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Abstract

Wireless Network Information Flow: A Deterministic Approach

by

Amir S Avestimehr

Doctor of Philosophy in Engineering—Electrical Engineering and Computer Sciences

and the Designated Emphasis

in

Communication, Computation, and Statistics

University of California, Berkeley

Professor David Tse

In communications, the multiuser Gaussian channel model is commonly used to cap-

ture fundamental features of a wireless channel. Over the past couple of decades, study of

multiuser Gaussian networks has been an active area of research for many scientists. How-

ever, due to the complexity of the Gaussian model, except for the simplest networks such

as the one-to-many Gaussian broadcast channel and the many-to-one Gaussian multiple

access channel, the capacity region of most Gaussian networks is still unknown. For ex-

ample, even the capacity of a three node Gaussian relay network, in which a point to point

communication is assisted by one helper (relay), has been open for more than 30 years.

To make further progress, we present a linear finite-field deterministic channel model

which is analytically simpler than the Gaussian model but still captures two key wireless

channels: broadcast and superposition. The noiseless nature of this model allows us to

focus on the interaction between signals transmitted from different nodes of the network

rather than background noise of the links.

Then, we consider a model for a wireless relay network with nodes connected by such
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deterministic channels, and present an exact characterization of the end-to-end capacity

when there is a single source and a single destination and an arbitrary number of relay

nodes. This result is a natural generalization of the celebrated max-flow min-cut theorem

for wireline networks. We also characterize the multicast capacity of linear finite-field

deterministic relay networks when one source is multicasting the same information to mul-

tiple destinations, with the help of arbitrary number of relays.

Next, we use the insights obtained from the analysis of the deterministic model and

present an achievable rate for general Gaussian relay networks. We show that the achiev-

able rate is within a constant number of bits from the information-theoretic cut-set upper

bound on the capacity of these networks. This constant depends on the number of nodes

in the network, but not the values of the channel gains. Therefore, we uniformly char-

acterize the capacity of Gaussian relay networks within a constant number of bits, for all

channel parameters. For example, we approximate the unknown capacity of the three node

Gaussian relay channel within one bit/sec/Hz.

Finally, we illustrate that the proposed deterministic approach is a general tool and

can be applied to other problems in wireless network information theory. In particular we

demonstrate its application to make progress in two other problems: two-way relay channel

and relaying with side information.

Professor David Tse Date
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Chapter 1

Introduction

1.1 Motivation

Wireless communication is one of the most vibrant areas in the communication field today.

Over the past decade we have witnessed quite a few successful solutions in the wireless

industry, for example second-generation (2G) and third-generation (3G) digital wireless

standards with more than half a billion subscribers worldwide. As history indicates, in-

formation theory has played a significant role in these achievements by providing elegant

engineering insights for several key problems arising in these systems. So far, most of

these problems have been in the context of a point to point communication system. This

is mainly due to a centralized infrastructure deployed in current systems, such as cellular

networks.

Looking ahead, we note that the next generation of wireless communication systems

will be increasingly based on new principles such as cooperation between different net-

work entities for efficient use of resources, and interference management strategies for

coexistence of different wireless systems. Clearly, wireless communication systems are

evolving from a centralized architecture to a distributed one. As a result, we need to study
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Chapter 1. Introduction

new information theoretical problems arising in multiuser communication systems.

Two main distinguishing features of wireless communication are:

• first, the broadcast nature of wireless communication; wireless users communicate

over the air and signals from any one transmitter is heard by multiple nodes with

possibly different signal strengths.

• second, the superposition nature; a wireless node receives signals from multiple si-

multaneously transmitting nodes, with the received signals all superimposed on top

of each other.

Because of these two effects, links in a wireless network are never isolated but instead

interact in seemingly complex ways. On the one hand this facilitates the spread of informa-

tion among users in a network, on the other hand it can be harmful by creating interference

among users. This is in direct contrast to wireline networks, where transmitter-receiver

pairs can often be thought of as isolated point-to-point links, i.e., inducing a communica-

tion graph. While there has been significant progress in understanding network flow over

wired networks [1; 2; 3; 4; 5], not much is known for wireless networks.

In communication, the linear additive Gaussian channel model is commonly used to

capture fundamental features of a wireless channel. Over the past couple of decades, study

of multiuser Gaussian networks has been an active area of research for many scientists.

However, due to the complexity of the Gaussian model, except for the simplest networks

such as the one-to-many Gaussian broadcast channel and the many-to-one Gaussian mul-

tiple access channel, the capacity region of most Gaussian networks is still unknown. For

example, even the capacity of a three node Gaussian relay network, in which a point to

point communication is assisted by one helper (relay), has been open for more than 30

years.

So, given the current state of knowledge, how can we proceed?
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Chapter 1. Introduction

In this dissertation we propose a deterministic approach to this problem. We present

a new deterministic channel model which is analytically simpler than the Gaussian model

but yet still captures the two key features of wireless communication of broadcast and

superposition. The motivation to study such a model is that in contrast to fixed point-to-

point channels where noise is the only source of uncertainty, in multiuser communication,

the signal interactions are a critical source of uncertainty. Therefore, for a first level of

understanding, our focus is on such signal interactions rather than the received noise. One

way to interpret this is that it captures the interference-limited rather than the noise-limited

regime.

Our goal is to utilize the deterministic model to find ”near optimal” communication

schemes for the Gaussian network, and hence approximate its capacity. Our approxima-

tion of interested, sandwiches the capacity in such a way that the approximation error does

not depend on network channel gains and signal-to-noise ratio (SNR) of operation. In this

sense, we seek a ”uniform” approximation of the capacity. Since the achievable rates grow

with SNR, and the constant of our approximation is independent of it, we can see that for

moderate SNR regimes, this approximation could be interesting. Moreover, the constants

in the approximation are worst case bounds, and on the average, the characterization is

much tighter. Another advantage of this approach is that we can now approximately char-

acterize arbitrary wireless networks rather than specific networks. Moreover, depending

on the regime of operation, perhaps this approximate characterization might be enough for

engineering practice.

1.2 Background

In this dissertation we look at the unicast and multicast scenarios in wireless networks. In

the unicast scenario, one source wants to communicate to a single destination with the help

of other other nodes in the network, called relays. Similarly, in the multicast scenario the

3



Chapter 1. Introduction

source wants to transmit the same message to multiple destinations. Since in these scenar-

ios, all destination nodes are interested in the same message, there is no real interference in

the network. Therefore we can focus on the cooperative aspect of wireless networks, which

also makes the problem substantially easier than a general multi-source multi-destination

problem. This will be used as a first step towards the understanding of more complex

network topologies.

The 3-node relay channel was first introduced in 1971 by Vander Meulen [6] and the

most general strategies for this network were developed by Cover and El Gamal [7]. There

has also been a significant effort by researchers to generalize these ideas to arbitrary multi-

relay networks. An early attempt was done in the Ph.D. Thesis of Aref [8] where a max-

flow min-cut result was established to characterize the unicast capacity of a deterministic

broadcast relay network which had no multiple-access interference. This was an early pre-

cursor to network coding which established the multicast capacity of wireline networks, a

deterministic capacitated graph which had no broadcast or multiple-access interference [1;

2; 3]. These two ideas were combined in [9], which established a max-flow min-cut charac-

terization for multicast flows for ”Aref networks” which had general (deterministic) broad-

cast with no multiple-access interference. Unfortunately such complete characterizations

are not known for arbitrary (even deterministic) networks with both broadcast and multiple-

access interference. One notable exception is the work [10] which takes a scalar determin-

istic linear finite field model and uses probabilistic erasures to model channel failures. For

this model using results of erasure broadcast networks [11], they established the unicast ca-

pacity through a max-flow min-cut characterization. Our deterministic model circumvents

this need to introduce probabilistic erasures by constructing vector interactions modeling

signal scales which seems to capture the essence of noisy (Gaussian) relay networks.

There has also been a rich body of literature in directly tackling the noisy relay network

capacity characterization. In [12] the ”diamond” network of parallel relay channel with no

direct link between the source and the destination was examined. Xie and Kumar general-
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Chapter 1. Introduction

ized the decode-forward encoding scheme for a network of multiple relays [13]. Gastpar

and Vetterli established the asymptotic capacity of a single sender, single receiver network

as the number of relay nodes increases [14]. Kramer et. al. [15], Reznik et. al.[16],

Khojastepour et. al. [17], Laneman, Tse and Wornell [18], Mitra and Sabharwal [19],

Sendonaris et. al. [20; 21], El Gamal and Zahedi [22], Nosratinia and Hedayat [23], Yuksel

and Erkip [24], and many other authors have also addressed different aspects of relaying

and cooperation in wireless networks in recent years.

Though there have been many interesting and important ideas developed in these pa-

pers, the capacity characterization of Gaussian relay networks is still unresolved. In fact

even a performance guarantee, such as establishing how far these schemes are from an

upper bound is unknown, and hence the approximation guarantees for these schemes is un-

clear. As we will see in Chapter 3, several of the strategies do not yield an approximation

guarantee for general networks.

1.3 Contributions of this dissertation

We summarize our main contributions below, which are more precisely stated in Chapter

4. We first develop a linear deterministic model which incorporates signal scale interaction

as well as the broadcast and superposition nature of wireless medium. We establish the

connection of such a model to simple multiuser Gaussian networks in Chapter 2, which also

suggests a constant-bit approximate characterization of such networks based on insights

from the linear deterministic model. In fact this model suggests achievable strategies to

explore in the noisy (Gaussian) relay networks as seen in Chapter 3 where we apply this

philosophy to progressively complex networks. In fact, these examples demonstrate that

several known strategies can be arbitrary far away from the optimality.

Given the utility of this deterministic approach, in Chapter 5 we examine arbitrary

deterministic signal interaction model (not necessarily linear) and establish an achievable
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Chapter 1. Introduction

rate for an arbitrary network with such interaction (with broadcast and multiple-access).

For the special case of linear deterministic models, this achievable rate matches an upper

bound to the capacity, therefore the complete characterization is possible. The analysis

for arbitrary deterministic functions requires the notion of message typicality which gives

us a tool needed for the approximate characterization of Gaussian wireless relay network

capacity.

The examination of the deterministic network relay network motivates the introduction

of a simple coding strategy for general Gaussian relay networks. In this scheme each relay

first quantizes the received signal at the noise level, then randomly maps it to a Gaussian

codeword and transmits it. In Chapter 6 we use the insights of the deterministic result

to demonstrate that we can achieve a rate that is guaranteed to be within a constant gap

from the information-theoretic cut-set upper bound on capacity. This constant depends

on the topological parameters of the network (number of nodes in the network), but not

on the values of the channel gains. Therefore, we get a uniformly good approximation

of the capacity of Gaussian relay networks, uniform over all values of the channel gains.

Moreover in Chapter 7, we show that this scheme is robust to the knowledge of the channel

at the relays, and therefore is applicable to a compound relay network where the gains come

from a class of channels. Therefore, as long as the network can support a given rate, we

can achieve it without the relays knowledge of the channel gains.

In Chapter 7, we establish several other extensions to our results.

1. Compound relay network

2. Frequency selective relay network

3. Half-duplex relay network

4. Quasi-static fading relay network (underspread regime)

5. Low rate capacity approximation of Gaussian relay network

6



Chapter 1. Introduction

In Chapter 8 we demonstrate a more precise connection between different channel mod-

els considered in this paper. In particular we illustrate in what sense these models are close

to each other.

In Chapter 9, we further discuss applications of the deterministic approach to other

problems in wireless network information theory. We look at two different problems; two-

way relay channel and relaying with side information, and illustrate how to use the deter-

ministic model to find a uniformly near optimal communication scheme for each problem.

We end the dissertation with final notes and discussions.

Parts of this dissertation are published in [25; 26; 27; 28; 29; 30; 31].
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Chapter 2

Deterministic modeling of wireless

channel

2.1 Introduction

In this dissertation we consider a relay network represented by a general directed network

G = (V , E) where V is the set of vertices representing the communication nodes in the relay

network, and E is the set of annotated links between nodes, which describe the contribution

to the signal interaction. The network is not assumed to be simple and in general loops are

allowed.

We consider both unicast and multicast communication problem scenarios. Therefore

a special node S ∈ V is considered the source of the message and wants to simultaneously

transmit its message to all destination nodes in the set D. If D contains only one node we

have a unicast scenario, otherwise a multicast scenario where all nodes in D are interested

in the same message from the source. All other nodes in the network facilitate communi-

cation between S and D. The relationship between the received signal at a node and the

transmitted signals from its neighbors is described by the channel model.
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Chapter 2. Deterministic modeling of wireless channel

The multiuser Gaussian channel model is the standard one used in modeling the fun-

damental features of a wireless channel: signal strength, broadcast and superposition. The

main goal in this dissertation is to get a uniform approximation of the capacity of Gaussian

relay networks. To accomplish this goal, there are two main steps: first to find a ”good”

relaying scheme, second to analyze the performance of this scheme and demonstrate that it

achieves an approximate characterization of the capacity of Gaussian relay network for all

channel gains. However, due to the complexity of the Gaussian model, both steps are quite

challenging, since the model accounts for both signal interaction as well as noise.

As discussed in the introduction, our approach is to introduce and analyze a simpler

linear finite-field deterministic channel model that is closely connected to the Gaussian

model. The simplicity of this model allows us to make progress and get insights into

Gaussian relay networks. Furthermore, we also develop new proof techniques that can also

be utilized in noisy (Gaussian) relay networks.

The goal of this chapter is to introduce the linear deterministic model and illustrate how

we can deterministically model three key features of a wireless channel: signal strength,

broadcast and superposition.

2.2 Modeling signal strength

Consider the real scalar Gaussian model for point to point link,

y = hx+ z (2.1)

where z ∼ N (0, 1). There is also an average power constraint E[|x|2] ≤ 1 at the trans-

mitter. The transmit power and noise power are both normalized to be equal to 1 and

the signal-to-noise ratio (SNR) is captured in terms of channel gains. So h is a fixed real

9
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number representing the channel gain (signal strength), and

|h| =
√

SNR (2.2)

It is well known that the capacity of this point-to-point channel is

CAWGN =
1

2
log (1 + SNR) (2.3)

To get an intuitive understanding of this capacity formula let us write the received signal in

equation (2.1), y, in terms of the binary expansions of x and z. For simplicity assume h, x

and z are positive real numbers, then we have

y = 2
1
2

log SNR

∞∑

i=1

x(i)2−i +
∞∑

i=−∞
z(i)2−i (2.4)

To simplify the effect of background noise assume it has a peak power equal to 1. Then we

can write

y = 2
1
2

log SNR

∞∑

i=1

x(i)2−i +
∞∑

i=1

z(i)2−i (2.5)

or,

y ≈ 2n

n∑

i=1

x(i)2−i +
∞∑

i=1

(x(i+ n) + z(i)) 2−i (2.6)

where n = ⌈1
2
log SNR⌉+. Therefore if we just ignore the 1 bit of the carry-over from the

second summation (
∑∞

i=1 (x(i+ n) + z(i)) 2−i) to the first summation (2n
∑n

i=1 x(i)2
−i)

we can intuitively model a point-to-point Gaussian channel as a pipe that truncates the

transmitted signal and only passes the bits that are above the noise level. Therefore think

of transmitted signal x as a sequence of bits at different signal levels, with the highest

signal level in x being the most significant bit (MSB) and the lowest level being the least

10
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significant bit (LSB). In this simplified model the receiver can see the n most significant

bits of x without any noise and the rest are not seen at all. Clearly there is a correspondence

between n and SNR in dB scale,

n↔ ⌈1

2
log SNR⌉+ (2.7)

As we notice in this simplified model there is no background noise any more and hence it

is a deterministic model. Pictorially the deterministic model corresponding to the AWGN

channel is shown in Figure 2.1. In this figure, at the transmitter there are several small cir-

cles. Each circle represents a signal level and a binary digit can be put for transmission at

each signal level. Depending on n, which represents the channel gain in dB scale, the trans-

mitted bits at the first n signal levels will be received clearly at the destination. However

the bits at other signal levels will not go through the channel.

These signal levels can potentially be created by using a multi-level lattice code in the

AWGN channel [32]. Then the first n levels in the deterministic model represent those

levels (in the lattice chain) that are above noise level, and the remaining are the ones that

are below noise level. Therefore, if we think of the transmit signal, x, as a binary vector of

length q, then the deterministic channel delivers only its first n bits to the destination. We

can algebraically write this input-output relationship by shifting x down by q−n elements

or more precisely

y = Sq−nx (2.8)

where x and y are binary vectors of length q denoting transmit and received signals respec-

11
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nA B

Figure 2.1: Pictorial representation of the deterministic model for point-to-point

channel.

tively and S is the q × q shift matrix,

S =














0 0 0 · · · 0

1 0 0 · · · 0

0 1 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 1 0














(2.9)

Clearly the capacity of this deterministic point-to-point channel is n, where

n = ⌈1

2
log SNR⌉+ (2.10)

It is interesting to note that this is a within 1
2
-bit approximation of the capacity of the AWGN

channel1. In the case of complex Gaussian channel we set n = ⌈log SNR⌉+ and we get a

within 1-bit approximation of the capacity.

1Note that this connection is only in the capacity without a formal connection in coding scheme or a direct

translation of the capacity.
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2.3 Modeling broadcast

Based on the intuition obtained so far, it is straightforward to think of a deterministic model

for a broadcast scenario. Consider the real scalar Gaussian broadcast channel. Assume

there are only two receivers. The received SNR at receiver i is denoted by SNRi for i = 1, 2.

Without loss of generality assume SNR2 ≤ SNR1. Consider the binary expansion of the

transmitted signal, x. Then we can deterministically model the Gaussian broadcast channel

as the following:

• Receiver 2 (weak user) receives only the first n2 bits in the binary expansion of x.

Those bits are the ones that arrive above the noise level.

• Receiver 1 (strong user) receives the first n1 (n1 > n2) bits in the binary expansion

of x. Clearly these bits contain what receiver 1 gets.

The deterministic model in some sense abstracts away the use of superposition cod-

ing and successive interference cancellation decoding in the Gaussian broadcast channel.

Therefore the first n2 levels in the deterministic model represent the cloud center that is

decoded by both users, and the remaining n1 − n2 levels represent the cloud detail that is

decoded only by the strong user (after decoding the cloud center and canceling it from the

received signal).

Pictorially the deterministic model for a Gaussian broadcast channel is shown in figure

2.2 (a). In this particular example n1 = 5 and n2 = 2, therefore both users receive the first

two most significant bits of the transmitted signal. However user 1 (strong user) receives

additional three bits from the next three signal levels of the transmitted signal. There is

also the same correspondence between n and channel gains in dB: ni ↔ ⌈log SNRi⌉+, for

i = 1, 2.

To analytically demonstrate how closely we are modeling the Gaussian BC channel,

the capacity region of Gaussian BC channel and deterministic BC channel are shown in

13
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Rx 2

Tx

Rx 1 n1

n2

(a) Pictorial

representation of

the deterministic

model for

Gaussian BC

n1

R2

R1

n2

log(1 + SNR2)

log(1 + SNR1)

(b) Capacity region of Gaussian BC

channel (solid line). Capacity

region of deterministic BC channel

(dashed line)

Figure 2.2: Pictorial representation of the deterministic model for Gaussian BC is

shown in (a). Capacity region of Gaussian and deterministic BC are shown in (b).

Figure 2.2 (b). As it is seen their capacity regions are very close to each other. In fact it

is easy to verify that for all SNR’s these regions are always within one bit per user of each

other (i.e. if a pair (R1, R2) is in the capacity region of the deterministic BC then there is a

pair within one bit per component of (R1, R2) that is in the capacity region of the Gaussian

BC)2. However, this is only the worst case gap and in a typical case that SNR1 and SNR2

are very different the gap is much smaller than one bit.

2A cautionary note is that as in the point-to-point case the connection is not formed in the coding scheme

but just in capacity regions.
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2.4 Modeling superposition

Consider a superposition scenario in which two users are simultaneously transmitting to a

node. In the Gaussian model the received signal can be written as

y = h1x1 + h2x2 + z. (2.11)

To intuitively see what happens in superposition in the Gaussian model, we again write

the received signal, y, in terms of the binary expansions of x1, x2 and z. Assume x1, x2

and z are all real numbers smaller than one, and also the channel gains are

hi =
√

SNRi, i = 1, 2 (2.12)

Without loss of generality assume SNR2 < SNR1. Then we have

y = 2
1
2

log SNR1

∞∑

i=1

x1(i)2
−i + 2

1
2

log SNR2

∞∑

i=1

x2(i)2
−i +

∞∑

i=−∞
z(i)2−i (2.13)

To simplify the effect of background noise assume it has a peak power equal to 1. Then we

can write

y = 2
1
2

log SNR1

∞∑

i=1

x1(i)2
−i + 2

1
2

log SNR2

∞∑

i=1

x2(i)2
−i +

∞∑

i=1

z(i)2−i (2.14)

or,

y ≈ 2n1

n1−n2∑

i=1

x1(i)2
−i + 2n2

n2∑

i=1

(x1(i+ n1 − n2) + x2(i)) 2−i

+
∞∑

i=1

(x1(i+ n1) + x2(i+ n2) + z(i)) 2−i (2.15)

where ni = ⌈1
2
log SNRi⌉+ for i = 1, 2. Therefore based on the intuition obtained from
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the point-to-point and broadcast AWGN channels, we can approximately model this as the

following:

• That part of x1 that is above SNR2 (x1(i), 1 ≤ i ≤ n1 − n2) is received clearly

without any interaction from x2.

• The remaining part of x1 that is above noise level (x1(i), n1 − n2 < i ≤ n1) and that

part of x2 that is above noise level (x1(i), 1 ≤ i ≤ n2) interact with each other and

are received without any noise.

• Those parts of x1 and x2 that are below noise level are truncated and not received at

all.

The key point is how to model the interaction between the bits that are received at the same

signal level. In our deterministic model we ignore the carry-overs of the real addition and

we model the interaction by the modulo 2 sum of the bits that are arrived at the same signal

level. Pictorially the deterministic model for a Gaussian MAC channel is shown in figure

2.3 (a). Analogous to the deterministic model for the point-to-point channel, we can write

y = Sq−n1x1 ⊕ Sq−n2x2 (2.16)

where the summation is in F2 (modulo 2). Here xi (i = 1, 2) and y are binary vectors

of length q denoting transmit and received signals respectively and S is a q × q shift

matrix. There is also the same relationship between ni’s and the channel gain in dB:

ni ↔ ⌈log SNRi⌉+, for i = 1, 2. Note that if one wants to make a connection between

the deterministic model and real Gaussian MAC channel (rather than complex) a factor of

1
2

is necessary.

Now compared to simple point-to-point case we now have interaction between the bits

that receive at the same signal level at the receiver. However, we limit the receiver to ob-

serve only the modulo 2 summation of those bits that arrive at the same signal level. In
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Rx
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(a) Pictorial

representation of

the deterministic

MAC.
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Figure 2.3: Pictorial representation of the deterministic MAC is shown in (a). Ca-

pacity region of Gaussian and deterministic MACs are shown in (b).

some sense this way of modeling interaction is similar to the collision model. In the colli-

sion model if two packets arrive simultaneously at a receiver, both are dropped; similarly

here if two bits arrive simultaneously at the same signal level the receiver gets only their

modulo 2 sum, which means it can not figure out any of them. On the other hand, unlike

in the simplistic collision model where the entire packet is lost when there is collision, the

most significant bits of the stronger user remain intact. This is reminiscent of the famil-

iar capture phenomenon in CDMA systems: the strongest user can be heard even when

multiple users simultaneously transmit.

Now we can apply this model to Gaussian multiple access channel (MAC), in which

y = h1x1 + h2x2 + z (2.17)

where z ∼ CN (0, 1). There is also an average power constraint equal to 1 at both trans-

mitters. A natural question is how close is the capacity region of the deterministic model to

that of the actual Gaussian model. Without loss of generality assume SNR2 < SNR1. The
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capacity region of this channel is well-known to be the set of non-negative pairs (R1, R2)

satisfying

Ri ≤ log(1 + SNRi), i = 1, 2 (2.18)

R1 +R2 ≤ log(1 + SNR1 + SNR2) (2.19)

This region is plotted with solid line in figure 2.3 (b).

It is easy to verify that the capacity region of the deterministic MAC is the set of non-

negative pairs (R1, R2) satisfying

R2 ≤ n2 (2.20)

R1 +R2 ≤ n1 (2.21)

where ni = log SNRi for i = 1, 2. This region is plotted with dashed line in figure 2.3

(b). In this deterministic model the ”carry-over” from one level to the next that would

happen with real addition is ignored. However as we notice still the capacity region is very

close to the capacity region of the Gaussian model. In fact it is easy to verify that they are

within one bit per user of each other (i.e. if a pair (R1, R2) is in the capacity region of the

deterministic MAC then there is a pair within one bit per component of (R1, R2) that is in

the capacity region of the Gaussian MAC). The intuitive explanation for this is that in real

addition once two bounded signals are added together the magnitude increases however,

it can only become as large as twice the maximum size of individual ones. Therefore the

cardinality size of summation is increased by at most one bit. On the other hand in finite-

field addition there is no magnitude associated with signals and the summation is still in the

same field size as the individual signals. So the gap between Gaussian and deterministic

model for two user MAC is intuitively this one bit of cardinality increase. Similar to the

broadcast example, this is only the worst case gap and when the channel gains are different
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it is much smaller than one bit.

Now we define the linear finite-field deterministic model.

2.5 Linear finite-field deterministic model

In this paper we consider a relay network represented by a general directed network G =

(V , E) where V is the set of vertices representing the communication nodes in the relay

network, and E is the set of annotated between nodes, which describe the contribution to

the signal interaction. The network is not assumed to be simple and in general loops are

allowed.

In the linear finite-field deterministic model the communication link from node i to

node j has a non-negative integer gain3 n(i,j) associated with it. This number models the

channel gain in a corresponding Gaussian setting. At each time t, node i transmits a vector

xi[t] ∈ F
q
p and receives a vector yi[t] ∈ F

q
p where q = maxi,j(n(i,j)) and p is a positive

integer indicating the field size. The received signal at each node is a deterministic function

of the transmitted signals at the other nodes, with the following input-output relation: if

the nodes in the network transmit x1[t],x2[t], . . .xN [t] then the received signal at node j,

1 ≤ j ≤ N is:

yj[t] =
∑

i∈Nj

Sq−ni,jxi[t] (2.22)

where the summations and the multiplications are in Fp. In this paper the field size is

assumed to be two, p = 2, unless it is stated otherwise.

