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ABSTRACT | Fueled by the availability of more data and

computing power, recent breakthroughs in cloud-based

machine learning (ML) have transformed every aspect of

our lives from face recognition and medical diagnosis to

natural language processing. However, classical ML exerts

severe demands in terms of energy, memory, and computing

resources, limiting their adoption for resource-constrained

edge devices. The new breed of intelligent devices and

high-stake applications (drones, augmented/virtual reality,

autonomous systems, and so on) requires a novel paradigm

change calling for distributed, low-latency and reliable ML at

the wireless network edge (referred to as edge ML). In edge

ML, training data are unevenly distributed over a large number

of edge nodes, which have access to a tiny fraction of the data.

Moreover, training and inference are carried out collectively

over wireless links, where edge devices communicate and

exchange their learned models (not their private data). In a

first of its kind, this article explores the key building blocks

of edge ML, different neural network architectural splits and

their inherent tradeoffs, as well as theoretical and technical

enablers stemming from a wide range of mathematical

disciplines. Finally, several case studies pertaining to various

high-stake applications are presented to demonstrate the

effectiveness of edge ML in unlocking the full potential of 5G

and beyond.
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I. S I G N I F I C A N C E A N D M O T I V AT I O N

This research endeavor sits at the confluence of two

transformational technologies, namely, the fifth generation

of wireless communication systems, known as 5G [1],

and machine learning (ML) or artificial intelligence.

On the one hand, while the evolutionary part of 5G,

enhanced mobile broadband (eMBB), focusing mainly on

millimeter-wave (mmWave) transmissions has made sig-

nificant progress [2], fundamentals of ultrareliable and

low-latency communication (URLLC) [3], [4], one of

the major tenets of the 5G revolution, are yet to be

fully understood. In essence, URLLC warrants a departure

from average-based system design toward a clean-slate

design centered on tail, risk, and scale [5]. While risk

is encountered when dealing with decision-making under

uncertainty, the scale is driven by the sheer amount of

devices, antennas, sensors, and actuators, all of which pose

unprecedented challenges in network design, optimiza-

tion, and scalability.

On the other hand, in just a few years, breakthroughs in

ML and particularly deep learning have transformed every

aspect of our lives from face recognition [6], [7], med-

ical diagnosis [8], [9], and natural language processing

(NLP) [10], [11]. This progress has been fueled mainly by

the availability of more data and more computing power.

However, the current premise in classical ML is based on a

single node in a centralized and remote data center with

full access to a global data set and a massive amount of

storage and computing power, sifting through these data

for inference. Nevertheless, the advent of a new breed

of intelligent devices and high-stake applications ranging

from drones to augmented reality/virtual reality (AR/VR)

applications, and self-driving vehicles, makes cloud-based

ML inadequate. These applications are real-time, cannot

afford latency, and must operate under high reliability even

when network connectivity is lost.

Indeed, an autonomous vehicle that needs to apply its

brakes cannot allow even a millisecond of latency that

might result from cloud processing, requiring split-second
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Fig. 1. Illustration of edge ML where both ML inference and training processes are pushed down into the network edge (bottom),

highlighting two research directions: 1) MLC (from left to right) and 2) CML (from right to left).

decisions for safe operation [12], [13]. A user enjoying

visuo-haptic perceptions requires not only minimal indi-

vidual perception delays but also minimal delay variance

to avoid motion sickness [14], [15]. A remotely controlled

drone or a robotic assembler in a smart factory should

always be operational even when the network connec-

tion is temporarily unavailable [16]–[18], by sensing and

reacting rapidly to the local (and possibly hazardous)

environments.

These new applications have sparked a huge interest in

distributed, low-latency and reliable ML calling for a major

departure from cloud-based and centralized training and

inference toward a novel system design coined edge ML,

in which: 1) training data are unevenly distributed over

a large number of edge devices, such as network base

stations (BSs) and/or mobile devices, including phones,

cameras, vehicles, and drones and 2) every edge device has

access to a tiny fraction of the data and training and infer-

ence are carried out collectively. Moreover, edge devices

communicate and exchange their locally trained models

[e.g., neural networks (NNs)], instead of exchanging their

private data.

There are clear advantages using edge ML.

1) Performing inference locally on connected devices

reduces latency and cost of sending device-generated

data to the cloud for prediction.

2) Rather than sending all data to the cloud for per-

forming ML inference, inference is run directly on

the device, and data are sent to the cloud only when

additional processing is required.

3) Getting inference results with very low latency

is important in making mission-critical Internet-of-

Things (IoT) applications that respond quickly to local

events.

4) Unlike cloud-based ML, edge ML is privacy preserving

in which the training data are not logged at the cloud

but are kept locally on every device, and the globally

shared model is learned by aggregating locally com-

puted updates, denoted as model state information

(MSI), in a peer-to-peer manner or via a coordinating

(federating) server.

5) Higher inference accuracy can be achieved by training

with a wealth of user-generated data samples that

may even include privacy-sensitive information, such

as healthcare records, factory/network operational

status, and personal location history.

Edge ML is a nascent research field whose system design

is entangled with communication and on-device resource

constraints (i.e., energy, memory, and computing power).

In fact, the size of an NN and its energy consumption may

exceed the memory size and battery level of a device, ham-

pering decentralized inference. Moreover, the process of

decentralized training involves a large number of devices

that are interconnected over wireless links, hindering

the training convergence due to the stale MSI exchange

under poor wireless channel conditions. As such, enabling

ML at the network edge introduces novel fundamental

research problems in terms of jointly optimizing train-

ing, communication, and control under end-to-end (E2E)

latency, reliability, privacy, as well as devices’ hardware

requirements. As shown in Fig. 1, these research ques-

tions can be explored through the following two research

directions.

a) ML for communications: Exploiting edge ML for

improving communication, on the one hand, epitomizes

the research direction of ML for communication (MLC).

The recent groundswell interest in the ML-aided (and

mostly data-driven) wireless system design fits into this
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direction. At its core, MLC leverages a large amount of data

samples (e.g., radio signals) to acquire an accurate knowl-

edge of the RF environment to, for instance, optimize

modulation coding schemes (MCSs). Toward this vision,

at the physical layer, an E2E communication framework

was studied under unknown channels using an autoen-

coder (AE) [19], [20], recurrent NN (RNN) [21], and

generative adversarial network (GAN) [22]. To overcome

mmWave’s link sensitivity to blockage [23], a GAN-aided

long-term channel estimation [24] and a reinforcement

learning (RL)-based beam alignment technique [25] were

proposed. At the network layer, an RNN-aided caching

solution was proposed in [26], and an unsupervised clus-

tering algorithm was used with real user traffic patterns.

Basics of ML, its NN architectures, and communication

designs were recently overviewed in [26] and [27].

Nevertheless, these works focus solely on improving the

communication performance via centralized ML, ignoring

the additional latency induced by the ML inference. Fur-

thermore, they commonly presume that well-trained ML

models with a large number of data samples are avail-

able, overlooking the ML model training latency. In sharp

contrast to these approaches, the latency and reliability

of edge ML have to be examined with respect not only

to communication but also to decentralized ML train-

ing and inference processes, calling for novel analytical

methods based on studying tail distributions, a novel

communication and ML codesign, and uncertainty/risk

assessment.

b) Communication for ML: As alluded to earlier, training

ML at the network edge over wireless networks while

taking into account latency and reliability opens up a novel

research direction. In this respect, edge ML architectures

and their operations should be optimized by accounting

for communication overhead and channel dynamics while

coping with several problems, such as straggling devices

in the training process and generalization to unmodeled

phenomena under limited local training data. In addition,

all these aspects need to factor in on-device constraints,

including energy, memory, and compute, not to mention

privacy guarantees.

An interesting example of edge ML training archi-

tecture is federated learning (FL) [28], [29] in which

mobile devices periodically exchange their NN weights

and gradients during local training. FL has been shown

to improve communication efficiency by MSI quantiza-

tion [30], adjusting the MSI update period [28], and

optimizing devices’ scheduling policy [31]. These methods

are still in their infancy and need to address a myriad of

fundamental challenges, including the ML-communication

codesign, while accounting for on-device constraints and

wireless channel characteristics.

From a theoretical standpoint, the overarching goal of

this article is to explore building blocks, principles, and

techniques focusing on communication for ML (CML).

As on-device processing becomes more powerful, and

ML grows more prevalent, the confluence of these two

research directions will be instrumental in spearheading

the vision of truly intelligent next-generation communica-

tion systems, 6G [32].

Scope and Organization: Enabling ML at the network

edge hinges on investigating several fundamental ques-

tions, some of which are briefly summarized next.

Q1. How do edge devices train a high-quality

centralized model in a decentralized manner,

under communication/on-device resource con-

straints and different NN architectures?

Classical ML has been based on the precept of a single

central entity having full access to the global data set

over ultrafast wired connections, e.g., a local interchipset

controller manipulating multiple graphics processing units

(GPUs) through PCI Express intracomputer connections

(supporting up to 256 Gb/s) [33], InfiniBand intercom-

puter links (up to 100 Gb/s) [34]; or a cloud server com-

manding multiple computing devices via Ethernet commu-

nication (up to 25 Gb/s) [35]. Using a deep NN, the central

controller sifts through this global data for training and

inference by exploiting the massive amount of storage and

computing power: e.g., 11.5 Petaflops processing power

supported by 256 tensor processing units (TPUs) and 4-TB

high-bandwidth memory (HBM) [36], which is sufficient

for operating the Inception V4 NN model consuming

44.3 GB [37].

These figures are in stark contrast with the capability

of devices under edge ML. While 5G peak rates achieve

20 Gb/s [1] that is comparable only with Ethernet connec-

tions, the instantaneous rate may frequently fluctuate due

to poor wireless channel conditions, hindering interdevice

communication. Moreover, the computing power of mobile

devices is a million times less powerful (e.g., Qualcomm

Snapdragon 845’s 16.6 Gflops [38]). Their memory size is

also ten times smaller (Apple iPhone XS Max’s 4 GB [39])

than a deep NN model size. Besides, the energy consump-

tion (e.g., Google Pixel 3 XL’s 2.15 W [40]), delimited

by the battery capacity, is half million times smaller than

a powerful centralized ML architecture (e.g., AlphaGo’s

1 MW [41]). Since computation and communication con-

sume battery power, the energy consumption of edge ML

operations should be flexibly optimized over time, which is

not feasible under the classical ML architecture, in which

an NN model size is fixed.

Last but certainly not the least, the privacy guarantee

of each device is crucial in edge ML, particularly when

on-device data sets are associated with privacy-sensitive

information. Perturbing the information exchange can

ensure privacy, which may be at odds with the goal of high

accuracy and reliability. Adding redundant information

can provide a solution, at the cost of extra communi-

cation latency. With these communication and on-device

hardware/privacy requirements in mind, we explore and

propose the decentralized architectures and training algo-

rithms that are suitable for edge ML. To this end,

we first describe the key building blocks of edge ML

PROCEEDINGS OF THE IEEE 3
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Fig. 2. Overview of the key building blocks and theoretical/technical enablers of edge ML.

(see Section III) and then introduce suitable technical

enablers (see Section V), as shown in Fig. 2.

Q2. How to enable reliable edge ML as opposed

to best-effort cloud-based ML, subject to non-

convex loss functions and unevenly dispersed

and unseen data samples?

A requisite for reliable edge intelligence is high inference

accuracy, i.e., low loss, under not only the training data set

but also unseen data samples. Therefore, average inference

accuracy is insufficient, and its credibility interval for a

given training data set ought to be considered. Credibility

can be measured by the loss difference under training and

the entire samples, referred to as a generalization error,

in which the credibility interval is an achievable target

generalization error that can be decreased by utilizing

more training samples and a proper NN model archi-

tecture. Calculating the generalization error is relatively

easy in centralized ML where the central controller feeds

independent and identically distributed (IID) training data

samples into each device. By contrast, it becomes more

challenging in edge ML where the training data samples

may become non-IID across devices.

Next, decentralized training dynamics in edge ML

become more complicated even under a simple gradient-

descent algorithm. In fact, it is difficult to characterize the

convergence behavior of a decentralized training process,

especially under non-IID training data set, as well as

the limited communication/computation resource budget

fluctuating over time. The situation is aggravated when a

single NN model is split and shared by multiple devices due

to the limited on-device memory size.

Besides, most training algorithms intentionally insert

noise, i.e., regularizers, to cope with nonconvex loss

functions. However, it is challenging to optimize the

regularization in edge ML, which is intertwined with

wireless communication and privacy-preserving methods

generating noise. To tackle these difficulties, we address

Q2 by revisiting the fundamental principles of ML

(see Section III), followed by the key theoretical enablers

for edge ML (see Section IV).

Q3. How do the theoretical and technical

enablers of edge ML impact E2E latency, reliabil-

ity, and scalability throughout the training and

inference processes, under both CML and MLC

frameworks?

From the standpoint of MLC, stringent URLLC applica-

tions can be empowered using edge ML, whereas in CML,

edge ML is enhanced via wireless connectivity under on-

device constraints. In this respect, edge ML design not only

enhances CML but also MLC, calling for optimizing E2E

latency, reliability, and scalability.

Specifically, the worst case E2E latency of a reference

device is given by “training + inference + application”

latency. MLC can reduce the application delays that are

proportional to wireless communication latency, given as

“payload/[bandwidth × spectral efficiency].” For instance,

this is viable by improving spectral efficiency (SE) via

enabling real-time joint source–channel coding [42],

channel-agnostic E2E communications [19], and inter-

ference management [43]. The effective amount of

bandwidth can also be increased using low-complexity

dynamic spectrum access [44] and proactive resource

management [45]. Furthermore, the payload size can be

minimized by exchanging semantic information rather

than raw data [46].

Achieving these benefits in MLC entails extra train-

ing and inference delays of ML operations. Here, train-

ing latency is captured by a loss or weight convergence

delay [47], whereas inference latency refers to compu-

tation and memory access delays [48]. Since both the
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Fig. 3. Two examples illustrating CML and MLC. (a) Training latency and variance over wireless connections impact the ML training

convergence. (b) ML inference loss and variance affect the latency of a wireless system as its application.

training and inference processes are performed at the

network edge, their computation and communication need

to be jointly optimized subject to limited energy, memory,

computing power, and radio resource constraints. To fur-

ther reduce latency, as done in [49], the training process

can partly be offloaded to other proximal edge nodes with

higher computational power.

E2E reliability of a reference device is the probability

that the E2E latency does not exceed a target latency

deadline and is determined by the reliability of both train-

ing and inference. For training reliability, the staleness

of exchanged MSIs is the key bottleneck, as it disrupts

the training convergence, and may lead to an unbounded

training latency, emphasizing the importance of communi-

cation techniques to synchronize edge nodes. For inference

reliability, high inference accuracy is mandatory for reduc-

ing the application latency and needs to be ensured under

both training and unseen samples, necessitating suitable

mathematical tools to quantify the generalization error.

Through E2E reliability, CML and MLC are intertwined.

For CML, the higher the communication latency reliability

during training, i.e., low communication latency variance,

the higher the training convergence guarantee by avoid-

ing training devices lagging behind, known as stragglers.

As shown in Fig. 3(a), lower latency variance decreases

the inference loss, thereby reducing the application (i.e.,

communication) latency and increasing E2E reliability.

In the opposite direction, for MLC, a lower generalization

error yields fewer fluctuations in the application latency,

as visualized in Fig. 3(b), thereby achieving higher E2E

reliability.

Finally, E2E scalability is specified by the number of

supported devices, NN model size, and communication

throughput to ensure a target E2E reliability. In this

respect, the major obstacles are on-device constraints,

whereby the number of federating devices is limited by

preserving their privacy. The range of federation is also

determined by memory and NN model sizes, as FL requires

an identical model size for all federating devices. More-

over, the federation range should take into account tasks’

correlations and channel conditions, so as not to exchange

redundant MSIs and to avoid straggling devices under

limited wireless capacity, respectively.

With these challenges and E2E performance definitions,

to address Q3, we revisit the state-of-the-art literature in

URLLC and ML (see Section II) and provide several case

studies that showcase the essence of both MLC and CML

frameworks (see Section VI), followed by the conclusion

(see Section VII).

