 + ln𝛼)𝜇-

approximation algorithm for SFLS. However, the approxima-

tion bound 𝑒 (1 + ln𝛼)𝜇 is weaker than the approximation

bound 1 + 𝜇 ln𝛼 given in the second part of Theorem 1. In

addition, our direct polynomial reduction from SFLS to MISL
is much simpler than the chained reductions from SFLS to

MWISL and from MWISL to MISL. A natural question is

whether there exists any approximation-preserving reduction

from MWISL, MMF, or MCMF to SFLS. This question

remains open by now.

IV. LINK SCHEDULING UNDER PHYSICAL INTERFERENCE

MODEL

In this section, we apply Theorem 1 to devise polynomial

approximation algorithms for MMF, MCMF, SFLS, and

MWISL under the physical interference model. Let (𝑉,𝐴, ℐ)
be the triple representation of a multihop wireless network

under the physical interference model as described in Section

I. We denote by 𝛼 the independence number of ℐ.

For a fixed monotone and sublinear power assignment, a

constant-approximation algorithm for MISL was given in [17].

Let 𝒜1 denote such algorithm and 𝜇1 be its approximation

radio. By Theorem 1, we immediately have the following

approximation results.
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Theorem 2: For any fixed monotone and sublinear power

assignment,

1) SFLS has a polynomial (1 + 𝜇1 ln𝛼)-approximation

algorithm;

2) MWISL, MMF, and MCMF all admit a polynomial

𝑒 (1 + ln𝛼1)𝜇-approximation algorithm.

Next, we assume power control with 𝑃 be the bounded

set of possible values of transmission power of all nodes. We

denote by 𝛽 the power diversity of 𝑃 . For uniform power

assignment (i.e., 𝑃 is a singleton), a constant-approximation

algorithm for MISL was given in [38]. Let 𝒜2 denote such

algorithm and 𝜇2 be its approximation radio. We simply adopt

the uniform maximum power assignment in which all nodes

transmit at the maximum power in 𝑃 , and apply 𝒜2 to find

an independent set 𝐼 under this uniform maximum power

assignment. It was shown in [39] that the output 𝐼 is a 16𝛽𝜇2-

approximate solution for MISL with power control. So, by

Theorem 1 we have the following approximation results.

Theorem 3: For power control with bounded power diver-

sity 𝛽,

1) SFLS has a polynomial (1 + 16𝛽𝜇2 ln𝛼)-

approximation algorithm;

2) MWISL, MMF, and MCMF all admit a polynomial

16𝑒𝛽𝜇2 (1 + ln𝛼)-approximation algorithm.

Finally, we assume power control with unlimited maximum

transmission power. In this case, a constant-approximation

algorithm for MISL was given in [20]. Let 𝒜2 denote such

algorithm and 𝜇3 be its approximation radio. Then, Theorem

1 imply the following approximation results.

Theorem 4: For power control with unlimited maximum

transmission power,

1) SFLS has a polynomial (1 + 𝜇3 ln𝛼)-approximation

algorithm;

2) MWISL, MMF, and MCMF all admit a polynomial

𝑒 (1 + ln𝛼)𝜇3-approximation algorithm.

V. CONCLUSION

In this paper, we have built a unified framework of devel-

oping approximation algorithms for MWISL, SFLS, MMF
and MCMF from an approximation algorithm for MISL in

any multihop wireless network under any interference model.

Following such framework, we showed for any fixed monotone

and sublinear power assignment or for power control with un-

limited maximum transmission power, all of MWISL, SFLS,

MMF, and MCMF have a polynomial 𝑂 (ln𝛼)-approximation

algorithm, where 𝛼 is the independence number of ℐ; For

power control with bounded power diversity 𝛽, all of MWISL,

SFLS, MMF, and MCMF have a polynomial 𝑂 (𝛽 ln𝛼)-

approximation algorithm. In particular, in practical networks

with constant power diversity 𝛽, all of them have a polynomial

𝑂 (ln𝛼)-approximation algorithm.

There are still many interesting and challenging unresolved

research issues on the link scheduling subject to the physical

interference. First, for power control with bounded set of

transmission power, it remains open whether MISL admits

a polynomial constant-approximation algorithm. A positive

answer to this open problem will imply the existence of poly-

nomial 𝑂 (ln𝛼)-approximation algorithms for SFLS, MMF
and MCMF. Second, it is unknown whether MWISL admits

a polynomial constant-approximation algorithm even when all

nodes have fixed uniform transmission power. Third, it is

also unknown whether the same approximation results can be

achieved in multi-channel multi-radio wireless networks under

the physical interference model.
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terference scheduling, Proceedings of the 28thAnnual ACM Symposium
on Principles of Distributed Computing (PODC), August 2009.

[9] A. Fanghänel, T. Kesselheim, and B. Vöcking, Improved algorithms for
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