3Some channels may have zero gain.
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Motivation of our approach

3.1 Introduction

In this chapter we motivate and illustrate our approach. We look at three simple relay

networks and illustrate how the analysis of these networks under the simpler linear finite-

field deterministic model enables us to conjecture a near optimal relaying scheme for the

Gaussian case and using this insight to provably approximate the capacity of these net-

works under the Gaussian model within a constant number of bits. We progress from the

relay channel where several strategies yield uniform approximation to more complicated

networks where progressively we see that several ”simple” strategies in the literature fail to

achieve a constant gap. Using the deterministic model we can whittle down the potentially

successful strategies. In fact we can show that the set of strategies that yield a universal

approximation shrink as we progress to more complex networks. This illustrates the power

of the deterministic model to provide insights into transmission techniques for the noisy

networks.
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(a) The Gaussian relay

channel

R

S
DnSD

nSR
nRD

(b) The linear finite-field deterministic relay

channel

Figure 3.1: The relay channel: (a) Gaussian model, (b) Linear finite-field determin-

istic model

3.2 One relay network

We start by looking at the simplest Gaussian relay network with only one relay as shown

in figure 3.1 (a). We examine whether it is possible to approximate its capacity uniformly

(uniform over all channel gains). To answer this question positively we need to find a

relaying protocol that achieves a rate close to an upper bound on the capacity for all channel

parameters. To find such a scheme we use the linear finite-field deterministic model to gain

insight. The corresponding linear finite-field deterministic model of this relay channel with

channel gains denoted by nSR, nSD and nRD is shown in Figure 3.1 (b). It is easy to see that

the capacity of this deterministic relay channel, Cd
relay, is smaller than both the maximum

number of bits that can be broadcasted from the relay, and the maximum number of bits

that the destination can receive. Therefore.

Cd
relay ≤ min (max(nSR, nSD),max(nRD, nSD)) (3.1)

=







nSD, if nSD > min (nSR, nRD);

min (nSR, nRD) , otherwise.
(3.2)
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Figure 3.2: The gap between cut-set upper bound and achievable rate of decode-

forward scheme in the Gaussian relay channel for different channel gains (in dB

scale).
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This bound simply upper bounds the capacity by the maximum number of bits that can

can be sent from one side of a cut in the network (containing the source) to the other side

of the cut (containing the destination), assuming that the nodes on each side of the cut can

fully collaborate with each other, hence it is called the cut-set upper bound.

Note that equation (3.2) naturally implies a capacity-achieving scheme for this deter-

ministic relay network: if the direct link is better than any of the links to/from the relay

then the relay is silent, otherwise it helps the source by decoding its message and send-

ing innovative bits. This suggests a decode-and-forward scheme for the original Gaussian

relay channel. The question is: how does it perform? In the following theorem we show

that for one-relay network the decode-forward scheme achieves within one bit/sec/Hz of

the capacity for all channel parameters.

Theorem 3.2.1. Decode-forward relaying protocol achieves within 1 bit/sec/Hz of the ca-

pacity of the one-relay Gaussian network, for all channel gains.

Proof. See Appendix A.1.

Therefore we showed that the maximum gap between decode-forward achievable rate

and the cut-set upper bound on the capacity of Gaussian relay network is at most one bit.

However we should point out that even this 1-bit gap is too conservative in many parameter

values. In fact the gap would be at the maximum value only if two of the channel gains

are exactly the same. Since in a wireless scenario the channel gains differ significantly this

happens very rarely. In figure 3.2 the gap between the achievable rate of decode-forward

scheme and the cut-set upper bound is plotted for different channel gains. In this figure

x and y axis are respectively representing the channel gains from relay to destination and

source to relay normalized by the gain of the direct link (source to destination) in dB scale.

The z axis shows the value of the gap (in bits/sec/Hz). There are two main points that one

should note in this figure: first that the gap is at most one bit which is consistent with what

we showed in this section. Second, on the average the gap is much less than one bit.
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Figure 3.3: Diamond network with two relays: (a) Gaussian model, (b) Linear finite-

field deterministic model

Note that the deterministic network in Figure 3.1 (b), suggests that several other relay-

ing strategies are also optimal. For example doing a compress and forwarding will also

achieve the cut-set bound. Moreover a ”network coding” strategy of sending the sum (or

linear combination) of the received bits will also be optimal as long as the destination re-

ceives linearly independent combinations. All these schemes can also be translated to the

Gaussian case and can be shown to be uniformly approximate strategies. Therefore for the

simple relay channel there are many successful candidate strategies. As we will see, this

set shrinks as we go to larger relay networks.

3.3 Diamond network

Now consider the diamond Gaussian relay network, with two relays, as shown in Figure

3.3 (a). Brett Schein introduced this network in his Ph.D. thesis [12] and investigated its

capacity. However the capacity of this network is still an open problem. We examine

whether it is possible to uniformly approximate its capacity.

First we build the corresponding linear finite field deterministic model for this relay

network as shown in Figure 3.3 (b). To investigate its capacity first we relax the interactions
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Figure 3.4: Wireline diamond network

between incoming links at each node and create the wireline network shown in Figure 3.4.

In this network there are two other links added, which are from S to Ŝ and from D̂ to

D. Since the capacities of these links are respectively equal to the maximum number of

bits that can be sent by the source and maximum number of bits that can be received by

the destination in the original linear finite-field deterministic network, the capacity of the

wireline diamond network cannot be smaller than the capacity of the linear finite-field

deterministic diamond network. Now by the max-flow min-cut theorem we know that the

capacity Cw
diamond of the wireline diamond network is equal to the value of its minimum

cut. Hence

Cd
diamond ≤ Cw

diamond

= min {max(nSA1 , nSA2),max(nA1D, nA2D), nSA1 + nA2D, nSA2 + nA1D}(3.3)

As we will show in Section 5, this upper bound is in fact the cut-set upper bound on the

capacity of the deterministic diamond network.

Now, we know that the capacity of the wireline diamond network is achieved by a rout-

ing solution. It is not also difficult to see that we can indeed mimic this routing solution in

the linear finite-field deterministic diamond network and send the same amount of informa-

tion through non-interfering links from source to relays and then from relays to destination.
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Therefore the capacity of the deterministic diamond network is equal to its cut-set upper

bound.

A natural analogy of this routing scheme for the Gaussian network is the following

partial decode-and-forward strategy:

1. The source broadcasts two messages, m1 and m2, at rate R1 and R2 to relays A1 and

A2.

2. Each relay Ai decodes message mi, i = 1, 2.

3. Then A1 and A2 re-encode the messages and transmit them via the MAC channel to

the destination.

Clearly at the end the destination can decode both m1 and m2 if (R1, R2) is inside the

capacity region of the BC from source to relays as well as the capacity region of the MAC

from relays to the destination. In the following theorem we show that for the two-relay

diamond network partial decode-forward scheme achieves within one bit/sec/Hz of the

capacity for all channel parameters.

Theorem 3.3.1. Partial decode-forward relaying protocol achieves within 1 bit/sec/Hz of

the capacity of the two-relay diamond Gaussian network, for all channel gains.

Proof. See Appendix A.2.

We can also use the linear finite-field deterministic model to understand why other sim-

ple protocols such as decode-forward and amplify-forward are not universally approximate

strategies for the diamond relay network.

For example consider the linear-finite field deterministic diamond network shown in

Figure 3.5 (a). Clearly the cut-set upper bound on the capacity of this network is 3 bits/unit

time. In a decode-forward scheme, all participating relays should be able to decode the

message. Therefore the maximum rate of the message broadcasted from the source can at
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most be 2 bits/unit time. Also, if we ignore relay A2 and only use the stronger relay, still it

is not possible to send information more at a rate more than 1 bit/unit time. As a result we

cannot achieve the capacity of this network by using a decode-forward strategy.

Now we can use this deterministic diamond network example to illustrate that in the

Gaussian diamond network the gap between the achievable rate of the decode-forward and

amplify-forward schemes and the cut-set upper bound can be arbitrary large. Consider the

corresponding Gaussian network of this example as shown in figure 3.5 (b). Assume a is a

large real number. The cut-set upper bound is approximately,

C ≈ 3 log a (3.4)

Now clearly the achievable rate of the decode-forward strategy is upper bounded by

RDF ≤ 2 log a (3.5)

Therefore, as a gets larger, the gap between the achievable rate of decode-forward strategy

and the cut-set upper bound (3.4) increases.

Now let us look at the amplify-forward scheme. Although this scheme does not require

all relays to decode the entire message, it can be quite sub-optimal if relays inject significant

noise into the system. We use the deterministic model to intuitively see this effect. In a

deterministic network, the amplify-forward operation can be simply modeled by shifting

bits up and down at each node. However, once the bits are shifted up the newly created

LSB’s represent the amplified bits of the noise and we model them by random bits. Now,

consider the example shown in Figure 3.5 (a). We notice that to achieve a rate of 3 from

the source to the destination, the bit at the lowest signal level of the source’s signal should

go through A1 while the remaining two are going through A2. Now if A2 is doing amplify-

forward, it will have two choices: to either forward the received signal without amplifying
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it, or to amplify the received signal to have three signal levels in magnitude and forward it.

The effective networks under these two strategies are respectively shown in figure 3.5

(c) and 3.5 (d). In the first case, since the total rate going through the MAC from A1 and

A2 to D is less than two, the overall achievable rate cannot exceed two. In the second case,

however, the inefficiency of amplify-forward strategy comes from the fact that A2 is trans-

mitting pure noise on its lowest signal level. As a result, it is corrupting the bit transmitted

by A1 and reducing the total achievable rate again to two bits/unit time. Therefore, for this

channel realization, amplify-forward scheme does not achieve the capacity. This intuition

can again be made more rigorous for the Gaussian case to show that amplify and forward

is not a universally-approximate strategy for the diamond network.

In the diamond network it can be shown that though decode-forward and amplify-

forward relaying strategies fail, other strategies such as partial decode-forward, compress-

forward as well as quantize-map (the main strategy analyzed in this dissertation for general

networks) are still potential universally-approximate strategies. Hence the set of possible

strategies that are always universally-approximate for any network shrinks.

3.4 A four relay network

Now we consider a more complicated relay network with four relays, as shown in Figure

3.6. As the first step lets find the optimal relaying strategy for the corresponding linear

finite field deterministic model. Consider an example of a linear finite field deterministic

relay network shown in Figure 3.7 (a). It is easy to see that the cut-set upper bound on the

capacity of this relay network is 5. Now consider the following relaying strategy,

• Source broadcasts b = [b1, . . . , b5]
t

• Relay A1 decodes b3, b4, b5 and relay A2 decodes b1, b2

• Relay A1 and A2 respectively send xA1 = [b3, b4, b5, 0, 0]t and xA2 = [b1, b2, 0, 0, 0]t
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Figure 3.5: An example of the linear finite field deterministic diamond network is

shown in (a). The corresponding Gaussian network is shown in (b). The effective

network when R2 just forwards the received signal is shown in (c). The effective

network when R2 amplifies the received signal to shift it up one signal level and

then forward the message is shown in (d).
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DS
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A2

B1

B2

(a)

Figure 3.6: A two layer relay network with four relays.

• Relay B2 decodes b1, b2, b3 and sends xB2 = [b1, b2, b3, 0, 0]t

• RelayB1 receives yB1
= [0, 0, b3, b4⊕b1, b5⊕b2]t and forwards the last two equations,

xB1 = [b4 ⊕ b1, b5 ⊕ b2, 0, 0, 0]t

• The destination gets yD = [b1, b2, b3, b4 ⊕ b1, b5 ⊕ b2]
t and is able to decode all five

bits.

Clearly with this scheme we can achieve the cut-set upper bound for this particular ex-

ample. As one can note, in this optimal scheme the relay B1 is not decoding or partially

decoding a message, it is forwarding the last two LSB’s. One may wonder if this is nec-

essary, or in another words is any choice of partial decode-forward strategy suboptimal in

this example? To answer this question. note that any partial decode-forward scheme can be

visualized as different flows of information going from S to D that do not get mixed in the

network. Now since all transmit signal levels of A1 and A2 are interfering with each other,

it is not possible to get a rate of more than 3 bits/unit time by any partial decode-forward

scheme in this example and hence it is always suboptimal.

The optimal scheme that we demonstrated above may look like a compress-forward

strategy for Gaussian networks (described in [15] section V). But, as we will now show in

fact a simple compress-forward strategy with Gaussian auxiliary random variables can in
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Figure 3.7: An example of a four relay linear finite filed deterministic relay network

is shown in (a). The corresponding Gaussian relay network is shown in (b). The

effective Gaussian network for compress-forward strategy is shown in (c).
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general be far from the cut-set upper bound. So the corresponding scheme for Gaussian

relay networks is not a simple compress-forward strategy.

Consider the example shown in Figure 3.7 (b). For large values of a, cut-set upper

bound on the capacity of this relay network is approximately

C ≈ 5 log a (3.6)

The achievable rate of the compress-forward scheme is characterized in Theorem 3

([15] page 9), which is in the form of a mutual information maximization over auxiliary

random variables UT and ŶT . Even though this is written in single-letter form, since there

is no cardinality bounds, the rate optimization is still an infinite dimensional optimization

problem. However, to simplify this problem further, assume that auxiliary random variables

UT are set to zero, and ŶT are restricted to have a Gaussian distribution, which leads to a

finite dimensional problem.

The scheme is such that the Wyner−Ziv source-coding region of each layer must inter-

sect the channel-coding region of the next layer. As a result by looking at layer {B1, B2}
we note that node B1 should compress its received signal to a Gaussian random variable

with variance a2. In another words, just quantize the received signal with distortion a.

Therefore the effective network will look like the one shown in Figure 3.7 (c). Note that

now the cut-set upper bound of this new network is approximately, C
′ ≈ 4 log a.

As a result, with this compress-forward scheme, it is not possible to get a rate more than

4 log a. As a increases the gap between the achievable rate of compress-forward strategy

and the cut-set upper bound increases. Therefore the simple Gaussian compress-forward

strategy fails to be universally-approximate for this network.

Therefore the set of relaying strategies that can be universally approximate for general

noisy (Gaussian) relay networks has shrunk progressively through our examples. We devote

the rest of the paper to generalizing the steps we took for each of the examples. As we will
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show, in the deterministic relay network the received signal at each signal level is just an

equation of the message sent by the source, and the optimal strategy is to simply shuffle

these received equations at each relay and forward them. This insight leads to a natural

strategy for noisy (Gaussian) relay networks that we will analyze. The strategy for each

relay is to (vector) quantize the received signal reference to a distortion of the noise power

and then map these bits uniformly to a transmit Gaussian codeword. The main result of our

paper is to show that such a scheme is indeed universally approximate for arbitrary noisy

(Gaussian) relay networks for both single unicast and multicast information flows.
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Main results

4.1 Introduction

In this section we precisely state the main results of the paper and briefly discuss their

implications. All the results we develop are lower bounds to the achievable rate for single

unicast or multicast information flow over a relay network. The capacity of a relay network,

C, is defined as the supremum of all achievable rates of reliable communication from the

source to the destination. Similarly, the multicast capacity of relay network is defined as

the maximum rate that the source can send the same information simultaneously to all

destinations.

For any network, there is a natural information-theoretic cut-set bound [33], which

upper bounds the reliable transmission rate R. Applied to the relay network, we have the

cut-set upper bound C on its capacity:

C = max
p({xj}j∈V )

min
Ω∈ΛD

I(YΩc ;XΩ|XΩc) (4.1)

where ΛD = {Ω : S ∈ Ω, D ∈ Ωc} is all source-destination cuts (partitions).
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4.2 Deterministic networks

4.2.1 Linear finite-field deterministic relay network

Applying the cut-set bound to the linear finite field deterministic relay network defined in

Section 2.5, (2.22), we get:

C = max
p({xj}j∈V )

min
Ω∈ΛD

I(YΩc ;XΩ|XΩc) (4.2)

(a)
= max

p({xj}j∈V )
min
Ω∈ΛD

H(YΩc|XΩc) (4.3)

(b)
= min

Ω∈ΛD

rank(GΩ,Ωc) (4.4)

where ΛD = {Ω : S ∈ Ω, D ∈ Ωc} is all source-destination cuts (partitions) and GΩ,Ωc

is the transfer matrix associated with that cut, i.e., the matrix relating the vector of all the

inputs at the nodes in Ω to the vector of all the outputs in Ωc induced by (2.22). Step (a)

follows since we are dealing with deterministic networks and step (b) follows since in a

linear finite-field model all cut values (i.e. H(YΩc |XΩc)) are simultaneously optimized by

independent and uniform distribution of {xi}i∈V and the optimum value of each cut Ω is

logarithm of the size of the range space of the transfer matrix GΩ,Ωc associated with that

cut.

The following are our main results for linear finite-field deterministic relay networks,

Theorem 4.2.1. Given a linear finite-field relay network (with broadcast and multiple ac-

cess), the capacity C of such a relay network is given by,

C = min
Ω∈ΛD

rank(GΩ,Ωc). (4.5)

Theorem 4.2.2. Given a linear finite-field relay network (with broadcast and multiple ac-
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cess), the multicast capacity C of such a relay network is given by,

C = min
D∈D

min
Ω∈ΛD

rank(GΩ,Ωc). (4.6)

Note that the results in Theorems 4.2.1 and 4.2.2, applies to networks with arbitrary

topology and could have cycles (or feedback loops). For a single source-destination pair

the result in Theorem 4.2.1 generalizes the classical max-flow min-cut theorem for wireline

networks and for multicast, the result in Theorem 4.2.2 generalizes the network coding

result in [1] where in both these earlier results, the communication links are orthogonal,

i.e. no broadcast or multiple access interference. Moreover, as we will see in the proof, the

encoding functions at the relay nodes (for the linear finite-field model) could be restricted

to linear functions to obtain the result in Theorem 4.2.1.

4.2.2 General deterministic relay network

In the general deterministic model the received vector signal yj at node j ∈ V at time t is

given by

yj[t] = gj({xi[t]}i∈Nj
), (4.7)

where we define the input neighbors Nj of j as the set of nodes whose transmissions affect

j, and can be formally defined as Nj = {i : (i, j) ∈ E}. Note that this implies a deter-

ministic multiple access channel for node j and a deterministic broadcast channel for the

transmitting nodes.

The following are our main results for arbitary networks with general deterministic

interaction models.

Theorem 4.2.3. Given an arbitrary relay network with general deterministic signal in-

teraction model (with broadcast and multiple access), we can achieve all rates R up to,
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max
Q

i∈V p(xi)
min
Ω∈ΛD

H(YΩc |XΩc). (4.8)

This theorem easily extends to the multicast case, where we want to simultaneously

transmit one message from S to all destinations in the set D ∈ D:

Theorem 4.2.4. Given an arbitrary relay network with general deterministic signal in-

teraction model (with broadcast and multiple access), we can achieve all rates R from S

multicasting to all destinations D ∈ D up to,

max
Q

i∈V p(xi)
min
D∈D

min
Ω∈ΛD

H(YΩc|XΩc). (4.9)

This achievability result in Theorem 4.2.3 extends the results in [9] where only deter-

ministic broadcast network (with no interference) were considered. Note that when we

compare (4.8) to the cut-set upper bound in (4.3), we see that the difference is in the maxi-

mizing set i.e., we are only able to achieve independent (product) distributions whereas the

cut-set optimization is over any arbitrary distribution. In particular, if the network and the

deterministic functions are such that the cut-set is optimized by the product distribution,

then we would have matching upper and lower bounds. This indeed happens when we con-

sider the linear finite-field model. Hence, Theorems 4.2.1 and 4.2.2 are just corollaries of

Theorems 4.2.3 and 4.2.4.

4.3 Gaussian relay networks

In the Gaussian model the signals get attenuated by complex gains and added together with

Gaussian noise at each receiver (the Gaussian noises at different receivers being indepen-

dent of each other.). More formally the received signal yj at node j ∈ V and time t is given
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by

yj[t] =
∑

i∈Nj

Hijxi[t] + zj[t] (4.10)

where Hij is a complex matrix where element represents the channel gain from a transmit-

ting antenna in node i to a receiving antenna in node j, and Nj is the set of nodes that are

neighbors of j in G (i.e. all nodes that have a nonzero channel gain to j). Furthermore, we

assume there is an average power constraint equal to 1 at each transmit antenna. Also zj ,

representing the channel noise, is modeled as complex normal (Gaussian) random vector,

and hence the name Gaussian signal interaction model.

Other than the complex Gaussian model, in some cases we also look at the real Gaussian

model. This model is the same as the complex one except the channel inputs, channel gains,

and channel noises are restricted to be real numbers.

The following is our main result for noisy (Gaussian) relay networks which is proved

in Chapter 6. This is perhaps the main result of the dissertation as it applies to wireless net-

works with realistic channel models and gives a universally-approximate characterization.

Theorem 4.3.1. Given a Gaussian relay network, G = (V , E), which could have multiple

transmit and receive antennas, we can achieve all rates R up to C − κ. Therefore the

capacity of this network satisfies

C − κ ≤ C ≤ C, (4.11)

where C is the cut-set upper bound on the capacity of G as described in equation (4.1),

and κ is a constant and is upper bounded by 5
∑|V|

i=1 max(Mi, Ni), where Mi and Ni are

respectively the number of transmit and receive antennas at node i.

The gap (κ) holds for all values of the channel gains and is relevant particularly in the

high rate regime. This constant gap result is a far stronger result than the degree of freedom

result, not only because it is non-asymptotic but also because it is uniform in the many
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channel SNR’s. This is also the first constant gap approximation of the capacity of Gaussian

relay networks. As shown in Section IV, the gap between the achievable rate of well known

relaying schemes and the cut-set upper bound in general depends on the channel parameters

and can become arbitrarily large. Analogous to the results for deterministic networks, the

result in Theorem 4.3.1 applies to an network with arbitrary topology and could have cycles.

4.4 Extensions

We have also developed several extensions of the main results and these extensions are all

proved in Chapter 7.

4.4.1 Compound relay network

The result in Theorem 4.3.1 can be extended to compound relay networks where we allow

each channel gain hi,j to be from a set Hi,j , and the particular chosen values are unknown

to the source node S, the relays and the destination. A communication rate R is achievable

if there exist a scheme such that for any channel gain realizations, still the source can

communicate to the destination at rateR, without the knowledge of the channel realizations

at the source, the relays and the destination. In this case we can obtain the following result

which is proved in Section 7.2.

Theorem 4.4.1. Given a compound Gaussian relay network, G = (V , E), the capacity Ccn

satisfies

Ccn − κ ≤ Ccn ≤ Ccn (4.12)

Where Ccn is the cut-set upper bound on the compound capacity of G as described below

Ccn = max
p({xi}j∈V )

inf
h∈H

min
Ω∈ΛD

I(YΩc ;XΩ|XΩc) (4.13)
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And κ is a constant and is upper bounded by 6
∑|V|

i=1 max(Mi, Ni), where Mi and Ni are

respectively the number of transmit and receive antennas at node i.

The implication of this result is two-fold. One is that we can develop strategies that are

robust to channel uncertainties, which attains the compound channel rate supported by the

network without relays explicitly knowing the channels. Secondly, this might be important

in characterizing the diversity-multiplexing trade-off for fading relay network, since the

compound framework gives a connection to the outage probability of the rate supported by

the network.

4.4.2 Half-duplex relay network

In practical implementation of wireless networks an important consideration is the half-

duplex constraint. This constraint implies that a node can not transmit and receive at the

same time on the same frequency band. In that context, all the results stated above are

applicable to full-duplex radios, which are capable of transmitting and receiving at the

same time. A natural question is whether these results can be extended to radios with half-

duplex constraint. We partially answer this question by approximately characterizing the

capacity for any network with fixed duplexing times (transmission scheduling). This does

not cover strategies that adapt the duplexing time to the situation. Here is our main result

for half-duplex Gaussian relay networks

Theorem 4.4.2. Given a Gaussian relay network with half-duplex constraint, G = (V , E),

the capacity, Chd, satisfies

Chd − κ ≤ Chd ≤ Chd (4.14)

Where Chd is the cut-set upper bound on the capacity of G and is given by

Chd ≤ Chd = max
p({xm

j }j∈V,m∈{1,...,M})

tm: 0≤tm≤1,
PM

m=1 tm=1

min
Ω∈ΛD

M∑

m=1

tmI(Y
m
Ωc ;Xm

Ω |Xm
Ωc) (4.15)
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where m ∈ {1, 2, . . . ,M} denotes the operation mode of the network, defined as a valid

partitioning of the nodes of the network into two sets of ”sender” nodes and ”receiver”

nodes. For each node i, the transmit and the receives signal at mode m and at time t are

respectively shown by xm
i [t] and ym

i [t]. Also tm defines the portion of the time that network

will operate in state m, as the network use goes to infinity. Also κ is a constant and is

upper bounded by 5
∑|V|

i=1 max(Mi, Ni), where Mi and Ni are respectively the number of

transmit and receive antennas at node i.

Note that in Theorem 4.4.2 we can optimize duplexing times (i.e. tm’s) to increase the

achievable rate. It is an open question whether optimizing the duplexing time can capture

all possible rates achievable by using adaptive strategies.

4.4.3 Frequency selective relay network

We also extend the result in Theorem 4.3.1 to frequency selective channels between nodes.

For this case the result can be stated as follows

Theorem 4.4.3. Given a frequency selective Gaussian relay network, G = (V , E), with F

different frequency bands. The capacity of this network, C, satisfies

C − κ ≤ C ≤ C (4.16)

Where C is the cut-set upper bound on the capacity of G as described in equation (4.1),

and κ is a constant and is upper bounded by 5
∑|V|

i=1 max(Mi, Ni), where Mi and Ni are

respectively the number of transmit and receive antennas at node i.

As we will discuss in Section 7.3, this can be implemented in particular by using OFDM

and appropriate spectrum shaping or allocation.
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4.4.4 Fading relay network

For time varying channels where the variation is slow in comparison to block length needed

for a static channel (underspread regime) we can develop the approximate ergodic capacity

of relay networks:

Theorem 4.4.4. Given a fast fading quasi-static fading Gaussian relay network, G =

(V , E), the ergodic capacity Cergodic satisfies

Ehij

[
C({hij})

]
− κ ≤ Cergodic ≤ Ehij

[
C({hij})

]
(4.17)

Where C is the cut-set upper bound on the capacity, as described in equation (4.1), and the

expectation is taken over the channel gain distribution, and κ is a constant and is upper

bounded by 5
∑|V|

i=1 max(Mi, Ni), whereMi andNi are respectively the number of transmit

and receive antennas at node i.

4.4.5 Low rate capacity approximation of Gaussian relay net-

work

Finally, we explore a multiplicative instead of additive approximation to capacity and show

that such an approximate can also be universally obtained.

Theorem 4.4.5. Given a Gaussian relay network, G = (V , E), the capacity C satisfies

λC ≤ C ≤ C (4.18)

Where C is the cut-set upper bound on the capacity, as described in equation (4.1), and λ

is a constant and is lower bounded by 1
2d(d+1)

and d is the maximum degree of nodes in G.