II. S TAT E O F T H E A R T

A. From Vanilla 5G Toward URLLC Compound

Since its inception, 5G requirements have been targeting

three generic and distinct services: eMBB, mMTC, and

URLLC [50]–[52]. The prime concern of eMBB is to maxi-

mize SE by providing higher capacity for both indoor and

outdoor highly dense areas, enhancing seamless connec-

tivity for everyone and everywhere, and supporting high

mobility, including cars, trains, and planes. Beyond voice

and data services, eMBB focuses on immersive AR/VR

applications with high-definition 360◦ video streaming

for entertainment and navigation. Enabling communica-

tion among a large number of devices is the focus of

mMTC. The success therein relies on coverage, low power

consumption, longer life span of devices, and cost effi-

ciency. The goal of URLLC is to ensure reliability and

latency guarantees. Therein, mission-critical applications,

including autonomous driving, remote surgery, and fac-

tory automation, require outage probabilities of the range

from 10−5 to 10−9.

Having said that, recent field tests have shown that

packet sizes of less than 200 bytes were supported for a

single device moving within 1 km [53]. This demonstrates

the fundamental challenge in achieving (even moderate)

URLLC requirements, e.g., 99.999% decoding success rate

with 1-ms latency [54]. On the other hand, new emerg-

ing use cases advocate a mixture of URLLC with eMBB

and/or mMTC via slicing, in which a pool of shared

resources (spectrum, computing power, and memory) is

used [55]–[61].

The success behind fine-grained and dynamic network

slicing hinges on the ability to identify and distinguish

different services within the network. Unfortunately, such

traditional slicing methods are unfit for the upcoming

high-stake applications that may not only demand more

stringent requirements but also give rise to a compound of

URLLC with eMBB and/or mMTC, where a single device

simultaneously requests several services out of eMBB,

mMTC, and URLLC. For instance, multiplayer mobile
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Fig. 4. Examples of RL. (a) Classical Q-learning without any NN. (b) Deep Q-learning with an NN. (c) Actor-critic RL with actor and critic NNs.

AR/VR gaming applications demand URLLC for achieving

low motion-to-photon (MTP) latency and eMBB for ren-

dering 360◦ video frames. Likewise, autonomous vehicles

rely on sharing high-resolution real-time maps with low

latency, which is an exemplary use case of ultrahigh-speed

low-latency communications (uHSLLC) [62]. In a similar

vein, mission-critical factory automation applications may

require sensing, reasoning, and perception-based modali-

ties (e.g., haptic), going beyond classification tasks [63],

necessitating both eMBB and URLLC.

Beyond communication, automated or remotely con-

trolled vehicles, drones, and factories demand ultrareliable

and low-latency control. A swarm of remotely controlled

drones affected by a sudden gust of wind may need to

report and receive control commands within a split of

a second. Likewise, a remote surgery robot operating a crit-

ical patient requires a high-definition video signal upload

while receiving real-time commands of high precision that

are two such examples. The reliability of the control feed-

back loop of the aforementioned control systems directly

affects the system performance. Both lost or outdated

information and commands can yield undesirable and

chaotic system behaviors in which the communication links

between controllers and devices play a pivotal role. In this

regard, the research in URLLC and control has recently

emerged focusing on coordination [64]–[66], robustness

[67]–[69], and sensing [70], [71].

The existing orthogonal and nonorthogonal slicing

approaches are ill-suited for supporting these compounded

URLLC services. Compared with a noncompounded sce-

nario, orthogonal slicing under compounded URLLC con-

sumes the resource amount multiplied by the number of

compounded links per device. Due to the use of multiple

links by a single device, nonorthogonal slicing induces

severe multiservice self-interference [14], negating the

effectiveness of slicing. These limitations call for the aid

from a new dimension, namely, edge ML as elaborated in

Section II-B.

B. From Centralized ML Toward Edge ML

1) Types of ML: The training process of ML is catego-

rized into supervised, unsupervised, and RL as follows.

a) Supervised learning: By feeding an input data

sample, the goal of supervised learning is to predict a

target quantity, e.g., regression, or classification of the

category within the predefined labels. This ability can be

obtained by optimizing the NN parameters by feeding

training data samples, referred to as a training process. In

supervised learning, the input training samples are paired

with the ground-truth output training samples. These out-

put samples “supervise” the NN to infer the correct outputs

for the actual input samples after the training process is

completed.

b) Unsupervised learning: The training process of

unsupervised learning is performed using only the input

training samples. In contrast to supervised learning, unsu-

pervised learning has no target to predict, yet it aims at

inferring a model that may have generated the training

samples. Clustering of ungrouped data samples and gen-

erating new data samples by learning the true data distri-

bution, i.e., a generative model, belong to this category.

c) Reinforcement learning: The goal of RL is to make

an agent in an environment taking an optimal action

at a given current state, where the interaction between

the agent’s action and the state through the environment

is modeled as a Markov decision process (MDP). When

each action is associated with a return, the agent takes

an action that maximizes its predicted cumulative return,

e.g., Q-learning that maximizes the Q value for each

state, as shown in Fig. 4(a). In Q-learning, the larger the

state dimension, the more computation. This problem is

resolved by deep Q-learning as shown in Fig. 4(b), where

an NN approximates the Q function and produces the

Q values by feeding a state. These value-based RL can

take actions only through Q values that are not neces-

sarily required. Instead, one can directly learn a policy

that maps each state into the optimal action, which is

known as policy-based RL whose variance may become

too large [72]. Actor-critic RL is a viable solution to both

problems, comprising an NN that trains a policy (actor NN)

and another NN that evaluates the corresponding Q value

(critic NN), as visualized in Fig. 4(c).

For the sake of convenience, unless otherwise speci-

fied, we hereafter describe ML from the perspective of

supervised learning, most of which can also be applied to

unsupervised and RL algorithms with minor modifications.

2) Types of NN Architectures: Fig. 5 shows an NN con-

sisting of multiple layers. The input layer accepts input
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Fig. 5. Types of NN architectures. (a) MLP. (b) RNN. (c) CNN. (d) DBN comprising a stack of pretrained RBMs. (e) AE. (f) GAN.

data samples, and the output layer produces the train-

ing/inference outcomes. These two layers are connected

through at least a single hidden layer. The total number

of hidden layers is called the depth of the NN. An NN

with a large depth is referred to as a deep NN, otherwise,

a shallow NN.

Each of the layers comprises perceptrons connected

to each other, and such connections are associated with

weights. At a single perceptron, all the inputs are thus

weighted and aggregated, followed by the output value

after passing through a nonlinear activation function, e.g.,

sigmoid function, softmax function, or rectified linear unit

(ReLU). The output is fed to the next layer’s perceptrons

until reaching the output layer.

a) Multilayer perceptron: If the output of each layer is

fed forward to the next layer, and then, the NN is called a

feedforward NN (FNN). The default (i.e., vanilla) baseline

of the FNN is a multilayer perceptron (MLP). As shown

in Fig. 5(a), each perceptron’s output is passed directly to

the next layer’s perceptrons, without any recursion and/or

computation other than the activation function. Even with

this simple structure, an MLP is capable of distinguishing

data that are not linearly separable, as long as the number

of perceptrons (i.e., NN model size) is sufficiently large. Its

theoretical backgrounds are elaborated in Section III-B1.

Training an MLP is performed using a gradient descent

optimization algorithm, called the backpropagation

method [73].

b) Recurrent NN: If the output of a layer encoun-

ters recursions within the same layer, the corresponding

NN is referred to as an RNN. As shown in Fig. 5(b),

the vanilla RNN is a form of MLP with feedback loops at

hidden layers. For training an RNN, the feedback loops

can be unrolled in a sequential way, such that the hidden

layer prior to a feedback loop is chained to the hidden

layer posterior to the loop. This chained structure eas-

ily allows a sequence of inputs, which is plausible, for

instance, in NLP. Vanilla RNN struggles with the vanish-

ing gradients problem as the feedback loop iterates and

thus cannot capture a feature with long-term correla-

tions. To cope with this, the vanilla RNN’s hidden layer

can be replaced with a long short-term memory (LSTM)

unit [74]. The LSTM unit introduces a memory cell that

can store the current hidden layer’s values in the mem-

ory, which is controlled by several gates that determine

whether to store or forget. Similar operations can also

be implemented using gates, yielding a gated recurrent

unit (GRU) [75].

c) Convolutional NN: Processing image data samples

through an MLP may induce a large number of percep-

trons, as each image pixel needs to be associated with

a single perceptron in the input layer. As a variant of

MLPs, a convolutional neural network (CNN) resolves this

problem by inserting two preprocessing layers, i.e., convo-

lutional and pooling layers, in-between the hidden layers,

as shown in Fig. 5(c). Inspired by human visual stimuli,

at a convolutional layer, the input information is processed

using a convolution operation, thereby extracting the fea-

tures while compressing the information. Next, at the

pooling layer, the previous layer’s outputs are combined

into a single perceptron in the next layer, by selecting their

maximum value or taking their average value [76]. Finally,

the compressed feature information is fed back to a con-

ventional MLP structure to obtain the final output, of which

the corresponding stages are called fully connected layers.

d) Deep belief network: A notorious problem of tra-

ining a deep NN is the vanishing gradients as the depth

increases. To resolve this, a deep belief network (DBN)

exploits a divide-and-conquer method: first pretrain each

small part of the network, i.e., restricted Boltzmann

machine (RBM), and then combine all pretrained parts,

followed by fine-tuning the entire network. As a result,

a DBN comprises a stack of pretrained RBMs, as shown

in Fig. 5(d). Each RBM has a single hidden layer and a

visible layer that accepts inputs or produces outputs. The

connections between these two layers are bidirectional,

in which an RBM is not an FNN. Nonetheless, after the

pretraining process, the pretrained RBMs in a DBN are

stacked in a way that each RBM’s hidden layer connects no

longer to its visible layer but to the next RBM’s visible layer.

Thus, a DBN is an FNN. DBN can easily be extended to a

CNN by partitioning each hidden layer into several groups

and applying a convolutional operation to each group [77].

e) Autoencoder: As shown in Fig. 5(e), an AE is a stack

of two FNNs, copying the input to its output in an unsu-

pervised learning way. The first NN learns representative

features of the input data, known as encoding. The second

NN receives the feature as the input and reproduces the

approximation of the original input as the final output,

referred to as decoding. The key focus of an AE is to

learn useful features of the input data en route for copying

the input data. In this respect, reproducing the output

exactly the same as the original data may become too

accurate to capture the latent features. A viable solution

for mitigating this is to constrain the feature space to have

a smaller dimension than the original input space, yielding

PROCEEDINGS OF THE IEEE 7



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Park et al.: Wireless Network Intelligence at the Edge

an undercomplete AE whose encoding NN compresses the

original input data into a short code [78]. Decoding the NN

then uncompresses the code so as to approximately repro-

duce the original data. These encoding and decoding NNs

resemble a transmitter and its receiver in communication

systems. Due to such an analogy, AEs have recently been

used for data-driven E2E communication designs [19],

[20], after inserting a set of extra layers that emulate

the transmission power normalization and the channel

propagation between the encoding and decoding NNs.
f) Generative adversarial network: As a generative

model in the class of unsupervised learning, the goal

of GAN is to generate new data samples given by the

estimated distribution of the input data samples. This is

achieved by training two NNs, referred to as a generator

and a discriminator as shown in Fig. 5(f), as if they play a

zero-sum game. Here, the generator produces fake samples

to fool the discriminator, while the discriminator tries to

identify the fake samples. As the game reaches a Nash equi-

librium, i.e., training completion, the generator becomes

capable of producing fake-yet-realistic samples that are

indistinguishable from the real samples. Mathematically,

playing this game is identical to minimizing the Jensen–

Shannon (JS) divergence [79] between the real and gen-

erated sample distributions. When these two distributions

are disjoint, JS divergence goes to infinity, yielding the

gradient vanishing problem. A naive solution is to insert

noise so as to make the distributions overlapped, which

may degrade the output quality. A better solution is to

replace JS divergence with a proper loss function that is

capable of measuring the distance between the disjoint

distributions with a finite value. Wasserstein distance satis-

fies this characteristics, thus prompting the recent success

of Wasserstein GAN (WGAN) [80]. More details on the

Wasserstein distance are deferred to Section IV-A.

3) Limitations of Centralized ML: The classical concept

of ML focuses mainly on offline and centralized ML [21],

[26]. In this case, the entire data set is given a priori and

is used for the training process. To obtain accurate and

reliable inference, a central controller divides the training

data set into minibatches and allocates them to multiple

processing devices, e.g., via a message passing interface

(MPI) [81], running local training operations. The central

controller iteratively collects and aggregates their local

training results until the training loss converges. The said

training process is separated from inference, and hence,

the training cost and latency are commonly neglected.

Unfortunately, such a one-time training process is

vulnerable to initially unmodeled phenomena, as it is

practically impossible to enumerate all preconditions

and ensuing consequences, referred to as qualification

and ramification problems, respectively [82]. In fact,

the trained model using centralized ML is biased toward

the initially fixed training data set, which fails to capture

user-generated and the time-varying nature of data, yield-

ing less reliable inference results. Besides, a user-generated

data set can be privacy-sensitive, and the owners may not

allow the central controller to directly access the data.

Online and edge ML is able to address these problems.

Indeed, online decentralized training can preserve privacy

by exchanging not the data set but the model parameters

with (or without) a simple parameter aggregator [29],

thereby reflecting a huge volume of user-generated data

samples in real time. In so doing, the trained models are

immediately obtained at the local mobile devices, enabling

low-latency inference. In spite of the rich literature in ML,

edge ML with a large number of mobile devices over wire-

less remains a nascent field of research, motivating us to

explore its key building blocks and enablers as elaborated

in Section III.

III. B U I L D I N G B L O C K S A N D

C H A L L E N G E S

A. Neural Network Training Principles

The unprecedented success of ML has yet to be entirely

demystified. Till today, it is not completely clear how

to train an NN so as to achieve high accuracy even for

unseen data samples. Nonetheless, recent studies on the

asymptotic behaviors of a deep NN training process and on

the loss landscape shed some light on providing guideline

principles, presented in Sections III-A1 and III-A2.

1) Asymptotic Training Principles:

a) Universal approximation theorem: The theorem

states that an ideally trained MLP with infinitely many

perceptrons can approximate any kind of nonlinear func-

tion. This holds irrespective of the number of hidden

layers. Thus, both very-wide shallow NNs and very-deep

NN can become ideal classifiers. The proof is provided for

shallow NNs [83], [84] and recently for deep NNs [85].

This explains that the key benefit of deep NNs compared

to shallow NNs is attributed not only to the inference

accuracy but also to its credibility, as detailed next.

b) Energy landscape (EL): The success of deep NNs

has recently been explained through the lens of energy

landscape (EL) from statistical physics. In this approach,

a fully connected FNN with L layers is first transformed

into a spherical spin-glass model with L spins, and the

FNN’s nonconvex loss function is thereby approximated

as the spin-glass model’s nonconvex Hamiltonian [86],

i.e., energy of the NN model. Exploiting this connec-

tion, a recent discovery [87] verifies that the number

of Hamiltonian’s critical points is a positively skewed

unimodal curve over L. For a sufficiently large L in a

deep NN, the number of local minima and saddle points

thus monotonically decreases with L. At the same time,

it also verifies that Hamiltonian’s local minima become

more clustered in EL as L increases. For these reasons,

in a deep NN, any local minimum of a nonconvex loss

function well approximates the global minimum. This

enables to train a deep NN using a simple gradient-

descent approach. In other words, a deep NN training can
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Fig. 6. Illustration of underfitting and overfitting via bias-variance

tradeoff and approximation-generalization tradeoff. (a) Tradeoff

between bias and variance whose addition yields a generalization

error. (b) Tradeoff between empirical average and expected average

whose difference yields a generalization error.

always achieve the highest inference accuracy, so long as

a sufficiently large amount of data samples are fed for

training, emphasizing the importance of sufficient data

sample acquisition.

