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Wireless MIMO Switching: Weighted Sum Mean
Square Error and Sum Rate Optimization

Fanggang Wang, Xiaojun Yuan, Soung Chang Liew and Dongning Guo

Abstract—This paper addresses joint transceiver and relay
design for a wireless multiple-input-multiple-output (MIMO)
switching scheme that enables data exchange among multiple
users. Here, a multi-antenna relay linearly precodes the re-
ceived (uplink) signals from multiple users before forwarding
the signal in the downlink, where the purpose of precoding
is to let each user receive its desired signal with interference
from other users suppressed. The problem of optimizing the
precoder based on various design criteria is typically non-convex
and difficult to solve. The main contribution of this paper is
a unified approach to solve the weighted sum mean square
error (MSE) minimization and weighted sum rate maximization
problems in MIMO switching. Specifically, an iterative algorithm
is proposed for jointly optimizing the relay’s precoder and the
users’ receive filters to minimize the weighted sum MSE. It is
also shown that the weighted sum rate maximization problem can
be reformulated as an iterated weighted sum MSE minimization
problem and can therefore be solved similarly to the case of
weighted sum MSE minimization. With properly chosen initial
values, the proposed iterative algorithms are asymptotically
optimal in both high and low signal-to-noise ratio (SNR) regimes
for MIMO switching, either with or without self-interference
cancellation (a.k.a., physical-layer network coding). Numerical
results show that the optimized MIMO switching scheme based
on the proposed algorithms significantly outperforms existing
approaches in the literature.

Index Terms—Beamforming, MIMO switching, minimum
mean square error (MMSE), physical-layer network coding,
relay.

I. INTRODUCTION

PHYSICAL-LAYER network coding (PNC) has received
much attention in recent years [2]. The simplest com-

munication model for PNC is a two-way relay channel, in
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which two users accomplish bidirectional data exchange in
two phases of transmission with the help of a relay. Significant
progress has been made in approaching the capacity of two-
way relay channel (see [2]–[10] and the references therein).

Multi-way relaying, in which multiple users exchange data
via a single relay, has been studied more recently [11]–[21].
In [18]–[21], the relay is equipped with a single antenna. The
use of multiple antennas at the relay provides extra spatial
degrees of freedom that can boost throughput significantly. A
multi-antenna relay that performs one-to-one mapping from
the inputs to the outputs (i.e., to switch traffic in a one-to-
one manner among the end users) is called a MIMO switch
[11], [14]. Various traffic patterns have been studied in MIMO
relaying, including pairwise data exchange [12]–[14], where
the users form pairs and data exchange is within each pair,
and full data exchange, where each user broadcasts to all other
users [15]–[17]. Reference [11] further generalized pairwise
data exchange to arbitrary unicast, in which each user sends
data to one other user and could receive data from a different
user. Arbitrary unicast is interesting because any traffic pattern,
including unicast, multicast, broadcast, or any mixture of them,
can be realized by scheduling a sequence of unicast flows.

Joint transceiver and relay design for MIMO switching with
simultaneous unicast has been reported in [11]–[13], [16].
Zero-forcing relaying was first proposed in [12] to realize
pairwise data exchange. Zero-forcing relay with PNC, which
employs self-interference cancellation, can improve system
throughput considerably [11]. However, zero-forcing involves
channel inverse operations that incur significant power penal-
ties when the channel gain matrix is ill-conditioned. To alle-
viate power penalties, minimum mean square error (MMSE)
relaying was proposed in [12], [16], which achieves better
performance for practical signal-to-noise ratios (SNRs). All
preceding works aim at suppressing interference or MSE.

In this paper, two families of optimization problems,
namely, weighted sum MSE minimization and weighted sum
rate maximization are tackled under one unified framework.
The sum rate metric is directly related to user experience,
and hence as important as the MSE metric. Specifically, to
minimize weighted sum MSE, an algorithm can be devised to
iteratively optimize the relay’s precoder and the users’ receive
filters. We show that the weighted sum rate maximization
problem is converted to an iterated weighted sum MSE min-
imization problem, which admits an iterative solution. In the
low and high SNR regimes, analytical results are provided on
the properties of the asymptotically optimal solutions and the
convergence conditions of the proposed algorithms. Numerical
results show that the proposed algorithms significantly outper-
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Fig. 1. Wireless MIMO switching.

form existing approaches in [11], [12], [16].
The following notational convention is adopted throughout

this paper: Scalars are in normal fonts; boldface lower-case
letters denote vectors and boldface upper-case letters denote
matrices; diag{x} denotes a diagonal square matrix whose
diagonal consists of the elements of x; diag{X} denotes a
column vector formed by the diagonal elements of X . [X]diag
represents a diagonal matrix with the same diagonal elements
asX . Denote by Ca,b the covariance of two zero-mean random
variables a and b, i.e., Ca,b = E[ab∗]. The operation vec(X)
is to stack each column of the matrix X on top of the right
adjacent column; mat(·) is the inverse operator of vec(·); (·)†
denotes Moore-Penrose pseudo inverse [22]; and ⊗ denotes
the Kronecker product.

The remainder of the paper is organized as follows: Section
II introduces the background of wireless MIMO switching.
Weighted sum MSE minimization and weighted sum rate
maximization are discussed in Section III and IV, respectively.
In Section V, asymptotically optimal solutions are derived.
Section VI presents simulation results. Section VII concludes
this paper.

II. SYSTEM DESCRIPTION

The system model is illustrated in Fig. 1. There are K users,
numbered from 1 to K, each equipped with a single antenna.
These users communicate via a relay with N antennas and
there is no direct link between any two users. Throughout
the paper, we focus on the pure unicast case, in which each
user transmits to one other user only. Let π(·) specify a
switching pattern, which can be represented as follows: user
i transmits to j = π(i) for every i ∈ {1, · · · ,K}. The pure
unicast switching pattern can be equivalently represented by
a permutation matrix P . Let ej denote the jth column of an
identity matrix. Then the ith column of P is equal to ej if
π(i) = j, i.e., pi = eπ(i) = ej . If the diagonal elements of

permutation P are all zero, it is also called a derangement.
In particular, a symmetric derangement (P = P T ) realizes
a pairwise data exchange. In general, any traffic flow pattern
among the users can be realized by scheduling a set of different
unicast traffic flows [11].

Each round of data exchange consists of one uplink phase
and one downlink phase. The uplink phase sees simultaneous
transmissions from the users to the relay; the downlink phase
sees one transmission from the relay to the users. We assume
that the two phases are of equal duration.

In the uplink phase, let x = [x1, · · · , xK ]T be the vector
representing the signals transmitted by the users. Let y =
[y1, · · · , yN ]T be the received signals at the relay’s antennas,
and u = [u1, · · · , uN ]T be the noise vector with indepen-
dent and identically distributed (i.i.d.) samples following the
circularly-symmetric complex Gaussian (CSCG) distribution,
denoted by CN (0, γ2), where γ2 is the noise variance at the
relay. Then

y = Hx+ u, (1)

where H ∈ CN×K is the uplink channel matrix. We assume
that all uplink signals are independent Gaussian with zero
mean and their powers are constrained as

E{|xi|2} = qi

≤ Qi, i = 1, · · · ,K. (2)

Upon receiving y, the relay precodes y with matrix G and
forward Gy in the downlink phase, where the transmit power
of the relay is upper-bounded by Pr, i.e.

Tr
[
G
(
HQHH + γ2I

)
GH

]
≤ Pr, (3)

where Q = diag{q1, · · · , qK}.
The signals received by all users are collectively represented

in the vector form as

r = FGy +w

= FGHx+ FGu+ v, (4)

where F is the downlink channel matrix. Note that we assume
the channel matrices H and F are either full row rank or
column rank, whichever is less. v is the noise vector at the
receivers, with i.i.d. samples following the CSCG distribution,
i.e., vk ∼ CN (0, σ2), where σ2 is the noise variance. The
signal rπ(i) received by user π(i) is used to recover the
message from user i. Each user scales its received signal
before estimation. We use a diagonal matrix C to denote the
combination of all the scaling factors. It is not difficult to see
that interference-free switching can be achieved in the absence
of noise by designing G to ensure P TCFGH is diagonal.
In the presence of noise, G and C are chosen to optimize
certain performance metric. The MIMO precoder G shall be
chosen to manage interference based on the knowledge of
the uplink and downlink channels H and F . Furthermore,
physical-layer network coding technique can be used if the
users can cancel self-interference in the received signal. We
refer to the precoding schemes without network coding as non-
PNC schemes, and subsequent ones with network coding as
PNC schemes.
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III. WEIGHTED SUM MSE MINIMIZATION

A. Problem Formulation

We start with the weighted sum MSE minimization problem.
Each user j aims to estimate the signal xi from user i based on
the received signal rj , where j = π(i). For Gaussian signaling
and the linear system in (4), the MMSE estimator of xi is given
by x̂i = cjrj , and the resulting MSE is given by |xi − x̂i|2,
where cj is a scalar coefficient. Then, the overall weighted

sum MSE can be compactly written as
∥∥∥W 1

2 (Px−Cr)
∥∥∥2

,
where W = diag{w1, · · · , wK}, C = diag{c1, · · · , cK}, and
each wj represents the MSE weighting coefficient of receiver
j. The above discussion is under the assumption that the
network-coding technique (or self-interference cancellation) is
not applied at the receivers.

