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Abstract

In this semi-tutorial paper, the positioning problem is formulated as a convex feasibility problem (CFP). To solve the CFP

for non-cooperative networks, we consider the well-known projection onto convex sets (POCS) technique and study its

properties for positioning. We also study outer-approximation (OA) methods to solve CFP problems. We then show how

the POCS estimate can be upper bounded by solving a non-convex optimization problem. Moreover, we introduce two

techniques based on OA and POCS to solve the CFP for cooperative networks and obtain two new distributed

algorithms. Simulation results show that the proposed algorithms are robust against non-line-of-sight conditions.

Keywords: wireless sensor network, positioning algorithm, convex feasibility problem, projection onto convex sets,

outer approximation

1 Introduction
Wireless sensor networks (WSNs) have been considered

for both civil and military applications. In every WSN,

position information is a vital requirement for the network

to be able to perform in practical applications. Due to

drawbacks of using GPS in practical networks, mainly cost

and lack of access to satellite signals in some scenarios,

position extraction by the network itself has been exten-

sively studied during the last few years. The position infor-

mation is derived using fixed sensor nodes, also called

reference nodes, with known positions and some type of

measurements between different nodes [1-7]. From one

point of view, WSNs can be divided into two groups based

on collaboration between targets: cooperative networks

and non-cooperative networks. In cooperative networks,

the measurements between targets are also involved in the

positioning process to improve the performance.

During the last decade, different solutions have been

proposed for the positioning problem for both cooperative

and non-cooperative networks, such as the maximum like-

lihood estimator (ML) [2,8], the maximum a posteriori

estimator [9], multidimensional scaling [10], non-linear

least squares (NLS) [11,12], linear least squares approaches

[13-15], and convex relaxation techniques, e.g., semidefi-

nite programming [12,16] and second-order cone

programming [17]. In the positioning literature, complex-

ity, accuracy, and robustness are three important factors

that are generally used to evaluate the performance of a

positioning algorithm. It is not expected for an algorithm

to perform uniquely best in all aspects [7,18]. Some meth-

ods provide an accurate estimate in some situations, while

others may have complexity or robustness advantages.

In practice, it is difficult to obtain a-priori knowledge

of the full statistics of measurement errors. Due to

obstacles or other unknown phenomena, the measure-

ment errors statistics may have complicated distribution.

Even if the distribution of the measurement errors is

known, complexity and convergence issues may limit

the performance of an optimal algorithm in practice.

For instance, the ML estimator derived for positioning

commonly suffers from non-convexity [3]. Therefore,

when solving using an iterative search algorithm, a good

initial estimate should be chosen to avoid converging to

local minima. In addition to complexity and non-con-

vexity, an important issue in positioning is how to deal

with non-line-of-sight (NLOS) conditions, where some

measurements have large positive biases [19]. Tradition-

ally, there are methods to remove outliers that need

tuning parameters [20,21]. In [22], a non-parametric

method based on hypothesis testing was proposed for

positioning under LOS/NLOS conditions. In spite of the

good performance, the proposed method seems to have

limitations for implementation in a large network,
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mainly due to the complexity. For a good survey on outlier

detection techniques for WSNs, see [23]. A different

approach was considered in [24] where the authors formu-

lated the positioning problem as a convex feasibility pro-

blem (CFP) and applied the well-known successive

projection onto convex sets (POCS) approach to solve the

positioning problem. This method turns out to be robust

to NLOS conditions. POCS was previously studied for the

CFP [25,26] and has found applications in several research

fields [27,28]. For non-cooperative positioning with posi-

tively biased range measurements, POCS converges to a

point in the convex feasible set (i.e., the intersection of a

number of discs). When measurements are not positively

biased, the feasible set can be empty, in which case POCS,

using suitable relaxations, converges to a point that mini-

mizes the sum of squared distances to a number of discs.

In the positioning literature, POCS was studied with dis-

tance estimates [29] and proximity [30]. Although POCS

is a reliable algorithm for the positioning problem, its esti-

mate might not be accurate enough to use for locating a

target, especially when a target lies outside the convex hull

of reference nodes. Therefore, POCS can be considered a

pre-processing method that gives a reliable coarse esti-

mate. Model-based algorithms such as ML or NLS can be

initialized with POCS to improve the accuracy of estima-

tion. The performance of POCS evaluated through practi-

cal data in [18,19] confirms these theoretical claims.