2) Practical Training Principles: The aforementioned

asymptotic characteristics of a deep NN make the non-

convex training problem being in favor of simple convex

optimization methods. This partly justifies the use of de

facto stochastic gradient descent (SGD) algorithms in mod-

ern ML applications. Nevertheless, the number of layers is

finite in reality, and the resultant mismatch between the

nonconvex problem and its convex-based training algo-

rithm has to be considered in practice, as elaborated next.

a) Underfitting versus overfitting: The objective of

training an NN is twofold. The first goal is to minimize

the training loss, and the other goal is to minimize the

loss difference between the values under training data

samples and unseen samples, referred to as mitigating

underfitting and overfitting, respectively. How to achieve

both goals is exemplified in the following bias–variance

tradeoff. Consider f(x) is the true function to be estimated

using an approximate function f̂(x) for an unseen data

sample x. When the distribution of x has zero mean and

variance σ2, the mean squared error of f(x) and f̂(x) can

be decomposed into bias and variance terms as follows:

E[(f(x) − f̂(x))2] = Bias2 + Var + σ2 (1)

where Bias = E[f̂(x) − f(x)] and Var = E[f̂(x)]2 −

(E[f̂(x)])2. For a given training data set, as the model

size grows, Bias decreases, whereas Var keeps increasing,

as visualized in Fig. 6(a). The sum of Bias and Var is

denoted as generalization error, and both underfitting

and overfitting can be mitigated at the minimum

generalization error.

Such a behavior can also be characterized through

the lens of the approximation–generalization tradeoff as

follows. Let L̂(w) denote the empirical average loss under

the training data set. This empirical loss decreases as the

NN better approximates the features of the training data

set. On the other hand, L(w) represents the expected loss

under the entire data set with a set w of model parameters,

which depends not only on the training samples but also on

unseen samples, i.e., generalization. As shown in Fig. 6(b),

L̂(w) decreases with the model size, while L(w) is convex-

shaped. In this case, both underfitting and overfitting can

be avoided at the minimum L(w), and the gap between

L(w) and L̂(w) implies the generalization error. It is noted

that calculating L(w) requires unseen data samples, which

is unavailable in practice. Instead, the probability that the

generalization error is less than a certain value can be

evaluated using statistical learning frameworks, as detailed

in Section IV-A.

b) Information bottleneck principle: The bias–variance

tradeoff is well observed in the NN training process under

information bottleneck (IB) [88], [89]. In this approach,

denoting X and Y as a random input and its desired out-

put, respectively, model training is interpreted as adjusting

the model configuration X̂ so that its predicted output Ŷ

can be close to Y , as illustrated in Fig. 7(a). A convinc-

ing model training strategy is to minimize the redundant

information I(X̂; X) for predicting Y while maximizing

the prediction relevant information I(X̂; Y ). This is recast

by solving the following Lagrangian optimization problem:

min
p(x̂|x), p(y|x̂), p(x̂)

I(X; X̂) − βI(X̂; Y ) (2)

such that Y → X → X̂ → Ŷ , where β > 0 is a Lagrangian

multiplier. In the objective function (2), the first term

I(X; X̂) decreases with the level of model generalization,

while the second term I(X̂; Y ) increases with the inference

performance, thereby capturing the bias–variance tradeoff.

Furthermore, the problem can be interpreted as passing

the information in X about Y through a bottleneck X̂

[90]. To illustrate, following the data processing inequality

[91] in the information theory, the second term I(X̂; Y )

is upper bounded by I(X; X̂) that coincides with the first

term I(X; X̂). Such a conflict in the optimization process

incurs an IB, thereby leading to two model training phases.

As shown in Fig. 7(b) under the tanh activation, during the

first phase, both I(X; X̂) and I(X̂; Y ) increase, whereas

during the second phase, I(X̂; Y ) increases and I(X; X̂)

decreases. This unfolds the microscopic model training

behaviors: model training tends to first increase the infer-

ence performance while relying highly on its own input

data samples and then tries to generalize the model by

reducing the impact of its own data samples. Nonetheless,

the two-phase training dynamics are not always mani-

fested since the original IB formulation is sensitive to

the types of hidden layer activations [see Fig. 7(b)] [92]

and the training objective function [93], which can be

partly rectified by modifying the objective function and/or

inserting noise [94].

c) Flat minima: Although deep NNs asymptotically

guarantee easily trainable characteristics [87], our practi-
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Fig. 7. Illustration of (a) model training structure and (b) trace of

{I(X,�X), I(�X,Y)} during model training under the IB principle.

cal concern is the deep NN with finite depth L that cannot

make all local minima become negligibly separated. In the

EL shown in Fig. 8, some of the local minima are clustered

in a wide valley, i.e., flat minima [95], whereas a sharp

minimum [96] isolated from other minima may have lower

energy than the flat minima. At this point, the well-known

problem of generalization is in order. Each sharp minimum

represents the overfitting case that achieves the minimum

energy only at the given data and/or model configuration.

In order to train a generalized model, it is thus preferable

to find a flat minimum at each training iteration [95],

[97]–[99].

d) Minimum energy path: Finding flat minima by using

EL has recently been tackled by a counterexample [96].

Namely, while producing the same final output, it is possi-

ble to rescale the model weights, changing the EL. In this

case, one can imagine a sufficiently generalized NN whose

trained weights lie within flat minima. Rescaling this

original NN can produce a set of modified weights lying

not within flat minima, and both observations contradict

with each other. This calls for a careful observation on

the EL. On this account, a filter normalization technique

[99] has been proposed, which heuristically guarantees a

tight relationship between the resulting landscape and the

final output. A recent study [100] detours this problem by

using a minimum energy path (MEP) method in statistical

physics. In this approach, from a given weight to another

Fig. 8. Flat versus sharp minima and the impact of regularization

in EL.

arbitrary weight, the goal is to find the path that follows

the saddle points in the EL, implying the path minimizing

the maximum energy. Such a path does not allow the

weight rescaling operation, thereby negating the afore-

mentioned counterexample. Furthermore, the result shows

that the MEPs of widely used deep NNs are almost the

same as the local minima, uncovering their generalization

excellence through the lens of the EL.

e) Regularization and ensembling: In practice, the goal

of high inference accuracy with the low generalization

error is commonly achieved by heuristically inserting noise

during the training phase. This smoothens out the EL as

observed in Fig. 8, thereby allowing a gradient-descent

method to achieve the desired objective. To this end, one

can add a regularizer term to the nonconvex loss function

and/or insert noise into the weight update process. The

latter can be implemented indirectly by randomly sampling

the training data samples in SGD or by aggregating and

averaging the weight parameters computed by multiple

devices, referred to as ensembling or bootstrap aggregating

(bagging) [78].

B. Distributed Training

The NN training process occupies the majority of the E2E

latency budget and impacts the inference reliability while

delimiting the overall scalability. Toward achieving these

E2E targets, parallelizing the training process is crucial.

Ideally, the distributed training process can exploit a larger

amount of aggregate computing power with more training

data samples. In Sections III-B1 and III-B2, we discuss how

to parallelize the architecture and carry out distributed

training.

1) Architectural Split: An NN training process can be

split by parallelizing the training data samples to multiple

devices that have an identical NN structure, referred to

as data split. Alternatively, when an NN model size is

too large, a single NN structure can be split into multi-

ple segments that are distributed over multiple devices,

i.e., model split.

a) Data split: In centralized ML, a central controller,

hereafter denoted as a master, owns the entire set of

training data samples and feeds a small portion of the

entire data set, i.e., a minibatch, into each subordinated

training device at each round, i.e., an epoch. Afterward,

the master collects and aggregates the trained model para-

meters, as shown in Fig. 9(a). This master-device (m-d)

split corresponds to the case with a cloud server fully

controlling its associated devices. The parallel computation

inside a single device also fits with this split, where a

controller handles multiple training processors, e.g., GPUs,

inside a single device. Such a centralized training opera-

tion is ill-suited for online decentralized training in edge

ML, where training data samples are generated and owned

by local devices. Even in offline learning, some private data

samples, e.g., patient records, may not be accessible to the

master, obstructing the training process.
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Fig. 9. Centralized ML with (a) master–device (m-d) split, compared to edge ML with (b) helper–device (h-d) split, (c) device–device (d-d)

split, and (d) model split. The master node in centralized ML has full access to the data set and controls all devices within the blue square,

whereas the helper node in edge ML can only exchange MSIs with each device having access to its local data samples.

In edge ML, one can instead consider a helper–device

(h-d) split, where each device first trains the local model

using its own data samples and then exchanges the trained

local model parameters with a helper that aggregates the

parameters uploaded from multiple devices. Downloading

the aggregated model parameter to each device completes

a single epoch, as shown in Fig. 9(b). A well-known exam-

ple of this h-d split is the structure with a parameter server

that assists the model parameter exchanges [101]–[104].

A natural extension of this is a device–device (d-d) without

any coordinator, as visualized in Fig. 9(c). The communi-

cation among devices can be enabled by a push–pull gossip

algorithm [104] or by following a predefined communica-

tion network topology [105], [106]. In the context of edge

ML, we henceforth focus on the h-d split and the d-d split,

which is to be elaborated in Section V-B.

b) Model split: If an NN model size is larger than the

device memory, the model has to be split into segments

distributed over multiple devices, as shown in Fig. 9(d).

In this case, devices need to exchange intermediate

model parameters during the forward and backward train-

ing operations, requiring sophisticated pipelining of the

processes. In order to minimize the dependence among

the split segments, one can first unroll the original NN

model and construct its dataflow graph [107], [108].

Then, the processing efficiency is maximized by, for exam-

ple, grouping and merging common operations in the for-

ward and backward processes, respectively. In this article,

we mainly focus on the data split architecture, unless

otherwise specified.

2) MSI Exchange: For a given data split, each device

first trains its local model and then exchanges its cur-

rent MSI. In what follows, we exemplify which MSI is

exchanged and how to update the local model based

on the exchanged MSI in centralized ML with the m-d

split, followed by their limitation from the edge ML’s

standpoint.

a) Centralized parallel SGD: This baseline method,

also known as full-synchronous SGD or minibatch SGD

[101]–[104], exchanges the gradients of the training loss

function. To elaborate, every device uploads its local MSI

to the master and subsequently downloads the master’s

global MSI for the next local weight update. Local MSI is

each device’s local gradients, and global MSI is the mean

gradients averaged over all devices. At the kth epoch,

the ith device is fed with a randomly selected group of data

samples, i.e., a minibatch, by the master. Its local weight

w
(i)
k is updated as

w
(i)
k+1 = w

(i)
k − ηḡk (3)

where ḡk = 1/M
�M

j=1 g(w
(j)
k ) is the gradient averaged

over M devices and g(w
(j)
k ) is the jth device’s gradi-

ent. The parameter η is the learning rate that should

decrease with k in order to compensate the weight update

variance induced by the random minibatch sampling

process.

b) Elastic SGD: Instead of exchanging gradients,

the weights of an NN model during training can be

exchanged. A typical example is elastic SGD (ESGD),

where the local MSI is each device’s local model weights,

and the global MSI is the mean weights averaged over all

devices [109]. In addition, ESGD focuses on guaranteeing

the mean weight convergence, i.e., global MSI reliability,

which affects all devices’ local MSIs. To this end, the master

in ESGD updates the global MSI not only using the current

average weight but also based on the previous average

weight. The local weight update of the ith device is given

as

w
(i)
k+1 = (1 − α)w

(i)
k − ηg

�
w

(i)
k

�
+ αŵk (4)

ŵk = (1 − β)ŵk−1 + βw̄k (5)

where w̄k is the average weight at the kth epoch, and

α, β < 1 are constants.

In both centralized parallel SGD (CSGD) and ESGD,

the MSI payload size is proportional to the model size and

is exchanged every epoch for all devices. This becomes

challenging in edge ML where the wireless communication
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cost is not negligible. In addition, their global MSI-based

weight update rule fundamentally relies on an ensembling

technique that is suitable for IID training data sets of

devices. Therefore, it becomes less effective in edge ML

where the user-generated training data samples may be

non-IID. These issues are tackled in Sections V-B and VI-D.

C. Hardware-Model Codesign

Modern computational devices are equipped with multi-

ple types of memory. On-chip cache, such as static random

access memory (SRAM), has the smallest size, yet it is the

fastest, e.g., 24 MB with tens of nanoseconds access latency

[110], [111]. Dynamic random access memory (DRAM)

is larger but slower than SRAM, e.g., 16 GB with hun-

dreds of nanoseconds access latency [111]. Nonvolatile

memory, such as solid-state drive (SSD), is the largest but

the slowest, e.g., 30 TB with several microseconds access

latency [112].

Compressing the size of an NN model makes the

model fit into smaller and faster memory, empow-

ering low-latency inference and training. In addition,

model compression improves energy efficiency, since the

number of memory accesses is the major source of

NN’s energy consumption, which is proportional to the

model size [48], [113]. Finally, in distributed training,

model compression minimizes the MSI payload size,

thereby reducing communication latency. Model compres-

sion needs thus to consider communication and computa-

tion aspects, which is commonly achieved by the following

approaches.

1) Quantization: Training an NN accompanies a large

number of simple arithmetic operations, of which the

intermediate calculations need to be stored in the memory.

Therefore, it is effective to properly reducing the arith-

metic precision of model parameters during the training

process. In this respect, mixed-precision training [114]

is a viable solution, where the precision is downcon-

verted from floating point (FP) 32 to FP 16 during the

forward and backward propagation processes and then

upconverted back to FP 32 when updating the master

copy of model weights. In so doing, memory consumption

during the training is halved while not compromising

accuracy compared to the training with single-precision

FP 32.

2) Pruning: A deep NN commonly has a large amount

of redundant weights and connections. Partially pruning

them helps compress the model while maintaining the

original inference accuracy. In this direction, the simplest

pruning is dropping a set of perceptrons by setting their

final activations to 0, known as DropOut [115], which

removes all the subordinated connections of the pruned

perceptrons. Alternatively, one can only prune the con-

nections by setting the weights to 0, referred to as Drop-

Connect [116]. The pruning can be performed uniformly

randomly until the target accuracy is maintained or in a

Fig. 10. KD that transfers a teacher model’s knowledge to its

student model.

more sophisticated way, e.g., based on the Fisher informa-

tion of the weights [117].

3) Knowledge Distillation: Compared to pruning that

gradually compresses the model size, knowledge distilla-

tion (KD) first constructs an empty NN, referred to as a

student NN, with a target compressed model size and fills

in its weight parameters [118]. KD focuses on training the

student NN, while both student and another pretrained

teacher NN observe an identical data sample, as shown

in Fig. 10. Each NN’s prediction of the sample quantifies its

current knowledge, and KD transfers the knowledge from

the teacher to the student. For the knowledge measure-

ment, instead of the final prediction output, e.g., “dog”

in a dog-or-cat problem, KD utilizes the model output

prior to the final activation, called logit values contain-

ing the distributional information of the prediction, e.g.,

{dog, cat} = {80, 20}.

The key idea of KD is adding a distillation regu-

larizer to the student’s loss function. This regularizer

inserts a random noise into the student’s locally calculated

weight, more distorting the weight calculation when the

teacher’s prediction is more dissimilar to the student’s

prediction that is likely to be wrong. In this respect,

the distillation regularizer is proportional to the knowl-

edge gap between the teacher and the student, and the

gap is commonly measured using cross entropy. Since

cross entropy only accepts 0–1 ranged values, the original

logit values are fed to the distillation regularizer, after

being normalized via a softmax function with tempera-

ture T ≥ 1, i.e., exp(zi/T )/
�

j exp(zj/T ) for the ith

label logit zi. The increase in T smoothens the logit

values, helping more information being transferred from

the teacher particularly when the teacher’s logit distrib-

ution is peaky. Afterward, the student’s final activation

is set as another softmax function without temperature,

i.e., T = 1, which resembles a distilling process, as visual-

ized in Fig. 10. By default, pruning and KD are performed

separately after training completes. The resultant extra

latency and memory usage may not well correspond to

edge ML, calling for different techniques to be discussed in

Section V.
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D. Grand Challenges

From a theoretical standpoint, unraveling the black-box

operations of ML has focused primarily on centralized

ML architectures. Investigating edge ML architectures is,

therefore, a daunting task, notably with the model split,

where the analysis becomes extremely cumbersome due to

the data flow dependence among the split model segments.

Moreover, as each device feeds the data samples that can

be non-IID, most of the analytical frameworks built upon

IID data samples fall short in measuring the reliability of

edge ML systems.

From a technical perspective, the aforementioned

training and model compression approaches cannot be

straightforwardly applicable to edge ML but encounter key

challenges due to devices’ characteristics and their inter-

device communication links, as detailed next.