In the case where network coding is allowed, the goal is
to make x̂i close to xi after removing self-interference. The
decision statistics for all K users can be expressed in vector
form as Cr−Bx, where B is a diagonal matrix consisting of
the weighting factors of self-interference. The weighted sum

square error is then given by
∥∥∥W 1

2 (Px− (Cr −Bx))
∥∥∥2

,
where ‖·‖ represents the Euclidean norm, andW is a diagonal
matrix with the ith diagonal element being the weight of the
MSE at user i.

We first assume that each user transmit with its maximum
power, i.e., qi = Qi, i = 1, · · · ,K. The case of user power
control, i.e., qi ≤ Qi, i = 1, · · · ,K, will be discussed later
in Section III.E. Based on the above, the weighted sum MSE
minimization problem is formulated as

minimize
G,B,C

E
∥∥∥W 1

2 ((P +B)x−Cr)
∥∥∥2

(5a)

subject to Tr
[
G
(
HQHH + γ2I

)
GH

]
≤ Pr (5b)

B and C are diagonal. (5c)

The case of no network coding admits the same formulation
except that the matrix B is set to 0. Problem (5) involves the
joint optimization of G, B and C. Unfortunately, this problem
is non-convex, and thus is in general difficult to solve. We next
propose an iterative algorithm to find a suboptimal solution to
(5), as described below.

Following the convention in [12], [23], we define

Ḡ , α−1G and C̄ , αC (6)

where α is a scaling factor. Later, we will see that α is
introduced to meet the power constraint at the relay. Then
the weighted sum MSE (5a) is expanded as (7). We notice
that, for fixed (B, C̄), this optimization problem can be solved
by the KKT conditions similarly to [12], [23]. On the other
hand, for fixed (Ḡ, α), problem (5) also reduces to a quadratic
program w.r.t. (B, C̄). In fact, both optimization problems
admit explicit analytical solution. Thus, we can iteratively
optimize (Ḡ, α) and (B, C̄), yielding an approximate solution
to problem (5).

It is worth noting that setting B = 0 and C̄ = I reduces
problem (5) to the conventional MMSE relaying design prob-
lem (without PNC) studied in [12], [16]. We will show later

that the flexibility of choosing B and C̄ provides significant
performance gains.

B. Optimal (Ḡ, α) for Fixed (B, C̄)

For fixed (B, C̄), problem (5) reduces to

minimize
Ḡ,α

J (Ḡ, α) (8a)

subject to α2Tr
[
Ḡ
(
HQHH + γ2I

)
Ḡ
H
]
≤ Pr. (8b)

In the above, J (Ḡ, α) is a shorthand of J (Ḡ, α,B, C̄) for
fixed (B, C̄). Similar notation will be used throughout without
further notice. We use the Lagrangian method to solve problem
(8). The Lagrangian function is written as (9), where λ is the
Lagrangian multiplier. By setting ∂L

∂λ = 0, ∂L∂α = 0, we obtain

α2 =
Pr

Tr
[
Ḡ
(
HQHH + γ2I

)
Ḡ
H
] (10)

α4 =
σ2 Tr[WC̄C̄

H
]

λTr
[
Ḡ
(
HQHH + γ2I

)
Ḡ
H
] . (11)

Hence,

λα2 =
σ2

Pr
Tr
[
WC̄C̄

H
]
. (12)

By setting ∂L
∂Ḡ

= 0 and using (12), we obtain the optimal
precoder Gopt. Hence the following proposition:

Proposition 1: For fixed (B, C̄), the optimal precoder to
problem (8) is Gopt = αḠ

opt with (13).
As mentioned earlier, α in (13b) is just a scaling factor to
meet the relay power constraint.

C. Optimal (B, C̄) for Fixed (Ḡ, α)

For fixed (Ḡ, α), the optimization problem (5) reduces to
an unconstrained problem as follows:

minimize
B,C̄

J (B, C̄). (14)

Proposition 2: For fixed (Ḡ, α), the optimal solution to (14)
is given by

Bopt = D1

(
D2 −DH

1 D1

)−1 [
PQHHḠ

H
FH

]
diag

(15a)

C̄
opt

=
(
D2 −DH

1 D1

)−1 [
PQHHḠ

H
FH

]
diag

(15b)

where D1,D2 ∈ CK×K are given by

D1 =
[
FḠH

]
diag

(16a)

D2 =
[
FḠ

(
HQHH + γ2I

)
Ḡ
H
FH + σ2α−2I

]
diag
. (16b)

Proof: The weighted sum MSE in (7) can be rewritten as
(17), where (17) follows by noting (16) and letting

S =
[
FḠHQP T

]
diag

, (20)

and (18) is obtained by factorizing w.r.t. B, and (19) follows

by letting D3 =
(
D2 −QDH

1 D1

) 1
2

and factorizing w.r.t.
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J (Ḡ, α,B, C̄) , Tr
[
W
(
PQP T +BQBH − 2<

{
C̄F ḠHQ (P +B)

H
}

+C̄F Ḡ
(
HQHH + γ2I

)
Ḡ
H
FHC̄

H
+ σ2α−2C̄C̄

H
)]

(7)

L(Ḡ, α, λ) = Tr
[
W
(
PQP T +BQBH − 2<

{
C̄F ḠHQ (P +B)

H
}

+ C̄F ḠHQHHḠ
H
FHC̄

H

+γ2C̄F ḠḠ
H
FHC̄

H
+ σ2α−2C̄C̄

H
)]

+ λ
(

Tr
[
α2Ḡ

(
HQHH + γ2I

)
Ḡ
H
]
− Pr

)
(9)

Ḡ
opt

=

(
σ2

Pr
Tr
[
WC̄C̄

H
]
I + FHC̄

H
WC̄F

)−1

FHC̄
H
W (P +B)QHH

(
HQHH + γ2I

)−1

(13a)

αopt = P
1
2
r

(
Tr
[
Ḡ
opt
(
HQHH + γ2I

)(
Ḡ
opt
)H])− 1

2

(13b)

J (B, C̄) = Tr
[
WPQP T +WBQBH − 2<

{
WC̄S +WC̄D1QB

H
}

+WC̄D2C̄
H
]

(17)

= Tr
[
WPQP T

]
+
∥∥∥W 1

2Q
1
2
(
B −D1C̄

)∥∥∥2

F
− 2<

{
Tr
[
WC̄S

]}
+ Tr

[
WC̄

H
(
D2 −QDH

1 D1

)
C̄
]

(18)

= Tr
[
WPQP T

]
+
∥∥∥W 1

2

(
D3C̄ −D−1

3 SH
)∥∥∥2

F
+
∥∥∥W 1

2Q
1
2
(
B −D1C̄

)∥∥∥2

F
− Tr

[
WSHD−2

3 S
]

(19)

C̄. In the above, D3 =
(
D2 −QDH

1 D1

) 1
2

is well defined
by noting that

[D2]ii ≥
[
FḠHQHHḠ

H
FH

]
ii

(21)

≥ qi
[
FḠH

]H
ii

[
FḠH

]
ıı

(22)

= qi

[
DH

1 D1

]
ii
, i = 1, · · · ,K, (23)

where (21) follows by the definition in (16b), and (23) follows
(16a). From (19), we see that the weighted sum MSE is
minimized when

C̄ = D−2
3 SH and B = D1C̄ (24)

which concludes the proof.
From (15), we notice that

Bopt = D1C̄
opt

=
[
C̄
opt
FḠH

]
diag

. (25)

That is, Bopt is exactly the self-interference weights in the
filtered signal Cr. This implies that, with Bopt given in (15a),
the self-interference is perfectly canceled at each user end.