Note that this kind of approximation might be of interest in a low data rate regime,

where a constant gap approximation of the capacity may not be interesting any more.
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4.5 Proof program

In Chapters 5-7 we formally prove these main results. The main proof program consists

of first proving Theorem 4.2.3 and the corresponding multicast result. This immediately

yields Theorems 4.2.1 and 4.2.2 which are a direct consequence of these results. The

insight from these results suggest the quantize-map strategy for noisy (Gaussian) relay net-

works. We use this insight as well as proof ideas generated for the deterministic analysis to

obtain the universally-approximate capacity characterization for Gaussian relay networks

in Chapter 6. In both cases we illustrate the proof by going through an example which then

is generalized.
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Deterministic relay networks

5.1 Introduction

In this chapter we focus on noiseless deterministic relay networks. Theorems 4.2.3 and

4.2.4 are our main result for deterministic relay networks and the rest of this chapter is

devoted to proving it. First we focus on networks that have a layered structure, i.e. all

paths from the source to the destination have equal lengths. With this special structure we

get a major simplification: a sequence of messages can each be encoded into a block of

symbols and the blocks do not interact with each other as they pass through the relay nodes

in the network. The proof of the result for layered network is similar in style to the random

coding argument in Ahlswede et. al. [1]. We do this in sections 5.2 and 5.3, first for the

linear finite-field model and then for the general deterministic model. Next, we extend the

result to an arbitrary network by expanding the network over time in such a way that while

source encodes the message over multiple blocks, the relays operations are memoryless

over different communication blocks. Since the time-expanded network is layered and we

can apply our result in the first step to it. To complete the proof of the result, we need

to establish a connection between the cut values of the time-expanded network and those
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of the original network. We do this using sub-modularity properties of entropy in Section

5.41.

5.2 Layered networks: linear finite-field determinis-

tic model

The network given in Figure 5.1 is an example of a layered network where the number of

“hops” for each path from S to D is equal to 3 in this case2.

In this section we give the encoding scheme for the layered linear finite-field determin-

istic relay networks in Section 5.2.1. In Section 5.2.2 we illustrate the proof techniques on

a simple linear unicast relay network example. In Section 5.2.3 we prove main Theorems

4.2.1 and 4.2.2 for layered networks.

5.2.1 Encoding for layered linear finite-field deterministic relay

network

We have a single source S with a sequence of messageswk ∈ {1, 2, . . . , 2TR}, k = 1, 2, . . ..

Each message is encoded by the source S into a signal over T transmission times (sym-

bols), giving an overall transmission rate of R. Each relay operates over blocks of time T

symbols, and uses a mapping fj : YT
j → X T

j its received symbols from the previous block

of T symbols to transmit signals in the next block. For the model (2.22), we will use linear

1The concept of time-expanded network is also used in [1], but the use there is to handle cycles. Our main

use is to handle interaction between messages transmitted at different times, an issue that only arises when

there is superposition of signals at nodes.
2Note that in the equal path network we do not have “self-interference” since all path-lengths from S to D

in terms of “hops” are equal, though as we will see in the analysis that can easily be taken care of. However

we do allow for self-interference in the model and we choose to handle such loops, and more generally cyclic

networks, through time-expansion as will be seen in Section 5.4.

45



Chapter 5. Deterministic relay networks

mappings fj(·), i.e.,

xj = Fjyj, (5.1)

where Fj is chosen uniformly randomly over all matrices in F
qT×qT
p . Each relay does the

encoding prescribed by (5.1). Given the knowledge of all the encoding functions Fj at the

relays, the decoder D ∈ D, attempts to decode each message wk sent by the source.

Now suppose message wk is sent by the source in block k, then since each relay j

operates only on block of lengths T and we have a layered structure, the signals received at

block k at any relay pertain to only message wk−lj where lj is the path length from source

to relay j. As a result the key simplification that occurs for layered networks is that the

messages do not get mixed with each other.

Now, given the knowledge of all the encoding functions Fj at the relays and signals

received over block k + lD, the decoder D ∈ D, attempts to decode the message wk sent

by the source.

5.2.2 Proof illustration

In order to illustrate the proof ideas of Theorem (4.2.3) we examine the network shown in

Figure 5.1. We will analyze this network first for linear deterministic model and then we

use the same example to illustrate the ideas for general deterministic functions in Section

5.3.2.

Since we have a layered network, without loss of generality consider the message w =

w1 transmitted by the source at block k = 1. At node j the signals pertaining to this

message are received by the relays at block lj . For notational simplicity we will drop the

block numbers associated with the transmitted and received signals for this analysis.

Now, since we have a deterministic network, the message w will be mistaken for an-

other message w′ is if the received signal yD(w) under w, is the same as that would have

been received under w′. This leads to a notion of distinguishability, which is that messages
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Can distinguish

�
�
✁
✁

✂
✂
✄
✄

☎
☎
✆
✆ ✝

✝
✞
✞

✟
✟
✠
✠

✡
✡
☛
☛

Can distinguish

Cannot distinguish

Transmits same signal under
Cannot distinguish
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w, w′
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B2 ∈ Sc

B1 ∈ SA1 ∈ S

Figure 5.1: An example of layered relay network. Nodes on the left hand side of

the cut can distinguish between messages w and w′, while nodes on the right hand

side can not.

w,w′ are distinguishable at any node j if yj(w) 6= yj(w
′).

The probability of error at decoder D can be upper bounded using the union bound as,

Pe ≤ 2RT
P {w → w′} = 2RT

P {yD(w) = yD(w′)} . (5.2)

Since channels are deterministic, this event is random only due to the randomness in the

encoder map. Therefore, the probability of this event depends on the probability that we

choose such an encoder map. Now, we can write,

P {w → w′} =
∑

Ω∈ΛD

P {Nodes in Ω can distinguish w,w′ and nodes in Ωc cannot}
︸ ︷︷ ︸

P

(5.3)

since the events that correspond to occurrence of the distinguishability sets Ω ∈ ΛD are

disjoint. Let us examine one term in the summation in (5.3). For the cut Ω = {S,A1, B1},

a necessary condition for the distinguishability set to be this cut is that yA2
(w) = yA2

(w′),

along with yB2
(w) = yB2

(w′) and yD(w) = yD(w′). Now we have
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P = P{yA2
(w) = yA2

(w′),yB2
(w) = yB2

(w′),yD(w) = yD(w′),

,yA1
(w) 6= yA1

(w′),yB1
(w) 6= yB1

(w′)} (5.4)

= P{yA2
(w) = yA2

(w′)} × P{yB2
(w) = yB2

(w′),yA1
(w) 6= yA1

(w′)|yA2
(w) = yA2

(w′)}

×P{yD(w) = yD(w′),yB1
(w) 6= yB1

(w′)|yB2
(w) = yB2

(w′),yA1
(w) 6= yA1

(w′),

,yA2
(w) = yA2

(w′)} (5.5)

≤ P{yA2
(w) = yA2

(w′)} × P{yB2
(w) = yB2

(w′)|yA1
(w) 6= yA1

(w′),yA2
(w) = yA2

(w′)}

×P{yD(w) = yD(w′)|yB1
(w) 6= yB1

(w′),yB2
(w) = yB2

(w′),yA1
(w) 6= yA1

(w′),

,yA2
(w) = yA2

(w′)} (5.6)

= P{yA2
(w) = yA2

(w′)} × P{yB2
(w) = yB2

(w′)|yA1
(w) 6= yA1

(w′),yA2
(w) = yA2

(w′)}

×P{yD(w) = yD(w′)|yB1
(w) 6= yB1

(w′),yB2
(w) = yB2

(w′)} (5.7)

where the last step is true since there is an independent random mapping at each node and

we have the following markov structure in the network

XS → (YA1 , YA2) → (YB1 , YB2) → YD (5.8)

Now since the source does a random linear mapping of the message onto xS(w), the

probability that yA2
(w) = yA2

(w′) is given by,

P{yA2
(w) = yA2

(w′)} = P {(IT ⊗ GS,A2)(xS(w) − xS(w′)) = 0} = p−Trank(GS,A2
),

(5.9)

since the random mapping given in (5.1) induces independent uniformly distributed xS(w),

xS(w′). Here, ⊗ is the Kronecker matrix product3. Now, in order to analyze the second

3If A is an m-by-n matrix and B is a p-by-q matrix, then the Kronecker product A ⊗ B is the mp-by-nq
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probability, we see that since yA2
(w) = yA2

(w′), xA2(w) = xA2(w
′), i.e., the same signal

is sent under both w,w′. Also if yA2
(w) 6= yA2

(w′), then the random mapping given in

(5.1) induces independent uniformly distributed xA1(w), xA1(w
′) Therefore, we get

P{yB2
(w) = yB2

(w′)|yA1
(w) 6= yA1

(w′),yA2
(w) = yA2

(w′)}

= P {(IT ⊗ GA1,B2)(xA1(w) − xA1(w
′)) = 0} = p−Trank(GA1,B2

). (5.10)

Similarly we get,

P{yD(w) = yD(w′)|yB1
(w) 6= yB1

(w′),yB2
(w) = yB2

(w′)}

= P {(IT ⊗ GB1,D)(xB1(w) − xB1(w
′)) = 0}

= p−Trank(GB1,D). (5.11)

Putting these together, since all three would need to occur, we see that in (5.3), for the

network in Figure 5.1, we have,

P ≤ p−Trank(GS,A2
)p−Trank(GA1,B2

)p−Trank(GB1,D)

= p−T{rank(GS,A2
)+rank(GA1,B2

)+rank(GB1,D)}. (5.12)

Note that since,

GΩ,Ωc =








GS,A2 0 0

0 GA1,B2 0

0 0 GB1,D







,

the upper bound for P in (5.12) is exactly 2−Trank(GΩ,Ωc ). Therefore, by substituting this

block matrix A ⊗ B =






a11B · · · a1nB
...

. . .
...

am1B · · · amnB
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back into (5.3) and (5.2), we see that

Pe ≤ 2RT |ΛD|p−T minΩ∈ΛD
rank(GΩ,Ωc ), (5.13)

which can be made as small as desired if R < minΩ∈ΛD
rank(GΩ,Ωc) log p, which is the

result claimed in Theorem 4.2.1.

Now we will prove the general result for layered linear finite-field deterministic relay

networks.

5.2.3 Proof of main Theorems 4.2.1 and 4.2.2 for layered net-

works

In this section we prove main Theorems 4.2.1 and 4.2.2 for layered networks. Since we

have a layered network, without loss of generality consider the messagew = w1 transmitted

by the source at block k = 1. At node j the signals pertaining to this message are received

by the relays at block lj . We analyze a lD-layer network, each layer is a MIMO sub-

network. Therefore, as in the analysis of (5.3), we see that

P (D)
e ≤ 2RT

∑

Ω∈ΛD

P {Nodes in Ω can distinguish w,w′ and nodes in Ωc cannot}
︸ ︷︷ ︸

P

(5.14)

We define GΩ,Ωc as the transfer matrix associated with the nodes in Ω to the nodes in

Ωc. Note that since we have a layered network this transfer matrix breaks up into block

diagonal elements corresponding to each of the lD layers of the network. More precisely,

we can create d = lD disjoint sub-networks of nodes corresponding to each layer of the

network, with the set of nodes βl(Ω), which are at distance l − 1 from S and are in Ω, on

one side and the set of nodes γl(Ω), which are at distance l from S that are in Ωc, on the
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other side, for l = 1, . . . , lD.

Each node i ∈ βl(Ω) sees a signal related to w = w1 in block li = l − 1, and therefore

waits to receive this block and then does a random mapping to xi(w) ∈ F
qT
p The random

mapping is done as in (5.1), by choosing a random matrix Fi of size Tq × Tq and creating

xi(w) = Fiyi(w) (5.15)

The received signals in the nodes j ∈ γl(Ω) are linear transformations of the transmitted

signals from nodes Tl = {u : (u, v) ∈ E , v ∈ γl(Ω)}. That is, its output depends not only

on the transmitters in βl(Ω), but also other transmitters at distance l − 1 from S that are

part of Ωc. Since all the receivers in γl(Ω) are at distance l from S, they form the receivers

of the layer l. Since we are focusing on one cut Ω, to simplify the notation we drop the

parameter in Ω in βl(Ω) and γl(Ω), and simply denote then by βl and γl. Now similar to

Section 5.2.2 we can write

P = P{yγl
(w) = yγl

(w′),yβl
(w) 6= yβl

(w′), l = 1, . . . , lD} (5.16)

=

lD∏

l=1

P{yγl
(w) = yγl

(w′),yβl
(w) 6= yβl

(w′)|yγj
(w) = yγj

(w′),yβj
(w) 6= yβj

(w′),

, j = 1, . . . , l − 1} (5.17)

≤
lD∏

l=1

P{yγl
(w) = yγl

(w′)|yβl
(w) 6= yβl

(w′),yγj
(w) = yγj

(w′),yβj
(w) 6= yβj

(w′),

, j = 1, . . . , l − 1} (5.18)

=

lD∏

l=1

P{yγl
(w) = yγl

(w′)|yβl
(w) 6= yβl

(w′),yγl−1
(w) = yγl−1

(w′)} (5.19)

where the last step is true since there is an independent random mapping at each node

and we have a markovian layered structure in the network.

Now note that as in the example network of Section 5.2.2, for all the transmitting nodes
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in γl−1 which cannot distinguish between w,w′ the transmitted signal would be the same

under both w and w′. Therefore, in order to calculate the probability that nodes in γl cannot

distinguish between w,w′ or that yγl
(w) − yγl

(w′) = 0, we see that

yγl
(w) − yγl

(w′) = G̃l [xβl
(w) − xβl

(w′)] , l = 1, . . . , lD (5.20)

Due to the time-invariant channel conditions we see that G̃l = IT ⊗ Gl, where ⊗ is the

Kronecker product.

Now, note that if the distinct signals yi(w),yi(w
′) received at the nodes i ∈ βl could be

jointly uniformly and independently mapped to the transmitted signals ul(w),ul(w
′), then

we could say that the probability of this occurrence is
size of null space

size of whole space
. Clearly this is

given by,

P{yγl
(w) = yγl

(w′)|yβl
(w) 6= yβl

(w′),yγl−1
(w) = yγl−1

(w′)} = p−rank(
˜Gl)

= p−T rank(Gl).(5.21)

Not only the signals yi(w) are uniformly randomly mapped individually at each node

i ∈ βl, the overall map across all nodes in βl is also uniform, and hence the probability

given in (5.21) is the correct one. Therefore we get

P ≤ p−T
Pd

l=1 rank(Gl). (5.22)

Now the probability of mistaking w for w′ at receiver D ∈ D is therefore

P {w → w′} ≤
∑

Ω∈ΛD

p−T
Pd(Ω)

l=1 rank(Gl(Ω))

≤ 2|V|p−T minΩ∈Λ rank(GΩ,Ωc ),
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where we have used |ΛD| ≤ 2|V|. Note that we have used the fact that since GΩ,Ωc was

block diagonal, with blocks, Gl(Ω), we see that
∑d(Ω)

l=1 rank(Gl(Ω)) = rank(GΩ,Ωc). If

we declare an error if any receiver D ∈ D makes an error, we see that since we have 2RT

messages, from the union bound we can drive the error probability to zero if we have,

R < min
D∈D

min
Ω∈ΛD

rank(GΩ,Ωc) log p. (5.23)

Since as seen in Section 4.2.2, the cut-set is also identical to the expression in (5.23), we

have proved the following result.

Theorem 5.2.1. Given a layered (equal path) linear finite-field relay network (with broad-

cast and multiple access), the multicast capacity C of such a relay network is given by,

C = min
D∈D

min
Ω∈ΛD

rank(GΩ,Ωc) log p, (5.24)

5.3 Layered networks: general deterministic model

In this section we prove main theorems 4.2.3 and 4.2.4 for layered networks. We first

generalize the encoding scheme to accommodate arbitrary deterministic functions of (4.7)

in Section 5.4.1. We then illustrate the ingredients of the proof using the same example as

in Section 5.2.2. Then we prove the result for layered networks in Section 5.3.3.

5.3.1 Encoding for layered general deterministic relay network

We have a single source S with a sequence of messageswk ∈ {1, 2, . . . , 2TR}, k = 1, 2, . . ..

Each message is encoded by the source S into a signal over T transmission times (symbols),

giving an overall transmission rate of R. We will use strong (robust) typicality as defined

in [34]. The notion of joint typicality is naturally extended from Definition 5.3.1.
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Definition 5.3.1. We define x ∈ Tδ if

|νx(x) − p(x)| ≤ δp(x),

where νx(x) = 1
T
|{t : xt = x}|, is the empirical frequency.

Each relay operates over blocks of time T symbols, and uses a mapping fj : YT
j → X T

j

its received symbols from the previous block of T symbols to transmit signals in the

next block. In particular, block k of T received symbols is denoted by y
(k)
j = {y[(k −

1)T + 1], . . . , y[kT ]} and the transmit symbols by x
(k)
j . Choose some product distribution

∏

i∈V p(xi). At the source S, map each of the indices in wk ∈ {1, 2, . . . , 2TR}, choose

fS(wk) onto a sequence uniformly drawn from Tδ(XS), which is the typical set of se-

quences in X T
S . At any relay node j choose fj to map each typical sequence in YT

j i.e.,

Tδ(Yj) onto typical set of transmit sequences i.e., Tδ(Xj), as

x
(k)
j = fj(y

(k−1)
j ), (5.25)

where fj is chosen to map uniformly randomly each sequence in Tδ(Yj) onto Tδ(Xj). Each

relay does the encoding prescribed by (5.25). Now, given the knowledge of all the encoding

functions fj at the relays and signals received over block k + lD, the decoder D ∈ D,

attempts to decode the message wk sent by the source.

5.3.2 Proof illustration

Now, we illustrate the ideas behind the proof of Theorem 4.2.3 for layered networks using

the same example as in Section 5.2.2, which was done for the linear deterministic model.

Since we are dealing with deterministic networks, the logic upto (5.3) in Section 5.2.2

remains the same. We will again illustrate the ideas using the cut Ω = {S,A1, B1}. As in

Section 5.2.2, we can write
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P = P{yA2
(w) = yA2

(w′),yB2
(w) = yB2

(w′),yD(w) = yD(w′),

,yA1
(w) 6= yA1

(w′),yB1
(w) 6= yB1

(w′)} (5.26)

= P{yA2
(w) = yA2

(w′)} × P{yB2
(w) = yB2

(w′),yA1
(w) 6= yA1

(w′)|yA2
(w) = yA2

(w′)}

×P{yD(w) = yD(w′),yB1
(w) 6= yB1

(w′)|yB2
(w) = yB2

(w′),yA1
(w) 6= yA1

(w′),

,yA2
(w) = yA2

(w′)} (5.27)

≤ P{yA2
(w) = yA2

(w′)} × P{yB2
(w) = yB2

(w′)|yA1
(w) 6= yA1

(w′),yA2
(w) = yA2

(w′)}

×P{yD(w) = yD(w′)|yB1
(w) 6= yB1

(w′),yB2
(w) = yB2

(w′),yA1
(w) 6= yA1

(w′),

,yA2
(w) = yA2

(w′)} (5.28)

= P{yA2
(w) = yA2

(w′)} × P{yB2
(w) = yB2

(w′)|yA1
(w) 6= yA1

(w′),yA2
(w) = yA2

(w′)}

×P{yD(w) = yD(w′)|yB1
(w) 6= yB1

(w′),yB2
(w) = yB2

(w′)} (5.29)

where the last step is true since there is an independent random mapping at each node and

we have a markovian layered structure in the network.

Notice that as in Section 5.2.2, we are suppressing the block numbers associated with

the received signals. It is clear that for w = w1, the block numbers associated with

yA2
,yB2

,yD are 1, 2, 3 respectively.

Note that since yj ∈ Tδ(Yj) with high probability, we can focus only on the typical

received signals. Let us first examine the probability that yA2
(w) = yA2

(w′). Since S

can distinguish between w,w′, it maps these sub-messages independently to two transmit

signals xS(w),xS(w′) ∈ Tδ(XS), hence we can see that this probability is,

P{yA2
(w) = yA2

(w′)} = P
{
(xS(w′),yA2

(w)) ∈ Tδ(XS, YA2)
}

= 2−TI(XS ;YA2
). (5.30)

Now, in order to analyze the probability the second probability, as seen in the linear model
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analysis, we see that since yA2
(w) = yA2

(w′), xA2(w) = xA2(w
′), i.e., the same signal

is sent under both w,w′. Therefore, since naturally (xA2(w),yB2
(w)) ∈ Tδ(XA2 , YB2),

obviously, (xA2(w
′),yB2

(w)) ∈ Tδ(XA2 , YB2) as well. Therefore, under w′, we already

have xA2(w
′) to be jointly typical with the signal that is received under w. However,

since A1 can distinguish between w,w′, it will map the transmit sequence xA1(w
′) to

a sequence which is independent of xA1(w) transmitted under w. Since an error occurs

when (xA1(w
′),xA2(w

′),yB2
(w)) ∈ Tδ(XA1 , XA2 , YB2), and since A2 cannot distinguish

between w,w′, we also have xA2(w) = xA2(w
′), we require that (xA1 ,xA2 ,yB2

) generated

like p(xA1)p(xA2 ,yB2
) behaves like a jointly typical sequence. Therefore, this probability

is given by,

P{yB2
(w) = yB2

(w′)|yA1
(w) 6= yA1

(w′),yA2
(w) = yA2

(w′)}

= P
{
(xA1(w

′),xA2(w),yB2
(w)) ∈ Tδ(XA1 , XA2YB2)

} ·
=

2−TI(XA1
;YB2

,XA2
) (a)

= 2−TI(XA1
;YB2

|XA2
), (5.31)

where
·
= indicates exponential equality (where we neglect subexponential constants),

and (a) follows since we have generated the mappings fj independently, it induces an inde-

pendent distribution on XA1 , XA2 . Another way to see this is that the probability of (5.31)

is given by
|Tδ(XA1

|xA2
,y

B2
)|

|Tδ(XA1
)| , which by using properties of (robustly) typical sequences

[34] yields the same expression as in (5.31). Note that the calculation in (5.31) is similar to

one of the error event calculations in a multiple access channel,

Using a similar logic we can write,

P{yD(w) = yD(w′)|yB1
(w) 6= yB1

(w′),yB2
(w) = yB2

(w′)}

= P {(xB1(w
′),xB2(w),yD(w)) ∈ Tδ(XB1 , XB2YD)} ·

=

2−TI(XB1
;YD,XB2

) (a)
= 2−TI(XB1

;YD|XB2
). (5.32)
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Therefore, putting (5.30)–(5.32) together as done in (5.12) we get

P ≤ 2−T{I(XS ;YA2
)+I(XA1

;YB2
|XA2

)+I(XB1
;YD|XB2

)}

Note that for this example, due to the Markovian structure of the network we can see that4

I(YΩc ;XΩ|XΩc) = I(XS;YA2) + I(XA1 ;YB2|XA2) + I(XB1 ;YD|XB2), hence as in (5.13)

we get that,

Pe ≤ 2RT |ΛD|2−T minΩ∈ΛD
I(YΩc ;XΩ|XΩc ), (5.33)

and hence the error probability can be made arbitrarily small ifR < minΩ∈ΛD
H(YΩc|XΩc).

5.3.3 Proof of main Theorems 4.2.3 and 4.2.4 for layered net-

works

As in the example illustrating the proof in Section 5.3.2, the logic of the proof in the general

deterministic functions follows that of the linear model quite closely. In particular, as in

Section 5.2 we can define the bi-partite network associated with a cut Ω. Instead of a

transfer matrix GΩ,Ωc(·) associated with the cut, we have a transfer function G̃Ω. Since we

are still dealing with a layered network, as in the linear model case, this transfer function

breaks up into components corresponding to each of the lD layers of the network. More

precisely, we can create d = lD disjoint sub-networks of nodes corresponding to each layer

of the network, with the set of nodes βl(Ω), which are at distance l − 1 from S and are

in Ω, on one side and the set of nodes γl(Ω), which are at distance l from S that are in

Ωc, on the other side, for l = 1, . . . , lD. Each of these clusters have a transfer function

Gl(·), l = 1, . . . , lD associated with them.

4Note that though in the encoding scheme there is a dependence between XA1
, XA2

, XB1
, XB2

and XS ,

in the single-letter form of the mutual information, under a product distribution, XA1
, XA2

, XB1
, XB2

, XS

are independent of each other. Therefore for example, YB2
is independent of XB2

leading to

H(YB2
|XA2

, XB2
) = H(YB2

|XA2
). Using this argument for the cut-set expression I(YΩc ;XΩ|XΩc), we

get the expansion.
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As in the linear model, each node i ∈ βl(Ω) sees a signal related to w = w1 in block

li = l − 1, and therefore waits to receive this block and then does a mapping using the

general encoding function given in (5.25) as

x
(k)
j (w) = f

(k)
j (y

(k−1)
j (w)). (5.34)

The received signals in the nodes j ∈ γl(Ω) are deterministic transformations of the trans-

mitted signals from nodes Tl = {u : (u, v) ∈ E , v ∈ γl(Ω)}. As in the linear model analysis

of Section 5.2, the dependence is on all the transmitting signals at distance l − 1 from the

source, not just the ones in βl(Ω). Since all the receivers in γl(Ω) are at distance l from S,

they form the receivers of the layer l. Now similar to Section 5.3.2 we can write

P = P{yγl
(w) = yγl

(w′),yβl
(w) 6= yβl

(w′), l = 1, . . . , lD} (5.35)

=

lD∏

l=1

P{yγl
(w) = yγl

(w′),yβl
(w) 6= yβl

(w′)|yγj
(w) = yγj

(w′),yβj
(w) 6= yβj

(w′),

, j = 1, . . . , l − 1} (5.36)

≤
lD∏

l=1

P{yγl
(w) = yγl

(w′)|yβl
(w) 6= yβl

(w′),yγj
(w) = yγj

(w′),yβj
(w) 6= yβj

(w′),

, j = 1, . . . , l − 1} (5.37)

=

lD∏

l=1

P{yγl
(w) = yγl

(w′)|yβl
(w) 6= yβl

(w′),yγl−1
(w) = yγl−1

(w′)} (5.38)

Note that as in the example network of Section 5.3.2, for all the transmitting nodes

in γl−1 which cannot distinguish between w,w′ the transmitted signal would be the same

under both w and w′. Therefore, all the nodes in γl−1 cannot distinguish between w,w′ and

therefore

xj(w) = xj(w
′), j ∈ γl−1.
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Hence it is clear that since ({xj(w)}j∈γl−1
,yγl

(w)) ∈ Tδ, we have that

({xj(w
′)}j∈γl−1

,yγl
(w)) ∈ Tδ.