1) On-Device Constraints:

a) Energy limitation: In a large-scale ML system, each

device is likely to be mobile, equipped with a capacity-

limited battery. Thus, the finite energy needs to be effi-

ciently utilized for the computation process during training

and inference operations, as well as the communication

process. In this respect, one may prefer to slightly decrease

the inference accuracy in order to save the training energy

consumption that is proportional to the model size [48].

Unfortunately, traditional ML architectures cannot dynam-

ically change the model size in real time and are thus

unable to flexibly optimize the energy consumption. Next,

with the helper–device split, the device may want to

offload its computation to the helper with higher computa-

tion power without energy limitation. The bottleneck is the

offloading communication overhead, and optimizing such

a computation–communication tradeoff is a large field of

research in mobile edge computing (MEC) [119]–[122].

b) Memory limitation: The optimal NN model size

for inference is determined by the devices’ memory sizes

of SRAM and DRAM. This may conflict with the optimal

model size for the training operations, which is mainly

determined by the communication overhead induced by

the MSI exchanges. Furthermore, the limited size of the

devices’ storages, such as hard disk drive (HDD) and SSD,

constrains the input data sample sizes as well as the

number of intermediate calculation values stored during

the training phase. Therefore, the training and inference

operations need to be jointly optimized under the con-

straints of communication links, as well as of various types

of devices’ memories, respectively.

c) Privacy guarantees: Some of the data samples

owned by the devices may be privacy-sensitive, e.g.,

medical records. Exchanging MSIs instead of data sam-

ples can partly preserve privacy, yet is still vulnerable to

being reversely traced by eavesdroppers. Extra coding,

such as homomorphic encryption [123], may guarantee

privacy, but its processing delay may exceed the low-

latency deadline. Exchanging redundant information may

hide the private information but unfortunately results in

extra communication delay. Inserting noise has a potential

to protect privacy while playing a role as regularizer,

as long as the noise level is properly adjusted; otherwise,

it decreases the inference accuracy significantly.

2) Communication Bottlenecks:

a) Wireless capacity dynamics: In centralized ML,

the communication links are implicitly assumed to be

wired; for instance, PCI Express between controller-GPU

connections or Ethernet between cloud-device connections

under the master–device split. Compared to this, the com-

munication links in edge ML are mostly capacity-limited

wireless channels. Furthermore, the wireless channel

capacity changes more frequently due to intermittent chan-

nel conditions and network congestion. To cope with this,

the communication payload, i.e., MSI, needs to be properly

compressed. With whom and how often to exchange the

MSIs should be dynamically optimized.

b) Uplink–downlink asymmetry: Wireless cellular

systems follow the helper–device split, where each edge

BS becomes the helper. In this case, due to the device’s

lower transmission power, the uplink communication

from the device to the helper is much slower than the

downlink communication [124]. Such characteristics

are not utilized in the aforementioned MSI exchanging

methods in Section III-B2, where both uplink local MSI

and downlink global MSI are of the same type with the

identical payload size.

IV. T H E O R E T I C A L E N A B L E R S

In this section, we provide theoretical principles to

characterize inference reliability and training dynamics

in edge ML under the aforementioned communication

and on-device constraints. Their related applications and

techniques in the context of edge ML are exemplified in

blue boxes.

A. ML Reliability Guarantees

Traditional ML focuses heavily on minimizing the aver-

age loss and/or average training latency. These approaches

omit the credibility intervals of the calculations and there-

fore are insufficient for supporting URLLC applications.

Instead, it is mandatory to evaluate the loss and latency

that guarantee a target reliability. With this end, we first

focus on the connection between inference reliability and

training latency, followed by the relationship between

communication latency and reliability during the training

process for a given end application.

The training latency is determined primarily by the

number of required training data samples, often referred

to as sample complexity, until reaching a target inference

accuracy with a target inference reliability. Unfortunately,

traditional NN-based ML only outputs the target inference

accuracy but not the target inference reliability. This miss-

ing block can be addressed by the Bayesian learning the-

ory [125] and the probably approximately correct (PAC)

framework [126].
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1) Bayesian Learning: In contrast to traditional ML

approaches, an NN is described not directly by the weights

of the NN but by their stochastic distribution. The weight

distributions before and after the training process are

called as prior and posterior distributions, respectively. The

prior distribution can be initialized by an arbitrary distrib-

ution or by accounting for the training data characteristics.

For a given prior distribution, training an NN is recast

as estimating the posterior distribution by maximizing

a likelihood between the training data samples and the

weights, as per the Bayes theorem

Pr(w | Dn)� �� �
posterior

= Pr(w)� �� �
prior

·Pr(Dn | w)� �� �
likelihood

/Pr(Dn) (6)

where w is the set of NN’s weights and Dn ⊂ D is the

set of training data samples. With the estimated posterior

distribution, the interference with a set D′ ⊂ D\Dn of test

data samples is described as

Pr(y | D′)� �� �
inference

=

�
Pr(y | w,D′)Pr(w | D′)� �� �

posterior

dw. (7)

Calculating this by averaging over the posterior distrib-

ution is cumbersome. Instead, one can approximate the

posterior distribution with its generated weights, e.g., via

Markov chain Monte Carlo (MCMC) methods.

Bayesian Learning Techniques:

(a) Gaussian Process (GP): Gaussian-distributed priors

with infinitely many perceptrons in a single hid-

den layer result in GP via the central limit theorem

[127]. GP enables regression using the second-order

statistics of Gaussian processes, thereby achieving

low complexity in terms of sample and computation.

GP has been used for controlling robots [128] and

Google’s Internet balloons [129].

(b) Stochastic Gradient Langevin Dynamics (SGLD):

SGLD is the mini-batched Bayesian learning where

the posterior distribution is approximated as the

weights being generated via a form of MCMC

[130], i.e., Langevin dynamics given as ∆wk =

(ηk/2)(∇ log Pr(wk) + (N/n)
�n

i=1 log Pr(yt | wt) +

εt for εt ∼ N (0, ηt). This approximates SGD’s

weight update dynamics with an additional noise εt.

Inserting εt is useful not only for reducing the general-

ization error, but also for connecting SGD with the dif-

ferential privacy framework [131] (to be elaborated

in Section IV-A and IV-C) and with Entropy SGD [97]

(Section V-A).

2) PAC Framework: Inference uncertainty mainly comes

from the unseen data samples at the training phase. To

quantify this, for n = |Dn| training data samples, one can

compare the trained NN’s empirical average training loss,

L̂(w) = (1/n)
�n

i=1 ℓ(yi, w), with the expected inference

loss, L(w) = Eµ[ℓ(y,w)], averaged over all seen/unseen

data samples following a distribution µ. The PAC frame-

work focuses on the bound of the difference between L(w)

and L̂(w), i.e., generalization error of the approximation–

generalization tradeoff shown in Fig. 6(b), such that

Pr
	
L(w) − L̂(w) ≤ GE(µ, ε)



≥ 1 − ε (8)

where GE(µ, ε) is the achievable generalization error with

probability at least 1 − ε. All terms in (8) depend on the

NN’s hypothesis h ∈ H with the entire hypothesis space

H [132]. Treating an NN as an approximated function in

regression, H implies the set of functions that the NN is

allowed to select as being the solution [78]. When H is

finite, applying Hoeffding’s inequality and union bound,

one can derive the GE as
�

(log |H| + log(1/ε))/(2 n).

Here, n is the sample complexity to satisfy a target gen-

eralization error with a target reliability 1 − ε.

PAC Framework Applications:

(a) PAC-VC Bound: If the hypothesis space H is infinite,

e.g., in deep NNs or non-parametric models such

as GP, one can derive the GE using the Vapnik-

Chervonenkis (VC) dimension VC(H). This yields the

PAC-VC bound’s GE
�

(VC(H) + log(4/ε))/n. Here,

VC(H) is simply calculated as the number of NN’s

parameters, and so is the PAC-VC bound.

(b) PAC-Rademacher Bound: The PAC-VC bound is quite

loose in general, since its VC dimension is deter-

mined solely by the NN regardless of the training

dataset. To rectify this, one can measure H using

the Rademacher compexity RadD(H) that depends

not only on the NN model but also on the training

dataset, yielding the GE of the PAC-Rademancher

bound, given as RadD(H) +
�

log(1/ε)/n.

3) PAC-Bayesian Framework: In the previous PAC frame-

work, PAC-VC bounds become accurate only in the case of

as many training data as model parameters, which is infea-

sible particularly for deep NNs [133]. PAC-Rademancher

bounds are free from the said limitation, yet become vacu-

ous for modern NN architectures under ReLU activations

with an SGD training process [134]. Utilizing Bayesian

learning methods, one can resolve these issues, resulting

in the following PAC-Bayes bound [135].

Pr

�
L(q) − L̂(q) ≤



KL(q||p) + log(1/ε)

2n

�
≥ 1 − ε (9)

where L(q) and L(q̂) denote the empirical and expected

average loss values for a posterior q, respectively. In (9),

the GE is a function of the Kullback–Leibler (KL)

divergence of q and a prior p, which is also called as the

complexity required for mapping p to q. It is worth noting

that the difference between L(q) and L̂(q) can be measured

using their KL divergence, yielding the refined version in
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[136] as stated in the following:

Pr

�
KL
	
L̂(q)‖L(q)



≤

1

n

�
KL(q||p)+log

n+1

ε

��
≥ 1 − ε.

(10)

Both (9) and (10) are derived under an IID training

data set, which can be extended to a non-IID data set as

described in the following applications.

PAC-Bayes Framework Applications:

(a) Chromatic PAC-Bayes Bound for Non-IID Data: When

the dependency in a training dataset Dn is modeled

as a dependency matrix Γ(Dn) using fractional covers

in graph theory, the PAC-Bayes bound becomes

Pr

�
KL
	
L̂(q)||L(q)



≤

χ∗

n

�
KL(q||p)+log

n/χ∗+1

ε

��
≥1−ε

where χ∗ is the fractional chromatic number of the

dependency matrix Γ(Dn), defined as the minimum

weight over all proper exact fractional covers of all

vertices in Γ(Dn). The fractional chromatic number

can be obtained using linear programming, and its

closed form is available if Γ(Dn) belongs to some

special classes of graphs [137]. The definition of

Γ(Dn) is detailed in [138].

(b) Collective Stable PAC-Bayes Bound for Non-IID Data:

Consider Dn is divided into m subsets. When the

dependency among m subsets is modeled using the

collective stability framework, the PAC-Bayes bound

is given as

Pr

�
L(q) − L̂(q) ≤ 2β||Γ||∞



KL(q||p) + log(2/ε)

2nm

�
≥ 1 − ε

where β is the Lipschitz constant under the Hamming

distance between the training inputs. The term Γ

is the training dataset’s dependency matrix whose

definition is elaborated in [139].

(c) PAC-Bayes Bound With Data-Dependent Priors: The

Bayesian prior p of a PAC-Bayes bound should be

chosen independently of the training dataset Dn, yet

can still depend on the distribution of the dataset.

Utilizing this idea, it is possible to characterize the

dependency between Dn and p via the differential

privacy framework [140], yielding the following PAC-

Bayes bound

Pr

�
KL
	
L̂(q)||L(q)



≤

1

n
[KL(q||p)+2c(ε, ǫ)]

�
≥1−ε

where c(ε, ǫ) = max
�
log(3/ε), nǫ2

�
, and ǫ

implies that the data-dependent prior p ensures

ǫ-differential privacy whose definition is elaborated in

Section IV-B.

4) Meta Distribution: In both PAC and PAC-Bayes frame-

works, the obtained generalization error bounds hold for

any n number of selected training samples, as they are

averaged over the selections of the training data set. This is

suitable for centralized ML where the training minibatched

data samples are frequently renewed. For edge ML, such a

scenario may not be feasible due to the communication

overhead and/or privacy guarantees. In this case, the meta

distribution enables to capture the generalization error

bound, by accounting for a given set Dn of the training

samples as follows:

Pr
�
Pr
	
L(D)−L̂(Dn)≤GE(µn, ε) | Dn



≥1−ε

�
≥1−δ

(11)

where µn is the distribution of the data samples in Dn

and δ is the target generalization error outage probability

for all training samples. In order not to complicate the

calculation, one can approximate the meta distribution

with the beta distribution, as proposed in [141]. This is

the second-order moment approximation and thus only

requires to calculate the mean and variance of the inner-

most probability in (11).

Meta Distribution Applications:

(a) Signal-to-Interference-Ratio (SIR) Meta Distribution:

The idea of meta distributions was originally pro-

posed in the context of stochastic geometry [141].

It focuses on the meta distribution of the SIR coverage

probability for a given large-scale network topology.

One can thereby quantify, for instance, the fraction

of receivers that guarantees a target wireless commu-

nication reliability, which in passing is also useful for

the latency reliability analysis in large-scale edge ML

design.

(b) Probably Correct Reliability (PCR): Focusing on esti-

mating wireless communication channels, PCR is the

meta distribution of outage capacity for a given set

of channel observations [142]. This reliability analy-

sis framework is promising in the context of MLC

towards enabling URLLC.

5) Risk Management Framework: The above-mentioned

reliability bounds are determined by the difference

between the biased loss after training and the ideally aver-

aged loss with the entire data samples, i.e., generalization

error. Instead, one may inquire whether the biased loss

reliably achieves a target loss level or not. The right tail

of the biased loss distribution can describe this, which has

been investigated in mathematical finance using value-at-

risk (VaR) and conditional-value-at-risk (CVaR) [143]. VaR

focuses on the tail’s starting point, hereafter referred to as

the tail threshold, specifying the minimum target loss x
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that guarantees a target reliability 1 − ε as follows:

VaR1−ε(L̂) = arg min
x

�
Pr

	
L̂ ≤ x



≥ 1 − ε

�
. (12)

VaR is often defined by a nonconvex and/or discontin-

uous loss function, which requires complicated calcula-

tions. Even with such a loss function, CVaR avoids this

complication, by ensuring its monotonicity. To this end,

CVaR considers the tail’s area, providing the expectation

of the loss exceedances with the tail threshold set as the

VaR

CVaR1−ε(L̂) = E

�
L̂ | L̂ > VaR1−ε(L̂)

�
. (13)

Risk Management Framework Applications:

(a) Distributional RL: Traditional RL is trained so as

to approximate the expected cumulative return at

the current state x and action a, e.g., Q-function

Q(x, a) = E[R(x, a) + γQ(x′, a′)] for the reward

R(x, a) and a discount factor γ when (x, a) → (x′, a′).

Instead, one can learn to approximate the distribution

of Z = R(x, a) + γQ(x′, a′), known as the value dis-

tribution. Such distributional RL outperforms state-

of-the-art RL methods including deep Q-learning and

asynchronous actor-critic RL [144], [145].

(b) Risk-Sensitive RL: Maximizing the expected return

in RL is insufficient for robust control warranting

a predefined minimum return with a target proba-

bility. The mean-variance approach is the simplest

solution that additionally minimizes the variance of

returns while maximizing the expected return [146].

A better approach is to maximize the (1 − ε)-worst

return, i.e., CVAR, by observing extra samples as

done in [147]. Furthermore, one can utilize the value

distribution of distributional RL, thereby directly com-

puting and maximizing CVaR [148].

6) Extreme Value Theory: The right tail of the biased

loss distribution can also be described in the context of

two fundamental theorems in an extreme value theory

(EVT) [149]. To elaborate, for any distribution of the

biased loss, the Pickands–Balkema–de Haan theorem states

that the distribution of its loss exceedances with the infi-

nitely large tail threshold θ converges to the generalized

Pareto distribution (GPD), that is

Pr(θ < L̂(Dn) ≤ x)
θ→∞
= 1 − (1 + ζx/σ)−1/ζ� �� �

GPD(x,ζ)

(14)

which becomes a Pareto (if ζ < 0), an exponential (ζ =

0), or a uniform distribution (ζ = −1). Next, focusing on

the training data set Dn ⊂ D, one may need to guarantee

the reliability even for the worst case loss with respect

to a number K of the IID training data set selections

{L̂(Dn,k)}k≤K in centralized ML or to K devices in edge

ML. In this case, the Fisher–Tippett–Gnedenko theorem

of EVT is applicable. The theorem describes that the

distribution of the maximum loss out of the loss values

obtained by an infinitely large number of the training data

set selections converges to the generalized extreme value

(GEV) distribution, that is

Pr
	
L̂K(Dn) ≤ x



K→∞

= eGPD(x−m,ζ)−1� �� �
GEV(x,ζ)

(15)

where L̂K(Dn) = max{L̂(Dn,k)}k≤K and m is the mean of

{L̂(Dn,k)}k≤K . The GEV becomes a Gumbel (if ζ = 0),

a Fréchet (ζ > 0), or a reversed Weibull distribution

(ζ < 0). The relationship between GEV and GPD is

obtained trivially by applying Taylor’s expansion to (15) for

θ < x → ∞.