In this semi-tutorial paper, we study the application of

POCS to the positioning problem for both non-coopera-

tive and cooperative networks. By relaxing the robustness

of POCS, we can derive variations of POCS that are more

accurate under certain conditions. For the scenario of

positively biased range estimates, we show how the esti-

mation error of POCS can be upper-bounded by solving

a non-convex optimization problem. We also formulate a

version of POCS for cooperative networks as well as an

error-bounding algorithm. Moreover, we study a method

based on outer approximation (OA) to solve the position-

ing problem for positive measurement errors and pro-

pose a new OA method for cooperative networks

positioning. We also propose to combine constraints

derived in OA with NLS that yields a new constrained

NLS. The feasibility problem that we introduce in coop-

erative positioning has not been tackled in the literature

previously. Computer simulations are used to evaluate

the performance of different methods and to study the

advantages and disadvantages of POCS as well as OA.

The rest of this paper is organized as follows. In Sec-

tion 2, the system model is introduced, and Section 3

discusses positioning using NLS. In Section 4, the posi-

tioning problem is interpreted as a convex feasibility

problem, and consequently, POCS and OA are formu-

lated for non-cooperative networks. Several extensions

of POCS as well as an upper bound on the estimation

error are introduced for non-cooperative networks. In

the sequel of this section, a version of POCS and outer-

approximation approach are formulated for cooperative

networks. The simulation results are discussed in Sec-

tion 5, followed by conclusions.

2 System model
Throughout this paper, we use a unified model for both

cooperative and non-cooperative networks. Let us con-

sider a two-dimensional network with N + M sensor

nodes. Suppose that M targets are placed at positions zi Î

ℝ
2, i = 1,..., M, and the remaining N reference nodes are

located at known positions zj Î ℝ
2, j = M + 1,..., N + M.

Every target can communicate with nearby reference

nodes and also with other targets. Let us define Ai = {j|

reference node j can communicate with target i} and Bi =

{j|j ≠ i, target j can communicate with target i} as the sets

of all reference nodes and targets that can communicate

with target i. For non-cooperative networks, we set Bi = ∅ .

Suppose that sensor nodes are able to estimate dis-

tances to other nodes with which they communicate,

giving rise to the following observation:

d̂ij = dij + εij, j ∈ Ai ∪ Bi, i = 1, ..., M, (1)

where dij = ||zi - zj|| is the Euclidian distance between xi
and xj and �ij is the measurement error. As an example,

Figure 1 shows a cooperative network consisting of two

targets and four reference nodes. Since in practice the dis-

tribution of measurement errors might be complex or

completely unknown, throughout this paper we only

assume that measurement errors are independent and

identically distributed (i.i.d.). In fact, we assume limited

knowledge of �ij is available. In some situations, we further

assume measurement errors to be non-negative i.i.d.

The goal of a positioning algorithm is to find the

positions of the M targets based on N known sensors’

positions and measurements (1).
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Figure 1 A typical cooperative network with two targets and

four reference nodes.

Gholami et al. EURASIP Journal on Wireless Communications and Networking 2011, 2011:161

http://jwcn.eurasipjournals.com/content/2011/1/161

Page 2 of 15



3 Conventional positioning
A classic method to solve the problem of positioning

based on measurements (1) is to employ the ML estima-

tor, which needs prior knowledge of the distribution of

the measurement errors �ij. When prior knowledge of the

measurement error distribution is not available, one can

apply non-linear least squares (NLS) minimization [31]:

Ẑ = arg min
zi∈R2

i=1,...,M

M
∑

i=1

∑

j∈Ai∪Bi

(

d̂ij − dij

)2
, (2)

where Ẑ = [ẑ1, ..., ẑM]. Note that when Bi = ∅ , we find

the conventional non-cooperative LS [11].

The solution to (2) coincides with the ML estimate if

measurement errors are zero-mean i.i.d. Gaussian ran-

dom variables with equal variances [31]. It has been

shown in [11] that in some situations, the NLS objective

function in (2) is convex, in which case it can be solved

by an iterative search method without any convergence

problems. In general, however, NLS and ML have non-

convex objective functions.

NLS formulated in (2) is a centralized method which

may not be suitable for practical implementation. Algo-

rithm 1 shows a distributed approach to NLS for (non-

cooperative networks.

Algorithm 1 Coop-NLS

1: Initialization: choose arbitrary initial target position

ẑi Î ℝ
2, i = 1, ..., M

2: for k = 0 until convergence or predefined number K

do

3: for i = 1,...,M do

4: update the position estimate of target i

ẑi = arg min
zi∈R2

∑

j∈Bi

(

d̂ij −
∥

∥zi − ẑj

∥

∥

)2
+

∑

j∈Ai

(

d̂ij −
∥

∥zi − zj

∥

∥

)2

(3)

5: end for

6: end for

To solve (3) using an iterative search algorithm, a

good initial estimate for every target should be taken.