D. Overall Iterative Algorithm

The overall iterative algorithm is outlined by the following
pseudo-code.

Algorithm 1.
1: Initial: B = B0, C̄ = C̄0;
2: while the weighted sum MSE can be reduced by more

than ε do

3: Compute Ḡ and α using (13);
4: Compute B and C̄ using (15);
5: end while
The convergence of Algorithm 1 is guaranteed because:

1) the weighted sum MSE decreases monotonically in each
step; and 2) the weighted sum MSE is non-negative. From
Proposition 2.7.1 in [24], it can be further shown that this
convergence point is a local optimum of the original problem
(5). The local optimum at which Algorithm 1 stops in general
depends on the initial condition (B0, C̄0). We shall discuss
the choice of the initial condition and the speed of convergence
in Section V.

E. Further Discussion

So far, our discussions have been constrained to the case
that every user employs a same predetermined constant power
in transmission. This constant power constraint can be relaxed
to a maximum power constraint by reformulating Problem (5)
as

minimize
G,B,C,Q

E
∥∥∥W 1

2 ((P +B)x−Cr)
∥∥∥2

(26a)

subject to Tr
[
G
(
HQHH + γ2I

)
GH

]
≤ Pr (26b)

qi ≤ Qi, i = 1, · · · ,K, (26c)
B,C and Q are diagonal. (26d)

The above problem formulation allows power control among
users, which leads to better performance.

Following the spirit of our proposed iterative approach, we
can approximately solve problem (26) similarly to Algorithm
1 by adding one more step in iteration. Specifically, besides
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the two steps of iteration in Algorithm 1, we introduce one
more step, namely, to optimize {qi} for fixed (Ḡ,B, C̄).
Note that, for any fixed (Ḡ,B, C̄), both the cost function
and the constraints (26b) and (26c) are linear functions of
{qi}, implying that problem (26) reduces to a linear program
of {qi}, which is solvable by standard optimization tools.
Furthermore, by noting that the feasible region of a linear
program is a polytope and that the optimal solution of the
linear program must occur at a vertex of this polytope, we
can show that the optimal {qi} for problem (26) is either
0 or Qi, i.e., each user either employs maximum power in
transmission or keeps silent. We will return to this issue of
user power control later in Sections IV and V.

IV. WEIGHTED SUM RATE MAXIMIZATION

In this section, we study weighted sum rate maximization,
which is another widely used in optimizing the performance
of wireless networks. We show that the weighted sum rate
maximization problem can be reformulated as an iterated
weighted sum MSE minimization problem, and therefore, the
techniques in Section III can be directly applied here.

A. Problem Formulation

For reasons to be clarified later, we now use a diagonal
matrix ∆, instead of B, to represent the weights of self-
interference to be canceled. Note that letting ∆ = 0 yields the
conventional non-PNC problem. Then, after self-interference
cancellation, the signal becomes r−∆x. To simplify the index
mapping of the received signal vector, let

z = P T (r −∆x) . (27)

Using (4), the ith element of z is given by

zi = pTi FGhixi +
∑
` 6=i

pTi FGh`x`

+ pTi FGu+ pTi v − pTi ∆x, (28)

where hi is the ith column ofH . In this way, zi is the received
signal of user π(i) for the recovery of the message from user
i. Thus, the achievable rate of user i is given by

Ri =
1

2
log (1 + SINRi) , (29)

where

SINRi = (30)

qi
∣∣pTi FGhi∣∣2∣∣pTi (FGH −∆)Q

∣∣2 − qi ∣∣pTi FGhi∣∣2 + γ2
∣∣pTi FG∣∣2 + σ2

.

The factor 1/2 is due to the two-phase transmission. Our
purpose is to maximize the weighted sum rate under the
power constraint of the relay. This optimization problem is
formulated as

maximize
G,∆

K∑
i=1

tiRi (31a)

subject to Tr
[
G
(
HQHH + γ2I

)
GH

]
≤ Pr, (31b)

where T = diag{t1, · · · , tK}. The problem (31) is non-convex
w.r.t. (G,∆) and thus is difficult to solve directly.

B. Conversion to Weighted Sum-MSE Minimization

Recall that we assume Gaussian inputs: xi ∼ CN (0, qi),
i = 1, · · · ,K, i.e.,

p(xi) =
1

πqi
e
−|xi|2

qi , i = 1, · · · ,K. (32)

From the equivalent transmission (28), the conditional distri-
bution can be readily obtained as

p (zi|xi) =
1

πΣ′i
e
− |zi−pT

i FGhixi|2
Σ′
i , i = 1, · · · ,K, (33)

where

Σ′i = pTi FG(HQHH − qihihHi )GHFHpi

+ γ2pTi FGG
HFHpi + σ2pTi pi. (34)

With Bayes’ rule, we can obtain the a posteriori distribution
p(xi|zi), which is also Gaussian and is given by

p(xi|zi) =
1

πΣi
e
−|xi−ωizi|2

Σi , i = 1, · · · ,K. (35)

where ωi is a scaling coefficient to be determined, ωizi repre-
sents the conditional mean, and Σi represents the conditional
variance. From [25], the a posteriori mean and variance are
respectively given by

E [xi|zi] = CxiziC−1
zizizi, (36a)

Cxixi|zi = Cxixi − CxiziC−1
ziziCzixi , (36b)

where the involved covariances are given by

Cxixi
= qi, (37a)

Cxizi = qih
H
i G

HFHpi, (37b)

Czizi = pTi FG
(
HQHH + γ2I

)
GHFHpi

− pTi ∆Q∆Hpi + σ2. (37c)

Thus, we have

ωπ(i) = CxiziC−1
zizi (38a)

Σπ(i) = Cxixi|zi , i = 1, · · · ,K. (38b)

From the Blahut-Arimoto algorithm in Lemma 13.8.1 of
[26], the rate in (29) can be written as

Ri =
1

2
Exi,zi log

p(xi|zi)
p(xi)

(39)

= max
φ(·|·)

1

2
Exi,zi log

φ(xi|zi)
p(xi)

, i = 1, · · · ,K, (40)

where the expectation is taken over the joint distribution of xi
and zi, given by p(xi, zi) = p(xi)p(zi|xi) given in (32) and
(33), and φ(·|·) is an arbitrary distribution of xi conditioned
on zi. It is known that the optimal choice of φ(xi|zi) follows
the Gaussian distribution in the form of (35). Then, with (35)
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and (32), (40) is converted to be

Ri = max
wi,Σi

1

2
Exi,zi

[
log

qi
Σi
− |xi − ωizi|

2

Σi
+
|xi|2

qi

]
, (41)

with the optimal wi and Σi given by (38). Note that similar
conversions have been previously used in [27], [28] for op-
timizing beamforming vectors in broadcast channels. Based
on this conversion, we next establish a relation between
the weighted sum rate maximization problem (31) and the
weighted sum MSE minimization problem (5).

Plugging (27) into (41), the sum rate is rewritten as (42),
where

Σ̂ = diag {Σ1, · · · ,ΣK} , (44a)

Σ = diag
{

Σπ−1(1), · · · ,Σπ−1(K)

}
= P Σ̂P T , (44b)

Ω̂ = diag {ω1, · · · , ωK} , (44c)

Ω = diag
{
ωπ−1(1), · · · , ωπ−1(K)

}
= P Ω̂P T . (44d)

The expectation taken over the joint distribution of x and z
is equivalent to that taken over the joint distribution of x, u,
and v, where the noise vectors u, and v were defined in (4).
In (43), Ex,z‖Σ−

1
2 ((P + Ω∆)x−Ωr) ‖2 is the same as the

weighted sum MSE in (5a) by letting1

W = TΣ−1 and B = Ω∆ and C = Ω. (45)

For fixed Ω and Σ, the optimization of G is exactly the
same as that for the weighted sum MSE minimization problem
in Section III.B. For fixed G, the optimal Ω and Σ can
be determined by the MMSE estimator of the transmission
in (28), which will be presented explicitly in the following
subsection.

C. Iterative Algorithm

Similarly to (6), we define

Ḡ , α−1G and ∆̄ = α−1∆ and Ω̄ , αΩ (46)

where α still represents the scaling factor to meet the relay
power constraint. With (46) and the received signal vector at
the users r in (4), the weighted sum rate in (43) is expanded
as (47). Then, based on (43), we reformulate the optimization
problem (31) as

maximize
Ḡ,α,∆̄,Ω̄,Σ

R(Ḡ, α, ∆̄, Ω̄,Σ) (48a)

subject to α2 Tr
[
Ḡ
(
HQHH + γ2I

)
Ḡ
H
]
≤ Pr. (48b)

Noting the similarity to problem (5), we develop an iterative
algorithm to solve problem (48) as follows.