Therefore, just as in Section 5.3.2, we see that the probability that

P{yγl
(w) = yγl

(w′)|yβl
(w) 6= yβl

(w′),yγl−1
(w) = yγl−1

(w′)}

= P
{
(xβl

(w′),xγl−1
(w),yγl

(w)) ∈ Tδ(Xβl
, Xγl−1

, Yγl
)
}

·
= 2−TI(Xβl

;Yγl
|Xγl−1

). (5.39)

Therefore we get

P ≤
d∏

l=1

2−TI(Xβl
;Yγl

|Xγl−1
) = 2−T

Pd
l=1 H(Yγl

|Xγl−1
). (5.40)

Note that due to the Markovian nature of the layered network, we have

d∑

l=1

H(Yγl
|Xγl−1

) = H(YΩc |XΩc) (5.41)

From this point onwards the proof closely follows the steps as in the linear model from

(5.22) onwards. Similarly in multicast scenario we declare an error if any receiver D ∈ D
makes an error, we see that since we have 2RT messages, from the union bound we can

drive the error probability to zero if we have,

R < max
Q

i∈V p(xi)
min
D∈D

min
Ω∈ΛD

H(YΩc|XΩc). (5.42)

Therefore we have proved the following result.
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Theorem 5.3.2. Given a layered (equal path) general deterministic relay network (with

broadcast and multiple access), we can achieve any rate R from S multicasting to all

destinations D ∈ D, with R satisfying:

R < max
Q

i∈V p(xi)
min
D∈D

min
Ω∈ΛD

H(YΩc|XΩc) (5.43)

5.4 Arbitrary networks

First we formally describe the encoding strategy:

5.4.1 Encoding for general deterministic relay network

We have a single source S with message W ∈ {1, 2, . . . , 2TKR} which is encoded by the

source S into a signal over KT transmission times (symbols), giving an overall transmis-

sion rate of R. Each relay operates over blocks of time T symbols, and uses a mapping

f
[t]
j : YT

j → X T
j its received symbols from the previous block of T symbols to trans-

mit signals in the next block. In particular, block k of T received symbols is denoted by

y
(k)
j = {y[(k−1)T+1], . . . , y[kT ]} and the transmit symbols by x

(k)
j . Choose some product

distribution
∏

i∈V p(xi). At the source S, map each of the indices in W ∈ {1, 2, . . . , 2TKR}
choose f

(k)
S (W ) onto a sequence uniformly drawn from Tδ(XS), which is the typical set of

sequences in X T
S . At any relay node j choose f

(k)
j to map each typical sequence in YT

j i.e.,

Tδ(Yj) onto typical set of transmit sequences i.e., Tδ(Xj), as

x
(k)
j = f

(k)
j (y

(k−1)
j ), (5.44)

where f
(k)
j is chosen to map uniformly randomly each sequence in Tδ(Yj) onto Tδ(Xj) and

is done independently for each block k. Each relay does the encoding prescribed by (5.44).

Given the knowledge of all the encoding functions f
(k)
j at the relays and signals received

60



Chapter 5. Deterministic relay networks

B

S

A

D

(a) An example of

general deterministic

network

D

S

∞

S[1]

A[1]

B[1]

D[1]

S[2]

A[2]

B[2]

D[2]

S[3]

A[3]

B[3]

D[3] D[k − 1]

B[k − 1]

A[k − 1]

S[k]

A[k]

B[k]

D[k]

∞

∞ ∞ ∞

∞ ∞

∞∞∞

∞

∞∞

∞

∞

∞ ∞ ∞ ∞

∞

∞

∞
T [1] T [2] T [3] T [k]

R[1] R[2] R[3] R[k − 1] R[k]

T [k − 2]

S[k − 2]

A[k − 2]

B[k − 2]

D[k − 2]

R[k − 2]

T [k − 1]

S[k − 1]

∞

(b) Unfolded deterministic network. An example of steady cuts and wiggling

cuts are respectively shown by solid and dotted lines.

Figure 5.2: An example of a general deterministic network with un equal paths

from S to D is shown in (a). The corresponding unfolded network is shown in (b).
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over K + |V| − 2 blocks, the decoder D ∈ D, attempts to decode the message W sent by

the source.

Given the proof for layered networks with equal path lengths, we are ready to tackle the

proof of Theorem 4.2.3 and Theorem 4.2.4 for general relay networks. The ingredients are

developed below. First is that we can explicitly represent our relaying scheme by unfolded

the network over time to create a layered deterministic network. The idea is to unfold the

network toK stages such that i-th stage is representing what happens in the network during

(i − 1)T to iT − 1 symbol times. For example in figure 5.2 (a) a network with unequal

paths from S to D is shown. Figure 5.2(b) shows the unfolded form of this network. As

we notice each node v ∈ V is appearing at stage 1 ≤ i ≤ K as v[i]. There are additional

nodes: T [i]’s and R[i]’s. These nodes are just virtual transmitters and receivers that are put

to buffer and synchronize the network. Since all communication links connected to these

nodes (T [i]’s and R[i]’s) are modelled as wireline links without any capacity limit they

would not impose any constraint on the network. One should notice that in general there

must be an infinite capacity link between the same node and itself appearing at different

times however, since in the relaying scheme that we described above, the relays are limited

to have a finite memory T , these links are omitted 5. Now we show the following lemma,

Lemma 5.4.1. Assume G is a general deterministic network and G(K)
unf is a network obtained

by unfolding G over K time steps (as shown in figure 5.2). Then the following communica-

tion rate is achievable in G:

R <
1

K
max

Q

i∈V p(xi)
min

Ωunf∈ΛD

H(YΩc
unf
|XΩc

unf
) (5.45)

where the minimum is taken over all cuts Ωunf in G(K)
unf .

Proof. By unfolding G we get an acyclic layered deterministic network. Therefore by

5This idea was introduced for graphs in [1] to handle cycles in a graph
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theorem 5.3.2 we can achieve the rate

Runf < max
Q

i∈V p(xi)
min

Ωunf∈ΛD

H(YΩc|XΩc) (5.46)

in the time-expanded graph. Since it takes K steps to translate and achievable scheme in

the time-expanded graph to an achievable scheme in the original graph, then the Lemma is

proved.

Note that the achievability scheme that we used to prove Lemma 5.4.1 was obtained

by applying the encoding scheme described in section 5.3.1 to the network that is unfolded

overK blocks. This translates to the encoding scheme defined in Section 5.4.1 for a general

deterministic relay network.

5.4.2 Proof of main Theorems 4.2.3 and 4.2.4

If we look at different cuts in the time-expanded graph we notice that there are two types

of cuts. One type separates the nodes at different stages identically. An example of such a

steady cut is drawn with solid line in figure 5.2 (b) which separates {S,A} from {B,D} at

all stages. Clearly each steady cut in the time-expanded graph corresponds to a cut in the

original graph and moreover its value is K times the value of the corresponding cut in the

original network. However there is another type of cut which does not behave identically at

different stages. An example of such a wiggling cut is drawn with dotted line in figure 5.2

(b). There is no correspondence between these cuts and the cuts in the original network.

Now comparing Lemma 5.4.1 to the main theorem 4.2.3 we want to prove, we notice

that in this Lemma the achievable rate is found by taking the minimum of cut-values over

all cuts in the time-expanded graph (steady and wiggling ones). However in theorem 4.2.3

we want to prove that we can achieve a rate by taking the minimum of cut-values over

only the cuts in the original graph or similarly over the steady cuts in the time-expanded
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network. So a natural question is that in a time-expanded network does it make any dif-

ference if we take the minimum of cut-values over only steady cuts rather than all cuts ?

Quite interestingly we show in the following Lemma that asymptotically as K → ∞ this

difference (normalized by 1/K) vanishes.

Lemma 5.4.2. Consider a general deterministic network, G. Assume a product distribution

on {xi}i∈V , p({xi}i∈V) =
∏

i∈V p(xi). Now in the time-expanded graph, G(K)
unf , assume that

for each node i ∈ V , {xi[t]}1≤t≤K are distributed i.i.d. according to p(xi) in the original

network. Also for any 1 ≤ t1, t2 ≤ K and i 6= j, xi[t1] is independent of xj[t2]. Then for

any cut Ωunf on the unfolded graph we have,

(K − L+ 1) min
Ω∈ΛD

H(YΩc |XΩc) ≤ H(YΩc
unf
|XΩc

unf
) (5.47)

where L = 2|V|−2.

Proof. See Appendix A.3.

Now since for any product distribution

min
Ωunf∈ΛD

H(YΩc
unf
|XΩc

unf
) ≤ K min

Ω∈ΛD

H(YΩc|XΩc) (5.48)

we have an immediate corollary of this lemma

Corollary 5.4.3. Assume G is a general deterministic network and G(K)
unf is a network ob-

tained by unfolding G over K time steps then

limK→∞
1
K

maxQ

i∈V p(xi) minΩunf∈ΛD
H(YΩc

unf
|XΩc

unf
)

= maxQ

i∈V p(xi) minΩ∈ΛD
H(YΩc |XΩc) (5.49)

Now by Lemma 5.4.1 and corollary 5.4.3, the proof of main Theorem 4.2.3 is complete.
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5.5 Summary

In this chapter we focused on noiseless deterministic relay networks and we proved The-

orems 4.2.3 and 4.2.4, which are lower bounds to the achievable rate for single unicast or

multicast information flow over general deterministic relay networks. We proved this result

by first focusing on networks that have a layered structure. Next, we extended the result

to an arbitrary network by considering its time-expanded representation and establishing a

connection between the cut values of the time-expanded network and those of the original

network. As a corollary, this result yields the complete characterization of the unicast and

multicast capacity of linear finite-field deterministic relay networks.
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Gaussian relay networks

6.1 Introduction

So far, we have focused on noiseless deterministic relay networks. As we discussed in

Chapters 2 and 3, our linear finite field deterministic model in some sense captures the high

SNR behavior approximation of the Gaussian model, therefore we expect to be able to lift

up the intuitions and the results obtained so far and translate them to approximate results

for the noisy Gaussian relay networks.

Theorem 4.3.1 is our main result for Gaussian relay networks and the rest of this chapter

is devoted to prove it. Similar to the deterministic case, first we focus on networks that

have a layered structure that the messages do not get mixed in the network. The proof

of the result for layered network is done in section 6.2. Next, we extend the result to an

arbitrary network by expanding the network over time, as done in Chapter 5. Since the

time-expanded network is layered and we can apply our result in the first step to it. To

complete the proof of the result, we need to establish a connection between the cut values

of the time-expanded network and those of the original network. We do this using sub-

modularity properties of entropy.
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We first prove the theorem for the single antenna case, then at the end we extend it to a

multiple antenna scenario.

6.2 Layered Gaussian relay networks

In this section we prove main theorem 4.3.1 for a special case of layered networks, where

all paths from the source to the destination in G have equal length. We start by describing

the relaying strategy.

6.2.1 Encoding for layered Gaussian relay networks

We have a single source S with a sequence of messageswk ∈ {1, 2, . . . , 2TR}, k = 1, 2, . . ..

Each message is encoded by the source S into a signal over T transmission times (symbols),

giving an overall transmission rate of R.

At each node we create a random Gaussian codebook. Source randomly maps each

message to one of its Gaussian codewords and sends it in T transmission times. Now each

relay operates over blocks of time T symbols. In particular block k of T received symbols

at node j is denoted by y
(k)
j = {yj[(k − 1)T + 1], . . . , yj[kT ]} and the transmit symbols

by x
(k)
j . Now the relaying strategy is the following: each received sequence y

(k)
j at node j

is first quantized into ŷ
(k)
j which is then randomly mapped into a Gaussian codeword x

(k)
j

using a random mapping function fj(ŷ
(k)
j ). For quantization, we use an optimal Gaussian

vector quantizer with distortion equal to 1 (which is equal to the noise variance of the

channel).

Now, given the knowledge of all the encoding functions fj at the relays and signals

received over block k + lD, the decoder D ∈ D, attempts to decode the message wk sent

by the source.
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6.2.2 Proof illustration

Consider the encoding-decoding strategy as described in section 6.2.1. Our goal is to show

that, using this strategy, all rates described in the theorem are achievable. Similar to the

deterministic case, we use the distinguishability argument.

In the deterministic model each message is mapped to a deterministic sequence of trans-

mit codewords through the network. The destination can not distinguish between two mes-

sages if and only if its received signal under these two messages are identical. If so, there

would be a partition of nodes in the network such that the nodes on one side of the cut can

distinguish between these two messages and the rest can not. This naturally corresponds to

a cut separating the source and the destination in the network and the probability that this

happens can be related to the cut-value. However, in the noisy case, the difference from the

previous analysis is that each message is potentially mapped to a set of possible transmit se-

quences. The particular transmit sequence chosen depends on the noise realization, which

can be considered “typical”. Pictorially it means that there is some fuzziness around the

sequence of transmit codewords associated with each message. Hence, two messages will

still be distinguishable at a node if the fuzzy received signal associated with them are not

overlapping. This has two different consequences: first, there will be more possibilities of

confusing a message at the destination. Second, if a node can not distinguish between two

different messages, it will not necessarily transmit the same sequence under those different

messages. Intuitively, if we can somehow bound the list sizes corresponding to different

messages, we will be able to bound the effect of this extra randomness and achieve a com-

municate rate close to the cut-set bound.

In order to illustrate the proof ideas of Theorem (4.3.1) we examine the network shown

in Figure 5.1.

Assume a message w is transmitted by the source. Once the destination receives yD,

quantizes it to get ŷD. Then, it will decode the message by finding the unique message that
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is jointly typical with ŷD (the precise definition of typicality will be given later). An error

occurs if either w is not jointly typical with ŷD or there is another message w′ such that ŷD

is jointly typical with both w,w′.

Now for the relay network, a natural way to define whether a message w is typical

with a received sequence is whether we have a “plausible” transmit sequence1 under w

which is jointly typical with the received sequence. More formally, we have the following

definitions.

At the source node, since there is only one transmit codeword associated with each

message, the set of transmitted sequences that are typical with a message w are

XS(w) = {xS(w)} (6.1)

Now inductively we define

Definition 6.2.1. At each node i, we define (ŷi, w) ∈ Tδ if

(ŷi, {xj}j∈In(i)) ∈ Tδ for some xj ∈ Xj(w), ∀j ∈ In(i) (6.2)

where In(i) is defined as the set of nodes with signals incident on node i.

Definition 6.2.2. At each node i, we define the set of received sequences that are typical

with a message w as,

Yi(w) = {ŷi : (ŷi, w) ∈ Tδ}, (6.3)

Finally we define,

Definition 6.2.3. At each node i, we define the set of transmitted sequences that are typical

1Plausibility essentially means that the transmit sequence is a member of the typical set of possible trans-

mit sequences under w.
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with a message w as,

Xi(w) = {xi : xi = fi(ŷi), ŷi ∈ Yi(w)}, (6.4)

which defines the “typical” transmit set associated with a message w.

Note here that since xi = fi(ŷi), then naturally (xi, ŷi) ∈ Tδ.

Therefore, we see that if a message w is typical with a received sequence, we have a

sequence of typical transmit sequences in the network that are jointly typical with the w

and the received sequence at the destination.

Now note the following important observation,

Observation Note that if node i cannot distinguish between two messages w,w′, this

means that the signal received at node i, ŷi is such that (ŷi, w) ∈ Tδ and (ŷi, w
′) ∈ Tδ.

Therefore we see that

ŷi ∈ Yi(w) ∩ Yi(w
′). (6.5)

Due to the mapping xi = fi(ŷi), we therefore see that xi ∈ Xi(w) ∩ Xi(w
′). Therefore,

there exists a sequence under w′ which is the same as that transmitted under w and could

therefore have been potentially transmitted under w′.

Now, assuming a message w is transmitted by the source, an error occurs at the desti-

nation if either w is not jointly typical with ŷD, or there is another message w′ such that ŷD

is jointly typical with both w,w′. By the law of large numbers, the probability of the first

event becomes arbitrarily small as communication block length, T , goes to infinity. So we

just need to analyze the probability of the second event. To do so, we evaluate the probabil-

ity that ŷD is jointly typical with both w and w′, where w′ is another message independent

of w. Then we use union bound over all w′’s to bound the probability of the second event.

Based on our earlier observation, if ŷD is jointly typical with w,w′, then there must be
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a typical transmit sequence x′
V = (x′

S,x
′
A1
,x′

A2
,x′

B1
,x′

B2
) under w′ such that,

(ŷD,x
′
B1
,x′

B2
) ∈ Tδ (6.6)

This means that the destination thinks this is a plausible sequence. Now for any such

sequence there is a natural cut, Ω, in G such that the nodes on the right hand side of the cut

(i.e. in Ω) can tell x′
V is not a plausible sequence, and those on the left hand side of the cut

(i.e. in Ωc) can not. Therefore we can write

P
{
w → w′} = P

{
(ŷD, w′) ∈ Tδ

}
≤

∑

x′
V∈XV (w′)

∑

Ω∈ΛD

P {Nodes in Ω tell x′
V is not plausible & nodes in Ωc tell x′

V is plausible}
︸ ︷︷ ︸

P

(6.7)

For now, assume that the cut is Ω = {S,A1, B1}, as shown in figure 5.1. Since A2, B2

and D think x′
V is a plausible sequence, we have

(ŷA2
,x′

S) ∈ Tδ (6.8)

(ŷB2
,x′

A1
,x′

A2
) ∈ Tδ (6.9)

(ŷD,x
′
B1
,x′

B2
) ∈ Tδ (6.10)

Then we have
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P = P{(ŷA2
,x′

S) ∈ Tδ, (ŷB2
,x′

A1
,x′

A2
) ∈ Tδ, (ŷD,x

′
B1
,x′

B2
) ∈ Tδ, (ŷA1

,x′
S) /∈ Tδ,

, (ŷB1
,x′

A1
,x′

A2
) /∈ Tδ} (6.11)

= P{(ŷA2
,x′

S) ∈ Tδ} × P{(ŷB2
,x′

A1
,x′

A2
) ∈ Tδ, (ŷA1

,x′
S) /∈ Tδ|(ŷA2

,x′
S) ∈ Tδ}

×P{(ŷD,x
′
B1
,x′

B2
) ∈ Tδ, (ŷB1

,x′
A1
,x′

A2
) /∈ Tδ|(ŷB2

,x′
A1
,x′

A2
) ∈ Tδ, (ŷA1

,x′
S) /∈ Tδ,

, (ŷA2
,x′

S) ∈ Tδ} (6.12)

≤ P{(ŷA2
,x′

S) ∈ Tδ} × P{(ŷB2
,x′

A1
,x′

A2
) ∈ Tδ|(ŷA1

,x′
S) /∈ Tδ(ŷA2

,x′
S) ∈ Tδ}

×P{(ŷD,x
′
B1
,x′

B2
) ∈ Tδ|(ŷB1

,x′
A1
,x′

A2
) /∈ Tδ, (ŷB2

,x′
A1
,x′

A2
) ∈ Tδ,

, (ŷA1
,x′

S) /∈ Tδ, (ŷA2
,x′

S) ∈ Tδ} (6.13)

= P{(ŷA2
,x′

S) ∈ Tδ} × P{(ŷB2
,x′

A1
,x′

A2
) ∈ Tδ|(ŷA1

,x′
S) /∈ Tδ, (ŷA2

,x′
S) ∈ Tδ}

×P{(ŷD,x
′
B1
,x′

B2
) ∈ Tδ|(ŷB1

,x′
A1
,x′

A2
) /∈ Tδ, (ŷB2

,x′
A1
,x′

A2
) ∈ Tδ} (6.14)

where the last step is true since there is an independent random mapping at each node and

we have the following markov structure in the network

XS → (YA1 , YA2) → (YB1 , YB2) → YD (6.15)

For any such sequence x′
V , since w is independent of w′, we have

P
{
(ŷA2

,x′
S) ∈ Tδ

}
≤ 2−TI(XS ;YA2

) (6.16)

Now, for the layer (A1, A2), we condition on a particular sequence xA2 to have been trans-

mitted by A2. If x′
A2

= xA2 , since x′
A1

is chosen independent of xA1 we have,

P{(ŷB2
,x′

A1
,x′

A2
) ∈ Tδ|(ŷA1

,x′
S) /∈ Tδ, (ŷA2

,x′
S) ∈ Tδ,x

′
A2

= xA2} ≤ 2−TI(ŶB2
;XA1

|XA2
),

(6.17)
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and similarly If x′
A2

6= xA2 , since x′
A1
,x′

A2
are chosen independent of xA1 ,xA2 we have,

P{(ŷB2
,x′

A1
,x′

A2
) ∈ Tδ|(ŷA1

,x′
S) /∈ Tδ, (ŷA2

,x′
S) ∈ Tδ,x

′
A2

6= xA2}

≤ 2−TI(ŶB2
;XA1

,XA2
) (6.18)

≤ 2−TI(ŷB2
;XA1

|XA2
) (6.19)

Therefore in any case,

P{(ŷB2
,x′

A1
,x′

A2
) ∈ Tδ|(ŷA1

,x′
S) /∈ Tδ, (ŷA2

,x′
S) ∈ Tδ} ≤ 2−TI(ŶB2

;XA1
|XA2

), (6.20)

Similarly we can show that,

P{(ŷD,x
′
B1
,x′

B2
) ∈ Tδ|(ŷB1

,x′
A1
,x′

A2
) /∈ Tδ, (ŷB2

,x′
A1
,x′

A2
) ∈ Tδ} ≤ 2−TI(ŶD;XB1

|XB2
),

(6.21)

Therefore for any typical sequence x′
V , we have

P ≤ 2−TI(XS ;YA2
) × 2−TI(ŶB2

;XA1
|XA2

) × 2−TI(ŶD;XB1
|XB2

)

= 2−TI(XΩ;ŶΩc |XΩc ) (6.22)

Now, by summing over all possible x′
V’s and cuts, the probability of confusing w with w′

can be bounded by

P {w → w′} ≤ |XV(w′)|
∑

Ω

2−TI(XΩ;ŶΩc |XΩc) (6.23)

In the next section, we make these arguments precise, and by bounding |XV(w′)| we prove

our main theorem 4.3.1 for networks with a layered structure.
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6.2.3 Proof of main Theorem 4.3.1 for layered networks

In this section we extend the idea from section 6.2.2 and analyze a lD-layer network, G.

Based on the proof strategy illustrated in section 6.2.2, we proceed with the error prob-

ability analysis of our scheme that was described in section 6.2.1. Assume message w is

being transmitted. Then we have

Perror = P {(ŷD, w) /∈ Tδ} + P {∃w′ 6= w s.t.(ŷD, w
′) ∈ Tδ & (ŷD, w) ∈ Tδ} (6.24)

By law of large numbers, the probability of the first event becomes arbitrarily small as

communication block length, T , goes to infinity. So to bound the probability of error, we

just need to analyze the probability that ŷD is jointly typical with both w,w′, for a message

w′ independent of w. We denote this event by w → w′.

Now if ŷD is jointly typical with w′, then there must be a typical transmit sequence

x′
V ∈ XV(w′) under w′ such that (ŷD,x

′
V) ∈ Tδ. This means that the destination thinks

this is a plausible sequence. Therefore, there is a natural source-destinationcut, Ω, in G
such that the nodes on the right hand side of the cut (i.e. in Ω) can tell x′

V is not a plausible

sequence, and those on the left hand side of the cut (i.e. in Ωc) can not. Since we are dealing

with a layered network, each cut decomposes the network to d = lD disjoint sub-networks

, such that at each layer we have the set of nodes βl(Ω), which are at distance l− 1 from S

and are in Ω, on one side and the set of nodes γl(Ω), which are at distance l from S that are

in Ωc, on the other side, for l = 1, . . . , lD. Therefore, by definition we have

(ŷγl(Ω),x
′
βl(Ω),x

′
γl−1(Ω)) ∈ Tδ, l = 1, . . . , lD (6.25)
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Therefore, we can write

P {w → w′} = P {(ŷD, w
′) ∈ Tδ} (6.26)

≤
∑

x′
V∈XV (w′)

P

{

(ŷD,x
′
γlD−1

) ∈ Tδ

}

(6.27)

=
∑

x′
V∈XV (w′)

∑

Ω∈ΛD

P{(ŷγl(Ω),x
′
βl(Ω),x

′
γl−1(Ω)) ∈ Tδ,

, (ŷβl(Ω),x
′
βl−1(Ω),x

′
γl−2(Ω)) /∈ Tδ , l = 1, . . . , lD} (6.28)

=
∑

x′
V∈XV (w′)

∑

Ω∈ΛD

lD∏

l=1

P{(ŷγl(Ω),x
′
βl(Ω),x

′
γl−1(Ω)) ∈ Tδ,

, (ŷβl(Ω),x
′
βl−1(Ω),x

′
γl−2(Ω)) /∈ Tδ|(ŷγj(Ω),x

′
βj(Ω),x

′
γj−1(Ω)) ∈ Tδ,

, (ŷβj(Ω),x
′
βj−1(Ω),x

′
γj−2(Ω)) /∈ Tδ, j = 1, . . . , l − 1} (6.29)

≤
∑

x′
V∈XV (w′)

∑

Ω∈ΛD

lD∏

l=1

P{(ŷγl(Ω),x
′
βl(Ω),x

′
γl−1(Ω)) ∈ Tδ|

(ŷβl(Ω),x
′
βl−1(Ω),x

′
γl−2(Ω)) /∈ Tδ, (ŷγj(Ω),x

′
βj(Ω),x

′
γj−1(Ω)) ∈ Tδ,

, (ŷβj(Ω),x
′
βj−1(Ω),x

′
γj−2(Ω)) /∈ Tδ, j = 1, . . . , l − 1} (6.30)

=
∑

x′
V∈XV (w′)

∑

Ω∈ΛD

lD∏

l=1

P{(ŷγl(Ω),x
′
βl(Ω),x

′
γl−1(Ω)) ∈ Tδ|

(ŷβl(Ω),x
′
βl−1(Ω),x

′
γl−2(Ω)) /∈ Tδ, (ŷγl−1(Ω),x

′
βl−1(Ω),x

′
γl−2(Ω)) ∈ Tδ} (6.31)

where the last step is true since there is an independent random mapping at each node and

we have a markovian layered structure in the network. Now, conditioned on a particu-

lar xγl−1(Ω) ∈ Xγl−1(Ω)(w), we have two situations, either x′
γl−1(Ω) = xγl−1(Ω), or not. If

x′
γl−1(Ω) = xγl−1(Ω), since x′

βl(Ω) is chosen independent of xβl(Ω) (because of the random

encoding function at each node), we have
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P{(ŷγl(Ω),x
′
βl(Ω),x

′
γl−1(Ω)) ∈ Tδ|(ŷβl(Ω),x

′
βl−1(Ω),x

′
γl−2(Ω)) /∈ Tδ,x

′
γl−1(Ω) = xγl−1(Ω),

, (ŷγl−1(Ω),x
′
βl−1(Ω),x

′
γl−2(Ω)) ∈ Tδ} ≤ 2

−TI
“

Xβl(Ω);Ŷγl(Ω)|Xγl−1(Ω)

”

(6.32)

On the other hand if x′
γl−1(Ω) 6= xγl−1(Ω), since x′

γl−1(Ω) and x′
βl(Ω) are respectively

chosen independent of xγl−1(Ω) and xβl(Ω) (because of the random encoding function at

each node), we have

P{(ŷγl(Ω),x
′
βl(Ω),x

′
γl−1(Ω)) ∈ Tδ|(ŷβl(Ω),x

′
βl−1(Ω),x

′
γl−2(Ω)) /∈ Tδ,x

′
γl−1(Ω) 6= xγl−1(Ω),

, (ŷγl−1(Ω),x
′
βl−1(Ω),x

′
γl−2(Ω)) ∈ Tδ} ≤ 2

−TI
“

Xγl−1(Ω),Xβl(Ω);Ŷγl(Ω)

”

(6.33)

≤ 2
−TI

“

Xβl(Ω);Ŷγl(Ω)|Xγl−1(Ω)

”

(6.34)

Now by equations (6.31), (6.32), (6.34), we get

P {w → w′} ≤ |XV(w′)|
∑

Ω

lD∏

l=1

2
−TI

“

Xβl(Ω);Ŷγl(Ω)|Xγl−1(Ω)

”

(6.35)

= |XV(w′)|
∑

Ω

2−TI(XΩ;ŶΩc |XΩc) (6.36)

As the last ingredient of the proof, we state the following lemma:

Lemma 6.2.4. Consider a layered Gaussian relay network, G, then,

|XV(w′)| ≤ 2Tκ1 (6.37)

where κ1 = |V| is a constant depending on the total number of nodes in G.