To avoid drawbacks in solving NLS, the original non-

convex problem can be relaxed into a semidefinite pro-

gram [16] or a second-order cone program [17], which

can be solved efficiently. Assuming small variance of

measurement errors and enough available reference

nodes, a linear estimator can also be derived to solve

the problem that is asymptotically efficient [13,15,32].

4 Positioning as a convex feasibility problem
Iterative algorithms to solve positioning problem based on

ML or NLS for a non-cooperative network require a good

initial estimate. POCS can provide such an estimate and

was first applied to positioning in [24], where the position-

ing problem was formulated as a convex feasibility problem.

POCS, also called successive orthogonal projection

onto convex sets [33] or alternative projections [34], was

originally introduced to solve the CFP in [25]. POCS has

then been applied to different problems in various fields,

e.g., in image restoration problems [35,36] and in radia-

tion therapy treatment planning [26]. There are gener-

ally two versions of POCS: sequential and simultaneous.

In this paper, we study sequential POCS and refer the

reader to [33] for a study of both sequential and simul-

taneous projection algorithms. If the projection onto

each convex set is easily computed, POCS is a suitable

approach to solve CFP. In general, instead of POCS,

other methods such as cyclic subgradient projection

(CSP) or Oettli’s method can be used [33].

In this section, we first review POCS for the position-

ing problem and then study variations of POCS. We

then formulate a version of POCS for cooperative net-

works. For now, we will limit ourselves to positive mea-

surement errors and consider the general case later.

In the absence of measurement errors, i.e., d̂ij = dij , it

is clear that target i, at position zi, can be found in the

intersection of a number of circles with radii dij and

centres zj. For non-negative measurement errors, we can

relax circles to discs because a target definitely can be

found inside the circles. We define the disc Dij centered

at zj as

Dij =
{

z ∈ R
2|

∥

∥z − zj

∥

∥ ≤ d̂ij

}

, j ∈ Ai ∪ Bi. (4)

It then is reasonable to define an estimate of zi as a

point in the intersection Di of the discs Dij

ẑi ∈ Di =
⋂

j∈Ai∪Bi

Dij. (5)

Therefore, the positioning problem can be transformed

to the following convex feasibility problem:

find Z = [z1, ..., zM] such that zi ∈ Di, i = 1, ..., M. (6)

In a non-cooperative network, there are M indepen-

dent feasibility problems, while for the cooperative

network, we have dependent feasibility problems.

4.1 Non-cooperative networks

4.1.1 Projection onto convex sets

For non-cooperative networks Bi = ∅ in (5). To apply

POCS for non-cooperative networks, we choose an arbi-

trary initial point and find the projection of it onto one

of the sets and then project that new point onto another

set. We continue alternative projections onto different

convex sets until convergence. Formally, POCS for a tar-

get i can be implemented as Algorithm 2, where
{

λi
k

}

k≥0 are relaxation parameters, which are confined
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to the interval ∈1 ≤ λi
k ≤ 2 − ∈2 for arbitrary small �1,

�2 > 0, and 1 ≤
{

j(k)
}

k≥0
≤ |Ai| determines the indivi-

dual set Dij(k)[26]. In Algorithm 2, we have introduced

PDij
(z) , which is the orthogonal projection of z onto set

Dij . To find the

Algorithm 2 POCS

1: Initialization: choose arbitrary initial target posi-

tion z
0
i ∈ R

2 for target i

2: for k = 0 until convergence or predefined number

K do

3: Update:

z
k+1
i = z

k
i + λi

k

(

PDij(k)

(

z
k
i

)

− z
k
i

)

4: end for

projection of a point z Î ℝ
n onto a closed convex set

Ω ⊆ ℝ
n, we need to solve an optimization problem [37]:

P�(z) = arg min
x∈�

‖z − x‖ . (7)

When Ω is a disc, there is a closed-form solution for

the projection:

PDij
(z) =

⎧

⎨

⎩

zj +
z − zj

∥

∥z − zj

∥

∥

d̂ij,
∥

∥z − zj

∥

∥ ≥ d̂ij

z,
∥

∥z − zj

∥

∥ ≥ d̂ij,

(8)

where zj is the center of the disc Dij . When projecting

a point outside of Dij(k) onto Dij(k) , the updated estimate

based on an unrelaxed, underrelaxed, or overrelaxed

parameter λi
k
(i.e., λi

k = 1, λi
k < 1, λi

k > 1 , respectively)

is found on the boundary, the outside, or the inside of

the disc, respectively. For the λi
k = 1 , unrelaxed para-

meter, the POCS estimate after k iterations is obtained as

z
k
i = PDij(k)PDij(k−1)...PDij(0)

(

z
0
i

)

. (9)

There is a closed-form solution for the projection

onto a disc, but for general convex sets, there are no

closed-form solutions [29,38], and for every iteration in

POCS, a minimization problem should be solved. In this

situation, a CSP method can be employed instead [33],

which normally has slower convergence rate compared

to POCS [33].