1) Optimal
(
Ḡ, α

)
for fixed

(
∆̄, Ω̄,Σ

)
: For fixed(

∆̄, Ω̄,Σ
)
, problem (48) is the same as the one in (8) by

letting W = TΣ−1, B = Ω̄∆̄ and C̄ = Ω̄ except for
some additive constants. Thus, from Proposition 1, the optimal
precoder can be immediately written as Gopt = αḠ

opt with
(49).

1To avoid confusion in establishing this relation, we use ∆, instead of B,
to denote the weights of self-interference in the case of weighted sum rate
maximization.

2) Optimal
(
∆̄, Ω̄,Σ

)
for fixed

(
Ḡ, α

)
: For fixed

(
Ḡ, α

)
,

we aim to find the optimal 3-tuple
(
∆̄, Ω̄,Σ

)
that maximizes

R
(
∆̄, Ω̄,Σ

)
. We first determine the optimal ∆̄. From (45)

and (46), we see that Exi,zi

∥∥∥T 1
2 Σ−

1
2 [(P + Ω∆)x−Ωr]

∥∥∥2

in (43) is equivalent to (5a) by replacing W with TΣ−1, B
with Ω∆ and C with Ω. Together with the fact that the opti-
mal B for (14) is given in (25), i.e., Bopt = [C̄

opt
FḠH]diag,

the optimal ∆̄ is given by

∆̄
opt

=
[
FḠH

]
diag

. (50)

With (50), we obtain ∆opt = α∆̄
opt

= [FGH]diag which
consists of the self-interference weights in the received signal
r. This means that the self-interference is perfectly canceled at
the receiver ends. (Since self-interference is known precisely,
it is rather obvious it should be completely canceled before
detection.) For fixed

(
Ḡ, α, ∆̄

)
, the optimal

(
Ω̄,Σ

)
is deter-

mined by (38), i.e., the MMSE estimator of the transmission
in (28).

3) Overall iterative algorithm: The weighted sum rate
optimization problem (31) can be solved by iteratively solving
the above two subproblems. The procedure is outlined in the
following algorithm.

Algorithm 2.
1: Init: ∆̄ = ∆0, Ω̄ = Ω0, Σ = Σ0;
2: while the weighted sum rate can be improved by more

than δ do
3: Compute Ḡ and α using (49);
4: Compute ∆̄, Ω̄ and Σ using (50) and (38);
5: end while
The convergence of Algorithm 2 is guaranteed, as the

weighted sum rate is bounded and monotonically increases
in the iterative process. The convergence point depends on the
initial point

(
∆̄0, Ω̄0,Σ0

)
. We will discuss the choice of the

initial point of Algorithm 2 in Section V.

D. Further Discussion

It is interesting to compare Algorithms 1 and 2. We see
that Algorithm 2 can be treated as a weighted sum MSE
minimization algorithm with varying weights, since the weight
matrix W remains constant in Algorithm 1, but the corre-
sponding “weight matrix” TΣ−1 varies in Algorithm 2. The
similarities between the two algorithms eventually lead to
similar asymptotic behaviors in the extreme SNR regimes, as
will be shown in the next section.

Moreover, similarly to the case of weighted sum MSE
minimization, we may also consider the user power control
for the weighted sum rate maximization problem. Specifically,
Problem (48) can be reformulated as

maximize
Ḡ,α,∆̄,Ω̄,Σ,Q

R
(
Ḡ, α, ∆̄, Ω̄,Σ

)
(51a)

subject to α2 Tr
[
Ḡ
(
HQHH + γ2I

)
Ḡ
H
]
≤ Pr (51b)

qi ≤ Qi, i = 1, · · · ,K (51c)
Q is diagonal. (51d)
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K∑
i=1

tiRi = max
{wi},{Σi}

−1

2

(
Ex,z

∥∥∥∥T 1
2 Σ̂
− 1

2

((
I + Ω̂P T∆

)
x− Ω̂P Tr

)∥∥∥∥2

+

K∑
i=1

ti log
Σi
qi
−

K∑
i=1

ti

)
(42)

= max
{wi},{Σi}

−1

2

(
Ex,z

∥∥∥T 1
2 Σ−

1
2 ((P + Ω∆)x−Ωr)

∥∥∥2

+

K∑
i=1

ti log
Σi
qi
−

K∑
i=1

ti

)
(43)

R
(
Ḡ, α, ∆̄, Ω̄,Σ

)
= −1

2
Tr
[
TΣ−1

(
PQP T + Ω̄∆̄Q∆̄

H
Ω̄
H − 2<

{
Ω̄FḠHQ

(
P + Ω̄∆̄

)H}
+Ω̄FḠ

(
HQHH + γ2I

)
Ḡ
H
FHΩ̄

H
+ σ2α−2Ω̄Ω̄

H
)]
− 1

2

K∑
i=1

ti log
Σi
qi

+
1

2

K∑
i=1

ti (47)

Ḡ
opt

=

(
σ2

Pr
Tr
[
TΣ−1Ω̄Ω̄

H
]
I + FHΩ̄

H
TΣ−1Ω̄F

)−1

FHΩ̄
H
TΣ−1

(
P + Ω̄∆̄

)
QHH

(
HQHH + γ2I

)−1

(49a)

αopt = P
1
2
r

(
Tr
[
Ḡ
opt
(
HQHH + γ2I

)(
Ḡ
opt
)H])− 1

2

(49b)

Again, the new problem can be approximately solved in an
iterative fashion by adding one more iteration step to Algo-
rithm 2. This extra step is to optimize {qi} by fixing the other
variables, which is solvable by standard linear programming.
We omit the details here.

V. ASYMPTOTIC ANALYSIS

Algorithms 1 and 2 only guarantee local optima of the
weighted sum MSE minimization and weighted sum rate max-
imization problems. In this section, we carry out asymptotic
analysis and show that, with proper initialization, the proposed
iterative algorithms are asymptotically optimal in the low and
high SNR regimes. For ease of discussion, we assign equal
weights to the weighted sum MSE minimization problem,
i.e., W = T . We will see that the asymptotic solutions to
the weighted sum MSE minimization and weighted sum rate
maximization allows unified expressions.

A. Low-SNR Analysis

We start with the low-SNR case. We focus on the limit
where the noise levels σ2 and γ2 tend to infinity, i.e., σ2, γ2 →
+∞. The main result is summarized as follows; the proof is
given in Appendix A.

Theorem 1: In the limit of σ2, γ2 → +∞, the asymptotically
optimal precoders for the weighted sum MSE minimization in
(5) and the weighted sum rate maximization in (31), with and
without PNC, are identical and can be expressed as

G0 = αḠ
0
, (52)

where Ḡ0 is such that vec(Ḡ0
) is an eigenvector correspond-

ing to the maximum eigenvalue of

Ψ =

K∑
`=1

q2
`w`(h`h

H
` )T ⊗ (FHp`p

T
` F ), (53)

and scalar α is such that the precoder G0 satisfies the power
constraint with equality at the relay.

At low SNR, the optimal precoder is identical with and
without PNC in the limit. This is not surprising because when
the noise dominates the received signal, the benefit of self
interference cancellation is marginal.

Proposition 3: As σ2, γ2 → +∞, Algorithms 1 and 2
converge to the same global optimum G0 given in (52).

The proof of Proposition 3 is given in Appendix B. Accord-
ing to Proposition 3, the point of convergence of Algorithms
1 and 2 is not sensitive to the initial condition in the low SNR
regime.

B. High-SNR Analysis

In the high SNR regime, we are interested in the limit
of σ2, γ2 → 0. Then, we discuss the degree of freedom
(DoF) that the system could achieve with the setup of different
numbers of relay antennas and users.

First, for N ≥ K, the asymptotically optimal precoders are
described as follows, where the proof is given in Appendix C.

Theorem 2: Suppose N ≥ K. In the limit of σ2, γ2 → 0,
the asymptotically optimal precoders for weighted sum MSE
minimization and weighted sum rate maximization, with and
without PNC, are identical and can be expressed as

G∞ = F †C−1(P +B)H†, (54)

where C ∈ CK×K is diagonal, and B ∈ CK×K is an all-zero
matrix in the non-PNC case and is a diagonal matrix in the
PNC case.