EVT Applications:

(a) Robust Multiclass Classification: Each data sample in

multiclass classification has one ground-truth label

out of multiple labels. In this case, the robustness is

defined as the maximum noise (both in attributes and

labels) that prevents adversarial inputs. To evaluate

the upper bound for the noise, the maximal gradi-

ents of the classifier functions for each label need to

be evaluated over all training samples. Alternatively,

using EVT, one can evaluate the maximum gradients

using only a few training samples [150].

(b) Kernel-Free Open-Set Recognition: Supervised classifi-

cation in open sets with unknown number of classes

has a challenge of classifying inputs belonging to

unseen classes at training time due to under sampling.

The solution is a kernel-free recognition technique

known as extreme value machine [151]. Therein, EVT

is used to characterize the decision boundaries of

classes in a probabilistic manner that provide an

accurate and efficient data partition.

7) Optimal Transport Theory: Minimizing the KL diver-

gence KL(pY ||pX) between two distributions pX and pY

is ubiquitous in the NN training and inference processes.

For training, it is identical to maximizing the likelihood

in Bayesian learning. It also captures training a genera-

tive model such as GAN whose loss function is defined

using the KL divergence. For inference, it minimizes the

variance term in the PAC-Bayesian bound. The caveat is

that the KL divergence becomes infinite if two distributions

have nonoverlapping supports, hindering the reliability of

training and inference processes. To resolve this, as shown

in Fig. 11, a naïve approach is to insert noise into the

distributions so as to secure a common range of support,

which, however, compromises accuracy. Instead, replac-

ing the KL divergence minimization with calculating the

Wasserstein distance in optimal transport (OT) [152] has

recently become a promising solution, which yields a finite

value even with nonoverlapping distributions. The simplest

case is calculating the Wasserstein-1 distance W (pY ||pX),
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Fig. 11. OT, compared to regularized distributions.

given as

W (pY ||pX) = inf
γ∈ΠX,Y

EX,Y ∼γ [||X − Y ||] . (16)

This implies the minimum cost to transport the probability

mass from X to Y so that pX equals to pY , as shown

in Fig. 11. The transported mass amount is characterized

by the joint distribution γ of X and Y . The constraint

γ ∈ ΠX,Y ensures that such an optimal transportation γ∗

has its marginal distributions pX and pY . The calculation of

W (pX||pY ) by deriving γ∗ is challenging, thus commonly

relying on approximation and algorithmic techniques.

OT Applications:

(a) Wasserstein GAN (WGAN): The training process of

WGAN [80] is equivalent to calculating the Wasser-

stein distance. For its easier calculation, the RHS

of (16) is replaced with its dual formulation

sup||f ||L≤1 EX∼PX
[f(X)] + EY ∼PY

[f(Y )] by apply-

ing the Kantorovich-Rubinstein duality. This implies

a regression problem with a 1-Lipshitz function f ,

which can be solved via supervised learning.

(b) Sinkhorn Divergence: Instead of the said dual

approach, [153] tackles the primal formulation

in (16) with an entropic approximation and the

Sinkhorn algorithm [154]. In this approach, the RHS

of (16) is recast as infM∈M Tr(MCT ) with the cost

matrix C. This is a matching problem of the matrix M

given by mini-batched X and Y , which can be solved

via the parallelized Sinkhorn algorithm.

8) Rényi Entropy: The IB in Section III-A2 describes the

information flow across the consecutive L layers of an

NN during the training process. This can be achieved by

extending a single bottleneck X̂ in (2) into L bottlenecks

{Xl} values [89]. When the bottlenecks are discrete ran-

dom variables, the flow dynamics are described by the

discrete Shannon entropy [155]. By contrast, when the

bottlenecks are continuous random variables, the dynam-

ics are expressed using continuous entropy, i.e., differential

entropy, which unfortunately results in intractable solu-

tions, except when the input X and the output Y are jointly

Gaussian [156]. In order to derive a tractable solution, one

can leverage the Rényi entropy

Hα(X) = log2

�
n�

i=1

pi
α

�Æ
(1 − α) (17)

where its limiting case becomes the Shannon entropy

H1(X) = −
�n

i=1 pi log2 pi when α approaches 1. With

its matrix version expression, the IB formulation with L

layers is given as

min
f

L�
i=1

Iα(X; Xl) + βH(Y, f(X)) (18)

where f is a function that the NN tries to learn and

H(Y, f(X)) is the cross entropy between Y and f(X).

The term Iα(X; Xl) is the matrix-based Rényi mutual

information that equals Iα(X; Xl) = Sα(X) + Sα(Xl) −

Sα(X, Xl). Here, the first term is the matrix-based Rényi

entropy that equals Sα(X) = log2 Tr(Xα)/(1−α). The last

term is the matrix-based joint Rényi entropy that is given

by Sα(X, Xl) = Sα(X ◦ Xl/Tr(X ◦ Xl)), where ◦ is the

Hadamard product.

B. Latency Reduction and Scalability

Enhancement

The performance of data-driven ML approaches rests on

how many data samples are utilized. In edge ML in which

data samples are generated by the devices, the problem

boils down to how many devices can be federated. Provid-

ing a privacy-preserving mechanism during their federa-

tion is key to increasing the range of federation, which can

be addressed through the lens of DP [157], [158].

A large range of federation brings to the fore the subse-

quent question, how to cope with the MSI communication

costs of a large number of edge ML devices whose NN

model sizes may exceed the wireless channel capacity.

In this respect, a rate–distortion theory establishes a guide-

line for compressing MSI by balancing the compression

rate and its resulting distortion [91], [159]. Furthermore,

in a multiagent RL (MARL) setting, mean-field game

(MFG) theory [160], [161] provides an elegant method

making full use of local computations, as detailed next.

1) Differential Privacy: With local data sets owned by

devices, distributed training operations should preserve

the data privacy. To this end, one can apply an auxiliary

mechanism, such that its output cannot tell whether a

particular local data set is participated in the training

operations, thereby preserving data privacy. DP formalizes

this idea while quantifying the privacy loss of a mechanism

M(·) and its target threshold ǫ as follows:

log

�
Pr (M(Di) ∈ S)

Pr (M(Dj) ∈ S)

�
� �� �

privacy loss

≤ ǫ (19)
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which holds for any subsets Di and Dj with i �= j out of

the entire data set D. When the aforementioned constraint

is satisfied, the mechanism achieves ǫ-DP, in which an

adversary can only differentiate whether the output is from

Di or Dj , with an uncertainty inversely proportional to ǫ.

For SGD, this is achieved by simply inserting a Gaussian

noise into each data input, i.e., the Gaussian mechanism

[158]. For Bayesian learning, one can sample the weights

from the noise inserted posterior distribution, i.e., the

exponential mechanism [157], achieving the ǫ-DP.

DP Application:

(a) DP Regularizer: The cost for achieving ǫ-differential

privacy is the increase in noise. This is not always

a foe but can be a friend. In fact, inserting noise is

treated as adding a regularizer. Thus, so long as the

noise level is appropriately adjusted, one can improve

both accuracy and privacy, as done in [162].

2) Rate–Distortion Theory: Quantizing MSI reduces

latency by decreasing the communication payload size,

at the cost of compromising MSI accuracy due to the

distortion induced by quantization. Balancing latency and

accuracy can, therefore, be achieved by optimizing the

number ℓ of quantization levels. The rate–distortion theory

characterizes the optimum ℓ under a given channel condi-

tion, by stating that the transmitting rate R(D) bits/sample

with distortion D should not exceed a given wireless chan-

nel capacity C bits/sample, i.e., R(D) ≤ C. To elaborate,

when the MSI is treated as an IID Gaussian source with

variance σ2, the Shannon distortion–rate function [91] is

given as

R(D) = 1/2 · log2(σ
2/D). (20)

Using a uniform scalar quantizer with a sufficiently small

step size ∆, the mean squared error distortion is approx-

imated as D ≈ ∆2/12 [159]. Next, assuming that the

source deviation σ equals the difference between the maxi-

mum and minimum quantized values, we obtain the quan-

tization levels ℓ = σ/∆. Applying these two results to (20)

thereby leads to the following bound:

C ≥ R(D) ≈ log2(ℓ) + log2(12)/2. (21)

This shows the upper bound of quantization levels, which

is useful when transmitting the MSI as much as possible

for a given channel condition. Since the Gaussian source

assumption yields the lowest rate, the result provides the

worst case quantizer design guideline in practice.

Rate-Distortion Theory Applications:

(a) Regularization via Quantization: If one is willing to

minimize the MSI communication latency, the lower

bound of quantization levels is needed. In fact the

distortion can contribute positively to the regulariza-

tion in edge ML [163]. The MSI can thus be distorted

until reaching an optimal regularizing noise level.

This maximum distortion yields the lower bound.

(b) IB Under KL Divergence: The formulation (2) in

IB is a special case for obtaining the rate-

distortion function R(D) with a distortion mea-

sure given as a KL divergence [164]. Namely,

(2) originates from R(D) = minp(x̂;x) I(X; X̂) s.t.�
x,x̂ p(x)p(x̂|x)D(x|x̂)D, where D(x|x̂) is a distor-

tion measure between the original input x and

its compressed information x̂. Then, its Lagrangian

relaxed formulation with the distortion measure set

as the KL divergence between p(y|x) and p(y|x̂)

becomes (2).

3) Mean-Field Control Framework: In MARL, N devices

are strategically interacting by individually taking actions

without a central coordinator, formulated as an N -player

game. In this game, both computational complexity and

the number of communication rounds across devices

increase exponentially with N , which can be remedied at

using the MFG theory [160].

To illustrate, consider a three-player game with devices

A, B, C ∈ P . Device A with a given state first takes

an action that affects the states of the other devices,

i.e., device A interacting with P\A. Likewise, device B

interacts with P\B, while device C interacts with P\C.

All these problems are coupled, and calculating their Nash

equilibrium induces the undesirable complexity. However,

if N becomes extremely large, in the aforementioned

example, it becomes P\A ≈ P\B ≈ P\C ≈ P , since

each action is likely to affect a negligibly small fraction of

the entire population. This implies that each device plays a

two-player game with a virtual device, i.e., the entire pop-

ulation, which is called an MFG. As illustrated in Fig. 12,

the originally coupled N -player game thereby becomes a

number N of individual device’s two-player games that can

be locally solved for a given state of the entire population,

referred to as the MF distribution. The MF distribution is

obtained by solving the Fokker–Planck–Kolmogorov (FPK)

equation of a continuous Markov process [161]. For the

given MF distribution, the optimal action of each device is

then taken by solving the Hamilton–Jacobi–Bellman (HJB)

equation, a continuous version of the Bellman backward

equation in MDP [161]. An MFG theoretic communication-

efficient UAV control example will be elaborated in

Section VI-G.

MF Control Framework Applications:

(a) MFG in Wireless Systems: With the aforementioned

wind dynamics, the work [165] investigated the UAV

mobility control that avoids inter-UAV collisions while

maximizing their air-to-ground communication per-

formance. With the wireless channel dynamics, MFG

has shown its effectiveness in transmission power

control and resource management particularly under

ultra-dense cellular networks (UDNs) [166]. More-

over, the spatio-temporal content popularity dynamics

were modeled in [167], and an optimal file caching

strategy was found using MFG.
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Fig. 12. MFG where each device locally plays a two-player game

with a virtual device, i.e., the entire population whose state is given

by the MF distribution.

(b) MF Control in ML: With the feed forward dynamics

of the deep NN training process, the optimal weights

are determined by an HJB that can be solved by the

Euler approximation method [168], to be detailed

in Section V-D2. Note that all the said examples

assume that the initial state of the population is

given by a Gaussian distribution that is not always

realistic. To fill this gap, in the context of large-scale

MARL, the population dynamics of the MFG has been

inferred using an inverse RL method in [169].

V. T E C H N I C A L E N A B L E R S

In this section, we propose technical solutions that enable

low-latency decentralized training as well as reliable and

accurate decentralized inference under communication

and on-device constraints. Their relationships with the the-

oretical principles presented in Section III are elaborated

upon in yellow boxes.

A. ML Reliability Improvement

Generalization errors can be reduced by designing an

NN training algorithm for finding flat minima in the EL,

as exemplified by entropy SGD [97]. For multiple different

tasks, one can reduce the generalization errors by training

NNs based on task correlations [170], [171]. On another

level, the training process can become robust against

malicious and/or malfunctioning devices by the aid of

blockchain technologies [172], as elaborated next.

1) Entropy SGD: The goal of entropy SGD is to obtain

a flat minimum solution [97]. To this end, for a given

original loss function L(w), entropy SGD minimizes its

modified loss function, referred to as local entropy, given

as

u(wk, γ) = − log Eg

�
e−(L(wk)+g)

�
(22)

where g follows a Gaussian distribution with variance γ.

The local entropy loss is designed by Gaussian sam-

pling from the L(w)’s Gibbs entropy that is proportional

to the number of local maxima within γ in the EL.

The local entropy can be minimized using an MCMC

algorithm [173].

Entropy SGD Related Theories:

(a) Serial-to-Parallel Conversion via SGLD: It is remark-

able that entropy SGD for a single device is identical

to elastic SGD operated with multiple devices, under

an ergodicity condition ∇2 L(w) + 1/γI ≻ 0. Edge

ML can hence be analyzed by reusing most of the

theoretical principles that were originally applicable

for a single device. The said conversion is validated

by first exploiting the Hope-Cole transformation [97],

[173] that shows the local entropy loss of entropy

SGD is the solution of a viscous Hamilton–Jacobi

partial differential equation (PDE). Solving this PDE

using a homogenization technique [97], [173] yields

the loss dynamics that is identical to the elastic SGD’s

loss dynamics.

(b) PAC-Bayes Bound for Entropy SGD: A recent work

[131] verifies that entropy SGD works by optimizing

the Bayesian prior, i.e. the distribution of wk + g.

This clarifies the difficulty of deriving the PAC-Bayes

bound for entropy SGD, as the prior of the original

PAC-Bayes framework is constrained to be chosen

independently of the training data. The work [131]

resolves this problem, by first adding an extra random

noise to entropy SGD’s weight updates, as done in

SGLD [130]. The resulting algorithm is referred to

as entropy SGLD that is interpreted as a mechanism

achieving ǫ-differential privacy. Then, utilizing the

PAC-Bayes with the data-dependent prior satisfying

the ǫ-differentially privacy (see Section IV-A) yields

the PAC-Bayes bound for entropy SGD, thereby quan-

tifying its generalization capability.

2) Task-Aware Training: Generalization errors result not

only from unseen dispersed samples (see Section IV-A)

but also from distinct tasks of devices. For a given set

of tasks, multitask learning (MTL) [170], [174] trains an

NN so as to ensure high accuracy for multiple tasks by

inserting a task correlation regularizer into the original

loss function [174]. When the task correlation is unknown,

the correlation can also be trained by alternating: 1) opti-

mizing the NN weights while fixing the correlation matrix

and 2) optimizing the correlation matrix while fixing the

NN weights [170]. On the other hand, if the tasks are

not given a priori, MTL is ill-suited because task correla-

tions cannot be specified. Alternatively, meta learning is

still effective in this case, which aims to train a meta-

learner that is capable of quickly learning various types

of tasks [171]. This training objective can be achieved by

randomly sampling the loss function out of all possible loss

functions corresponding to different known tasks, thereby

guaranteeing robustness against unseen tasks.

3) Block-Chained Training: In edge ML, malicious

devices may participate and disrupt the training process.

Furthermore, selfish devices may not contribute to the

local training procedures while only receiving the global
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Fig. 13. Operational structure of FL.

training results computed by the other devices. Keeping

a record of the training process using distributed ledger

technology (DLT) is useful to mitigate these problems.