Proof. See Appendix A.4.

Therefore, by (6.36) and lemma 6.2.4, we have the following,
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Lemma 6.2.5. Given a Gaussian relay network G with a layered structure, all rates R

satisfying the following condition are achievable,

R < min
Ω∈ΛD

I(ŶΩc ;XΩ|XΩc) − κ1 (6.38)

where Xi, i ∈ V , are iid with complex normal (Gaussian) distribution, and κ1 = |V| is a

constant depending on the total number of nodes in G.

To prove our main theorem 4.3.1 for layered networks, we state the following lemma,

Lemma 6.2.6. Given a Gaussian relay network G, then

C − min
Ω∈ΛD

I(ŶΩc ;XΩ|XΩc) < κ2 (6.39)

where Xi, i ∈ V , are iid with complex normal (Gaussian) distribution, C is the cut-set

upper bound on the capacity of G as described in equation (4.1), and κ2 = 2|V|.

Proof. See Appendix A.5.

Now by lemma 6.2.5 and lemma 6.2.6, we have the following main result

Theorem 6.2.7. Given a Gaussian relay network G with a layered structure and single

antenna at each node, all rates R satisfying the following condition are achievable,

R < C − κLay (6.40)

where C is the cut-set upper bound on the capacity of G as described in equation (4.1), and

κLay = κ1 + κ2 = 3|V| is a constant depending on the total number of nodes in G (denoted

by |V|).
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6.3 General Gaussian relay networks

Given the proof for layered networks with equal path lengths, we are ready to tackle the

proof of Theorem 4.3.1 for general Gaussian relay networks.

First we formally describe the encoding strategy:

6.3.0.1 Encoding for general Gaussian relay network

We have a single source S with a sequence of messages wk ∈ {1, 2, . . . , 2KTR}, k =

1, 2, . . .. Each message is encoded by the source S into a signal over KT transmission

times (symbols), giving an overall transmission rate of R.

At each node we create a random Gaussian codebook. Source randomly maps each

message to one of its Gaussian codewords and sends it in KT transmission times. Still,

each relay operates over blocks of time T symbols. In particular each received sequence

y
(k)
i at node i is quantized into ŷ

(k)
i which is then randomly mapped into a Gaussian code-

word x
(k)
i using a random mapping function fi(ŷ

(k)
i ). Given the knowledge of all the en-

coding functions at the relays and signals received over K + |V | − 2 blocks, the decoder

D, attempts to decode the message W sent by the source.

Note that the general achievability scheme that we use here is similar to the one de-

scribed in Section 6.2.1 for layered networks, except now the messageW ∈ {1, . . . , 2KRT}
is encoded by the source S into a signal overKT transmission times (symbols), whilel each

relay operates over blocks of time T symbols.

The ingredients of the proof are developed below. First similar to the deterministic case

(Section 5.4), we use time expansion idea to explicitly represent our relaying scheme. Now

we state the following lemma which is a corollary of Theorem 6.2.7.

Lemma 6.3.1. Given a Gaussian relay network, G, all rates R satisfying the following

78



Chapter 6. Gaussian relay networks

condition are achievable,

R <
1

K
min

Ωunf∈ΛD

I(YΩc
unf

;XΩunf
|XΩc

unf
) − κ1 (6.41)

where G(K)
unf is the time expanded graph associated with G, random variables {Xi[t]}1≤t≤K ,

i ∈ V are iid with complex normal (Gaussian) distribution, and κ1 = 3|V|.

Proof. By unfolding G we get an acyclic network such that all the paths from the source to

the destination have equal length. Therefore, by theorem 6.2.7, all rates Runf, satisfying the

following condition are achievable in the time-expanded graph

Runf < min
Ωunf∈ΛD

I(YΩc
unf

;XΩunf
|XΩc

unf
) − κunf (6.42)

where {Xi[t]}1≤t≤K , i ∈ V are iid with complex normal (Gaussian) distribution, and κunf =

3K|V|. Since it takes K steps to translate and achievable scheme in the time-expanded

graph to an achievable scheme in the original graph, and κ1 = 1
K
κunf = 3|V|, then the

Lemma is proved.

Similar to the deterministic case, in the following lemma we show that the minimum

cut value of the time expanded graph (normalized by 1/K) approaches to the minimum cut

value of the original graph as K → ∞.

Lemma 6.3.2. Consider a Gaussian relay network, G. Then for any cut Ωunf on the unfolded

graph we have,

(K − L+ 1) min
Ω∈ΛD

I(YΩc ;XΩ|XΩc) ≤ I(YΩc
unf

;XΩunf
|XΩc

unf
) (6.43)

where L = 2|V|−2, Xi∈V are iid with complex normal (Gaussian) distribution, and {Xi[t]},

1 ≤ t ≤ K, i ∈ V are also iid with complex normal (Gaussian) distribution.
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Proof. See Appendix A.6.

Hence, by lemma 6.3.1 and lemma 6.3.2 we have the following lemma,

Lemma 6.3.3. Given a Gaussian relay network G, all rates R satisfying the following

condition are achievable,

R < min
Ω∈ΛD

I(YΩc ;XΩ|XΩc) − κ1 (6.44)

where Xi, i ∈ V , are i.i.d. with complex normal (Gaussian) distribution, and κ1 = 3|V|.

Now by lemma 6.2.6 we know that,

C − min
Ω∈ΛD

I(YΩc ;XΩ|XΩc) ≤ C − min
Ω∈ΛD

I(ŶΩc ;XΩ|XΩc)

≤ 2|V| (6.45)

where Xi, i ∈ V , are iid with complex normal (Gaussian) distribution.

Therefore, by lemma 6.3.3 and inequality (6.45) all rates up toC−|V|(3+2) = C−5|V|
are achieved and the proof of our main theorem 4.3.1 is complete.

To prove Theorem 4.3.1 for the multicast scenario, we just need to note that if all relays

will perform exactly the same strategy then by our theorem, each destination, D ∈ D, will

be able to decode the message with low error probability as long as the rate of the message

satisfies

R < CD − κ (6.46)

where κ < 5|V| is a constant and CD = maxp({xj}j∈V ) minΩ∈ΛD
I(YΩc ;XΩ|XΩc) is the

cut-set upper bound on the capacity from the source to D. Therefore as long as R <

minD CD − κ, all destinations can decode the message and hence the theorem is proved

when we have single antennas at each node.

80



Chapter 6. Gaussian relay networks

In the case that we have multiple antennas at each node, the achievability strategy re-

mains the same, except now each node receives a vector of observations from different

antennas. We will first quantize the received signal of each antenna at noise level and then

map it to another transmit codeword. The error probability analysis is exactly the same

as before. However, the gap between the achievable rate and the cut-set bound will be

larger. We can upper bound the gap by assuming that we have a network with at most

i.e.
∑|V|

i=1 max(Mi, Ni) virtual nodes (each correspond to an antenna). Therefore from our

previous analysis we know that the gap is at most 5
∑|V|

i=1 max(Mi, Ni) and the theorem is

proved.

6.4 Summary

In this chapter we proved Theorem 4.3.1, which is a lower bound to the achievable rate

for information flow over noisy Gaussian relay networks. Similar to the deterministic case,

first we proved if for networks that have a layered structure, then extended it to an arbitrary

network by considering its time-expanded representation. We proved that the gap between

this achievable rate and the cut-set upper bound is uniformly bounded by a constant that is

independent of the channel gains. Hence, established a uniform approximation result for

the capacity of Gaussian relay networks. This is the first constant gap approximation of the

capacity of Gaussian relay networks.
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Extensions of our main result

7.1 Introduction

In this chapter we extend our main result for Gaussian relay networks (Theorem 4.3.1) to

the following scenarios:

1. Compound relay network

2. Frequency selective relay network

3. Half-duplex relay network

4. Quasi-static fading relay network (underspread regime)

5. Low rate capacity approximation of Gaussian relay network

We first motivate each extension and then prove our result for that extension.

7.2 Compound relay network

The relaying strategy that we proposed for general Gaussian relay networks does not re-

quire any channel information at the relays, relays just quantize at noise level and forward
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through a random mapping. The approximation gap also does not depend on the channel

gain values. As a result our main result for Gaussian relay networks (Theorem 4.3.1) can be

extended to compound relay networks where we allow each channel gain hi,j to be from a

set Hi,j , and the particular chosen values are unknown to the source node S, the relays and

the destination node D. A communication rate R is achievable if there exist a scheme such

that for any channel gain realizations, still the source can communicate to the destination at

rate R, without the knowledge of the channel realizations at the source, the relays and the

destination. For completeness, we restate our result for compound relay network (Theorem

4.4.1) and then prove it.

Theorem 7.2.1. Given a compound Gaussian relay network, G = (V , E), the capacity Ccn

satisfies

Ccn − κ ≤ Ccn ≤ Ccn (7.1)

Where Ccn is the cut-set upper bound on the compound capacity of G as described below

Ccn = max
p({xi}j∈V )

inf
h∈H

min
Ω∈ΛD

I(YΩc ;XΩ|XΩc) (7.2)

And κ is a constant and is upper bounded by 6
∑|V|

i=1 max(Mi, Ni), where Mi and Ni are

respectively the number of transmit and receive antennas at node i.

Proof outline: We sketch the proof for the case that nodes have single antenna, its ex-

tension to the multiple antenna scenario is straightforward. As we mentioned earlier, the

relaying strategy that we used in main Theorem 4.3.1, does not require any channel infor-

mation. However, if all channel gains are known at the final destination, all rates within a

constant gap to the cut-set upper bound are achievable. Now we first evaluate how much

we lose if the final destination only knows a quantized version of the channel gains. In par-

ticular assume that each channel gain is bounded |hij| ∈ [hmin, hmax], and final destination

only knows the channel gain values quantized at 1
SNR

level so that overall with signal it is at
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noise level. Then since there is a transmit power constraint equal to one at each node, the

effect of this channel uncertainty can be mimicked by adding a Gaussian noise of variance

1 at each relay node (or reducing all channel SNR’s of the links 3dB), which will result in

a reduction of at most |V| bits from the cut-set upper bound. Therefore with access to only

quantized channel gains, we will lose at most |V| more bits, which means the gap between

the achievable rate and the cut-set bound is at most 6|V|.
Furthermore, as shown in [35] there exists a universal decoder for this finite group of

channel sets. Hence we can use this decoder at the final destination and decode the message

as if we knew the channel gains quantized at the noise level, for all rates up to

R < max
p({xi}j∈V )

inf
ĥ∈Ĥ

min
Ω∈ΛD

I(YΩc ;XΩ|XΩc) (7.3)

where Ĥ is representing the quantized state space. Now as we showed earlier, if we restrict

the channels to be quantized at noise level the cut-set upper bound changes at most by |V|,
therefore

Ccn − |V| ≤ max
p({xi}j∈V )

inf
ĥ∈Ĥ

min
Ω∈ΛD

I(YΩc ;XΩ|XΩc) (7.4)

Therefore from equations (7.3) and (7.4) all rates up to Ccn − 6|V| are achievable and the

proof can be completed.

Now by using the ideas in [36] and [37], we believe that an infinite state universal

decoder can also be analysed to give ”completely oblivious to channel” results. �

7.3 Frequency selective Gaussian relay network

In this section we generalize our main result to the case that the channels are frequency

selective. Since one can present a frequency selective channel as a MIMO link, where each
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antenna is operating at a different frequency band1, this extension is a just straight forward

corollary of the case that nodes have multiple antennas. For completeness, we restate our

result for frequency selective relay network (Theorem 4.4.3).

Theorem 7.3.1. Given a frequency selective Gaussian relay network, G = (V , E), with F

different frequency bands. The capacity of this network, C, satisfies

C − κ ≤ C ≤ C (7.5)

Where C is the cut-set upper bound on the capacity of G as described in equation (4.1),

and κ is a constant and is upper bounded by 5
∑|V|

i=1 max(Mi, Ni), where Mi and Ni are

respectively the number of transmit and receive antennas at node i.

7.4 Half duplex relay network (fixed scheduling)

One of the practical constraints on wireless networks is that the transceivers can not trans-

mit and receive at the same time on the same frequency band, known as the half-duplex

constraint. As a result of this constraint, the achievable rate of the network will in general

be lower. In this section we study the capacity of wireless relay networks under the half-

duplex constraint. The model that we use to study this problem is the same as [38]. In this

model the network has finite modes of operation. Each mode of operation (or state of the

network), denoted by m ∈ {1, 2, . . . ,M}, is defined as a valid partitioning of the nodes of

the network into two sets of ”sender” nodes and ”receiver” nodes such that there is no ac-

tive link that arrives at a sender node2. For each node i, the transmit and the receive signal

at mode m are respectively shown by xm
i and ym

i . Also tm defines the portion of the time

that network will operate in state m, as the network use goes to infinity. The cut-set upper

1This can be implemented in particular by using OFDM and appropriate spectrum shaping or allocation.
2Active link is defined as a link which is departing from the set of sender nodes
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bound on the capacity of the Gaussian relay network with half-duplex constraint, Chd, is

shown to be [38]:

Chd ≤ Chd = max
p({xm

j }j∈V,m∈{1,...,M})

tm: 0≤tm≤1,
PM

m=1 tm=1

min
Ω∈ΛD

M∑

m=1

tmI(Y
m
Ωc ;Xm

Ω |Xm
Ωc) (7.6)

For completeness, we restate our result for half-duplex relay network (Theorem 4.4.2) and

then prove it.

Theorem 7.4.1. Given a Gaussian relay network with half-duplex constraint, G = (V , E),

the capacity, Chd, satisfies

Chd − κ ≤ Chd ≤ Chd (7.7)

Where C is the cut-set upper bound on the capacity of G as described in equation (7.6),

and κ is a constant and is upper bounded by 5
∑|V|

i=1 max(Mi, Ni), where Mi and Ni are

respectively the number of transmit and receive antennas at node i.

Proof. We prove the result for the case that nodes have single antenna, its extension to the

multiple antenna scenario is straightforward. Since each relay can be either in a transmit or

receive mode, we have a total of M = 2|V|−2 number of modes. An example of a network

with two relay and all four modes of half-duplex operation of the relays are shown in Figure

7.1.

Now consider the ti’s that maximize Chd in (4.15). Assume that they are rational num-

bers (otherwise look at the sequence of rational numbers approaching them) and set W to

be the LCM (least common divisor) of the denominators. Now increase the bandwidth of

system by W and allocate Wti of bandwidth to mode i, i = 1, . . . ,M . Now each mode is

running at a different frequency band, therefore as shown in Figure 7.2 we can combine all

these modes and create a frequency selective relay network. Since the links are orthogonal

to each other, still the cut-set upper bound on the capacity of this frequency selective relay

network (in bits/sec/Hz) is the same as (4.15). Now by theorem 4.4.3 we know that our

86



Chapter 7. Extensions of our main result

A1

S D

A2

(a)

A1

S D

A2

(b) Mode 1

A1

S D

A2

(c) Mode 2

A1

S D

A2

(d) Mode 3

A1

S D

A2

(e) Mode 4

Figure 7.1: An example of a relay network with two relays is shown in (a). All four

modes of half-duplex operation of the relays are shown in (b) − (e).
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quantize-map-forward scheme achieves, within a constant gap, κ, of Chd for all channel

gains. In this relaying scheme, at each block, each relay transmits a signal that is only a

function of its received signal in the previous block and hence does not have memory over

different blocks. Now we will translate this scheme to a scheme in the original network that

modes are just at different times (not different frequency bands). The idea is that we can

expand exactly communication block of the frequency selective network into W blocks

of the original network and allocating Wti of these blocks to mode i. Then in the Wti

blocks that are allocated to mode i, all relays do exactly what they do in frequency band i.

This is pictorially described in Figure 7.3 for the network of Figure 7.2. This figure shows

how one communication block of the frequency selective network (a) is expanded over W

blocks of the the original half-duplex network (b). Now since the transmitted signal at each

frequency band is only a function of the data received in the previous block of the frequency

selective network, the ordering of the modes inside the W blocks of the original network is

not important at all. Therefore with this strategy we can achieve within a constant gap, κ,

of the cut-set bound of the half-duplex relay network and the proof is complete.

The main difference between this strategy and our original strategy for full duplex net-

works is that now the relays are required to have a much larger memory. As a matter of

fact, in the full duplex scenario the relays had only memory over one block (what they sent

was only a function of the previous block). However for the half-duplex scenario the relays

are required to have a memory over W blocks and clearly W can be arbitrary large.
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A1

S D

A2

Figure 7.2: Combination of all half-duplex modes of the network shown in figure

7.1. Each mode operates at a different frequency band.

7.5 Quasi-static fading relay network (underspread

regime)

In a wireless environment channel gains are not fixed and change over time. In this section

we consider a typical scenario in which although the channel gains are changing, they can

be considered time invariant over a long time scale (for example during the transmission of

a block). This happens when the coherence time of the channel (Tc) is much larger than the

delay spread (Td). Here the delay spread is the largest extent of the unequal path lengths,

which is in some sense corresponding to inter-symbol interference. Now, depending on

how fast the channel gains are changing compared to the delay requirements, we have two

different regimes: fast fading or slow fading scenarios. We consider each case separately.

7.5.1 Fast fading

In the fast fading scenario the channel gains are changing much faster compared to the delay

requirement of the application (i.e. coherence time of the channel, Tc, is much smaller than
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A1[i+ 1]

S[i]

A2[i]

D[i]

A1[i]

S[i+ 1]

D[i+ 1]

A2[i+ 1]

(a) One communication block

of the frequency selective

half-duplex network

Mode 1 Mode 2 Mode 3 Mode 4

D
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A1

A2

D

S

A1

A2

D

S

A1

A2

D

S
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S
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D
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A1
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A2

D

S
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(b) Expanding over W blocks of the original network

Figure 7.3: One communication block of the frequency selective network (a) is

expanded over W blocks of the original half-duplex network (b).
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the delay requirements). Therefore, we can interleave data and encode it over different

coherence time periods. In this scenario, ergodic capacity of the network is the relevant

capacity measure to look at. For completeness, we restate our result for fast fading relay

networks (Theorem 4.4.4) and then prove it.

Theorem 7.5.1. Given a fast fading quasi-static fading Gaussian relay network, G =

(V , E), the ergodic capacity Cergodic satisfies

Ehij

[
C({hij})

]
− κ ≤ Cergodic ≤ Ehij

[
C({hij})

]
(7.8)

Where C is the cut-set upper bound on the capacity, as described in equation (4.1), and the

expectation is taken over the channel gain distribution, and κ is a constant and is upper

bounded by 5
∑|V|

i=1 max(Mi, Ni), whereMi andNi are respectively the number of transmit

and receive antennas at node i.

Proof. We prove the result for the case that nodes have single antenna, its extension to

the multiple antenna scenario is straightforward. Upper bound is just the cut-set upper

bound. For the achievability note that the relaying strategy that we proposed for general

wireless relay networks does not depend on the channel realization, relays just quantize

at noise level and forward through a random mapping. The approximation gap also does

not depend on the channel parameters. As a result by coding data over L different channel

realizations the following rate is achievable

1

L

L∑

l=1

(
C({hij}l) − κ

)
(7.9)

Now as L→ ∞,

1

L

L∑

l=1

C({hij}l) → Ehij

[
C
]

(7.10)

and the theorem is proved.
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7.5.2 Slow fading

In a slow fading scenario the delay requirement does not allow us to interleave data and

encode it over different coherence time periods. We assume that there is no channel gain

information available at the source, therefore there is no definite capacity and for a fixed

target rate R we should look at the outage probability,

Pout(R) = P {C({hij}) < R} (7.11)

where the probability is calculated over the distribution of the channel gains and the ǫ-

outage capacity is defined as

Cǫ = P−1
out(ǫ) (7.12)

Here is our result to approximate the outage probability

Theorem 7.5.2. Given a slow fading quasi-static fading Gaussian relay network, G =

(V , E), the outage probability, Pout(R) satisfies

P
{
C({hij}) < R

}
≤ Pout(R) ≤ P

{
C({hij}) < R + κ

}
(7.13)

Where C is the cut-set upper bound on the capacity, as described in equation (4.1), and the

probability is calculated over the distribution of the channel gains, and κ is a constant and

is upper bounded by 5
∑|V|

i=1 max(Mi, Ni), where Mi and Ni are respectively the number

of transmit and receive antennas at node i.

Proof. Lower bound is just based on the cut-set upper bound on the capacity. For the upper

bound we use the compound network result. Therefore, based on Theorem 4.4.1 we know

that as long as C({hij}) − κ < R there will not be an outage.
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7.6 Low rate capacity approximation of Gaussian re-

lay network

In a low data rate regime, a constant gap approximation of the capacity may not be inter-

esting any more. A more useful kind of approximation in this regime would be a universal

multiplicative approximation (instead of additive), where the multiplicative factor does not

depend on the channel gains in the network. For completeness, we restate our result for

multiplicative approximation (Theorem 4.4.5) and then prove it.

Theorem 7.6.1. Given a Gaussian relay network, G = (V , E), the capacity C satisfies

λC ≤ C ≤ C (7.14)

Where C is the cut-set upper bound on the capacity, as described in equation (4.1), and λ

is a constant and is lower bounded by 1
2d(d+1)

and d is the maximum degree of nodes in G.

Proof. First we use a time division scheme and make all links in the network orthogonal

to each other. By Vizing’s theorem3 any simple undirected graph can be edge colored with

at most d + 1 colors, where d is the maximum degree of nodes in G. Since our graph G
is a directed graph we need at most 2(d + 1) colors. Therefore we can generate 2(d + 1)

time slots and assign the slots to directed graphs such that at any node all the links are

orthogonal to each other. Therefore each link is used a 1
2(d+1)

fraction of the time. We

further impose the constraint that each of these links is used a total 1
2d(d+1)

of the time but

with d times more power. Now by coding we can convert each links hi,j into a noise free

link with capacity

ci,j =
1

2d(d+ 1)
log(1 + d|hi,j|2) (7.15)

3For example see [39] p.153
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By Ford-Fulkerson theorem we know that the capacity of this network is

Corthogonal = min
Ω

∑

i,j:i∈Ω,j∈Ωc

ci,j (7.16)

And this rate is achievable in the original Gaussian relay network. Now we will prove that

Corthogonal ≥
1

2d(d+ 1)
C (7.17)

To show this assume in the orthogonal network each node transmit the same signal on its

outgoing links, and also each node takes the summation of all incoming links (normalized

by 1√
d
) and denote it as the received signal. Then the received signal at each node is j is

yj[t] =
1√
d

d∑

i=1

(

hij

√
dxi[t] + zij[t]

)

(7.18)

=
d∑

i=1

hijxi[t] + z̃j[t] (7.19)

where

z̃j[t] =

∑d
i=1 zij[t]√

d
∼ CN (0, 1) (7.20)

Therefore we get a network which is statically similar to the original non-orthogonal net-

work, however each time-slot is only a 1
d(d+1)

fraction of the time slots in the original

network. Therefore without this restriction the cut-set of the orthogonal network can only

increase. Hence

Corthogonal ≥
1

2d(d+ 1)
C (7.21)
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Connections between models

8.1 Introduction

So far we have used the insights obtained from the deterministic channel model to be able

to approximated the capacity of the Gaussian relay network. In this section we investigate

whether the capacity of a relay network under these models are close to each other in

some sense. First, we show that the generalized degrees of freedom of a Gaussian relay

network and its corresponding linear finite-field deterministic relay network are the same.

This verifies that the deterministic model is properly capturing the high SNR behavior of

Gaussian networks. Next we investigate whether there is a non-asymptotic connection

between these two models. As we illustrate in an example, the finite field operations of the

linear finite field deterministic model does not allow a non-asymptotic connection between

the two models, hence the capacity of a relay network under these two models can be far

from each other. Motivated by this observation we propose another deterministic channel

model, called the truncated deterministic model, such that the capacity of any Gaussian

relay network and its corresponding truncated deterministic relay network are within a

constant gap of each other, uniformly for all channel gains.
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8.2 Connections between the linear finite field de-

terministic model and the Gaussian model

In this section we show the connection between the generalized degrees of freedom of a

Gaussian relay network and the capacity of its corresponding linear finite field deterministic

relay network. The generalized degrees of freedom was first defined in [40] for 2 × 2

interference channel. We first define a natural generalization of this for Gaussian relay

networks.

Consider a Gaussian wireless relay network as defined in section 4.3. The conven-

tional degrees of freedom characterizes how the capacity of this network grows as P , the

individual average power constraint at nodes, increases. More formally

d = lim
P→∞

C

logP
(8.1)

Note that in this formulation all channel gains hij’s are fixed and only P increases. It is

easy to show that for any Gaussian relay network

d =







1 if there is a path with non zero gains from S to D ,

0 otherwise.

(8.2)

Therefore for relay networks degrees of freedom is a very coarse quantity of capacity, and

only reveals whether there is a path with nonzero gains from the source to the destination.

An intuitive explanation for this is the following: in this formulation while the channel

gains are fixed the transmit power is increasing. As a result the ratio between the signal to

noise ratio of different links in dB scale goes to one. Hence for sufficiently large P , signal

to noise ratio of all links are almost the same (in dB scale) and as a result a pure routing

solution achieves the maximum degrees of freedom.
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S D

A

B

C

E

F

G

ρnEF

ρnSA

ρnSB

ρnAC

ρnBE

ρnCF

ρnEG

ρnGD

ρnFDρnAE

ρnBC

ρnCG

Figure 8.1: A three layer relay network.

Based on this observation we formulate the generalized degrees of freedom in such a

way that while SNR of all links are increasing, their ratio in dB scale is fixed. In another

words we look at a Gaussian relay network where all channel gains are in the form of

hij = ρnij for fixed integers nij ∈ N ∪ {0} and a variable ρ ∈ R+. An example of such

network is shown in figure 8.1. Now we define the generalized degrees of freedom of this

network as the following

d({nij}) = lim
ρ→∞

C(ρ, {nij})
log ρ

(8.3)

The main result of this section is the following

Theorem 8.2.1. Consider a gaussian network where all channel gains are in the form ρnij

where nij’s are non negative fixed integers and ρ ∈ R+ is a variable. There is also an

average power constraint equal to 1 is at each node. Then the unicast capacity of this

network from S to D satisfies:

lim
ρ→∞

C

log ρ
= min

Ω
rank(HΩ) (8.4)

where the minimum is taken over all cuts, Ω, in the corresponding linear finite field deter-

ministic relay network and HΩ is the transfer matrix associated with that cut and rank is
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evaluated in R.