It has been shown in [11] that the precoder in (54) forces
all the interference to zero, and hence is referred to as the
zero-forcing precoder. Theorem 2 reveals that zero-forcing
precoding is asymptotically optimal when the relay has no
fewer antennas than the number of users (i.e., N ≥ K). In
fact, for the case with PNC, full degrees of freedom can be
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achieved when the relay has N = K − 1 antennas only. But
the optimal solution in this case is not in the form of (54).

Next, we discuss the asymptotically optimal precoder for
N = K − 1.

Proposition 4: Suppose N = K−1. In the limit of σ2, γ2 →
0, the asymptotically optimal precoders for the weighted sum
MSE minimization and the weighted sum rate maximization,
are identical and can be expressed as

G∞ = vec(nS)α, (55)

where α is determined by the power constraint at the re-
lay, and nS is the null vector of S. The columns of
S ∈ C(K−1)×K(K−2) are given by f j ⊗ hi for i, j =
1, · · · ,K, and j 6= i, j 6= π(i).

Proof: As concluded from Theorem 2, zero forcing
relaying is required to achieve full DoF. Each user can see
the signals from the desired user and itself only. This can be
achieved by

0 = fTj Ghi

= (hi ⊗ f j)T vec(G), i, j = 1, · · · ,K, j 6= i, π(i), (56)

where f j ∈ CN×1 be the downlink channel vector from the
relays to user j, i.e., the jth row of F , or equivalently in a
matrix form as

ST vec(G) = 0. (57)

To ensure full DoF, there must exist non-zero G that
satisfies (57), or equivalently, the null space of S does not
only consist of the zero vector. By definition, S is determined
by the channel matrices F and H . For randomly generated
F and H , S is of full rank with probability one. Therefore, a
non-trivial null space of S requires that the number of relays
exceeds the column rank of S, i.e., (K − 1)2 > K(K − 2).
Thus, we conclude (55).

So far, we have assumed N ≥ K−1 to provide enough DoF
for zero-forcing relaying. Otherwise, the relay is incapable of
forcing every inter-user interference to zero simultaneously.
For N < K − 1, we can circumvent this issue by user
scheduling. Specifically, we deactivate some users to ensure
that the number of the active users does not exceed N for
the non-PNC case and N + 1 for the PNC case. Then, once
the scheduling strategy is given, the precoder proposed in this
section can be directly applied. The design of the scheduling
strategy is not the focus, thus is omitted in this paper.

Proposition 5: Suppose N ≥ K. As σ2, γ2 → 0, Algorithms
1 and 2 converge to G = F †C−1

0 (P +B0)H† for any initial
values B = B0 and C = C0.

Proposition 5 suggests that, in the high SNR regime, the
convergence points of Algorithms 1 and 2 highly depend on
the initial conditions. Therefore, it is necessary to carefully
choose B0 and C0 in the high SNR regime, as detailed below.
Together with Proposition 3, it is suggested that Algorithm
1 and 2 should be initialized by high-SNR aysmptotically
optimal/suboptimal solutions over all SNR regimes.

Note that the high-SNR asymptotically optimal precoder for
N = K − 1 is determined by (55), where α is determined by
the relay power constraint. Thus, we could use the high-SNR

asymptotically optimal precoder as the initial values for the
iterative algorithms.

Next, we consider the results for N ≥ K.
1) Weighted sum MSE minimization: Plugging in the opti-

mal precoder (54) and ignoring the high-order infinitesimals,
we can rewrite the weighted sum MSE minimization problem
in (5) as (58).

Problem (58) is in general non-convex and is difficult to
solve. In the following, we propose a suboptimal solution to
iteratively optimize B and C. Define the index mapping  =
π(ı), ı = 1, · · · ,K.

Proposition 6: (i) Given {c}, problem (58) is a convex
problem of {b} with the optimal solution

b = −
γ2whı + λqf,π()(c

∗
 )
−1c−1

π()

γ2wh + λqf|c|−2
,  = 1, · · · ,K, (59)

where λ is a scalar to meet the relay power constraint, fij
is element (i, j) of (FFH)−1, and hij is element (i, j) of
(HHH)−1. (ii) Given {b}, the optimal phases of {c} to the
problem (58) are given by

∠c = ∠cı − ∠fı − ∠bı − π,  = 1, · · · ,K. (60)

(iii) Given {b} and the phases of {c} in (60), problem (58)
is convex in {|c|−2}.

Proposition 6 is proved in Appendix E. With Proposition
6, we can readily develop an algorithm to iteratively optimize
{b} and {c}. We omit the details for simplicity.

The phase-aligned algorithm in [11] is the special case
of pairwise traffic pattern assuming the uplink and downlink
channel are reciprocal. The phase setting (60) generalizes the
previous result by relaxing the assumptions of pairwise pattern
and channel reciprocity.

2) Weighted sum rate maximization: Next, we investigate
the high-SNR asymptotically optimal matrices B and C
for the weighted sum rate maximization. Plugging into the
optimal form (54) and ignoring the high-order infinitesimals,
we rewrite (31) as (61).

Similarly to the case of the weighted sum MSE minimiza-
tion, the joint optimization ofB and C is difficult to solve. We
next find a suboptimal solution by iteratively optimizing {b}
and {c}. Similarly to Proposition 6, we have the following
results, with the proof of which is given in Appendix F.

Proposition 7: (i) Given {c}, problem (61) has a closed-
form optimal solution {b}. (ii) Given {b}, the optimal phases
of {c} to problem (61) are given by (60). (iii) Given {b} and
the phases of {c} in (60), problem (58) is convex in {|c|2}.

C. Further Discussion

To summarize, our asymptotic analysis reveals that the
proposed iterative algorithms in Section III converge to the
asymptotically optimal solution in (52) at low SNR, and this
convergence is insensitive to the initial conditions. At high
SNR, Algorithms 1 and 2 converge to the asymptotically
optimal zero-forcing form in (54), but could perform poorly
depending on the initial conditions of B and C. Therefore, in
implementation, we set the initial values of Algorithms 1 and
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minimize
B,C

Tr
[
W

(
γ2 (P +B)

(
HHH

)−1

(P +B)
H

+ σ2CCH

)]
(58a)

subject to Tr
[(
FFH

)−1

C−1 (P +B)Q (P +B)
H
C−H

]
≤ Pr (58b)

B and C are diagonal. (58c)

maximize
{b},{c}

1

2

K∑
=1

log
tjqj |c|−2

γ2 |c|−2
[
h |b|2 + 2<

{
h∗ıb

}
+ hıı

]
+ σ2

(61a)

subject to Tr
[(
FFH

)−1

C−1 (P +B)Q (P +B)
H
C−H

]
≤ Pr (61b)

2 to the high-SNR optimal/suboptimal solutions of B and C
(cf. Propositions 4–7).

It is also worth mentioning that all the theorems and
propositions presented in this section literally hold for the
case in which user power control is allowed. That is, all
the results obtained in this section are directly applicable
to the asymptotic solutions to problems (26) and (51). To
see this, we only need to show that, in the asymptotic SNR
regimes, maximum power transmission is desirable for every
user. We first consider the high SNR regime. It is known that
zero forcing is asymptotically optimal at high SNR, which
implies that the higher the transmission power, the higher
the weighted sum rate and the lower the weighted sum MSE
(since the users do not interfere with each other). Therefore,
provided N ≥ K − 1 (which allows zero-forcing), full power
transmission at every user is asymptotically optimal in the high
SNR regime.

Now we consider the low SNR regime. In this case, channel
noise dominates the inter-user interference, implying that the
higher transmission power, the higher achievable rate for each
user (and also the lower MSE for each user). Therefore,
maximum power transmission is also asymptotically optimal
in the low SNR regime.

The asymptotic analysis provided in this section also sheds
light on the convergence speed of the proposed iterative
algorithms. Specifically, these algorithms converge very fast
at high SNR, and eventually are stuck at the initial value
when SNR goes to infinity. In the low SNR regime, the
proposed algorithms reduce to the power iteration method
(used for finding the maximum eigenvalue of a matrix). The
convergence speed of power iteration depends on the ratio of
the second largest eigenvalue against the largest eigenvalue,
which depends on the specific channel realization. Roughly
speaking, the proposed algorithms converge relatively slow
at low SNR, and the convergence speed increases as SNR
increases, as will be demonstrated in the next section.