Suppose POCS generates a sequence
{

z
k
i

}∞

k=0
. The fol-

lowing two theorems state convergence properties of

POCS.

Theorem 4.1 (Consistent case) If the intersection

of Di in (5) is non-empty, then the sequence
{

z
k
i

}∞

k=0
converges to a point in the non-empty intersection

Di .

Proof See Theorem 5.5.1 in [33, Ch.5].

In practical cases, some distance measurements might

be smaller than the real distance due to measurement

noise, and the intersection Di might be empty. It has

been shown that under certain circumstances, POCS

converges as in the following sense. Suppose λi
k
be a

steering sequence defined as [26]

lim
k→∞

λi
k = 0,

lim
k→∞

λi
k+1

λi
k

= 1,

∞
∑

k=0

λi
k = +∞.

(10)

Let m be an integer. If in (10) we have

lim
k→∞

λi
km+j

λi
km

= 1, 1 ≤ j ≤ m − 1, (11)

then the steering sequence λi
k
is called m-steering

sequence [26]. For such steering sequences, we have the

following convergence result.

Theorem 4.2 (Inconsistent case) If the intersection of

Di in (5) is empty and steered sequences defined in (11)

are used for POCS in Algorithm 2, then the sequence
{

z
k
i

}∞

k=0
converges to the minimum of the convex function

∑

j∈Ai

∥

∥PDij
(z) − z

∥

∥

2
.

Proof See Theorem 18 in [39].

Note that in papers [18,24,29], and [19], the cost func-

tion minimized by POCS in the inconsistent case should

be corrected to the one given in Theorem 4.2.

One interesting feature of POCS is that it is insensi-

tive to very large positive biases in distance estimates,

which can occur in NLOS conditions. For instance, in

Figure 2, one bad measurement with large positive error

(shown as big dashed circle) is assumed to be a NLOS

measurement. As shown, a large positive measurement

error does not have any effect on the intersection, and

POCS will automatically ignore it when updating the

estimate. Generally, for positive measurement errors,

POCS considers only those measurements that define

the intersection.

When a target is outside the convex hull of reference

nodes, the intersection area is large even in the noiseless

case, and POCS exhibits poor performance [37]. Figure

3 shows the intersection of three discs centered around
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reference nodes that contains a target’s position when

the target is inside or outside the convex hull of the

three reference nodes. We assume that there is no error

in measurements. As shown in Figure 3b, the intersec-

tion is large for the target placed outside the convex

hull. In [29], a method based on projection onto hyper-

bolic sets was shown to perform better in this case;

however, the robustness to NLOS is also lost.

4.1.2 Projection onto hybrid sets

The performance of POCS strongly depends on the inter-

section area: the larger the intersection area, the larger the

error of the POCS estimate. In the POCS formulation,

every point in the intersection area can potentially be an

estimate of a target position. However, it is clear that all

points in the intersection are not equally plausible as target

estimates. In this section, we describe several methods to

produce smaller intersection areas in the positioning pro-

cess that are more likely to be targets’ positions. To do this,

we review POCS for hybrid convex sets for the positioning

problem. In fact, here we trade the robustness property of

POCS to obtain more accurate algorithms. The hybrid algo-

rithms have a reasonable convergence speed and show bet-

ter performance compared to POCS for line-of-sight (LOS)

conditions. However, the robustness against NLOS is par-

tially lost in projection onto hybrid sets. The reason is that

in NLOS conditions, the disc defined in POCS method con-

tains the target node; however, for the hybrid sets, this con-

clusion is no longer true, i.e., the set defined in hybrid

approach might not contain the target node.

Projection onto Rings: Let us consider the disc

defined in (4). It is obvious that the probability of find-

ing a target inside the disc is not uniform. The target is

more likely to be found near the boundary of the disc.

When the measurement noise is small, instead of a disc

Dij , we can consider a ring Rij (or more formally, an

annulus) defined as

Figure 2 POCS is able to remove very large positive bias (big

dashed circle).