Proof. See Appendix A.8.

8.3 Non asymptotic connection between the linear

finite field deterministic model and the Gaussian

model

In section 8.2 we illustrated an asymptotic connection between the linear finite field de-

terministic model and the Gaussian model in terms of the generalized degrees of freedom.

Now, a natural question is whether there is a non-asymptotic (constant gap) connection

between the capacity of the linear finite field deterministic model and the Gaussian model?

Unfortunately, in this section we answer this question negatively. We show that the fi-

nite field operations of the linear finite field deterministic model does not allow a non-

asymptotic connection between the two models

To show this we just need to look at a MIMO channel and show that the capacity of this

system under the Gaussian model and the corresponding deterministic model can be very

far from each other for some channel gain values. Consider a 2 × 2 MIMO real Gaussian

channel with channel gain values as shown in Figure 8.2 (a), where k is an integer larger

than 2. The channel gain parameters of the corresponding linear finite field deterministic

model are:

n11 = ⌈log2 h11⌉+ = ⌈log2(2
k − 2k−2)⌉+ = k (8.5)

n12 = n21 = n22 = ⌈log2 2k⌉+ = k (8.6)

Now lets compare the capacity of the MIMO channel under these two models. The capacity
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2k − 2k−2

2k

2k

2k

Tx1

Tx2

Rx1

Rx2

(a)

k

Rx1Tx1

Tx2 Rx2

(b)

Figure 8.2: An example of a 2 × 2 Gaussian MIMO channel is shown in (a). The

corresponding linear finite field deterministic MIMO channel is shown in (b).

of the Gaussian MIMO channel with equal power allocation is

CGaussian =
1

2
log
(
det
(
I +HH t

))
(8.7)

where

H =




2k − 2k−2 2k

2k 2k



 (8.8)

Therefore for large k we have,

CGaussian =
1

2
log



| det




(2k − 2k−2)2 + 22k + 1 22k+1 − 22k−2

22k+1 − 22k−2 22k+1 + 1



 |



 (8.9)

=
1

2
log
(
|1 + 22k+1 + 9 × 22k−4 − 31 × 24k−4||

)
(8.10)

≈ 2k − 2 (8.11)
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However the capacity of the corresponding linear finite field deterministic MIMO is simply

CLFF = rank




Ik Ik

Ik Ik



 = k (8.12)

(8.13)

Therefore by comparing (8.11) and (8.12), for large k we have

CGaussian − CLFF ≈ k − 2 (8.14)

which goes to infinity as k increases.

Motivated by this observation we propose another deterministic channel model, called

the truncated deterministic model, such that the capacity of any Gaussian relay network

and its corresponding truncated deterministic relay network are within a constant gap of

each other, uniformly for all channel gains.

8.4 Truncated deterministic model

The truncated deterministic model is a subclass of the deterministic model in which the

received signal yj at node j ∈ V and time t is given by

yj[t] =




∑

i∈Nj

Hijxi[t]



 (8.15)

where Hij is a complex matrix where element represents the channel gain from a trans-

mitting antenna in node i to a receiving antenna in node j, and Nj is the set of nodes that

are neighbors of j in G. Also the function [.] is defined as the following and is applied
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component wise to a vector,

[xR + jxI ] = [xR] + j[xI ] (8.16)

where for any real number, [x] represents its closest integer . Furthermore, we assume there

is an average power constraint equal to 1 at each transmitter.

Clearly any Gaussian model has a corresponding truncated deterministic model. Com-

pared to the Gaussian model, there is no channel noise in the truncated model. However,

its effect is partially captured by the truncation of the received signal.

8.5 Connection between the truncated deterministic

model and the Gaussian model

In this section we establish a more concrete connection between the truncated deterministic

model and the Gaussian model. We show that the capacity of any relay network under these

two models are within a constant gap of each other, where the constant does not depend on

the channel parameters. Note that this implies a functional connection between the reliable

transmission rates, but not any operational connection in terms of coding strategies between

the two models.

Theorem 8.5.1. Assume G = (V , E) is a Gaussian relay network with real gains and

real Gaussian noise. The capacity of this relay network, CGaussian, and the capacity of the

corresponding truncated deterministic model, CTruncated, satisfy the following relationship

|CGaussian − CTruncated| ≤ 13|V| (8.17)

To prove this Theorem first we need the following lemma,
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Lemma 8.5.2. Let G be the channel gains matrix of a m × n MIMO system. Assume

that there is an average power constraint equal to one at each node. Then for any input

distribution Px,

|I(X;GX + Z) − I(X; [GX])| ≤ 8n (8.18)

where Z = [z1, . . . , zn] is a vector of n i.i.d. N (0, 1) random variables.

Proof. Look at appendix A.7.

Now we prove Theorem 8.5.1.

Proof. (proof of Theorem 8.5.1)

First note that the value of any cut in the network is the same as the mutual information of

a MIMO system. Therefore from Lemma 8.5.2 we have

|CGaussian − CTruncated| ≤ 8|V| (8.19)

Now pick i.i.d normal distribution for {Xi}i∈V . Now by applying Theorem 4.2.3 to the

truncated deterministic relay network

CTruncated ≥ min
Ω∈ΛD

I(Y truncated
Ωc ;XΩ|XΩc) (8.20)

Now by Lemma 6.2.6 and Lemma 8.5.2 we know have the following

min
Ω∈ΛD

I(Y truncated
Ωc ;XΩ|XΩc) ≥ I(Y Gaussian

Ωc ;XΩ|XΩc) − 8|V| (8.21)

≥ CGaussian − 10|V| (8.22)

Then from equations (8.19) and (8.22) we have

CGaussian − 10|V| ≤ CTruncated ≤ CGaussian + 8|V| (8.23)
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Also from main Theorem 4.3.1 we know that

CGaussian − 5|V| ≤ CGaussian ≤ CGaussian (8.24)

Therefore

|CGaussian − CTruncated| ≤ 13|V (8.25)
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Other applications of the

deterministic approach

9.1 Introduction

So far we have considered the application of our deterministic approach to relay networks.

However, it is a general approach that can be applied to other problems in wireless network

information theory. The simplifications of the linear finite field deterministic model will

allow us to focus more on the interaction between users and get insights in interference

limited scenarios. In this section we discuss a few other applications of the deterministic

approach. The first example is a variation on the relay channel problem. We study the

capacity of the full-duplex bidirectional (two-way) relay channel, where a relay node is

supporting the exchange of information between two nodes. We use the linear finite-field

deterministic model to find a near optimal good transmission strategy for the relay. We an-

alyze the achievable rate region of the proposed scheme and show that the scheme achieves

to within 3 bits/sec/Hz the cut-set bound for all values of channel gains.

In the second example we consider transmission of a Gaussian source over a Gaussian
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relay channel, where the relay terminal has access to a correlated side information. Here

there are two complications in the problem: complicated channel model and complicated

source model. For the source model, again we can apply the linear finite-field deterministic

channel model and simplify it. Quite interestingly, we also think of the dual of our deter-

ministic channel model for sources. So we first propose a binary-expansion source model

for Gaussian sources. Then we apply both the deterministic channel model together with

the binary expansion source model to make progress in this problem. In particular we show

that a simple cooperation scheme is uniformly near optimal for all range of channel gains

and correlation factors.

9.2 Approximate capacity of the two-way relay chan-

nel

9.2.1 Introduction

Bidirectional or two-way communication between two nodes was first studied by Shannon

himself in [41]. Nowadays the two-way communication where an additional node acting

as a relay is supporting the exchange of information between the two nodes is attracting

increasing attention. Some achievable rate regions for the two-way relay channel using

different strategies at the relay, such as decode-and-forward, compress-and-forward and

amplify-and-forward, have been analyzed in [42]. Network coding techniques have been

proposed by [43; 44; 45] (and others) in order to improve the transmission rate. While

inferior to traditional routing at low signal-to-noise-ratios (SNR), it was shown in [46] that

network coding achieves twice the rate of routing at high SNR. Similarly, in [47] the half-

duplex two-way relay channel where the channel gains are all equal to one is investigated.

It was shown that a combination of a decode-and-forward strategy using lattice codes and

a joint decoding strategy is asymptotically optimal. Our work represents an alternative
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approach, however for the full-duplex case. Furthermore, here we analyze the general

case, where the channel gains are all different (in general) and channel reciprocity is not

assumed. The capacity region of the so called broadcast two-way half-duplex relay channel,

i.e. assuming that the communication takes places in two hops and the relay is decoding

the received messages completely, was recently characterized in [48].

The main focus is, however, so far on the one-way relay channel. Such cooperative

communication schemes are particularly important when reliable communication can not

be guaranteed by using a conventional point-to-point connection. Cooperation between

two source nodes for communication to a common receiver was proposed in [49]. There,

a non-cooperative phase is followed by a cooperative one and it is shown that this strat-

egy outperforms non-cooperative strategies. Cooperation by using distributed space-time

coding techniques in networks has been analyzed in [50; 51]. Relaying can be expected to

be adopted in current and future wireless systems, as it has been introduced in the 802.16j

(WiMAX) standard.

In this section, we study the capacity of the full-duplex two-way relay channel, which,

to the best of our knowledge, is not known in general. Similar to the general relay network,

we show that our scheme can achieve to within 3 bits/sec/Hz of the capacity for all channel

parameter values.

9.2.2 System model

The system model of the two-way full-duplex relay channel is shown in Fig. 9.1. Com-

munication takes place simultaneously from the relay to the nodes and vice versa. As can

be observed from Fig. 9.1, channel reciprocity is not assumed here. Thus, in general h1,

which is the channel parameter describing the link from node A to the relay, is different

from h3, the channel describing the link from the relay to node A (and similarly for h2 and

h4).
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h1 h2

zR

yR

Node A

Relay

Node B

(a) Communication to the relay

h3
h4

z3 z4

y3 y4
Node 1

Relay

Node 2

(b) Communication from the relay

Figure 9.1: Bidirectional relaying

The received signal at the relay is given by (cf.Fig. 9.1(a))

yR = h1xA + h2xB + zR, (9.1)

where xA and xB are the signals transmitted from node A and node B, respectively. The

variable zR describes the additive Gaussian noise at the relay. Without loss of generality,

we assume that E [|xA|2] = E [|xB|2] = E [|zR|2] = 1. The received signals at the nodes

are given by (cf. Fig. 9.1(b))

yA = h3xR + z2 (9.2)

yB = h4xR + z3.

The variables z2 and z3 are the unit variance additive Gaussian noises at node A and node

B, respectively.
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Node A Relay Node B

n1

n4

(a) From left to right

Node A Relay Node B

n3

n2

(b) From right to left

Figure 9.2: Deterministic model for bidirectional relaying

9.2.3 Deterministic two-way relay channel

We start our analysis by considering the deterministic model of the two-way relay channel

as shown in Fig. 9.2.

The following theorem is our main result for the deterministic two-way relay network.

Theorem 9.2.1. The capacity region of the bi-directional linear finite field deterministic

relay network is:

RAB ≤ min(n1, n4) (9.3)

RBA ≤ min(n2, n3) (9.4)

Furthermore, the cut-set bound is achievable with a simple shift-and-forward strategy at

the relay.

In the rest of the section, we give a sketch of the proof. We use an algebraic approach

to solve the problem of finding the optimal strategy. In the deterministic model assume that
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node A and B sends xA and xB ∈ F
q
2, respectively, where q = max(n1, n2, n3, n4). The

received signal at the relay is then given by

yR = Sq−n1xA + Sq−n2xB. (9.5)

Now consider a linear coding strategy at the relay. Therefore, it is going to send

xR = GyR = G(Sq−n1xA + Sq−n2xB), (9.6)

where G is an arbitrary q × q generating matrix that is a design choice.

The received signal at node A is thus given by

yA = Sq−n3xR = Sq−n3G(Sq−n1xA + Sq−n2xB) (9.7)

while node B receives

yB = Sq−n4xR = Sq−n4G(Sq−n1xA + Sq−n2xB). (9.8)

Since node A and node B respectively know their own signals xA and xB, they can cancel

it from their received signal. Hence effectively they receive

y′
A = Sq−n3GSq−n2xB (9.9)

y′
B = Sq−n4GSq−n1xA (9.10)

The question is, whether we can find a matrix G, such that the rates RAB = min(n1, n4)

and RBA = min(n2, n3) in (9.3) and (9.4) are achievable. By obtaining such a matrix, we

would also gain insights how the processing at the relay should be done in an optimal way.

Now we state the following lemma, whose prove is omitted due to the lack of space.
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Lemma 9.2.2. It is possible to convert the network in Fig. 9.2 into one of the following two

cases without changing the cut-set bound.

1. n1 = n4 and n2 ≤ n3

2. n2 = n3 and n1 ≤ n4

Therefore, by Lemma 9.2.2 and symmetry we only need to study this case:

n1 = n4 and n2 ≤ n3 (9.11)

It turns out, that we are indeed able to construct a matrix G, such that the cut-set bound

is achievable. The generating matrices G for the individual cases are given as follows.

1. q = n1

G =




0n2×(q−n2) In2

Iq−n2 0(q−n2)×n2



 (9.12)

2. q = n3

(a) n2 ≤ n1

G =




0n1×(q−n1) In1

0q−n1 0(q−n1)×n1



 (9.13)

(b) n2 > n1

G =




0n1×(q−n1) In1

Iq−n1 0(q−n1)×n1



 (9.14)

In the following we give interpretations of the different generating matrices G in (9.12),

(9.13), and (9.14) for the three cases.
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n1

n2

Noise level

(a) Received signal at Relay

n1

n1 − n2

Noise level

(b) Transmit signal from Relay

Figure 9.3: Signal levels at relay: Receive phase and transmit phase

9.2.3.1 Interpretation of the case n1 = q

We start with the generating matrix G in (9.12). The interpretation of this operation for

the deterministic case is the following. The relay receives n1 = q signal levels as shown

in Fig. 9.3(a). The last n2 contain information from both node A and node B (gray area

in Fig. 9.3(a)) and the other (top) signal levels are only information from A (white area in

Fig. 9.3(a)). The relay is now creating a codeword, which has the last n2 received signal

levels at highest level (gray area in Fig. 9.3(b)) and the remaining bits of A at lower signal

levels (white area in Fig. 9.3(a)).

The interpretation of the scheme for Gaussian is the following. At first the relay decodes

a part of the message, namely x
(1)
A , received from node A that has arrived above the signal

level of nodeB and subtracts it from the overall received signal. The remaining part (lowest

n2 levels) of the overall received signal at the relay is just the summation of signals from

both the node A and node B. The argumentation here is that the relay can not decode this

111



Chapter 9. Other applications of the deterministic approach

summation and thus it quantize it. The interesting part is now that the relay creates the

transmit signal by using a superposition code [52]. The cloud center of this superposition

code is the quantized signal, while the bin index is the information x
(1)
A it has decoded from

node A.

9.2.3.2 Interpretation of the case n3 = q

We start with the case n2 ≤ n1. Here, the relay receives n1 signal levels. The relay

then simply shifts the received signal up and forwards it. The corresponding scheme for

Gaussian is thus amplify-forward. As an alternative approach, we could also use a similar

superposition strategy as in the case of n1 = q. However, as we will show later on, the

simple amplify-and-forward strategy is enough in order to achieve to within 3 bits the

capacity for all channel parameter values.

The case with n2 > n1 is analogous to the case with n1 = q. Here the relay receives

n2 signal levels. The last n1 bits contain information for both node A and B and the rest

is just the information for node A. The interpretation of the scheme for Gaussian is very

similar to the scheme for n1 = q and thus omitted.

9.2.4 Gaussian Two-way relay channel

In this section, we use the insights obtained from studying the deterministic two-way relay

channel to find near-optimal relaying strategies in the Gaussian case as defined in sec-

tion 9.2.2. It follows our main result for the Gaussian two-way relay channel and the rest

of this section is devoted to proving it.

Theorem 9.2.3. Consider a Gaussian two-way relay channel as defined in section 9.2.2

with unit average noise and transmit power at each node. The capacity of this system
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satisfies

C̄AB − 3 ≤ CAB ≤ C̄AB (9.15)

and

C̄BA − 3 ≤ CBA ≤ C̄BA, (9.16)

where C̄AB = log(1+min(|h1|2, |h4|2)) and C̄BA = log(1+min(|h2|2, |h3|2)) is the cut-set

upper bound on the capacity of the transmission fromA toB andB toA, respectively [33].

Since Lemma 9.2.2 holds also for the Gaussian case, we again need to study only the

case that |h1|2 = |h4|2 and |h2|2 ≤ |h3|2. Now we discuss the achievability strategy:

9.2.4.1 Achievability strategy

In general, the transmit signals from node A, node B and the relay are given by

xA =
√
αAx

(1)
A +

√
1 − αAx

(2)
A (9.17)

xB =
√
αBx

(1)
B +

√
1 − αBx

(2)
B (9.18)

xR =
√
αRx

(1)
R +

√
1 − αRx

(2)
R . (9.19)

where x
(1)
A , x

(2)
A , x

(1)
B , x

(2)
B , x

(1)
R , and x

(2)
R are codewords chosen from a random Gaussian

codebook of size 2nR
(1)
AB , 2nR

(2)
AB , 2nR

(1)
BA , 2nR

(2)
BA , 2nR

(1)
R , and 2nR

(2)
R , respectively. At node A

(and similarly for node B) we have two messages m
(1)
A and m

(2)
A of size 2nR

(1)
AB and 2nR

(2)
AB

that are mapped to x
(1)
A and x

(2)
A , respectively. The relay signaling strategy depends on the

channel gains and will be specificized later for each case. The choice of αA, αB, and αR

depend on the magnitude of the channel gains |h1|, |h2|, |h3|, and |h4|.
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9.2.4.2 |h1|2 ≥ |h3|2

Following the insights gained from the deterministic model, for |h1|2 ≥ |h3|2 we set αB = 0

and R
(1)
BA = 0. The transmit signal at node B then reduces to

xB = x
(2)
B . (9.20)

Thus, the receive signal at the relay is given by

yR =
(√

αAx
(1)
A +

√
1 − αAx

(2)
A

)

h1 + h2xB + zR (9.21)

αA is chosen such that the received signal of x
(2)
A and xB are at the same scale. Thus, the

following expression has to hold

√
1 − αAh1 = h2, (9.22)

which gives

1 − αA =

(
h2

h1

)2

. (9.23)

Form yR, the relay first decodes x
(1)
A (i.e. m

(1)
A ) by treating the remaining received signals

x
(2)
A and xB as noise. This can be done with low error probability as long as

R
(1)
AB ≤ log

(

1 +
αA|h1|2

1 + (1 − αA) |h1|2 + |h2|2
)

= log

(

1 +
|h1|2 − |h2|2
1 + 2|h2|2

)

(9.24)

Then the relay maps the decoded x
(1)
A to another codeword x

(1)
R of size 2nR

(1)
R with R

(1)
R =

R
(1)
AB. If the above expression is fulfilled, the relay can decode the signal x

(1)
A and cancel it

114



Chapter 9. Other applications of the deterministic approach

from the received signal in (9.21). Thus, we have

ỹR =
√

1 − αAx
(2)
A h1 + h2xB + zR (9.25)

As suggested in the deterministic model, ỹR is not decoded. Rather, a quantization is per-

formed. The relay uses an optimal vector quantizer of size 2nR
(2)
R and maps the quantization

index to a codeword x
(2)
R . Then the relay transmits (9.19), where

αR =
αA

2|h2|2 + 1
. (9.26)

Now nodes A and B first attempt to decode x
(2)
R . Since node A knows x

(1)
R it can cancel

it from the received signal, however node B is treating x
(1)
R as noise. The decoding of x

(2)
R

can be done with low error probability as long as

R
(2)
R ≤ min

(

log

(

1 +
|h1|2(1 − αR)

|h1|2αR + 1

)

, log
(
1 + |h3|2(1 − αR)

)
)

(9.27)

= min

(

log

( |h1|2 + 1

|h1|2αR + 1

)

, log
(
1 + |h3|2(1 − αR)

)
)

(9.28)

The second expression is obtained due to node A. By assuming that node A knows the

strategy of relay and the codebook it has used, it can reconstruct x
(1)
R perfectly, since it

contains only its own message. Using interference cancellation results in a interference

free channel. The first expression is obtained due to node B which observes part of the

signal from the relay, i.e. x
(1)
R , as additional noise. Then node B cancels x

(2)
R from its

received signal and attempts to decode x
(1)
R . This can be done with low error probability if

R
(1)
R ≤ log

(
1 + αR|h1|2

)
. (9.29)
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Now that nodes A and B have decoded x
(1)
R , they can create

ỹ
Q
R = βỹR + zQ = β

(√
1 − αAx

(2)
A h1 + h2xB + zR

)

+ zQ (9.30)

(9.22)
= β

(

h2

(

x
(2)
A + xB

)

+ zR

)

+ zQ (9.31)

where

β = (1 −D/σ2
ỹR

) (9.32)

and zQ is due to the quantization noise with variance

σ2
Q = D(1 −D/σ2

ỹR
) : (9.33)

Thus, the distortion D in our case has to fulfill

D = 2−R
(2)
R σ2

ỹR
= min

(
αR|h1|2 + 1

|h1|2 + 1
,

1

1 + |h3|2(1 − αR)

)
(
2|h2|2 + 1

)
(9.34)

Assuming that the nodes are able to cancel the own message from ỹ
Q
R , they can decode

each others codeword with low error probability if

RBA ≤ min



log



1 +
|h2|2

(

1 − αR|h1|2+1
|h1|2+1

)

1 + αR|h1|2+1
|h1|2+1

2|h2|2



 , log



1 +
|h2|2

(

1 − 1
1+|h3|2(1−αR)

)

1 + 2|h2|2
1+|h3|2(1−αR)









(9.35)
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and

R
(2)
AB ≤ min



log



1 +
|h2|2

(

1 − αR|h1|2+1
|h1|2+1

)

1 + αR|h1|2+1
|h1|2+1

2|h2|2



 , log



1 +
|h2|2

(

1 − 1
1+|h3|2(1−αR)

)

1 + 2|h2|2
1+|h3|2(1−αR)









(9.36)

Therefore the rate in (9.35) and

RAB

(9.24),(9.36)

≤ log

(

1 +
|h1|2 − |h2|2
1 + 2|h2|2

)

+ min{log



1 +
|h2|2

(

1 − αR|h1|2+1
|h1|2+1

)

1 + αR|h1|2+1
|h1|2+1

2|h2|2



 ,

, log



1 +
|h2|2

(

1 − 1
1+|h3|2(1−αR)

)

1 + 2|h2|2
1+|h3|2(1−αR)



} (9.37)

are achievable.

With some algebra, we can show that

min



log



1 +
|h2|2

(

1 − αR|h1|2+1
|h1|2+1

)

1 + αR|h1|2+1
|h1|2+1

2|h2|2



 , log



1 +
|h2|2

(

1 − 1
1+|h3|2(1−αR)

)

1 + 2|h2|2
1+|h3|2(1−αR)









≥ log
(
1 + |h2|2

)
− log (3) (9.38)

and

log

(

1 +
|h1|2 − |h2|2
1 + 2|h2|2

)

+

+ min



log



1 +
|h2|2

(

1 − αR|h1|2+1
|h1|2+1

)

1 + αR|h1|2+1
|h1|2+1

2|h2|2



 , log



1 +
|h2|2

(

1 − 1
1+|h3|2(1−αR)

)

1 + 2|h2|2
1+|h3|2(1−αR)









≥ log
(
1 + |h1|2

)
− max(2, 3). (9.39)

Thus, we are at most 3 bits away from the cut-set bound.
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9.2.4.3 Case |h1|2 < |h3|2

• Amplify-and-forward:|h2|2 < |h1|2

With αA = αB = 0, the transmit signals from node A and node B reduce to xA =

x
(2)
A and xB = x

(2)
B chosen from a random Gaussian codebook of size 2nRAB and

2nRBA , respectively. Thus, the received signal at the relay is given by

yR = h1xA + h2xB + zR (9.40)

Using a amplify and forward strategy, the transmit signal at the relay is thus given by

xR =
1

√

|h1|2 + |h2|2 + 1
yR. (9.41)

Using (9.2), the received signals at the nodes are given by

yA =
h3

√

|h1|2 + |h2|2 + 1
(h1xA + h2xB + zR) + zA (9.42)

yB =
h4

√

|h1|2 + |h2|2 + 1
(h1xA + h2xB + zR) + zB. (9.43)

Assuming that the nodes are able to decode their own messages successfully and

cancel it from the received signal. Therefore the nodes can decode each other signals

with low error probability as long as

RAB ≤ log

(

1 +
|h1|2|h4|2

|h4|2 + |h1|2 + |h2|2 + 1

)

(9.44)

RBA ≤ log

(

1 +
|h2|2|h3|2

|h3|2 + |h1|2 + |h2|2 + 1

)

. (9.45)
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With some algebra, we can show that

log

(

1 +
|h1|2|h4|2

|h4|2 + |h1|2 + |h2|2 + 1

)

≥ log
(
1 + |h1|2

)
− log(3) (9.46)

log

(

1 +
|h2|2|h3|2

|h3|2 + |h1|2 + |h2|2 + 1

)

≥ log
(
1 + |h2|2

)
− log(3) (9.47)

Thus, we are at most within log(3) bits away from the cut-set bound, which is strictly

better than we aimed for.

• |h2|2 > |h1|2:

The following derivations are very similar to the case |h1|2 ≥ |h3|2 with slight dif-

ferences. First of all, αA = 0 and αB and αR are now given by

αB = 1 − |h1|2
|h2|2

and αR =
αB|h2|2

|h3|2 (2|h1|2 + 1)
. (9.48)

While we had a min-operator in the case |h1|2 > |h3|2, here it can be shown that

|h1|2 > |h3|2/(αR|h3|2+1) is never fulfilled in this case. Thus, we have to consider only

|h1|2 ≤ |h3|2/(|h3|2αR+1) and the min-operator is obsolete. Therefore the nodes can

decode each other signals with low error probability as long as

RAB ≤ log



1 +
|h1|2

(

1 − 1
1+|h1|2(1−αR)

)

1 + 2|h1|2
1+|h1|2(1−αR)



 (9.49)

and

RBA ≤ log

(
1 + |h1|2 + |h2|2

1 + 2|h1|2
)

+RAB. (9.50)
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With some algebra, we can show that

log



1 +
|h1|2

(

1 − 1
1+|h1|2(1−αR)

)

1 + 2|h1|2
1+|h1|2(1−αR)



 ≥ log
(
1 + |h1|2

)
− log (3) (9.51)

and

log

(
1 + |h1|2 + |h2|2

1 + 2|h1|2
)

+RAB ≥ log
(
1 + |h2|2

)
− 3 (9.52)

Thus, we are at most 3 bits away from the cut-set bound.

9.2.5 Illustration

In Fig. 9.4(a) and 9.4(b), the gap between the rates RAB and RBA and the corresponding

cut-set upper bound is plotted for different channel gains, respectively.