VI. NUMERICAL RESULTS

In this section, we evaluate the weighted sum MSE and the
weighted sum rate of the proposed MIMO switching schemes.
We assume that the maximum transmit power levels of the
relay and the users are the same (thus Qi = Pr = 1,

i = 1, · · ·K), and the users transmit with maximum power.
The noise levels at the relay and at the users are the same
(i.e., σ2 = γ2). Then, the transmit SNR is defined as
SNR = 1/σ2 = 1/γ2. The antenna and user settings are
N = K = 4. We present the numerical results averaged
over all permutations (there are 9 different derangements for
N = 4). We assume Rayleigh fading, i.e., the elements of H
and F are independently drawn from CN (0, 1). Each simu-
lation point in the presented figures is obtained by averaging
over 105 random channel realizations. Note that the results of
non-PNC schemes can be found in Appendix G, which will
be used for comparison in simulation.

The key findings are summarized as four observations.

Observation 1: The proposed iterative sum MSE minimization
(It-MSE-Min) algorithm performs significantly better than the
MMSE scheme in [12], [16].

The MSE performance of the related schemes is illustrated
in Fig. 2. The sum MSE of the MMSE scheme [12], [16]
saturates at high SNR (say, SNR > 10 dB), since this scheme
optimizes the precoder at the relay only. In contrast, the
proposed It-MSE-Min algorithm jointly optimizes both the
precoder at the relay and the receive filters at the users,
resulting in vanishing MSE at high SNR. Moreover, the sum
MSE can be further reduced by exploiting the PNC technique.
From Fig. 2, the PNC gain is as significant as 6 dB at the sum
MSE of 10−2.

Observation 2: The iterative sum rate maximization (It-Rate-
Max) algorithm achieves significant throughput gains over the
existing relaying schemes, such as ZF/MMSE relaying [12],
[16] and the network-coded relaying [13], [16].

Fig. 3 illustrates the throughput performance of various
approaches including the proposed iterative sum rate max-
imization scheme with PNC (It-Rate-Max PNC), the zero-
forcing scheme without PNC (ZF non-PNC) in [12], [16],
the MMSE scheme without PNC (MMSE non-PNC) in [12],
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Fig. 2. The sum MSE performance is evaluated for different schemes when
N = K = 4. The sum MSE achieved by [12], [16] saturates at high
SNR. In contrast, the sum MSE of the proposed iterative schemes, which
are labelled by “It-MSE-Min non-PNC” and “It-MSE-Min PNC”, decreses as
SNR increases. The one with PNC outperforms the one without PNC.

[16], the balanced PNC scheme proposed in [16],2 and the
zero-forcing scheme with PNC (ZF PNC) in [11]. From
Fig. 3, the proposed It-Rate-Max PNC algorithm significantly
outperforms the other schemes throughout the SNR range
of interest. Specifically, the proposed algorithm outperforms
the MMSE non-PNC scheme, especially in the high SNR
regime, since the former utilizes the PNC technique and jointly
optimizes the precoder and the receive filter. The proposed
algorithm also outperforms the zero-forcing schemes in [11],
[12], [16], since the latters suffer from noise enhancement.
Furthermore, we also see that the proposed iterative rate-
max scheme has roughly 1.5 dB gain over the balanced PNC
scheme in [16] throughout the whole SNR range of interest.

Observation 3: The PNC schemes achieve considerably higher
throughputs than their corresponding non-PNC schemes, es-
pecially at medium and high SNR.

Fig. 4 illustrates the PNC gain for the proposed It-MSE-
Min/It-Rate-Max approaches, as well as for the zero-forcing
relaying schemes in [11], [12], [16]. At low SNR, the pro-
posed It-MSE-Min/It-Rate-Max algorithms with and without
PNC, exhibit roughly the same throughput performance, which
numerically verifies Theorem 1. At high SNR, the proposed
schemes with PNC achieve about 6 dB gain over the best non-
PNC schemes (i.e., the It-Rate-Max scheme without PNC) at
the sum rate of 8 bits per symbol period. The proposed It-
MSE-Min/It-Rate-Max algorithms exhibit similar throughput
performance at high SNR, either in the PNC case or the
non-PNC case. This agrees well with the fact in Theorems

2A PNC scheme was proposed in [13] as well, which used the same block-
diagonalization technique as that in [16]. However, the scheme in [16] induced
an extra step to balance the channel gain of each user, which outperformed
the scheme in [13]. Thus, we show the result of [16] in Fig. 3 only. Note
that the proposed schemes in [13] and [16] are both for pairwise transmission
only. Thus, the red curve in Fig. 3 is calculated by averaging the results for
symmetric derangements only.
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ZF non−PNC [12], [16]

MMSE non−PNC [12], [16]

Balanced PNC [16]

ZF PNC [11]

It−Rate−Max PNC

Fig. 3. The sum rate performance is evaluated for different schemes when
N = K = 4. The proposed iterative algorithm for sum rate maximization
with PNC, i.e., “It-Rate-Max PNC”, outperforms other schemes in the
literature. “ZF non-PNC” and “MMSE non-PNC” were proposed in [12],
[16]; “Balanced PNC” was proposed in [16] only for pairwise data exchange;
“ZF PNC” was proposed in [11].

1 and 2 that the optimal precoders for It-MSE-Min/It-Rate-
Max coincide, except that the asymptotically optimal diagonal
matrices B and C are slightly different (cf. Proposition 5−7).

Observation 4: With the high-SNR asymptotically optimal
solutions as the initials, the proposed iterative algorithms
achieve good performance over all SNR regimes.

In Fig. 5, the proposed iterative algorithms are initialized
by their high-SNR asymptotically optimal solutions, respec-
tively. It shows that both the It-MSE-Min scheme and the It-
Rate-Max scheme asymptotically approaches optimal as SNR
decreases and increases. In addition, the high-SNR asymp-
totically optimal solutions also achieve good performance
especially at high SNR, while the low-SNR solution degrades
fast as SNR increases. Thus, regarding both the throughput and
the computational complexity, the high-SNR asymptotically
optimal solutions are practical schemes in the engineering
view.

In addition, we evaluate the convergence speed of the
proposed iterative algorithms. Our numerical results indicate
that the proposed algorithms converge quite fast. For example,
in Fig. 6, less than 25 iterations are required to achieve
convergence on average. The average number of iterations de-
creases as SNR increases. The weighted sum rate optimization
problem needs more iterations than the weighted sum MSE
optimization problem.

VII. CONCLUSION

In this paper, we have proposed a unified approach to
iteratively solve the weighted sum MSE minimization and the
weighted sum rate maximization problems for the wireless
MIMO switching networks with and without PNC. We proved
that, although the proposed algorithms are suboptimal in
general, they can converge to asymptotically optimal solution



11

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

SNR(dB)

S
u

m
 r

a
te

 (
b

it
s
 p

e
r 

s
y
m

b
o

l 
p

e
ri
o

d
)

 

 

ZF non−PNC [12], [16]

ZF PNC [11]

It−MSE−Min non−PNC

It−MSE−Min PNC

It−Rate−Max non−PNC

It−Rate−Max PNC

Fig. 4. The sum rate performance is evaluated for corresponding non-PNC
and PNC schemes when N = K = 4. In general, the schemes with PNC
outperform the ones without PNC. “ZF non-PNC” was proposed in [12],
[16]; “ZF PNC” was proposed in [11]; “It-MSE-Min” and “It-Rate-Max” are
proposed in Section III and IV, respectively, where their non-PNC schemes
are derived in Appendix G.

in the low SNR regime regardless of the initial conditions,
and near optimal solution in the high SNR regime with
properly setting initial conditions. Numerical results show that
the proposed iterative algorithms significantly outperform the
existing ZF and MMSE relaying schemes for MIMO switching
for all SNR.

This paper makes several assumptions to simplify the design
and analysis of the MIMO switching schemes. For example,
we assume that each user has a single antenna, and full channel
state information is available to the relay. It is of theoretical
and practical interest to investigate the impact of relaxing these
assumptions on the MIMO switching design.