For example, when exchanging local MSIs, each device

cross-validates the MSIs and stores the accepted MSIs in

its local distributed ledger. The locally distributed ledger

is synchronized with the other devices’ ledgers via DLT,

such as a blockchain algorithm [172] or a directed acyclic

graph (DAG)-based Byzantine fault tolerance (BFT) algo-

rithm [175], [176]. Thereby, only the legitimate local

MSIs contribute to the global MSI calculation, ensuring the

reliability of the training process.

B. Communication-Aware Latency Reduction

In what follows, we introduce and propose MSI

exchange schemes to reduce the communication latency

during distributed training operations. We hereafter focus

on the h-d architectural split where training data samples

are generated by devices unless otherwise specified.

1) Periodic Model MSI Exchange:

a) Federated averaging: Too frequent MSI exchanges in

CSGD incur significant communication overhead. In order

to mitigate this, the devices in federated averaging (FAvg)

exchange the local MSIs at an interval of τ epochs, as

illustrated in Fig. 13 [28]. Following the notations defined

in Section III-B2, at the kth epoch, the ith device’s weight

w
(i)
k is described as follows:

w
(i)
k+1 =

�
w

(i)
k − ηḡk, if k mod τ = 0

w
(i)
k − ηg

�
w

(i)
k

�
, otherwise.

(23)

Similar to CSGD, the learning rate η needs to decrease with

k in order to reduce the weight update variance induced by

the randomness of the user-generated training samples.

b) Federated SVRG: Allowing a constant learning rate

can reduce the training latency compared to FAvg whose

learning rate decreases with time. As a variant of FAvg,

federated stochastic variance reduced gradient (FSVRG)

applies the SVRG [177] that minimizes the weight update

variance by additionally utilizing the difference between

the local and global gradients, allowing a constant learning

rate [30]. Besides, similar to ESGD, FSVRG keeps track of

the global MSI and updates it based on the distributed

approximate Newton (DANE) [178] that also ensures a

constant learning rate. This yields the following local and

global weight update rules:

w
(i)
k+1 =

�
w

(i)
k −η

�
ḡ(ŵk)+g

�
w

(i)
k

�
−g(ŵk)

�
, if k mod τ =0

w
(i)
k −ηg(w

(i)
k ), otherwise

(24)

where

ŵk = ŵk−1 +
M�

i=1

ni

n

�
w

(i)
k − ŵk−1

�
, if k mod τ =0.

ḡ(ŵk) = 1/M
�M

i=1 g(ŵ
(i)
k ). The notation ni is the local

training data set size, and n is the size of the entire

devices’ aggregate data set, i.e., global data set. Like FAvg,

FSVRG applies the periodic MSI exchanges at an interval

of τ , reducing the communication overhead. Nonetheless,

FSVRG requires extra MSI weight exchanges, in addition to

the gradients of FAvg. Thus, the resulting communication

payload size is doubled from FAvg.

Both FAvg and FSVRG are often referred to as FL

that works under non-IID training data sets in prac-

tice [28], [30], though the accuracy is degraded com-

pared to the best case performance under the IID data

sets [179], [180].

c) Codistillation: While keeping communication over-

head the same as in FAvg, codistillation (CD) has the

potential to obtain a more accurate model by exploiting

extra computation and memory resources during the train-

ing phase [181]. In fact, all the aforementioned train-

ing methods directly apply the globally averaged MSI

to the local MSI update calculation via an ensembling

method. Alternatively, one may focus on the fact that after

downloading the global average weight MSI evaluated

by exchanging local weight MSI, each device can have

two separate NN models: its local model and the globally

averaged model.1 As shown in Fig. 14, in the next local

weight update, the device feeds a training data sample to

both models. Then, from the KD point of view, the global

model is interpreted as a teacher whose inference output,

i.e., knowledge, can be transferred to a student, i.e., the

local model. This is enabled by the following weight update

rule:

w
(i)
k+1 =

�
w

(i)
k −η

�
g
�
w

(i)
k

�
+ψ
�
F

(i)
k , F̂

(i)
k

��
, if k mod τ = 0

w
(i)
k − ηg

�
w

(i)
k

�
, otherwise.

(25)

1The original CD in [181] considers that each device has: 1) its local
model and 2) all copies of the other devices’ models, which may incur
huge communication overhead. Instead, we replace 2) with the globally
averaged model, without loss of generality.
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Fig. 14. Operational structure of CD.

The local model’s term F
(i)
k is a set of normalized log-

its using a modified softmax function with a tempera-

ture hyperparameter T , henceforth denoted as a logit

vector. To illustrate, for the ℓth label’s logit xℓ with

L labels, the normalized value equals softmax(xℓ) =

exp(xℓ/T )/
�L

j=1 exp(xj/T ). Adjusting the temperature T

helps the logits to be closely mapped into the per-label

inference probabilities, such that the normalized values

become identical across all labels or the maximum logit for

T → ∞ or 0, respectively. Likewise, the global model’s logit

vector is given as F̂ (i). With these local and global logit

vectors, the distillation regularizer ψ(F
(i)
k , F̂

(i)
k ) is given

as the gradient of their mean squared error [182] or of

the cross entropy [118], [181]. As such, when the local

model’s output F
(i)
k is close to the global model’s output

F̂
(i)
k , i.e., small distillation regularizer, the local weight is

determined mostly by the locally calculated gradient and

otherwise perturbed in order not to follow the local bias.

In CD, due to the periodic communication interval τ , also

known as a checkpoint interval, the communication over-

head becomes as small as FAvg. Its downside is consuming

extra memory and computation resources for separately

storing the global model and performing inference using

the global model.

2) Output MSI Exchange:

a) Federated distillation: Exchanging the model para-

meter MSI, i.e., weights and/or gradients, may induce

large communication payload size particularly for a deep

NN, since the number of parameters is proportional to

the model size. To resolve this, we propose federated

distillation (FD) that exchanges the model output MSI,

i.e., normalized logits whose payload size depends only

on the output dimension, i.e., the number of labels [180].

The weight update rule is then implemented using KD. The

key challenge is that a set of normalized logits, henceforth

denoted as a logit vector, is associated with its input

training data sample. Therefore, to operate KD between

the exchanged global average logit vector and the local

model’s logit, both logit vectors should be evaluated using

an identical training data sample. Unfortunately, synchro-

nous logit vector exchanges as many as the training data

Fig. 15. Operational structure of FD.

set size brings about significant memory and communica-

tion costs. Such communication cost may even exceed the

model parameter MSI payload, which is the reason why CD

resorts to parameter MSI exchanges.

To rectify this, as illustrated in Fig. 15, each device in

FD exchanges a set of mean logits per label, each of which

is locally averaged over epochs until a checkpoint. This

local average logit MSI is associated not with individual

data samples but with the accumulated training data set,

enabling periodic local MSI exchanges. The exchanged

local MSIs are then averaged across devices, yielding a

set of global mean logits per label, i.e., global average

logit MSI. At the next local weight update phase, each

device selects distillation regularizers that are synchronous

with its training data samples. This weight update rule is

represented as follows:

w
(i)
k+1 =

�
w

(i)
k −η

�
g
�
w

(i)
k

�
+ψ

�
F̄

(i)
k,ℓ, F̆

(i)
k,ℓ

��
, if k mod τ = 0

w
(i)
k −ηg

�
w

(i)
k

�
, otherwise

(26)

where F̄
(i)
k,ℓ is the local average logit vector when the

training sample belongs to the ℓth ground-truth label.

The global average logit vector equals F̆
(i)
k,ℓ =

�
j 
=i F̄

(j)
k /

(M − 1). The exchanged local average logit MSI is the

set of per-label local average logit vector for all labels,

i.e., {F̄ (i)
k,ℓ}

L
ℓ=1, so does the global average logit MSI

{F̆ (i)
k,ℓ}

L
ℓ=1.

The performance of FD can further be improved with

a slight modification. In fact, model output accuracy

increases as training progresses. Thus, it is better to use

a local weighted average logit MSI, where the weight

increases with time. Alternatively, one can implement

FD by only exchanging the most mature knowledge. For

instance, consider that devices share a knowledge test data

set a priori. Just before each checkpoint, using the test set,

each device measures its latest inference knowledge. Then,

FD is enabled by exchanging local checkpoint logit MSI,

a set of local logit vectors obtained by the test data set,

each of which corresponds to a single ground-truth label,

exchanging the local MSI.

b) Federated Jacobian distillation: Model input–output

Jacobian matching is interpreted as a KD operation that
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inserts noise into logits [185]. Since noisy logit exchanges

improve the KD performance when the noise level is

properly adjusted [163], we expect exchanging Jacobian

matrices to improve FD. With this motivation, the weight

update rule of FJD is given as

w
(i)
k+1 =

�
w

(i)
k −η

�
g
�
w

(i)
k

�
+ψ

�
Ḡ

(i)
k,ℓ, Ğ

(i)
k,ℓ

��
, if k mod τ =0

w
(i)
k − ηg

�
w

(i)
k

�
, otherwise.

(27)

In the distillation regularizer, Ḡ
(i)
k,ℓ is the local average

of the logit vector’s Jacobian when the input sample’s

ground-truth belongs to the ℓth label and Ğ
(i)
k,ℓ is the global

average of local average logit Jacobian vectors for the

ℓth label. Following FD, the local and global MSIs are

given as {Ḡ(i)
k,ℓ}

L
ℓ=1 and {Ğ(i)

k,ℓ}
L
ℓ=1, respectively. Compared

to FD, the disadvantage is that FJD requires extra memory

and computation resources for storing and computing the

Jacobian matrices. Another burden is that Jacobian matrix

communication leads to the payload size being propor-

tional to the output dimension multiplied by the input

dimension, which is nonetheless still independent of the

model size.

3) Uplink–Downlink Asymmetric MSI Exchange: Due to

the device-limited transmission power, the uplink commu-

nication is likely to be slower than the downlink commu-

nication speed [124]. To reflect this difference, as demon-

strated in [186], the local MSI to be uploaded from each

device to the helper can be FD that minimizes the payload

size. By contrast, the global MSI to be downloaded to the

devices can be the entire model parameters, as used in

FSVRG, which may lead to the largest payload size that

contains the largest knowledge. Since this global model

parameter MSI is not consistent with the uploaded model

output MSI, one needs to reconstruct a global model from

the model outputs, which can be done via the KD opera-

tions with a test data set as exemplified in FD. Consuming

the helper’s extra computation resource and time can be

justified so long as the computation cost is cheaper than

the communication cost.

4) Device-to-Device MSI Exchange:

a) Distributed parallel SGD: Exchanging only with

neighboring devices can reduce the communication over-

head. Namely, with the d-d split, the local MSI of dis-

tributed parallel SGD (DSGD) is each device’s model

weights [105], [187], and its weight update is repre-

sented as

w
(i)
k+1 = w̃k − ηg

�
w

(i)
k

�
(28)

where the global MSI w̃k is the average weight

among the communicating devices, i.e., w̃k =�M
j=1 ajiw

(j)
k /

�M
j=1 wji. A predefined mixing matrix

determines with whom to exchange the local MSIs,

which has the element wji = 1 if the jth device

communicates with the ith device, and otherwise,

we obtain wji = 0. When the device indices follow

their physical locations, neighboring communication

topology is characterized by a diagonally clustered weight

matrix.

b) Group ADMM: Without the aid of any central

entity, group alternating direction method of multiplier

(GADMM) exchanges model weights with neighboring

devices and achieves fast training convergence with much

less communication rounds [106], [183]. The key idea

is to apply the ADMM algorithm after grouping devices

into the head and tail devices, such that each device

in the head group Nh is connected to two neighboring

devices in the tail group Nh. In GADMM, the weights

of devices belonging to the same group are updated in

parallel, but the weights of devices belonging to different

groups are updated in an alternating fashion. When odd

and even superscripts denote head and tail devices respec-

tively, for a loss function ℓ(·), GADMM updates primal

variables (i.e., weights) and dual variables (λn−1 and λn)

as follows.

1) Each head device updates its primal variables as

w
(i∈Nh)
k+1

= argmin
w

(i)
k

λ
(i−1)
k

�
w

(i−1)
k −w

(i)
k

�
+ λ

(i)
k

�
w

(i)
k −w

(i+1)
k

�
+

ρ

2

�
‖w

(i−1)
k −w

(i)
k ‖2

2 + ‖w
(i)
k −w

(i+1)
k ‖2

2

�
+ ℓ
�
w

(i)
k

�
. (29)

These updates are sent to two tail neighbors.

2) Next, each tail device updates its primal variables as

w
(i∈Nt)
k+1

= argmin
w

(i)
k

λ
(i−1)
k

�
w

(i−1)
k+1 −w

(i+1)
k+1

�
+ λ

(i)
k

�
w

(i)
k −w

(i+1)
k+1

�
+

ρ

2

�
‖w(i−1)

k+1 −w
(i)
k ‖2

2 + ‖w(i)
k −w

(i+1)
k+1 ‖2

2

�
+ ℓ
�
w

(i)
k

�
. (30)

These updates are sent to two head neighbors.

3) Finally, every device updates its dual variables as

λ
(i)
k+1 = λ

(i)
k + ρ

�
w

(i)
k+1 − w

(i+1)
k+1

�
. (31)

Consequently, each device communicates with only two

neighbors to update its own weights, while only half

of devices broadcast their weights per communication

round.

c) Federated reinforcement learning: The mixing matrix-

based MSI exchange in DSGD is applicable to the MSI

exchange in MARL that follows the d-d split. Then,

exploiting FL further improves the communication effi-

ciency, leading to federated reinforcement learning (FRL).

To illustrate, consider the policy gradient method in MARL,
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Table 1 Comparison of MSI Exchanges in Centralized ML and Edge ML. Compared to CSGD as a Baseline Scheme, the Advantages of Each Method

Appear Boldfaced, Whereas the Disadvantages Are Italicized

where each agent’s policy is trained using SGD with an NN

[188]. Following either FAvg or FSVRG, the agents identi-

fied in a mixing matrix collaboratively train an ensemble

policy by periodically exchanging the NN’s model parame-

ters. A similar procedure is applicable to deep Q-learning

in MARL, where each agent approximates the Q values

using an NN, as demonstrated in [184].

d) Federated reinforcement distillation: FD is applicable

to the MSI exchange in MARL with the d-d split, leading

to FRD. For Q-learning in MARL, the agents identified

in a mixing matrix collectively predict a set of Q values

and their associated states. The MSI exchange and

weight update rule follow FD, by replacing its normalized

logits and labels with the Q values and the states,

respectively. Similarly, a policy-based method in MARL

can be improved in combination with FD. For actor-

critic RL, FD is applicable to either one of the actor

(policy) NN or the critic (value) NN or to both NNs [189].

However, with large input state and/or output dimensions,

these approaches may incur huge communication and

memory costs. To resolve this issue, states and/or

actions can be compressed based on their correlations.

To illustrate its effectiveness, consider the Atari gaming

environment [190] whose output action dimension is only

{up, down, left, right}, whereas the input state dimension

is the entire pixels per frame. Since neighboring pixels are

highly correlated, one can reduce the input dimension by

grouping multiple neighboring raw states as a single proxy

state that is mapped into the average action of the raw

states.

All the aforementioned MSI exchange methods are

summarized in Table 1. On top of these methods, one

can further enhance communication efficiency, by addi-

tionally quantizing gradients [191], removing insignif-

icant gradients, i.e., sparsification [192], opportunistic

uploading based on gradient magnitudes [193], and adap-

tively adjusting the communication intervals [31], [194].

For more details on state dimensionality reduction and

advanced FL and FD frameworks in both supervised learn-

ing and RL, the readers are encouraged to check [186],

[195], and [196].

MSI Exchange Related Theories:

(a) Optimal Regularization via SGLD: Distillation-based

MSI exchange methods rely on inserting a noise

proportionally to the knowledge gap between the

teacher and student NNs. The noise amount is

adjustable via the temperature parameter T when

normalizing the teacher’s logit values, and can fur-

ther be optimized via SGLD. For a fixed learn-

ing rate η, a recent work [197] shows that the

noise amount maximizing the test accuracy in

centralized ML is characterized by the optimal

noise scale g = η(n/B − 1) of the SGLD’s noise εt

(see Section IV-A), for n training samples and batch

size B. The definition of g comes from the autocor-

relation of εt, given as E[εt+τεt] = gF (w)δτ , where

F (w) is a matrix describing the covariance of gradi-

ents, and δτ is the Dirac delta function of τ .