The x-coordinate is representing the ratio of the channel gain from the relay to node A

(i.e. h3) to the reverse direction, i.e. from node A to the relay (i.e. h1), in dB scale. On the

y-coordinate we have the ratio of the channel and from the node B to the relay (i.e. h2) to

the reverse direction, i.e. from the relay to node B (i.e. h4 = h1), in dB scale. The ordinate

shows the gap in bits. From the simulations, we observe that the gap is in general less than

3 bits, which verifies our theoretical results. We also observe that for a certain region, the

gap is less than 1 bit. This region is especially large for RBA. In the plot, we normalized

the channel gain h1 to 20 dB higher than the noise variance. Interestingly, it turns out that

the gap is further reduced by shrinking the channel gain h1 (not shown here).
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Figure 9.4: Gap to the cut-set upper bound
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9.3 Deterministic binary-expansion model for Gaus-

sian sources

So far we have considered the binary-expansion deterministic model for channels. How-

ever, one can think of the dual of this model for sources. In this section we investigate this

for Gaussian sources. Then in the next section we demonstrate an application of this model

to the cooperative relaying with side information problem.

Assume u and v are two correlated Gaussian sources with mean zero and covariance

matrix

Cov [uv] =




1 ρ

ρ 1



 (9.53)

Then we can write

v = ρu+ z (9.54)

where z ∼ N (0, 1 − ρ2) is independent of u. Therefore we can relate u and v through a

Gaussian channel with

SNR =
ρ2

1 − ρ2
(9.55)

The deterministic linear finite field model for this Gaussian channel is as shown in Figure

9.5(a) with channel strength

n = ⌈1

2
log SNR⌉+ = ⌈1

2
log

ρ2

1 − ρ2
⌉+ (9.56)

Now we can create a deterministic binary-expansion model for these two Gaussian sources.

Assume u and v are positive numbers and consider their binary expansion. In a hight

correlation regime that |ρ| is very close to one, those bits of u and v that are above the

signal level ofw are more or less the same. Therefore we can build the deterministic binary-

expansion model for these two Gaussian sources u and v by representing each source as a
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A B n = ⌈ 1
2 log SNR⌉+

(a) Channel model

VU

b1

b2

bn

d1

d2

b1

b2

bn

c1

c2

...

...

...

...

n = ⌈ 1
2 log ρ2

1−ρ2 ⌉+

(b) Source model

Figure 9.5: The deterministic linear finite filed model for point-to-point channel is

shown in (a). The deterministic binary-expansion model for two sources is shown

in (b)

sequence of bits, denoted by U and V . Then the correlation between the sources determines

the number of first MSB’s that are the same between them. This is pictorially shown in

Figure 9.5(b).

Similar to the squared error distortion measure, we define the following measure for

the distortion between two deterministic sources U and V ,

d(U, V ) =

q
∑

i=1

(U(i) − V (i))22−2(i−1) (9.57)

where U(i) and V (i) are respectively the i-th bit in U and V respectively. To verify that

it is a proper distance measure we just need to show that for any three binary-expansion

sources U , V and W

d(U, V ) + d(V,W ) ≥ d(U,W ) (9.58)

To show this it is sufficient to note that at each level we have

(U(i) − V (i))2 + (V (i) −W (i))2 ≥ (U(i) −W (i))2 (9.59)

Clearly this model can be extended to model M sources. In this case the correlation
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between source i and j is modeled with nij that represents the number of matching MSB’s

between them.

9.4 Cooperative relaying with side information

In this section we consider transmission of a Gaussian source over a Gaussian relay chan-

nel, where the relay terminal has access to correlated side information. In [53] authors stud-

ied this problem and proposed several cooperative joint source-channel coding strategies.

However, still the best cooperative source channel coding strategy is not known. Here we

use the linear finite field deterministic channel model together with the binary-expansion

source model to make progress in this problem. In particular we show that a simple scheme

is uniformly near optimal for all range of channel gains and correlation factors.

The system model for this problem is shown in figure 9.6(a). We assume that two zero-

mean jointly Gaussian sources s1 and s2 generate the i.i.d. sequence {s1,k, s2,k}∞k=1. The

sequences s1,k and s2,k are available at the source and relay encoders, respectively. The

covariance matrix of the sources is

Cov [s1s2] =




1 ρ

ρ 1



 (9.60)

The destination is interested in estimating s1 and the problem is to find the minimum pos-

sible average distortion and the scheme that achieves it. Here we use our deterministic

channel and source models to approximate the best possible distortion within a factor of 6

and also find a simple near optimal cooperative strategy.
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S
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(a) Gaussian model
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d1

d2

...

...

nSD

n

nSR

nRD

S1

(b) Deterministic model

Figure 9.6: The Gaussian model and the binary expansion model for cooperative

relaying with side information are respectively shown in (a) and (b).
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9.4.1 Analysis of the deterministic problem

The linear finite field deterministic channel model together with the binary expansion

source model for this problem is shown in Figure 9.6(a). To minimize the distortion, we

should find a scheme that provides the maximum possible number of MSB’s of S1 to the

destination. From the cut-set upper bound we know that the maximum number of MSB’s

of S1 that the destination can recover is upper bounded by

Cwith side information = min (n+ max(nSD, nSR),max(nSD, nRD))) (9.61)

Now there is a simple strategy to achieve this upper bound:

• Relay uses its correlated observation to send rR number of bits at its top signal levels

to the destination, where rR is

rR = min (n + max(nSD, nSR),max(nSD, nRD))) − min (max(nSD, nSR),max(nSD, nRD)))

(9.62)

• Once we remove the relay’s rR signal levels, the effective gain from the relay to

the destination is nRD − rR. Now we know that the capacity of this effective relay

channel is equal to the cut-set upper bound and is achieved by a simple decode-

forward protocol. Therefore the source can use the relay to send rS number of bits to

the destination, where rS is

rS = min (max(nSD, nSR),max(nSD, nRD − rR))) (9.63)

Now the total number of MSB’s of S1 that is sent to the destination is equal to rS + rR.

Now we show that rS + rR is equal to the original cut-set upper bound shown in equation

(9.61).
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Table 9.1: Achievable rate of the proposed scheme for the cooperative relaying

with side information problem in the deterministic case.

Cases rR rS rS + rR

nRD ≤ nSD 0 nSD nSD

nSR ≤ nSD ≤ nRD min(n, nRD − nSD) nSD min(n+ nSD, nRD)
nSD ≤ nRD ≤ nSR 0 nRD nRD

nSD ≤ nSR ≤ nRD min(nRD − nSR) nSR nSR + min(nRD − nSR)

All possible cases are summarized in Table 9.1. Since rS + rR in the last column of

Table 9.1 is always equal to Cwith side information, therefore in the deterministic case the cut-

set upper bound is achievable. Furthermore our deterministic scheme suggests a natural

scheme for the Gaussian problem. In the next section we show that, quite interestingly, by

using this scheme the destination will be able to estimate S1 within a factor of six of the

best possible distortion, uniformly for all channel gains and correlation values.

9.4.2 Approximating the Gaussian problem

The model in the Gaussian case is shown in Figure 9.6(b). As usual we assume that the

noise power of each link, as well as the transmit power of each node is normalized to one.

We further consider the real Gaussian model. Similar to previous section, we can still

use the cut-set bound to derive a lower bound on the minimum achievable distortion for

estimating s1 at the destination. As shown in [53], this is given by

Dmin ≥ min
0≤ξ≤1

max
(
(1 − ρ2)(1 + (1 − ξ2)(|h1|2 + |h2|2))−1, (1 + |h1|2 + |h3|2 + 2ξ|h1||h3|)−1

)

(9.64)

where ξ is the correlation between the source and the relay codewords. We can further

lower bound this by

Dmin ≥ D = max
(
(1 − ρ2)(1 + |h1|2 + |h2|2)−1, (1 + (|h1| + |h3|)2)−1

)
(9.65)
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Now the optimal scheme that we found in previous section for the deterministic problem,

naturally suggests us a protocol for the Gaussian case. The protocol is described as the

following:

• The relay uses a fraction λ for transmitting a quantized version of s2 to the destination

and the remaining to perform decode-forward.

• The source uses the relay (with the remaining 1− λ fraction of its power) to provide

further information to the destination.

• The destination first decodes the quantized s2, treating the decode-forward codeword

as noise. Then it combines the side information received from the relay and the

information received from the decode-forward codeword to obtain a reproduction of

the source.

A similar scheme has also been studied in [54], called Hybrid Joint Source-Channel

Decode-and-Forward. Here we will show that in fact with this protocol we can achieve a

distortion that is within a factor of 6 of the cut-set lower bound (9.65) for all channel gains

and correlation values.

Pictorially this scheme converts the system to the one shown in Figure 9.7(a). As shown

in this figure, the relay uses a fraction of this figure to provide information about s2 and

the remaining to assist the source. Since we know that a decode-forward protocol achieves

within 0.5 bit of the cut-set upper bound of the relay channel, therefore by coding we can

convert the system to the one shown in Figure 9.7(b). Here there are two noiseless links

with rate R1 and R2 are available from the source and the relay to the destination. The

values of R1 and R2 are

R1 = C relay(h1, h2,
√

1 − λh3) − 0.5

= min

(
1

2
log
(
1 + |h1|2 + |h2|2

)
,
1

2
log
(

1 + (|h1| +
√

1 − λ|h3|)2
))

− 0.5 (9.66)

R2 =
1

2
log

(

1 +
λ|h3|2

1 + (1 − λ)|h3|2 + |h1|2
)

(9.67)
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Now from the intuition obtained from the deterministic case we can predict a near

optimal value of λ as the following:

λ∗ =







0, if |h3| 6= max(|h1|, |h2|, |h3|);
1 − |h2|2

|h3|2 , otherwise.
(9.68)

Now the problem is similar to the one helper problem studied in [55]. As shown in [55],

the achievable squared error distortion of estimating s1 at the destination with the help of

the relay is

Dh(R1, R2) = 2−2R1(1 − ρ2 + ρ22−2R2) (9.69)

Now we analyze the performance of our strategy. Here is the main result

Theorem 9.4.1. Consider the cooperative source-channel relaying strategy that is de-

scribed above, with power allocation that is described in equation (9.68). With this scheme

the destination will be able to estimate s1 with a distortion that is uniformly within a factor

of 6 of the minimum possible distortion, for all channel gains and correlation values.

Proof. First note that if ρ2 ≤ 1
2

then

D = max
(
(1 − ρ2)(1 + |h1|2 + |h2|2)−1, (1 + (|h1| + |h3|)2)−1

)
(9.70)

≥ 1

2
max

(
(1 + |h1|2 + |h2|2)−1, (1 + (|h1| + |h3|)2)−1

)
(9.71)

Therefore by setting λ = 0 we get

Dh(R1, R2) = 2 × max
(
(1 + |h1|2 + |h2|2)−1, (1 + (|h1| + |h3|)2)−1

)
(9.72)

≤ 4D (9.73)

This means that if the correlation between s1 and s2 is small enough (ρ2 ≤ 0.5), by ignoring
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Figure 9.7: Pictorial representation of the protocol for the Gaussian cooperative

relaying with side information is shown in (a). By coding we can make the channels

noiseless and convert the system to the one shown in (b).

s2 and using the relay only for decode-forward protocol we don’t loose more than a factor

of 4. Now assume ρ2 ≥ 0.5 and consider the following cases:

1. If |h3| 6= max(|h1|, |h2|, |h3|). In this case

Dh(R1, R2) = 2 × max
(
(1 + |h1|2 + |h2|2)−1, (1 + (|h1| + |h3|)2)−1

)
(9.74)

and

D = max
(
(1 − ρ2)(1 + |h1|2 + |h2|2)−1, (1 + (|h1| + |h3|)2)−1

)
(9.75)

We have two possibilities:

• If |h3| ≤ |h2|. In this case we have

(1 + (|h1| + |h3|)2)−1 ≥ (1 + (|h1| + |h2|)2)−1 (9.76)

≥ 1

2
(1 + |h1|2 + |h2|2)−1 (9.77)

≥ (1 − ρ2)(1 + |h1|2 + |h2|2)−1 (9.78)
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where the last step is true since ρ2 ≥ 0.5. Therefore in this case

D = (1 + (|h1| + |h3|)2)−1 (9.79)

Also since 2(1 + (|h1| + |h3|)2)−1 ≥ (1 + |h1|2 + |h2|2)−1,

Dh(R1, R2) ≤ 4(1 + (|h1| + |h3|)2)−1 ≤ 4D (9.80)

Therefore again our scheme is within a factor of 4 of the best possible perfor-

mance.

• If |h3| ≤ |h1|. In this case we have

Dh(R1, R2) = 4(1 + |h1|2 + |h2|2)−1 (9.81)

And

D = max
(
(1 − ρ2)(1 + |h1|2 + |h2|2)−1, (1 + (|h1| + |h3|)2)−1

)
(9.82)

≥ (1 + (|h1| + |h3|)2)−1 (9.83)

≥ (1 + 4|h1|2)−1 (9.84)

Now if the source uses only the direct link we have

R1 =
1

2
log(1 + |h1|2) (9.85)

Therefore

Dh(R1, R2) = (1 + |h1|2)−1 ≤ 4(1 + 4|h1|2)−1 ≤ D (9.86)
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Therefore again our scheme is within a factor of 4 of the best possible perfor-

mance.

2. If |h3| = max(|h1|, |h2|, |h3|). Then λ = 1 − |h2|2
|h3|2 and

R1 =
1

2
log
(
1 + |h1|2 + |h2|2

)
− 0.5 (9.87)

R2 =
1

2
log

(

1 +
|h3|2 − |h2|2

1 + |h1|2 + |h2|2
)

=
1

2
log

(
1 + |h1|2 + |h3|2
1 + |h1|2 + |h2|2

)

(9.88)

Therefore

Dh(R1, R2) = 2 × (1 + |h1|2 + |h2|2)−1

(

1 − ρ2 + ρ2 1 + |h1|2 + |h2|2
1 + |h1|2 + |h3|2

)

(9.89)

= 2 × (1 + |h1|2 + |h2|2)−1(1 − ρ2)

(

1 +
ρ2

1 − ρ2

1 + |h1|2 + |h2|2
1 + |h1|2 + |h3|2

)

(9.90)

Remember that

D = max
(
(1 − ρ2)(1 + |h1|2 + |h2|2)−1, (1 + (|h1| + |h3|)2)−1

)
(9.91)

Now if

(1 − ρ2)(1 + |h1|2 + |h2|2)−1 ≥ (1 + (|h1| + |h3|)2)−1 (9.92)

Then

D = (1 − ρ2)(1 + |h1|2 + |h2|2)−1 (9.93)
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Also

1 +
ρ2

1 − ρ2

1 + |h1|2 + |h2|2
1 + |h1|2 + |h3|2

≤ 1 +
2ρ2

1 − ρ2

1 + |h1|2 + |h2|2
1 + (|h1| + |h3|)2

(9.94)

≤ 1 +
2

1 − ρ2

1 + |h1|2 + |h2|2
1 + (|h1| + |h3|)2

(9.95)

≤ 3 (9.96)

Therefore

Dh(R1, R2) ≤ 6D (9.97)

Therefore in this case our scheme is within a factor of 6 of the best possible performance.

In the other case, if

(1 − ρ2)(1 + |h1|2 + |h2|2)−1 ≤ (1 + (|h1| + |h3|)2)−1 (9.98)

Then

D = (1 + (|h1| + |h3|)2)−1 (9.99)

And

Dh(R1, R2) = 2 × (1 + |h1|2 + |h2|2)−1(1 − ρ2)

(

1 +
ρ2

1 − ρ2

1 + |h1|2 + |h2|2
1 + |h1|2 + |h3|2

)

(9.100)

≤ 2 × (1 + |h1|2 + |h2|2)−1(1 − ρ2)

(
ρ2

1 − ρ2

1 + |h1|2 + |h2|2
1 + |h1|2 + |h3|2

)

+ 2D (9.101)

=
2ρ2

1 + |h1|2 + |h3|2
+ 2D (9.102)

≤ 2

1 + |h1|2 + |h3|2
+ 2D (9.103)

≤ 4

1 + (|h1| + |h3|)2
+ 2D (9.104)

= 6D (9.105)

Therefore again in this case our scheme is within a factor of 6 of the best possible perfor-

mance.
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Conclusions

In this thesis we proposed a new deterministic approach to make progress in problems in

wireless network information theory. The main idea was to develop a simpler deterministic

channel model that allows us to focus on the interactions between users signals rather than

the background noise of the systems. So far, our main focus has been on its application

to unicast and multicast problems, and in particular we have been able to find a uniformly

approximate characterization of the unicast/multicast capacity of Gaussian relay networks.

This is the first constant gap approximation of the capacity of Gaussian relay networks.

As we demonstrated in Chapter 9, the proposed deterministic approach can also be

applied to other problems in wireless network information theory. In particular we demon-

strated its application to two other problems, one was a multi-session communication prob-

lem which was an extension of the relay channel. The other problem involved a combina-

tion of source and channel coding. Hence, we also developed a dual of our binary expansion

channel model for Gaussian sources and applied it to make progress in the problem.

As discussed so far, our deterministic model has the potential to be both an effective

tool in engineering as well as a powerful tool in information theory. On the one hand,

the simplicity of this model allows engineers to obtain intuitive insights into complicated
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wireless networks. On the other hand, the inherent connections between this model and

the Gaussian model enables information theorists to demonstrate new concrete theoretical

results in Gaussian networks. I believe, these will have an impact on the design of future

wireless communication systems.
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Appendix A

Proofs

A.1 Proof of Theorem 3.2.1

If |hSR| < |hSD| then the relay is ignored and a communication rate equal to R = log(1 +

|hSD|2) is achievable. If |hSR| > |hSD| the problem becomes more interesting. In this

case we can think of a decode-forward scheme as described in [7]. Then by using a block-

Markov encoding scheme the following communication rate is achievable:

R = min
(
log
(
1 + |hSR|2

)
, log

(
1 + |hSD|2 + |hRD|2

))
(A.1)

Therefore overall the following rate is always achievable:

RDF = max{log(1 + |hSD|2),min
(
log
(
1 + |hSR|2

)
, log

(
1 + |hSD|2 + |hRD|2

))
}

Now we compare this achievable rate with the cut-set upper bound on the capacity of the

Gaussian relay network,

C ≤ C = max
|ρ|≤1

min{log
(
1 + (1 − ρ2)(|hSD|2 + |hSR|2)

)
, log

(
1 + |hSD|2 + |hRD|2 + 2ρ|hSD||hRD|

)
}

(A.2)
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Note that if |hSR| > |hSD| then

RDF = min
(
log
(
1 + |hSR|2

)
, log

(
1 + |hSD|2 + |hRD|2

))
(A.3)

and for all |ρ| ≤ 1 we have

log
(
1 + (1 − ρ2)(|hSD|2 + |hSR|2)

)
≤ log

(
1 + |hSR|2

)
+ 1 (A.4)

log
(
1 + |hSD|2 + |hRD|2 + 2ρ|hSD||hRD|

)
≤ log

(
1 + |hSD|2 + |hRD|2

)
+ 1 (A.5)

Hence

RDF ≥ C relay − 1 (A.6)

Also if |hSR| > |hSD|,
RDF = log(1 + |hSD|2) (A.7)

and

log
(
1 + (1 − ρ2)(|hSD|2 + |hSR|2)

)
≤ log

(
1 + |hSD|2

)
+ 1 (A.8)

therefore again,

RDF ≥ C relay − 1 (A.9)
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A.2 Proof of Theorem 3.3.1

The cut-set upper bound on the capacity of diamond network is:

Cdiamond ≤ C ≤ min{log
(
1 + |hSA1|2 + |hSA2|2

)

, log
(
1 + (|hA1D| + |hA2D|)2

)

, log(1 + |hSA1|2) + log(1 + |hA2D|2)

, log(1 + |hSA2|2) + log(1 + |hA1D|2)} (A.10)

Without loss of generality assume

|hSA1| ≥ |hSA2| (A.11)

Then we have the following cases:

1. |hSA1| ≤ |hA1D|:
In this case

RPDF ≥ log(1 + |hSA1|2) ≥ C − 1 (A.12)

2. |hSA1| > |hA1D|:
Let α =

|hA1D|2
|hSA1

|2 then

RPDF = log(1 + |hA1D|2) + min

{

log

(

1 +
(1 − α) |hSA2

|2
α|hSA2

|2 + 1

)

, log

(

1 +
|hA2D|2

1 + |hA1D|2
)}

= min

{

log

(
(1 + |hSA2

|2)(1 + |hA1D|2)
α|hSA2

|2 + 1

)

, log
(
1 + |hA1D|2 + |hA2D|2

)
}

(A.13)

Now if

log

(
(1 + |hSA2|2)(1 + |hA1D|2)

α|hSA2|2 + 1

)

≥ log
(
1 + |hA1D|2 + |hA2D|2

)
(A.14)
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we have

RPDF = log
(
1 + |hA1D|2 + |hA2D|2

)
(A.15)

≥ log
(
1 + (|hA1D| + |hA2D|)2)− 1 (A.16)

≥ C − 1 (A.17)

therefore the achievable rate of partial decode-forward scheme is within one bit of

the cut-set bound. So we just need to look at the case that

RPDF = log

(
(1 + |hSA2 |2)(1 + |hA1D|2)

α|hSA2|2 + 1

)

(A.18)

In this case consider two possibilities:

• α|hSA2|2 ≤ 1:

In this case we have

RPDF = log

(
(1 + |hSA2|2)(1 + |hA1D|2)

α|hSA2|2 + 1

)

(A.19)

≥ log

(
(1 + |hSA2|2)(1 + |hA1D|2)

2

)

(A.20)

= log(1 + |hSA2|2) + log(1 + |hA1D|2) − 1 (A.21)

≥ C − 1 (A.22)

• α|hSA2|2 ≥ 1:

In this case we are going to show that

RPDF = log

(
(1 + |hSA2 |2)(1 + |hA1D|2)

α|hSA2|2 + 1

)

(A.23)

≥ log
(
1 + |hSA1|2 + |hSA2|2

)
− 1 (A.24)

≥ C − 1 (A.25)
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To show this we just need to prove

(1 + |hSA2|2)(1 + |hA1D|2)
α|hSA2|2 + 1

≥ 1

2

(
1 + |hSA1|2 + |hSA2|2

)
(A.26)

By replacing α =
|hA1D|2
|hSA1

|2 , we get

2|hSA1
|2(1+|hSA2

|2)(1+|hA1D|2) ≥
(
1 + |hSA1

|2 + |hSA2
|2
) (

|hSA1
|2 + |hSA2

|2|hA1D|2
)

(A.27)

But note that

2|hSA1
|2(1 + |hSA2

|2)(1 + |hA1D|2) −
(
1 + |hSA1

|2 + |hSA2
|2
) (

|hSA1
|2 + |hSA2

|2|hA1D|2
)

= |hSA1
|2 + |hSA1

|2|hA1D|2 + (|hSA1
|2|hSA2

|2 − |hSA2
|4|hA1D|2)+

+ (|hSA1
|2|hA1D|2 − |hSA2

|2|hA1D|2) + (|hSA1
|2|hSA2

|2|hA1D|2 − |hSA1
|4) (A.28)

= |hSA1
|2 + |hSA1

|2|hA1D|2 + |hSA2
|2(|hSA1

|2 − |hSA2
|2|hA1D|2)+

+ |hA1D|2(|hSA1
|2 − |hSA2

|2) + |hSA1
|2(|hSA2

|2|hA1D|2 − |hSA1
|2) (A.29)

= |hSA1
|2 + |hSA1

|2|hA1D|2 + (|hSA1
|2 − |hSA2

|2)(|hSA2
|2|hA1D|2 − |hSA1

|2 + |hA1D|2)
(A.30)

≥ 0 (A.31)

Where the last step is true since

|hSA1|2 ≥ |hSA2|2 (A.32)

|hSA2 |2|hA1D|2 ≥ |hSA2|2 (since α|hSA2|2 ≥ 1) (A.33)

A.3 Proof of Lemma 5.4.2

First note that any cut in the unfolded graph, Ωunf, partitions the nodes at each stage 1 ≤
i ≤ K to Ui (on the left of the cut) and Vi (on the right of the cut). If at one stage S[i] ∈ Vi

or D[i] ∈ Ui then the cut passes through one of the infinite capacity edges (capacity Kq)
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and hence Lemma 5.4.2 is obviously proved. Therefore without loss of generality assume

that S[i] ∈ Ui and D[i] ∈ Vi for all 1 ≤ i ≤ K. Now since for each i ∈ V , {xi[t]}1≤t≤K

are i.i.d distributed we can write1

H(YΩc
unf
|XΩc

unf
) =

K−1∑

i=1

H(YVi+1
|XVi

) (A.34)

For simplification we define

ψ(V1,V2) , H(YV2|XV1) (A.35)

Now we show the following lemmas

Lemma A.3.1. The Ṽi’s defined in Lemma A.6.1 satisfy,

Ṽl ⊆ Ṽl−1 ⊆ · · · ⊆ Ṽ1 (A.36)

Proof. Proof is clear.

Lemma A.3.2. Let V1, . . . ,Vl be l non identical subsets of V − {S} such that D ∈ Vi for

all 1 ≤ i ≤ l. Also assume that Ṽ1, . . . , Ṽl are as defined in lemma A.3.5. Then for any

v ∈ V we have

|{i|v ∈ Vi}| = |{j|v ∈ Ṽj}| (A.37)

Proof. This lemma just states that for each v ∈ V the number of times that v appears in

Vi’s is equal to the number of times that v appears in Ṽi’s. To prove it assume that v appears

in Vi’s is n. Then clearly

v ∈ Ṽj, j = 1, . . . , n (A.38)

1As in Section 5.3.2, under the product distribution the mutual information expression of the cut-set breaks

into a summation.
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Now for any j > n any element that appears in each Ṽj must appear in at least j of Vi’s and

since v only appears in n of Vi’s therefore,

v /∈ Ṽj, j > n (A.39)

therefore

|{i|v ∈ Vi}| = |{j|v ∈ Ṽj}| = n (A.40)

Lemma A.3.3. Let V1, . . . ,Vl be l non identical subsets of V − {S} such that D ∈ Vi for

all 1 ≤ i ≤ l. Also assume a product distribution on Xi, i ∈ V . Then

H(XV1) + · · · +H(XVl
) = H(XṼ1

) + · · · +H(XṼl
) (A.41)

where Ṽi’s are defined in Lemma A.3.5 and H(.) is just the binary entropy function.

Proof. For any v ∈ V define

nv = |{i|v ∈ Vi}| (A.42)

and

n̂v = |{j|v ∈ Ṽj}| (A.43)

Now since Xi, i ∈ V are independent of each other we have

H(XV1) + · · · +H(XVl
) =

∑

v∈V

nvH(Xv) (A.44)

and

H(XṼ1
) + · · · +H(XṼk

) =
∑

v∈V

n̂vH(Xv) (A.45)

By lemma A.3.2 we know that nv = n̂v for all v ∈ V hence the lemma is proved.
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The following Lemma is just a straight forward generalization of submodularity to more

than two sets (see also [56], Theorem 5 where this result is applied to the entropy function

which is submodular).