APPENDIX A
PROOF OF THEOREM 1

We first consider solving the weighted sum MSE mini-
mization in (5). The global optimal solution of (5) should
satisfy the KKT conditions, i.e. the results in Proposition 1
and Proposition 2. From Proposition 1, the optimal α can be
expressed in terms of Ḡ as in (13b). When σ2, γ2 → +∞,
we obtain

α2 =
Pr

γ2 Tr
[
ḠḠ

H
] +O

(
γ−2

)
. (62)

Similarly, from Proposition 2 the optimal B and C̄ can be
expressed in terms of Ḡ and α as in (15). As σ2, γ2 → +∞,
we obtain

Bopt=α2σ−2[FḠH]diag[PQHHḠ
H
FH ]diag +O(σ−2γ−2)

(63a)

C̄
opt

=α2σ−2[PQHHḠ
H
FH ]diag +O(σ−2γ−2). (63b)

Then, the weighted sum MSE (7) is rewritten as where (64)
follows by plugging in (63a) and (63b); (65) follows from
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Fig. 5. The sum rate performance is evaluated for different asymptotically
optimal solutions when N = K = 4. “Low SNR approx” is the low-
SNR asymptotically optimal sollution given by Theorem 1; “MSE-Min
high SNR approx” and “Rate-Max high SNR approx” are the high-SNR
asymptotically optimal solutions given by Theorem 2 as well as Proposition
6 and 7, respectively. The proposed iterative schemes achieve nearly optimal
performance at both low and high SNR. In the medium SNR regime, it shows
that the proposed schemes also achieve good performance.

(62); (68) follows from (6).
Now we consider the weighted sum rate in (31a). In the

low SNR regime, this weighted sum rate becomes first order
approximated as

K∑
`=1

w`R` =
1

2σ2

K∑
`=1

q2
`w`

∣∣pT` FGh`∣∣2 +O
(
σ−2

)
. (69)

From (68) and (69), we see that minimizing the weighted sum
MSE is equivalent to maximizing the weighted sum rate in the
low-SNR regime, with the solution given by solving

maximize
G

K∑
`=1

q2
`w`

∣∣pT` FGh`∣∣2 (70a)

subject to Tr
[
GGH

]
≤ Pr
γ2
. (70b)

Note that∣∣pT` FGh`∣∣2 = Tr
[
pT` FGh`h

H
` G

HFHp`

]
(71)

= Tr
[
GHFHp`p

T
` FGh`h

H
`

]
(72)

= gHvec
(
FHp`p

T
` FGh`h

H
`

)
(73)

= gH
((
h`h

H
`

)
⊗
(
FHp`p

T
` F
))
g (74)

where g = vec(G), and the last step follows from
vec(ABC) = (CT ⊗A)vec(B) in Lemma 4.3.1 [22]. With
the definition in (53), problem (70) can be equivalently written
as

maximize
g

gHΨg (75a)

subject to gHg ≤ Pr/γ2. (75b)
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J
(
Ḡ, α,B, C̄

)
= Tr

[
WPQP T − 2<

{
α2σ−2W

[
PQHHḠ

H
FH

]
diag

FḠHQP T

}
+ γ2α4σ−4W

[
PQHHḠ

H
FH

]
diag

FḠḠ
H
FH

[
PQHHḠ

H
FH

]
diag

+α2σ−2W
[
PQHHḠ

H
FH

]
diag

[
PQHHḠ

H
FH

]
diag

]
+O

(
σ−4γ−4

)
(64)

= Tr
[
WPQP T

]
+ Tr

[
−2<

{
α2σ−2W

[
PQHHḠ

H
FH

]
diag

FḠHQP T

}
+α2σ−2W

[
PQHHḠ

H
FH

]
diag

[
FḠHQP T

]
diag

]
+O

(
σ−4γ−2

)
(65)

= Tr
[
WPQP T

]
− Tr

[
α2σ−2W

[
PQHHḠ

H
FH

]
diag

[
FḠHQP T

]
diag

]
+O

(
σ−4γ−2

)
(66)

= Tr
[
WPQP T

]
− Tr

[
α2σ−2W

[
QHHḠ

H
FHP

]
diag

[
P TFḠHQ

]
diag

]
+O

(
σ−4γ−2

)
(67)

= Tr
[
WPQP T

]
− σ−2

K∑
`=1

q2
`w`

∣∣pT` FGh`∣∣2 +O
(
σ−4γ−2

)
(68)
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Fig. 6. The numbers of iterations of the two proposed iterative algorithms
are evaluated for different schemes when N = K = 4. The average number
of iterations decreases as SNR increases. The algorithm for the sum rate
optimization problem (i.e., It-Rate-Max) needs more iterations than that for
the sum MSE optimization problem (i.e., It-MSE-Min).

The optimal g to the above problem is an eigenvector corre-
sponding to the maximum eigenvalue of Ψ , which concludes
the proof.

APPENDIX B
PROOF OF PROPOSITION 3

We first consider the convergence point of Algorithm 1.
Clearly, any convergence point of Algorithm 1 satisfies both
(13) and (15). In the low SNR regime, (15) can be first-order
approximated as (63). Plugging in (63), (13a) can be first-order

approximated as

Ḡ ≈ γ−2

(
σ2

Pr
Tr
[
WC̄C̄

H
])−1

FHC̄
H
WPQHH (76)

=
Tr
[
ḠḠ

H
]

∥∥∥W 1
2 diag{PQHHḠ

H
FH}

∥∥∥2

F

× (77)

× FH
[
FḠHQP T

]
diag

WPQHH

= ξFH
[
FḠHQP T

]
diag

WPQHH (78)

= ξFHP
[
P TFḠHQ

]
diag

ŴQHH (79)

where Ŵ = P TWP = diag {w1, · · · , wK}. In the above,
(76) follows by noting that as σ2, γ2 → +∞,

σ2

Pr
Tr[WC̄C̄

H
]I + FHC̄

H
WC̄F ≈ σ2

Pr
Tr[C̄C̄H

]I, (80)

P +B ≈ P , (81)

HHH + γ2I ≈ γ2I. (82)

(77) follows by plugging in (62) and (63b). (78) follows by
defining

ξ =
Tr
[
ḠḠ

H
]

∥∥∥W 1
2 diag

{
PQHHḠ

H
FH

}∥∥∥2 . (83)

(79) follows from P T [A]diag P = [P TAP ]diag. Let f ` to
be column ` of FHP . Recall that h` is column ` of H ,
` = 1, · · · ,K. We obtain

FHP
[
P TFḠHQ

]
diag

ŴQHH

=
[
f1 · · · fK

]
diag

{
q2
1w1f

H
1 Ḡh1,

· · · , q2
KwKf

H
KḠhK

} [
h1 · · · hK

]H
(84)
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=

K∑
`=1

q2
`w`

(
f `f

H
`

)
Ḡ
(
h`h

H
`

)
(85)

=

K∑
`=1

q2
`w`

(
FHp`p

T
` F
)
Ḡ
(
h`h

H
`

)
(86)

= Ψḡ. (87)

where the last step follows from vec(ABC) = (CT ⊗
A)vec(B) and the definition in (53). With (87), the optimal
precoder in (79) is rewritten as

ḡ = ξΨḡ, (88)

implying that the convergence point of Algorithm 1 must be
one of the eigenvectors of Ψ . Furthermore, the iterative process
of Algorithm 1 is equivalent to recursively calculating Ψḡ and
then updating ḡ with Ψḡ normalized by ξ. This process is
called power iteration in linear algebra [29], with the fixed
point given by the eigenvector corresponding to the largest
eigenvalue of Ψ . Thus, Algorithm 1 converges to the optimal
solution in (52).

Next, we consider the convergence point of Algorithm 2. We
aim to show that this convergence point is also given by (88).
To this end, we note that the similarity between the weighted
sum rate maximization problem and the weighted sum MSE
minimization problem is established based on (45) as pointed
out in Section IV.B. We also note that the convergence point of
the weighted sum MSE minimization problem is given by (88).
Therefore, it suffices to show that, in the low SNR regime, the
weighted sum rate maximization is equivalent to the weighted
sum MSE minimization. From (45), we thus need to show that
W = TΣ−1 ≈ T , i.e., Σ ≈ I , in the low SNR regime, as
detailed below.

When σ2, γ2 → +∞, the scaling factor α can be approx-
imated as in (62), and hence the covariance (37c) can be
approximated as

Czizi ≈ σ2. (89)

Together with (37b) and (62), we have

Σi ≈ 1− α2(pTi FḠhi)
∗σ−2α2pTi FḠhi

≈ 1, i = 1, · · · ,K, (90)

or equivalently,

Σ ≈ I, (91)

which completes the proof.