(b) Wasserstein Distillation Loss: Cross entropy is widely

utilized as the distillation regularizer, which is decom-

posed into entropy and KL divergence terms. Due to

the KL divergence, the distillation regularizer may

diverge, particularly when the teacher and students’

logits are too peaky to have an overlapping sup-

port. A quick fix is to increase the teacher’s tem-

perature T for smoothing its logits, at the cost of

compromising the accuracy of measuring the knowl-

edge gap (see. Fig. 11). Instead, Wasserstein dis-

tance (see Section IV-A) can be a suitable regularizing

function for such cases.

C. Computation-Aware Latency Reduction

Compressing model parameters during training

operations is effective in the latency reduction,

as demonstrated by high-accuracy low-precision (HALP)

training that adjusts the arithmetic precision based

on the training dynamics [198]. Processing the

training operations together with other incumbent

applications is another viable solution, in which

their operation scheduling is optimized as done in

MEC [199] and in the context of exploration–exploitation

tradeoff [200].

Furthermore, compressing the NN model after

completing the training process reduces the inference

latency. Such compression can be codesigned with

hardware and computational characteristics, such as the

energy consumption, compression ratio, and the model

parameters’ frequency of use, as studied in energy-based

pruning [201], Viterbi-based compression [202], and deep

compression [113], as detailed next.

PROCEEDINGS OF THE IEEE 23



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Park et al.: Wireless Network Intelligence at the Edge

1) Adaptive-Precision Training: In mixed-precision train-

ing [114], a low-precision representation consists of

an exponent δ and mantissa b, and the tuple (δ, b)

can express a numerical value within the range

{−δ2b−1, . . . ,−δ, 0, δ, . . . , δ(2b−1 − 1)} by only using (δ +

b + 1) bits, where the last 1 bit is allocated for the

sign. Here, the lower precision (i.e., the more compres-

sion), the higher quantization noise that increases gra-

dient variance during the training process. To optimize

the compression–distortion tradeoff, HALP training is a

viable solution [198]. This first utilizes SVRG [177] for

reducing the gradient variance. Besides, HALP applies a

bit-centering technique that dynamically recenters and

rescales the low-precision numbers by setting δ =

g(ŵk)/[µ(2b−1 − 1)] for a µ-strongly convex loss function

where its gradient g(ŵk) is defined in Section V-B1. This

lowers the quantization noise asymptotically as the train-

ing converges, thereby achieving the accuracy of a full-

precision SVRG. Furthermore, while slightly compromising

accuracy, one can represents the gradients only using

their ternary directions {−1, 0, 1} [203], minimizing the

memory usage.

2) Application-Training Coprocessing: In edge ML,

a device is likely to perform both the NN training and its

end application processing simultaneously. Let us recall

the real-time AR/VR application example in Section I,

where each headset device predicts the future gaze

direction, thereby prerendering future visual frames. In

this case, the NN training and the rendering processes are

simultaneously performed at the device, and the device’s

computing energy allocation needs to be optimized under

the widely known exploration–exploitation tradeoff [200].

Furthermore, with the helper–device split, a part of the

demanding rendering processes can be offloaded from

the device to the helper that also participates in the

NN training process. At the helper side, its computation

energy has to be optimized, as investigated in the context

of multiuse MEC [199].

3) Hardware-Efficient Compression: After a training

process, compressing the model reduces the memory

usage. In this respect, one can prune the model via

DropOut and/or DropConnect based on, e.g., Fisher infor-

mation of each node [117]. Alternatively, one can optimize

the pruning process based on energy consumption [201],

as shown in Fig. 16. In energy-based pruning, it first esti-

mates the energy consumption per layer and then prune

the weights within each layer in order of energy.

After these pruning processes, the resulting weight para-

meters are expressed as a sparse weight matrix where there

exist only a few nonzero values in a large-sized matrix,

which can be compressed using, e.g., the compressed

sparse row (CSR) format. The compression rate depends

on the pruning process, and therefore, a compression-rate

optimal pruning is needed. Exploiting the Viterbi algo-

rithm is useful for this purpose, guaranteeing a constant

maximum compression rate [202]. On the other hand,

Fig. 16. Illustration of hardware-efficient model compression via

energy-based pruning, quantized weight sharing, and Huffman

coding.

in deep compression [113], the weights after pruning are

quantized and clustered, yielding a set of shared weights as

shown in Fig. 16. Afterward, the shared weights are further

compressed using Huffman coding that allocates more bits,

i.e., longer codeword length, to the shared weights that

appear more frequently.

D. Scalability Enhancement

Modern deep NN architectures often have too large

depths to be stored at mobile devices. This calls for split-

ting an NN into segments distributed over multiple devices,

as shown in Fig. 9(d). Furthermore, the range of federation

in edge ML is constrained by the battery levels and privacy

requirements of mobile devices, and the effectiveness of

federation is delimited by its non-IID training data set.

These challenges and their suitable solutions are described

as follows.

1) Stacked Model Split: In the model split, the data may

flow back and forth between the split model segments.

The resulting dependence among the segments stored in

multiple devices obstructs the parallelism of local training.

To minimize such dependence, one can start from the

original model comprising multiple stacks of components

that can be easily parallelized. A suitable example can

be a discriminator distributed GAN [204] whose discrim-

inators can be distributed over multiple devices. In the

opposite way, multiple generators can be distributed over

the devices that share a single discriminator [205]. Both
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Fig. 17. Illustration of a distributed GAN with (a) multiple

generators and (b) multiple discriminators.

cases are shown in Fig. 17. Another example is an DBN that

comprises multiple stacked RBMs distributed over several

devices. More general model split-based edge ML frame-

works are discussed in [206] and [207], in the context of

health applications with private patient data.

2) ODE-Based Training: Traditional ML cannot dynam-

ically change the model size during the training process,

so it is difficult to flexibly adjust the energy consumption.

This is critical to mobile devices whose battery level is

limited and fluctuates over time, which hinders adopting

edge ML into more devices. One promising solution for this

bottleneck is to train an NN by solving an ordinary differ-

ential equation (ODE) [208]. In this framework, adjusting

the model size is recast as changing the number of evalu-

ations that can be easily feasible in practice. Furthermore,

compared to SGD rooted in convex optimization methods,

ODE-based training is able to directly solve a nonconvex

optimization, avoiding local minima issues, as addressed in

Section III-A2. To this end, one can utilize an algorithmic

approach by exploiting the feedforward dynamics from the

lth layer to the next layer with a generic loss function L

xl+1 = xl + L(xl, wl), l ∈ {0, . . . , L − 1}. (32)

If the number L of layers is sufficiently large, (32) is

approximated as the following ODE:

dx(l)/dl = L(x(l), w(l)), l ∈ [0, L]. (33)

This ODE can be numerically solved via Euler’s approxima-

tion method with the approximation accuracy proportional

to the number of evaluations [168].

ODE-Based Training Related Theories:

(a) MF Controlled Training: One can analytically solve

(33) with the empirical loss function with a regular-

izer R.

L(w) =
1

n

n�
i=1

�
Φ(xi

L, yi
o) +

� L

0

R(xi
l, wl)dt

�
(34)

Here, the weight parameters wl is shared by a num-

ber n of the training data samples. So long as n is

sufficiently large, according to mean-field control the-

ory, the minimized loss, i.e., value function, satisfies

Pontryagin’s maximum principle (PMP). The optimal

solution thereby guarantees a necessary condition

that is recast as maximizing the Hamiltonian:

H(xo, w) = −∇H(xo, w)L(x,w) −R(x, w). (35)

Particularly when H(xo, w) is strongly concave,

by setting T → 0, this solution guarantees the global

optimum.

3) Private Data Augmentation: Due to the user-

generated data samples, training data set across devices

can be non-IID in edge ML, which severely degrades the

benefit of distributed training. A simple example is the

situation when all devices have identical data samples,

i.e., fully correlated. In this case, the global and local

MSI become identical, negating the diversity gain from

distributed training. At the opposite extreme, if all the data

sets are entirely not correlated, then reflecting the global

MSI in the local weight update is no more than inserting a

randomly noisy regularizer. Data augmentation can render

such a non-IID data set amenable to distributed learning.

One possible implementation is partially exchanging the

other devices’ data samples. In fact, an experimental study

[179] has shown that FL under a non-IID data set achieves

only 50% inference accuracy compared to the case under

an IID data set, which can be restored by up to 20%

via randomly exchanging only 5% of the devices’ local

training data samples. Another way is locally augmenting

data samples. This is viable, for instance, by a generative

model that is capable of generating all samples, which can

rectify the non-IID data set toward achieving an IID data

set across devices.

Both approaches require access to data samples owned

by other devices, thus necessitating privacy guarantee.

Data samples can be exchanged while preserving privacy

via DP by partially inserting noise and/or redundant data

samples. Local data oversampling needs to exchange the

local data sample distribution to collectively construct

the entire data set distribution that is to be compared

with the local data sample distributions. Such distribution

information, including any excess or shortage of data sam-

ples per label, e.g., per medical checkup item, may easily

reveal private sensitive information, e.g., diagnosis result.

A GAN-based solution [180] for this case is elaborated in

Section VI-D.

VI. C A S E S T U D I E S

From the standpoint of CML, this section aims at demon-

strating the effectiveness of the proposed theoretical and

technical solutions in edge ML. Several use cases that

follow MLC are also introduced at the end while addressing

their connections to MLC.
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Fig. 18. Operational structure of EVT parametric FL (ExtFL).

A. Federated Learning With EVT for Vehicular

URLLC

EVT-based FL enables URLLC in vehicular communica-

tion networks as discussed in our preliminary study [209].

EVT provides an analytical parametric model to study the

tail distribution of queue lengths at vehicular transmitters

over the whole network. By combining the parametric

model from EVT with FL, referred to as ExtFL, the indi-

vidual vehicles learn the tail distribution of queue lengths

over the network without a need of exchanging the local

queue length samples. Therein, the key advantage of FL

is the reduction of communication payload during the

model training compared to a centralized training model

relying on exchanging the training samples. In this regard,

the impact of communication latency for training on the

vehicular-to-vehicular (V2V) communication is reduced.

The objective is to minimize the network-wide power

consumption of a set U of vehicular users (VUEs) while

ensuring low queuing latencies with high reliability. Yet,

there exist worst case VUEs who are experiencing high

latencies with a low probability. In this regard, extreme

events pertaining to vehicles’ queue lengths exceeding a

predefined threshold with nonnegligible probability are

considered to capture the performance losses of worst case

VUEs. Using the principles of EVT, the tail distribution

of the queue lengths exceeding a predefined threshold is

characterized by a GPD Gd(·) with two parameters d =

[σ, ξ] scale and shape, respectively. The knowledge of the

tail distribution over the network is utilized to optimize

the transmit power of each VUE to reduce the worst case

queuing delays.

To estimate the queue tail distribution using the queue

length samples {Qu}u∈U observed at each VUE u, using the

concepts in maximum likelihood estimation (MLE), a cost

function is defined as follows:

fd(Q) =
1�

u |Qu|

�
u∈U

�
Q∈Qu

log Gd(Q) =
�
u∈U

κufd(Qu)

(36)

where κu = (|Qu|/
�

u |Qu|). The operation of ExtFL is

visualized in Fig. 18 and summarized as follows.

Fig. 19. Comparison between CEN and ExtFL. (a) Amount of data

exchanged between RSU and VUEs (left) and the achieved reliability

(right). (b) The mean and the variance of the worst-case VUE

queuelengths.

1) VUE u uses fd

u = fd(Qu) to evaluate du and ∇dfdu
u

locally, where du is the local estimate of d at VUE u.

Then, the local learning model (∇dfdu
u , du, |Qu|) is

uploaded to the road-side unit (RSU).

2) RSU does the model averaging and shares the global

model (∇dfd , d,
�

u |Qu|) with the VUEs.

3) VUEs use the global parameters to model the tail

distribution of queue lengths and utilize it to control

their transmit powers.

Fig. 19(a) compares the amount of data exchanged and

the achieved V2V communication reliability of ExtFL with

a centralized tail distribution estimation model, denoted as

CEN. Fig. 19(a) shows that VUEs in ExtFL achieve slightly

lower reliability compared to the ones in the CEN approach

for U < 72 while outperforming CEN when U > 72. Note

that the CEN method requires all VUEs to upload all their

queue length samples to the RSU and to receive the esti-

mated GPD parameters. In contrast, in ExtFL, VUEs upload

their locally estimated learning models (∇dfdu
u , du, |Qu|)

and receive the global estimation of the model. As a

result, ExtFL yields equivalent or better end-user reliability

compared to CEN for denser networks while reducing the

amount of data exchange among VUEs and RSU by 79%

when U = 100.

The worst case VUE queue lengths, i.e., queue lengths

exceeding q0, are compared in Fig. 19(b). Here, the mean

and variance of the tail distribution for CEN and ExtFL

are plotted for different numbers of VUEs. The mean indi-

cates the average queuing latency of the worst case VUEs,

while the variance highlights the uncertainty of the latency.

As the number of VUEs increases, it can be noted that both

the mean and the variance in ExtFL are lower than the ones

in CEN. The reason for the above-mentioned improvement

is the reduced training latency in ExtFL over CEN.

B. Federated Learning With Wasserstein Distances

The Wasserstein distance can precisely measure the

similarity between two distributions even when they have

nonoverlapping support. To show its effectiveness, con-

sider the same application in Section VI-A while replacing

its MLE-based tail distribution estimation with the Wasser-

stein distance-based estimation, i.e., Wasserstein-based FL.
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Fig. 20. Comparison of GPD parameter estimation and tail

distribution estimation between MLE and Wasserstein distance.

(a) Scale parameter. (b) Empirical and estimated tail distributions.

Accordingly, we redefine the cost function fd(Q) in (36)

with the Wasserstein distance given in (16). In this regard,

the local and global models defined for FL require to

compute the gradient as follows [210]:

∇dfdu
u (Q) = − 1

κu
α⋆(Q)∇dF du

u (Q) (37)

where α⋆(Q) is the dual function of the corresponding

primal problem defined in (16). Here, the function F du
u

satisfies Gd(x′) = e−F du
u (x′)/Z with the partition sum

Z =
�

x′ e−F du
u (x′). By utilizing the knowledge of the

parametric representation of Gd(x′), the function F du
u can

be derived, while α⋆(Q) is calculated using the Sinkhorn

algorithm [154].

Fig. 20 corroborates the advantage of Wasserstein-

based FL compared with MLE-based FL in Section VI-A.

Compared with MLE-based FL, Fig. 20(a) shows that

Wasserstein-based FL converges as fast as MLE-based FL,

but with a different converging point compared with MLE-

based FL. Fig. 20(b) validates that the converging point

of Wasserstein-based FL is closer to the optimum, thereby

more accurately estimating the tail distribution of the

queue lengths exceeding a target threshold. The higher

accuracy of Wasserstein-based FL results from the fact that

the Wasserstein distance counts the differences between

the empirical and parametric distributions over the entire

supports, whereas the KL divergence in MLE ignores the

differences over only the points at which the parametric

distributional values are sufficiently large [78].

Finally, Fig. 21 shows the impact of local computing iter-

ations on the training convergence. In Fig. 21(a) and (b),

reducing local SVRGD iterations yields faster training

convergence because of exchanging the model parameters

more frequently. However, as it exchanges the parameters

of less trained models, the converging points fall farther

away, lowering the tail distribution estimation accuracy.

This relationship highlights the importance of optimizing

local computing and global communication iterations.

C. Federated Learning With Blockchain

The reliability and scalability of FL can further be

improved by adopting blockchain [211], [212], as exem-

plified by block-chained FL (BlockFL) in our preliminary

study [172]. BlockFL provides incentives to devices that

own a larger number of local training samples and con-

sume more computing power, which promotes federation

with more devices. In addition, local training results in

BlockFL are mutually validated, thereby extending the

range of federation to untrustworthy devices in a pub-

lic network. All these operations as well as local MSI

exchanges are fully decentralized, which is more robust

against malfunctions and attacks compared with the origi-

nal FL [28], [30] that relies on a single helper entity.