Lemma A.3.4. Let V1, . . . , Vk be a collection of sets. Assume that ξ(·) is a submodular

function. Then,

ξ(V1) + · · · + ξ(Vk) ≥ ξ(Ṽ1) + · · · + ξ(Ṽk) (A.46)

where Ṽi’s are defined in Lemma A.3.5.

Lemma A.3.5. Let V1, . . . ,Vl be l non identical subsets of V − {S} such that D ∈ Vi for

all 1 ≤ i ≤ l. Also assume a product distribution on xi, i ∈ V . Then

ψ(V1,V2) + · · · + ψ(Vl−1,Vl) + ψ(Vl,V1) ≥
l∑

i=1

ψ(Ṽi, Ṽi) (A.47)

where for k = 1, . . . , l,

Ṽk =
⋃

{i1,...,ik}⊆{1,...,l}
(Vi1 ∩ · · · ∩ Vik) (A.48)

or in another words each Ṽj is the union of
(

l
j

)
sets such that each set is intersect of j of

Vi’s.

Proof. First note that

ψ(V1,V2) + · · · + ψ(Vl−1,Vl) + ψ(Vl,V1) =

H(YV2|XV1) + · · · +H(YVl
|XVl−1

) +H(YV1|XVl
) =

H(YV2 , XV1) + · · · +H(YVl
, XVl−1

) +H(YV1 , XVl
) −

l∑

i=1

H(XVi
)
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and

l∑

i=1

ψ(Ṽi, Ṽi) =
l∑

i=1

H(YṼi
|XṼi

) (A.49)

=
l∑

i=1

H(YṼi
, XṼi

) −
l∑

i=1

H(XṼi
) (A.50)

Now define the set

Wi = {YVi
, XVi−1

}, i = 1, . . . , l (A.51)

where V0 = Vl. Since by lemma A.3.2 we have

l∑

i=1

H(XVi
) =

l∑

i=1

H(XṼi
) (A.52)

we just need to prove that

l∑

i=1

H(Wi) ≥
l∑

i=1

H(YṼi
, XṼi

) (A.53)

Now by since entropy is a submodular function by Lemma A.3.4 (k-way submodularity)

we have,
l∑

i=1

H(Wi) ≥
l∑

i=1

H(W̃i) (A.54)

where

W̃r =
⋃

{i1,...,ir}⊆{1,...,l}
(Wi1 ∩ · · · ∩Wir), r = 1, . . . , l (A.55)

Now for any r (1 ≤ r ≤ l) we have
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W̃r =
⋃

{i1,...,ir}⊆{1,...,l}
(Wi1 ∩ · · · ∩Wir)

=
⋃

{i1,...,ir}⊆{1,...,l}
({YVi1

, XVi1−1
} ∩ · · · ∩ {YVir

XVir−1
})

=
⋃

{i1,...,ir}⊆{1,...,l}
({YVi1

∩···∩Vir
, XV(i1−1)∩···∩XV(ir−1)

})

=
{

YS

{i1,...,ir}
(Vi1

∩···∩Vir ), XS

{i1,...,ir}
(V(i1−1)∩···∩V(ir−1))

}

= {YṼr
, XṼr

}

Therefore by equation (A.54) we have,

l∑

i=1

H(Wi) ≥
l∑

i=1

H(W̃i) (A.56)

=
l∑

i=1

H(YṼi
, XṼi

) (A.57)

Hence the Lemma is proved.

Now note that

H(YΩc
unf
|XΩc

unf
) =

K−1∑

i=1

H(YVi+1
|XVi

) =
K−1∑

i=1

ψ(Vi,Vi+1) (A.58)

Consider the sequence of Vi’s. Note that there are total of L = 2|V|−2 possible subsets

of V that contain D but not S. Assume that Vs is the first set that is revisited. Assume that

it is revisited at step Vs+l. Therefore by Lemma A.3.5 we have

l−1∑

i=1

ψ(Vi,Vi+1) ≥
l∑

i=1

ψ(Ṽi, Ṽi) (A.59)

152



Chapter A. Proofs

where Ṽi’s are described in Lemma A.3.5. Now note that any of those Ṽi contains D but

not S and hence it describes a cut in the original graph, therefore

ψ(Ṽi, Ṽi) ≥ min
Ω∈ΛD

H(YΩc|XΩc) (A.60)

Hence
l−1∑

i=1

ψ(Vi,Vi+1) ≥ l min
Ω∈ΛD

H(YΩc|XΩc) (A.61)

which means that the value of that loop is at least length of the loop times the min-cut of

the original graph. Now since in any L − 1 time frame there is at least one loop therefore

except at most a path of length L − 1 everything can be replaced with the value of the

min-cut in
∑K−1

i=1 ψ(Vi,Vi+1). Therefore,

K−1∑

i=1

ψ(Vi,Vi+1) ≥ (K − L+ 1) min
Ω∈ΛD

H(YΩc |XΩc) (A.62)

A.4 Proof of Lemma 6.2.4

Assume message w′ is transmitted. Consider a relay, R, at the first layer. Then, the total

number of quantized outputs at R would be

2H(
ˆYR|XS) = 2TI(YR;ŶR|XS) (A.63)

Since we are using an optimal Gaussian vector quantizer at the noise level (i.e. with distor-

tion 1), we can write

ŶR = αYR +N, (A.64)
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where N ∼ CN (0, σ2
N) is a complex Gaussian noise independent of YR and

α =
σ2

Y − 1

σ2
Y

, σ2
N = (1 − α2)σ2

Y − 1 (A.65)

Hence

I(YR; ŶR|XS) = log

(

1 +
α2

σ2
N

)

(A.66)

= log(1 + α) ≤ 1 (A.67)

Hence the list size ofRwould be smaller than 2T . Now the list of typical transmit sequences

can be viewed as a tree such that at each node, due to the noise, each path will be branched

to at most 2T other typical possibilities. Therefore, the total number of typical transmit

sequences would be smaller than the product of the expansion coefficient (i.e. 2T ) over all

nodes in the graph. Or, more precisely

log (|XV(w′)|) = log (|YV(w′)|) (A.68)

= H(ŶV |w′) =

lD∑

l=1

H(Ŷγl
|Ŷγl−1

) (A.69)

=

lD∑

l=1

H(Ŷγl
|Xγl−1

) (A.70)

≤
lD∑

l=1

T |γl| = T |V| (A.71)

Where γl is the set of nodes at the l-th layer of the network. Hence,

|XV(w′)| ≤ 2T |V| (A.72)

and the proof is complete.
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A.5 Proof of Lemma 6.2.6

We know that the capacity of a r × t MIMO channel H , with water filling is

Cwf =
n∑

i=1

log(1 + Q̃iiλi) (A.73)

where n = min(r, t), and λi’s are the singular values of H and Q̃ii is given by water filling

solution satisfying
n∑

i=1

Q̃ii = nP (A.74)

With equal power allocation

Cep =
n∑

i=1

log(1 + Pλi) (A.75)

Now note that

Cwf − Cep = log

(∏n
i=1(1 + Q̃iiλi)
∏n

i=1(1 + Pλi)

)

(A.76)

≤ log

( ∏n
i=1(1 + Q̃iiλi)

∏n
i=1 max(1, Pλi)

)

(A.77)

= log

(
n∏

i=1

1 + Q̃iiλi

max(1, Pλi)

)

(A.78)

= log

(
n∏

i=1

(

1

max(1, Pλi)
+

Q̃iiλi

max(1, Pλi)

))

(A.79)

≤ log

(
n∏

i=1

(

1 +
Q̃iiλi

Pλi

))

(A.80)

= log

(
n∏

i=1

(

1 +
Q̃ii

P

))

(A.81)
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Now note that
n∑

i=1

(1 +
Q̃ii

P
) = 2n (A.82)

and therefore by arithmetic mean-geometric mean inequality we have

n∏

i=1

(

1 +
Q̃ii

P

)

≤
(∑n

i=1(1 + Q̃ii

P
)

n

)n

= 2n (A.83)

and hence

Cep − Cwf ≤ n (A.84)

A.6 Proof of Lemma 6.3.2

First, we prove a lemma which is a slight generalization of Lemma A.3.5.

Lemma A.6.1. Let V1, . . . ,Vl be l non identical subsets of V−{S} such thatD ∈ Vi for all

1 ≤ i ≤ l. Also assume a product distribution on continuous random variables Xi, i ∈ V .

Then

h(YV2|XV1) + · · · + h(YVl
|XVl−1

) + h(YV1|XVl
) ≥

l∑

i=1

H(YṼi
|XṼi

) (A.85)

where for k = 1, . . . , l,

Ṽk =
⋃

{i1,...,ik}⊆{1,...,l}
(Vi1 ∩ · · · ∩ Vik) (A.86)

or in another words each Ṽj is the union of
(

l
j

)
sets such that each set is intersect of j of

Vi’s.

Proof. First note that
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h(YV2|XV1) + · · · + h(YVl
|XVl−1

) + h(YV1|XVl
) =

h(YV2 , XV1) + · · · + h(YVl
, XVl−1

) + h(YV1 , XVl
) −

l∑

i=1

h(XVi
)

and

l∑

i=1

h(YṼi
|XṼi

) =
l∑

i=1

h(YṼi
, XṼi

) −
l∑

i=1

h(XṼi
) (A.87)

Now define the set

Wi = {YVi
, XVi−1

}, i = 1, . . . , l (A.88)

where V0 = Vl.

It is easy to show that,
l∑

i=1

h(XVi
) =

l∑

i=1

h(XṼi
) (A.89)

Therefore, we just need to prove that

l∑

i=1

h(Wi) ≥
l∑

i=1

h(YṼi
, XṼi

) (A.90)

Now, since the differential entropy function is a submodular function we have,

l∑

i=1

h(Wi) ≥
l∑

i=1

h(W̃i) (A.91)
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where

W̃r =
⋃

{i1,...,ir}⊆{1,...,l}
(Wi1 ∩ · · · ∩Wir), r = 1, . . . , l (A.92)

Now for any r (1 ≤ r ≤ l) we have

W̃r =
⋃

{i1,...,ir}⊆{1,...,l}
(Wi1 ∩ · · · ∩Wir)

=
⋃

{i1,...,ir}⊆{1,...,l}
({YVi1

, XVi1−1
} ∩ · · · ∩ {YVir

XVir−1
})

=
⋃

{i1,...,ir}⊆{1,...,l}
({YVi1

∩···∩Vir
, XV(i1−1)∩···∩XV(ir−1)

})

=
{

YS

{i1,...,ir}
(Vi1

∩···∩Vir ), XS

{i1,...,ir}
(V(i1−1)∩···∩V(ir−1))

}

= {YṼr
, XṼr

}

Therefore by equation (A.91) we have,

l∑

i=1

h(Wi) ≥
l∑

i=1

h(W̃i) (A.93)

=
l∑

i=1

h(YṼi
, XṼi

) (A.94)

Hence the Lemma is proved.

Now we are ready to prove Lemma 6.3.2. First note that any cut in the unfolded graph,

Ωunf, partitions the nodes at each stage 1 ≤ i ≤ K to Ui (on the left of the cut) and Vi (on

the right of the cut). If at one stage S[i] ∈ Vi or D[i] ∈ Ui then the cut passes through

one of the infinite capacity edges (capacity Kq) and hence the lemma is obviously proved.

Therefore without loss of generality assume that S[i] ∈ Ui andD[i] ∈ Vi for all 1 ≤ i ≤ K.
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Now since for each i ∈ V , {xi[t]}1≤t≤K are i.i.d distributed we can write

I(YΩc
unf

;XΩunf
|XΩc

unf
) =

K−1∑

i=1

I(YVi+1
;XUi

|XVi
) (A.95)

Consider the sequence of Vi’s. Note that there are total of L = 2|V|−2 possible subsets

of V that contain D but not S. Assume that Vs is the first set that is revisited. Assume that

it is revisited at step Vs+l. We have,

s+l−1∑

i=s

I(YVi+1
;XUi

|XVi
) =

s+l−1∑

i=s

h(YVi+1
|XVi

) − h(YVi+1
|XVi

, XUi
) (A.96)

Now by Lemma A.6.1 we have

s+l−1∑

i=s

h(YVi+1
|XVi

) ≥
l∑

i=1

h(YṼi
|XṼi

) (A.97)

where Ṽi’s are as described in lemma A.6.1. Next, note that h(YVi+1
|XVi

, XUi
) is just the

entropy of channel noises, and since for any v ∈ V we have

|{i|v ∈ Vi}| = |{j|v ∈ Ṽj}| (A.98)

, we get
s+l−1∑

i=s

h(YVi+1
|XVi

, XUi
) =

l∑

i=1

h(YṼi
|XṼi

, Xc
Ṽi

) (A.99)

Now by putting (A.97) and (A.99) together, we get

s+l−1∑

i=s

I(YVi+1
;XUi

|XVi
) ≥

l∑

i=1

I(YṼi
;XṼc

i
|XṼi

) (A.100)

≥ l min
Ω∈ΛD

I(YΩc ;XΩ|XΩc) (A.101)
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Now since in any L − 1 time frame there is at least one loop, therefore except at most a

path of length L−1 everything in
∑K−1

i=1 I(YVi+1
;XUi

|XVi
). can be replaced with the value

of the min-cut. Therefore,

K−1∑

i=1

I(YVi+1
;XUi

|XVi
) ≥ (K − L+ 1) min

Ω∈ΛD

I(YΩc ;XΩ|XΩc) (A.102)

and hence the proof is complete.

A.7 Proof of Lemma 8.5.2

To prove this lemma we need to first prove the following two main lemmas:

Lemma A.7.1. Let G be the channel gains matrix of a m × n MIMO system. Assume

that there is an average power constraint equal to one at each node. Then for any input

distribution Px,

|I(X; [GX + Z]) − I(X; [GX])| ≤ 7n (A.103)

where Z = [z1, . . . , zn] is a vector of n i.i.d. N (0, 1) random variables.

Lemma A.7.2. Let G be the channel gains matrix of a m × n MIMO system. Assume

that there is an average power constraint equal to one at each node. Then for any input

distribution Px,

|I(X;GX + Z) − I(X; [GX + Z])| ≤ n (A.104)

where Z = [z1, . . . , zn] is a vector of n i.i.d. N (0, 1) random variables.

Note that the main Lemma that we want to prove in this section (Lemma 8.5.2) is just
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a corollary of these two lemmas. The reason is the following:

|I(X; [GX + Z]) − I(X; [GX])| ≤ 7n

|I(X;GX + Z) − I(X; [GX + Z])| ≤ n






⇒ |I(X;GX + Z) − I(X; [GX])| ≤ 8n

(A.105)

Therefore we just need to prove Lemma A.7.1 and Lemma A.7.2. In order to prove

Lemma A.7.1 we need the following lemma and its corollary.

Lemma A.7.3. Consider integer-valued random variables X , R and S such that

X ⊥ R (A.106)

S ∈ {−L, . . . , 0, . . . , L} (A.107)

P {|R| ≥ k} ≤ e−f(k), for all k ∈ Z+ (A.108)

for some integer L and a function f(.). Let

Y = X +R + S (A.109)

Then

H(Y |X) ≤ 2 log2 e

( ∞∑

k=1

f(k)e−f(k)

)

+
2L+ 1

2
+ Nf (A.110)

H(X|Y ) ≤ log (2L+ 1) + 2 log2 e

( ∞∑

k=1

f(k)e−f(k)

)

+
2L+ 1

2
+ Nf (A.111)

where

Nf =

∣
∣
∣
∣
{n ∈ Z+|e−f(n) >

1

2
}
∣
∣
∣
∣

(A.112)
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Proof. By definition we have

H(Y |X) = H(X +R + S|X) (A.113)

= H(R + S|X) (A.114)

≤ H(R + S) (A.115)

= −
∑

k

P {R + S = k} log P {R + S = k} (A.116)

Now since −p log p ≤ 1
2

for 0 ≤ p ≤ 1, we have

−
L∑

k=−L

P {R + S = k} log P {R + S = k} ≤ 2L+ 1

2
(A.117)

Now note that for |k| > L we have

P {R + S = k} ≤ P {|R| ≥ |k| − L} ≤ e−f(|k|−L) (A.118)

Since p log p is decreasing in p for p < 1
2

we have

−
∞∑

k=L+1

P {R + S = k} log P {R + S = k}

= −
∑

k>L
k−L∈Nf

P {R + S = k} log P {R + S = k} −
∑

k>L
k−L/∈Nf

P {R + S = k} log P {R + S = k}

≤ Nf

2
+

∞∑

k=L+1

e−f(k−L)f(k − L) log e (A.119)
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and similarly

−
−L∑

k=−∞

P {R + S = k} log P {R + S = k}

= −
∑

k<−L
|k|−L∈Nf

P {R + S = k} log P {R + S = k} −
∑

k<−L
|k|−L/∈Nf

P {R + S = k} log P {R + S = k}

≤ Nf

2
+

∞∑

k=L+1

e−f(k−L)f(k − L) log e (A.120)

Now by combining (A.117), (A.119) and (A.120) we get

H(Y |X) ≤ 2 log2 e

( ∞∑

k=1

f(k)e−f(k)

)

+
2L+ 1

2
+ Nf (A.121)

Now we prove the second inequality

H(X|Y ) = H(X|X +R + S) (A.122)

= H(X) − I(X;X +R + S) (A.123)

= H(X) −H(X +R + S) +H(X +R + S|X) (A.124)

≤ H(X) −H(X +R + S|S) +H(Y |X) (A.125)

= H(X) −H(X +R|S) +H(Y |X) (A.126)

= H(X) −H(X +R) + I(X +R;S) +H(Y |X) (A.127)

≤ H(X) −H(X +R) +H(S) +H(Y |X) (A.128)

≤ H(X) −H(X +R) + log (2L+ 1) +H(Y |X) (A.129)

≤ H(X) −H(X +R|R) + log (2L+ 1) +H(Y |X) (A.130)

= H(X) −H(X) + log (2L+ 1) +H(Y |X) (A.131)

= log (2L+ 1) +H(Y |X) (A.132)
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Therefore

H(X|Y ) ≤ log (2L+ 1) + 2 log2 e

( ∞∑

k=1

f(k)e−f(k)

)

+
2L+ 1

2
+ Nf (A.133)

Corollary A.7.4. Assume v is a continuous random variable, then

H([v + z]||[v]) ≤ 7 (A.134)

H([v]||[v + z]) ≤ 7 (A.135)

where z is a N (0, 1) random variable independent of v and [.] is the integer part of a real

number.

Proof. We use lemma A.7.3 with variables

X = [v] (A.136)

R = [z] (A.137)

S = [{v} + {z}] (A.138)

Then L = 1 and since

P {|[z]| ≥ k} ≤ P

{

|[z]| − 1

2
≥ k

}

(A.139)

= 2Q(k − 1

2
) (A.140)

≤ e−
(k− 1

2 )2

2 (A.141)

Therefore

f(k) =
(k − 1

2
)2

2
(A.142)
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Also since

e−
(k− 1

2 )2

2 <
1

2
, for k ≥ 3 (A.143)

we have

Nf = {1, 2} (A.144)

Now we have

log (2L+ 1) + 2 log2 e

( ∞∑

k=1

f(k)e−f(k)

)

+
2L+ 1

2
+ Nf (A.145)

= 2 log2 e

( ∞∑

k=1

(k − 1
2
)2

2
e−

(k− 1
2 )2

2

)

+ 3.5 + log2 3 (A.146)

≈ 6.89 < 7 (A.147)

As a result

H([v + z]||[v]) ≤ 7 (A.148)

H([v]||[v + z]) ≤ 7 (A.149)

Now we prove Lemma A.7.1.

Proof. (proof of Lemma A.7.1)

First note that

I(X; [GX]) ≤ I(X; [GX + Z]) + I(X; [GX]|[GX + Z]) (A.150)

= I(X; [GX + Z]) +H([GX]|[GX + Z]) (A.151)

≤ I(X; [GX + Z]) + 7n (A.152)
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where the last step is true because of Corollary A.7.4. Also

I(X; [GX + Z]) ≤ I(X; [GX]) + I(X; [GX + Z]|[GX]) (A.153)

≤ I(X; [GX]) +H([GX + Z]|[GX]) (A.154)

≤ I(X; [GX]) + 7n (A.155)

where the last step is true because of Corollary A.7.4. Now from equations (A.152) and

(A.155) we have

|I(X; [GX + Z]) − I(X; [GX])| ≤ 7n (A.156)

Now we prove Lemma A.7.2

Proof. (proof of Lemma A.7.2)

Define the following random variables:

Y = GX + Z (A.157)

Ŷ = [GX + Z] (A.158)

Ỹ = Ŷ + U (A.159)

where U = [U1, . . . , Un] is a vector of n i.i.d. U[0, 1] random variables, independent of X

and Z.

Now by data processing inequality we have

I(X;Y) ≥ I(X; Ŷ) ≥ I(X; Ỹ) (A.160)
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Now note that,

I(X;Y) − I(X; Ỹ) = h(Y) − h(Ỹ) + h(Ỹ|X) − h(Y|X) (A.161)

= h(Y) − h(Ỹ) + h(Ỹ|X) − n

2
log (2πe) (A.162)

= h(Y|Ỹ) − h(Ỹ|Y) + h(Ỹ|X) − n

2
log (2πe) (A.163)

= h(Y|Ỹ) − h(U) + h(Ỹ|X) − n

2
log (2πe) (A.164)

= h(Y|Ỹ) + h(Ỹ|X) − n

2
log (2πe) (A.165)

where the last step is true since h(U) = nh(U1) = n log 1 = 0. Now note that

|y − ỹ| ≤ max (|[x+ z] − x|) + max |u| =
3

2
(A.166)

Therefore

h(Y|Ỹ) = h(Y − Ỹ|Ỹ) (A.167)

≤ n log max (|y − ỹ|) (A.168)

= n log
3

2
(A.169)

For the second term we have,

ỹ = [g1x + z] + U (A.170)

= g1x + z + δ(g1x + z) + U (A.171)

where δ(x) = x − [x] is a function representing the difference between a real number and

its closest integer, and g1 is the first row of G. Clearly |δ(x)| ≤ 1
2

for all x ∈ R. Therefore
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given X the variance of Ỹ is bounded by

Var
[

Ỹ |X
]

= Var [z + δ(g1X + z) + U ] (A.172)

≤ Var [z] + Var [δ(g1X + z)|X] + 2Cov [Z, δ(X + z)|X] +

+Var [U ] (A.173)

≤ Var [z] + |max δ(.)|2 + 2
√

Var [Z] × max δ(.) + Var [U ] (A.174)

= 1 +
1

4
+
√

2 +
1

12
(A.175)

Therefore

h(Ỹ|X) ≤ nh(Y |Ỹ) (A.176)

≤ n

2
log 2πeVar

[

Y |Ỹ
]

(A.177)

≤ n

2
log 2πe(1 +

1

4
+
√

2 +
1

12
) (A.178)

Now from equation (A.165), (A.169) and (A.165) we have

I(X;Y) − I(X; Ỹ) ≤ h(Y|Ỹ) + h(Ỹ|X) − n

2
log (2πe)

≤ n log
3

2
+
n

2
log 2πe(1 +

1

4
+
√

2 +
1

12
) − n

2
log 2πe

≈ 0.81n < n (A.179)

A.8 Proof of Theorem 8.2.1

Before proving this theorem, we first state and prove the following lemma
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Lemma A.8.1. Consider a Gaussian relay network, GGaussian, where all channel gains are

in the form ρnij where nij’s are non negative fixed integers and ρ ∈ N is a variable. Denote

the maximum degree of nodes in this graph by η. Now consider, GLFF-det, the linear finite

field deterministic network associated with GGaussian. Then we have the following connec-

tion between CGaussian(ρ), the capacity of the Gaussian relay network and CLFF-det(p), the

capacity of the corresponding linear finite field deterministic relay network with finite field

size p:

CLFF-det(⌊ρ/η⌋p) ≤ CGaussian(ρ) ≤ CLFF-det(⌈ρη⌉p) (A.180)

where for any x ∈
mathcalR+, ⌊x⌋p and ⌈x⌉p are respectively the closest prime number smaller than x and

larger than x.

Proof. First by Theorem 8.5.1 we know that

Ctruncated(ρ) − 13|V | ≤ CGaussian(ρ) ≤ Ctruncated(ρ) + 13|V | (A.181)

Now we prove that

CLFF-det(⌊ρ/η⌋p) ≤ Ctruncated(ρ) ≤ CLFF-det(⌈ρη⌉p) (A.182)

Here we just prove the first inequality, the second inequality can also be proved simi-

larly. Assume we have an achievability scheme for GLFF-det with field size ⌊ρ
η
⌋p. We show

that there is a corresponding scheme in Gtruncated(ρ) such that all nodes transmit and receive

identical signals in both linear finite field and truncated deterministic models.

Now we describe the corresponding communication scheme for the truncated,

• Source, S, will transmit xS =
∑q

i=1 x
det
S (i)ρ−i.

• Each node, v will receive a signal yv and then,
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1. Finds the q-ary representation of yv in base ρ: yv =
∑q

i=1 yv(i)ρ
i−1

2. Computes the modulo of each component base ⌊ρ
η
⌋p to create an element in

F
q
⌊ρ/η⌋p

, i.e. sets, yv(i) = yv(i) mod ρ⌊
ρ
η
⌋p for i = 1, . . . , q.

3. Uses the mapping described by the linear finite field deterministic communica-

tion scheme to find xdet
v and transmits xv =

∑q
i=1 x

det
v (i)ρ−i

• The destination also creates yD and uses it for decoding

Now it is easy to see that since there is no carry-over between adjacent signal levels, yD is

the same in both deterministic models. Hence

CLFF-det(⌊ρ/η⌋p) ≤ Ctruncated(ρ) (A.183)

Now by (A.181) and (A.182) the proof is complete.

Now we prove Theorem 8.2.1. Assume ρ is integer, by lemma A.8.1 we have,

CLFF-det(⌊ρ/η⌋p) ≤ CGaussian(ρ) ≤ CLFF-det(⌈ρη⌉p) (A.184)

Now note that

CLFF-det(⌊ρ/η⌋p) = min
Ω

rank(HΩ) log (⌊ρ/η⌋p) (A.185)

where rank is evaluated in finite field F⌊ρ/η⌋p
. Also

CLFF-det(⌈ρη⌉p) = min
Ω

rank(HΩ) log (⌈ρη⌉p) (A.186)

where rank is evaluated in finite field F⌈ρη⌉p
. Now first note for large enough ρ both these

rank evaluations are the same and equal to the the rank of the corresponding matrix in R.
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Furthermore since

⌊ρ/η⌋p ≥ ρ

2η
(A.187)

⌈ρη⌉p ≤ 2ρη (A.188)

we have

lim
ρ→∞

log (⌊ρ/η⌋p)

log ρ
= 1 (A.189)

lim
ρ→∞

log (⌈ρη⌉p)

log ρ
= 1 (A.190)

This completes the proof.
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