APPENDIX C
PROOF OF THEOREM 2

Recall that F is a K-by-N matrix. Then(
FHC̄

H
WC̄F

)†
= F †C̄

−1
W−1

(
C̄
H
)−1 (

FH
)†
. (92)

From Proposition 1, the optimal Ḡ for problem (5) can be
expressed in terms of B and C̄ as in (13a). When σ2, γ2 → 0,

we obtain

Gopt = αḠ
opt (93)

= αF †C̄
−1

(P +B)H† (94)

= F †C−1 (P +B)H† (95)

which completes the proof for the weighted sum MSE mini-
mization part.

Now we consider the weighted sum rate maximization.
From (49) and the discussion therein, the optimal precoder
for the weighted sum rate maximization can be expressed in
terms of ∆̄ and Σ as in (49a). Letting σ2, γ2 → 0 in (49), we
obtain

Gopt = αF †Ω̄
−1 (

P + Ω̄∆̄
)
H†. (96)

Recall that both ∆̄ and Σ are diagonal. Thus, the theorem
is proved by variable substitutions of letting B = Ω̄∆̄ and
C = α−1Ω̄.

APPENDIX D
PROOF OF PROPOSITION 5

We first see the high-SNR approximation of the solution
(13a), (15a) and (15b) for the weighted sum MSE minimiza-
tion problem. When σ2, γ2 → 0, from (13a), the optimal
solution of G can be rewritten as

Gopt = F †C−1 (P +B)H†. (97)

Plugging (97) into (15a) and (15b), we have

Bopt = B and Copt = C. (98)

This result indicates that the solution of Algorithm 1 is trapped
at the initial value at high SNR.

Next, we see the high-SNR approximation of the solution
(49) and (38). Plugging (54) into (38), we have

ωopti = ωi and Σopti → 0, i = 1, · · · ,K. (99)

Note that the term σ2

Pr
Tr
[
TΣ−1Ω̄Ω̄

H
]

in (49) is still finite
due to σ2 → 0. This result indicates that the solution of
Algorithm 2 is also trapped at the initial condition. Thus, the
proof is completed.

APPENDIX E
PROOF OF PROPOSITION 6

We start with the proof of part (i). Problem (58) can be
equivalently expressed as For fixed {c}, both the objec-
tive function (100a) and the constraint (100b) are quadratic
functions of {b}. Hence it is straightforward to see that
problem (100) (or equivalently (58)) is convex in {b}. By
the Lagrangian method, The optimal {b} can be obtained as

b = −
γ2whı + λqf,π()

(
c∗
)−1

c−1
π()

γ2wh + λqf |c|−2 ,  = 1, · · · ,K (101)

where λ is a scalar to meet the relay power constraint.
Next, we prove part (ii) and (iii). Since the weighted sum

MSE (100a) is independent of the phases of {c}, the optimal
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minimize
b1,··· ,bK ,c1,··· ,cK

K∑
ı=1

wı

(
γ2h |b|2 + 2γ2<

{
h∗ıb

}
+ σ2 |c|2 + γ2hıı

)
(100a)

subject to
K∑
ı=1

qπ−1(ı)fıı |cı|
−2

+ qıfıı |cı|−2 |bı|2 + 2<
{
qıfı

(
c∗
)−1

c−1
ı bı

}
≤ Pr. (100b)

phases must minimize the relay power consumption in (100b).
Note that (100b) can be rewritten as

K∑
ı=1

qı
∣∣c−1
 + fıbıc

−1
ı

∣∣2 + qπ−1(ı)fıı |cı|
−2 (102)

+ qı
(
fıı|bı|2|cı|−2 − |fıbı|2|cı|−2 − |c|−2

)
≤ Pr.

Therefore, for any given {bı}, c−1
 and fıbıc−1

ı have opposite
phases, or equivalently, the optimal phases of {c} satisfy

∠c = ∠cı − ∠fı − ∠bı − π,  = 1, · · · ,K. (103)

With (103), the relay power consumption in (102) reduces to
K∑
ı=1

qπ−1(ı)fıı |cı|
−2

+ qıfıı |cı|−2 |bı|2

− 2qı |fı| |c|−1 |cı|−1 |bı| ≤ Pr. (104)

Let ηı = |cı|−2, ı = 1, · · · ,K. Clearly, the objective (100a)
is convex in {ηı}. In addition, |c|−1 |cı|−1

=
√
ηηı, the

geometric mean of η and ηı, is concave in η and ηı [30]. As
non-negative weighted sums preserve concavity,

∑K
ı=1

√
ηηı

is concave in {ηı}, and hence the power in (104) is convex in
{ηı}. Therefore, problem (100) is a convex problem of {ηı},
which concludes the proof.

APPENDIX F
PROOF OF PROPOSITION 7

The proof of Proposition 7 is similar to that of Proposition
6. The sketch of the proof is given as follows. We start with the
proof of part (i). For fixed {c}, we use the Lagrangian method
to solve problem (61). The Lagrangian function is written as
Setting the derivatives w.r.t. {bı} to zero, we obtain The above
is a cubic equation w.r.t. b, which allows closed-form solution
[31].

We next prove part (ii) and (iii). Since the sum rate in (61a)
is independent of the phases of {c} and problem (61) has
the same constraint as problem (100), we conclude that the
optimal phases of {c} also satisfy (103). Moreover, let ηı =
|cı|−2, ı = 1, · · · ,K. It can be shown that the constraint (61b)
is convex in {ηı}, and that the objective (61a) is concave in
{ηı}. Thus, problem (61) is a convex problem in {ηı}, which
completes the proof.

APPENDIX G
RESULTS FOR NON-PNC SCHEMES

In this case, we have B = 0. Then the optimal precoders
are given in the following propositions with the proof, respec-
tively.

Proposition 8: For the non-PNC case, i.e., B = 0, the
optimal solution to (58) is given by C∞ with the ith diagonal
element being

c∞j =

(√
qifjj

∑K
`=1

√
w`qπ−1(`)f``

Pr
√
wj

) 1
2

,

j = 1, · · · ,K. (107)

Proof 1: Plugging in (54), the weighted sum MSE in (7)
can be rewritten as

J = Tr
[
W
(
γ2P (HHH)−1P T + σ2CCH

)]
, (108)

and the relay power consumption in (8b) is rewritten as

Tr
[
G
(
HQHH + γ2I

)
GH

]
≈ Tr

[
GHQHHGH

]
(109)

= Tr
[(
FFH

)−1

CPQP TCH

]
. (110)

Then, problem (5) can be minimized equivalently by solving

minimize
c1,··· ,cK

K∑
`=1

w` |c`|2 (111a)

subject to
K∑
`=1

f``Qπ−1(`),π−1(`)

|c`|2
≤ Pr, (111b)

where c` is the `th diagonal element of C. It can be readily
verified that problem (111) is convex. Solving the KKT
conditions [30], we obtain the solution in (107).

Proposition 9: For B = 0, the optimal solution to (61) is
written as

c =
γ

σ
(2hıı)

1
2

((
1 +

2γ2hıı
λσ2fq

) 1
2

− 1

)− 1
2

,

 = 1, · · · ,K, (112)

where λ is a scaling factor to guarantee that the relay transmits
with its maximum power.

Proof 2: When σ2 → 0, the weighted sum rate (31a) is
approximated as

R({c}) ≈
1

2

K∑
ı=1

log
tjqj

∣∣pTı FGhı∣∣2
γ2 |pTı FG|

2
+ σ2

(113)

=
1

2

K∑
=1

log
tjqj |c|−2

γ2hıı |c|−2
+ σ2

. (114)

The constraint of the relay power consumption (31b) is ap-
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L ({b} , λ) =
1

2

K∑
=1

log
tjqj |c|−2

γ2 |c|−2
[
h |b|2 + 2<

{
h∗ıb

}
+ hıı

]
+ σ2

+ λ

(
K∑
ı=1

qπ−1(ı)fıı|cı|−2 + qıfıı |cı|−2 |bı|2 + 2<
{
qıfı

(
c∗
)−1

c−1
ı bı

}
− Pr

)
(105)

(
γ2hıı |bı|2 + 2γ2<

{
h∗π−1(ı),ıbı

}
+ γ2hπ−1(ı),π−1(ı) + σ2 |c|2

)
×

×
(
γ2hııbı + γ2hπ−1(ı),ı

)
+ λqı

(
fıı |cı|−2

bı + fı (c∗ı )
−1
c−1


)
= 0. (106)

proximated as

Tr
[
GHQHHGH

]
=

K∑
=1

fq |c|−2

≤ Pr. (115)

We obtain the solution in (112) by solveing the KKT condi-
tions.
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