As shown in Fig. 22, the logical structure of BlockFL

consists of devices and miners. Miners can physically be

either randomly selected devices or separate nodes such as

a conventional blockchain network [211]. The operation

of BlockFL is summarized as follows.

1) Each device computes and uploads the local MSI to

its associated miner in the blockchain network while,

in return, receiving the data reward proportional to

the number of its data samples from the miner.

2) Miners exchange and verify all the MSIs and then run

the proof of work (PoW) [211].

3) Once a miner completes the PoW, it generates a

block where the verified local MSIs are recorded and

receives the mining reward from the blockchain net-

work. The generated block is propagated and added

to every miner’s ledger.

4) Finally, the ledgers are downloaded to the miners’

associated devices. Each device locally computes the

global MSI from the freshest block, which becomes an

input of the next local model update.

At step 3, every miner is enforced to stop its PoW

process once it receives a propagated block that should

be the earliest generated block, thereby synchronizing the

distributed ledgers. However, if a miner generates a block

during the earliest generated block’s propagation delay,

this miner unknowingly adds its own generated block to

the ledger that becomes different from the other legiti-

mate ledgers. This forking event incurs extra delays for

rolling the unsynchronized ledger back. When the block

generation rate λ of each miner is centrally controlled by

adjusting the PoW difficulty, the optimal block generation

rate λ∗ is thus obtained by balancing between the forking

Fig. 21. Convergence speed for different local SVRGD iterations.

(a) Scale parameter. (b) Shape parameter.
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Fig. 22. Operational structure of BlockFL.

occurrences and the block propagation delays, which is

approximated as

λ∗ ≈ 2
	
Tbp

�
1 +

�
1 + 4NM (1 + Twait/Tbp)

�
−1

(38)

where NM is the number of devices, Tbp is the longest

propagation delay of the legitimate block, and Twait is the

maximum waiting time before starting the PoW process.

Fig. 23(a) plots the E2E latency of BlockFL with λ∗

until the local model parameters converge, which involves

all delays incurred by FL and blockchain operations.

The simulation parameters follow the 3GPP LTE Cat.

M1 specification [213] with NM = 10. As the received

signal-to-noise ratio (SNR) decreases from 10 to 8 dB,

both uplink/downlink MSI delays and block propagation

delays increase, and we therefore observe the increased

E2E latency. Compared to the simulated optimum, the E2E

latency with (38) shows only up to 1.5% difference.

Fig. 23(b) shows the scalability and robustness of

BlockFL. Without any malfunction, a larger NM value

increases the latency due to the increase in their cross

verification and block propagation delays. This does not

always hold under the miners’ malfunctions that are

captured by adding a Gaussian noise N (−0.1, 0.01) to

each miner’s aggregate MSIs with the probability of 0.5.

Fig. 23. Average learning completion latency with the optimum

block generation rate λ∗. (a) For different SNRs. (b) With/without

malfunction.

Fig. 24. Operational structure of FAug.

In BlockFL, global MSI is locally calculated at each device,

and each miner’s malfunction thus only distorts its associ-

ated device’s MSI. Such distortion can be restored by fed-

erating with other devices that associate with the miners

operating normally. For this reason, a larger NM value may

achieve even shorter latency, as observed for NM = 10 with

malfunctions.

D. Federated Augmentation Rectifying
Non-IID Data

The non-IID training data set of on-device ML can be

corrected by obtaining the missing local data samples at

each device from the other devices [179]. Such a sample

exchange may, however, induce significant communication

overhead, especially with a large number of devices, and

may violate the privacy requirement of data samples.

Instead, federated training and exchanging a generative

model can rectify the non-IID data set by enabling each

device to locally augment the missing data samples while

abiding by a target privacy requirement. This method and

its scalability are demonstrated by federated augmentation

(FAug) in our previous study [180].

The procedure of FAug is shown in Fig. 24, which is

described as follows. At first, each device recognizes the

labels being lacking in data samples, referred to as target

labels, and uploads a few samples of these target labels,

referred to as seed samples, to the helper over wireless

links. Then, the generative model, a part of a conditional

GAN [214], is trained at a helper with high computing

power and a fast connection to the Internet. GAN training

commonly requires a large number of training samples.

With this end, the helper oversamples the uploaded seed

samples, e.g., via Google’s image search for visual data,

and thereby trains the GAN. Finally, downloading the

trained GAN’s generator empowers each device to replen-

ish the target labels until reaching an IID training data set.

The operation of FAug needs to guarantee privacy of

the user-generated data. In fact, each device’s data gener-

ation bias, i.e., target labels, may easily reveal its privacy-

sensitive information, e.g., patients’ medical checkup items

revealing the diagnosis result. To keep these target labels

private from the helper, the device additionally uploads
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Table 2 Test Accuracy and Communication Cost of FAug (Single Target

Label, No Redundant Label)

the redundant data samples from the labels other than the

target labels. The privacy leakage (PL) from each device

to the helper, denoted as device-helper PL, is thereby

reduced at the cost of extra uplink communication over-

head. At the ith device, its device-helper PL is measured

as |L(i)
t |/(|L(i)

t | + |L(i)
r |), where |L(i)

t | and |L(i)
r | denote the

numbers of target and redundant labels, respectively.

The target label information of a device can also be

leaked to the other devices since they share a collectively

trained generator. Indeed, a device can infer the others’

target labels by identifying the generable labels of its

downloaded generator. This PL is quantified by interdevice

PL. Provided that the GAN is always perfectly trained for

all target and redundant labels, the interdevice PL of the

ith device is defined as |L
(i)
t |/

�M
j=1(|L

(j)
t | + |L

(j)
r |). Note

that the interdevice PL is minimized when its denominator

equals to the maximum value, i.e., the number of the entire

labels. This minimum leakage can be achieved so long as

the number of devices is sufficiently large, regardless of the

sizes of the target and redundant labels.

Table 2 provides the test accuracy and communication

cost of FD and FL with or without FAug. For FD, the com-

munication cost is defined as the number of exchanged

logits, whereas the cost for FL is given as the number of

exchanged model parameters. With FAug, the communica-

tion cost comprises the number of uploading data samples

and the number of downloading model parameters of the

trained generator. We observe that FAug is effective for

both FL and FD, improving the test accuracy by 0.8%–2.7%

for FL and by 7%–22% for FD. Such a gap between

the improvements implies that FD is more vulnerable to

the non-IID data set than FL. In FD, even if a device obtains

the full teacher’s knowledge across all labels, the distil-

lation operation cannot be performed when the device

has no local training sample in target labels, which is

undesirable.

Overall, we observe that FL achieves the highest test

accuracy while consuming significant communication cost

due to exchanging a large number of model parameters.

In combination with FAug, FD can cope with the non-IID

data set and achieve 92%–97% accuracy of FL, In this case,

the aggregate communication cost of FD and FAug is up

to 25.6× smaller than FL, highlighting the communication

efficiency of FD.

Fig. 25(a) shows that increasing the number of devices

makes the target label uploaders anonymous, thereby

reducing the interdevice PL while preserving the test accu-

racy. More redundant labels allow the uploaders to hide

Fig. 25. Test accuracy and PL under a non-IID MNIST data set. (a)

accuracy and inter-device PL. (b) Device-server PL with respect to

the number of redundant labels.

their target labels, which also decreases the interdevice PL.

Likewise, the device-helper PL decreases with the number

of redundant labels, as shown in Fig. 25(b). Alternatively,

multihop communication from each device to the server is

also effective in hiding target label privacy in the crowds of

preceding hops’ devices. Its impact on FAug is elaborated

in [215].

E. Field-of-View Prediction for Multicast

VR Streaming

GRUs, a gating mechanism in RNNs, are commonly

used for modeling speech signals and musics. Their pat-

tern recognition capability can be utilized for predictions

that allow proactive control for latency-sensitive appli-

cations. In this aspect, proactive content quality adap-

tation for multiuser 360◦ VR video streaming based on

the field-of-view (FoV) prediction using GRUs is studied

in [216].

The scenario is a VR theater consisting of a network of

VR users watching different HD 360◦ VR videos streamed

over a set of distributed small cell BSs (SBSs). SBSs operate

in the mmWave band and are multibeam beamforming

capable to improve multicast transmission of shared video

content to groups of users. For user grouping, as Fig. 26

illustrates, upcoming tiled FoV predictions obtained via

a deep NN architecture based on GRUs are utilized. By

optimizing video frame admission and user scheduling,

the goal is to provide highly reliable broadband service for

VR users that deliver HD videos with low latency.

Fig. 27 evaluates the impact of the video quality

corresponding to the delivered frame rates. Therein,

Fig. 26. Operational structure of the 360◦ VR video streaming via

mmWave multicast (blue) and unicst (yellow) transmissions.
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Fig. 27. Performance comparison with respect to (a) average

delay, (b) 99th-percentile delay, and (c) HD delivery rate.

the proposed FoV prediction-based scheme is compared

with two benchmark methods: Baselines 1 and 2

that schedule video chunk requests in real time over

mmWave unicast and multicast transmissions, respectively.

Fig. 27(a) and (b) shows that the FoV-based predictions

allow the proposed proactive scheduler to decrease both

average and 99th percentile delays over the baseline

methods. While both the baseline schemes reduce the HD

delivery rates for increased offered data rates as shown

in Fig. 27(c), the proposed approach maintains about

100% success HD delivery rate by predicting video frames

in advance.

As the predictions become accurate, the need of retrans-

missions reduces and a surplus of wireless resources can

be smartly reused to feed back prediction event errors.

F. Actor-Critic RL for Optimizing Age of

Information

Age of information (AoI) is a measure of the freshness

of data to characterize the E2E communication latency.

While minimizing AoI enables URLLC, the performance

highly depends on the availability of the system state

knowledge, such as physical resources, channel condi-

tions, packet drops, and sampling. As a remedy, RL

can be adopted to explore and learn the system state

dynamics and improve the process of decision-making

over time. In this regard, minimizing AoI of remote sen-

sors with the aid of an RL-based scheduler is presented

in [217].

As shown in Fig. 28, the scenario is focused on a set

of sensors in a factory randomly generating data packets

and remotely monitored. To ensure high reliability and

low latency of the received sensor data at the remote

monitor, the controller schedules sensors to report their

data. Due to the lack of knowledge of the conditions of the

communication links, packet generation at the sensors, and

losses during communication, the monitoring unit resorts

to an RL-based scheduler. Here, the states observed at the

remote monitoring unit are the AoI of each sensor (τi),

previous data rates, and the time spent to download the

last data packet. Based on that, RL scheduler builds a

probability distribution over the sensors, which is used for

scheduling the sensors. A cost for each action is defined in

terms of the average AoI over the sensors and aggregated

Fig. 28. Operational structure of the actor-critic RL for optimizing

the AoI.

penalties when sensors’ AoI exceed their predefined thresh-

olds. The RL scheduler is trained using an asynchronous

advantage actor-critic (A3C) algorithm [218] in an offline

manner. In A3C, several copies of the actor agent are

trained in parallel (asynchronous) to improve the effi-

ciency using discount functions that indicate gains/losses

over average q-values (advantage), while the critic NN

estimates the cost function. Here, the trained actor NN is

used as the scheduler.

Fig. 29 compares the per-sensor performance of the

RL-based scheduler with two baselines: Baseline 1 sched-

ules a sensor with maximum AoI at a given time, while

Baseline 2 randomly schedules sensors proportional to the

inverse of their AoI thresholds. Here, the system consists

of ten sensors indexed by i = 1, 2, . . . , 10. Fig. 29(a) shows

that all three methods perform almost the same in terms

of average AoI. While all sensors in Baseline 2 exhibit

higher average AoI compared to the rest, Baseline 1 and

proposed methods display lowest AoI for sensors with

loose and tight thresholds, respectively. The probability

of AoI exceeding the threshold for each sensor is shown

in Fig. 29(b). Therein, it can be noted that the proposed

method maintains much lower AoI violation probability for

sensors with tight AoI thresholds compared with both base-

line methods. For sensors with large thresholds, both the

proposed and Baseline 1 exhibit no AoI violations. From

Fig. 29(a) and (b), we can conclude that the proposed RL-

based scheduler is the most reliable approach for sensors

with tight thresholds.

By minimizing the AoI over all sensors, the proposed

solution allows the remote monitor to obtain up-to-date

Fig. 29. Per-sensor performance comparison with respect to

(a) average AoI and (b) AoI violation probability.
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Fig. 30. Operational structures of (a) HJB learning control and

(b) MFG learning control.

data. For the applications of monitoring and controlling,

these data can be utilized to train control modules and/or

to issue real-time commands.

G. MFG Theoretic ML for Massive UAV Control

MFG theoretic control is a key enabler for supporting

robust massive autonomous UAV operations against time-

varying network connectivity. To illustrate its effectiveness,

following [219], we consider N UAVs, each of which

locally controls its acceleration so as to minimize its travel

time from the same source to a common destination,

without inter-UAV collisions. To avoid collisions, each UAV

communicates with the other N − 1 UAVs for collect-

ing their real-time states, i.e., coordinates and velocities.

To guarantee the optimality of every control, since each

control affects the other UAVs’ decisions, the states should

be recursively exchanged until all controls converge to the

Nash equilibrium. This is likely to be infeasible for a large

N value, under the limited communication range of each

UAV moving in real time.

This is where MFG theoretic control comes to the rescue,

which requires initial state exchanges only once. After-

ward, as elaborated in Section IV-B, the control of each

UAV is determined by locally solving two partial differen-

tial equations, in which the FPK equation (F = 0) approx-

imates the state distributions of the entire population

following optimal controls, i.e., MF distribution, while the

HJB equation (H = 0) provides each UAV’s optimal control

for a given population distribution. However, solving these

equations is computationally challenging particularly for

high-dimensional states, limiting its adoption commonly

within the 1-D state cases [165]–[167].

To overcome this limitation, an NN-based MFG theo-

retic control algorithm is developed in [219], denoted

as MFG leaning control operated by a pair of HJB and

FPK NNs, as shown in Fig. 30(b). At its core, the HJB

and FPK NNs are trained so as to minimize |H | and |F |,

thereby approximately solving the HJB and FPK equations,

respectively. On the one hand, focusing on the relation

between HJB and FPK NNs, this ML architecture is similar

to actor-critic RL in which the actor NN (FPK NN or policy

NN) yields per-state action distributions, and the critic

Fig. 31. Trajectories of 25 UAVs under (a) HJB learning control and

(b) MFG learning control.

NN (HJB NN or value NN) evaluates the optimality of

controls. On the other hand, focusing on the process

of taking actions, MFG learning control resembles DQN

whose actions are taken by the Q NN (value NN). Inte-

grating these two RL architectures, MFG learning control

addresses the interplay between the population’s policy

and a single agent’s action evaluation, as opposed to tra-

ditional RL considering the same agent’s policy and action

evaluation.

Consequently, the source-to-destination travel trajectory

in Fig. 31(b) corroborates that MFG learning control

achieves both the goals of collision avoidance and fast

travel. This is compared with a baseline HJB learning

control in Fig. 31(a), in which UAVs are controlled based

not on FPK NNs but on real-time state exchanges. Due

to the limited transmission power, the inter-UAV state

exchanges are restricted within the communication range,

i.e., 1 m, which is not always sufficient to cover N − 1

mobile UAVs. This incurs time-varying UAV network con-

nectivity and makes HJB learning control fail to avoid

collision. By contrast, MFG learning control is effective in

collision avoidance, by forming a flock of UAVs. In return,

the travel distances under MFG learning control become

longer. Nevertheless, because of flocking behaviors, MFG

learning control achieves faster speed during long flights.

This compensates the longer travel distances, thereby

achieving the travel time almost as fast as the HJB learning

control ignoring collision avoidance.

VII. C O N C L U S I O N

Embracing recent advances in hardware and communica-

tion technologies, edge ML empowers devices at the

network edge by imbuing them with the state-of-the-art ML

techniques. This poses a slew of new research questions

centered on E2E latency, reliability, and scalability under

hardware and privacy constraints. As a first step toward

spearheading the edge ML vision and moving beyond cen-

tralized and cloud-based ML, this article has explored its

key building blocks and theoretical principles warranting

a clean-slate design in terms of NN architectures, training

and inference operations, and communication. The over-

arching goal of this article is to foster more fundamental

research in edge ML and bridge connections among several

communities and mathematical disciplines.
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