Figure 3 Intersection of three discs that contains the position of a target, assuming no noise in measurements. a Target is inside the

convex hull of reference nodes; b target is outside the convex hull of reference nodes. As shown, the intersection in b is very large compared

to a.
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Rij = {z ∈ R
2|d̂ij − εl ≤

∥

∥z − zj

∥

∥ ≤ d̂ij − εu}, j ∈ Ai,(12)

where �l ≥ 0, �u ≥ 0, and the control parameter �l + �u

determines the width of the ring that can be connected

to the distribution of noise (if available). Then, projec-

tion onto rings (POR) can be implemented similar to

POCS, except the disc Dij(k) in Algorithm 2 is replaced

with the ring Rij(k) . When �l = �u = 0, POR changes to

a well-known algorithm called Kaczmarz’s method [33],

also called algebraic reconstruction technique (ART) in

the field of image processing [33,40], or the boundary

projection method in the positioning literature [41],

which tries to find a point in intersection of a number

of circles. The ART method may converge to local

optima instead of the global optimum [37]. The ring in

(12) can be written as the intersection of a convex and a

concave set, D
∈u

ij and C∈l
ij respectively, defined by

D
∈u

ij =
{

z ∈ R
2|

∥

∥z − zj

∥

∥ ≤ d̂ij + ∈u

}

, j ∈ Ai, (13)

C∈l
ij =

{

z ∈ R
2|

∥

∥z − zj

∥

∥ ≥ d̂ij+ ∈l

}

, j ∈ Ai, (14)

so that

Rij = D
∈u

ij ∩ C
∈l

ij , j ∈ Ai, (15)

Hence, the ring method changes the convex feasibility

problem to a convex-concave feasibility problem [42].

This method has good performance for LOS measure-

ments when E
{

∈ij

}

= 0 .

In some situations, the performance of POCS can be

improved by exploiting additional information in the

measurements [29,30]. In addition to discs, we can con-

sider other types of convex sets, under assumption that

the target lies in, or close to, the intersection of those

convex sets. Note that we still have a convex feasibility

problem. We will consider two such types of convex

sets: the inside of a hyperbola and a halfplane.

Hybrid Hyperbolic POCS: By subtracting each pair of

distance measurements, besides discs, we find a number

of hyperbolas [29]. The hyperbola defined by subtracting

measured distances in reference node j and k [29]

divides the plane into two separated sets: one convex

and one concave. The target is assumed to be found in

the intersection of a number of discs and convex hyper-

bolic sets. For instance, for the target i,

ẑi ∈ DHi =
⋂

j∈Ai

Dij

⋂

{j,k}∈Ai,j�=k

Hi
jk. (16)

where Hi
jk is the convex hyperbolic set defined by

the hyperbola derived in reference node j and k [29].

Therefore, projection can be done sequentially onto

both discs and hyperbolic sets. Figure 4 shows the

intersection of two discs and one hyperbolic set that

contains a target. Since there is no closed-form solu-

tion for the projection onto a hyperbola, the CSP

approach is a good replacement for POCS [33]. There-

fore, we can apply a combination of POCS and CSP

for this problem. Simulation results in [29] shows sig-

nificant improvement to the original POCS when discs

are combined with hyperbolic sets, especially when tar-

get is located outside the convex hull of reference

nodes.

Hybrid Halfplane POCS: Now we consider another

hybrid method for the original POCS. Considering every

pair of references, e.g., the two reference nodes in Figure 5,

and drawing a perpendicular bisector to the line joining

the two references, the whole plane is divided into two

halfplanes. By comparing the distances from a pair of refer-

ence nodes to a target, we can deduce that the target most

probably belongs to the halfplane containing the reference

node with the smallest measured distance. Therefore, a tar-

get is more likely to be found in the intersection of a num-

ber of discs and halfplanes than in the intersection of only

the discs. Formally, for target i, we have

ẑi ∈ DFi =
⋂

j∈Ai

Dij

⋂

{j,k}∈Ai,j�=k

F i
jk. (17)

where F i
jk defines a halfplane that contains reference

node j or k and is obtained as follows. Let aTx = b, for

Figure 4 A network consisting of two reference nodes. The

intersection of two discs centred at reference nodes and one

hyperbolic set determines the position of the target.
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a,x Î ℝ
2, and b Î ℝ, be the perpendicular bisector to

the line joining reference nodes j and k, and suppose

halfplanes {x Î ℝ
2|aTx >b} and {x Î ℝ

2|aTx ≤ b} contain

reference nodes j and k, respectively. The halfplane F i
jk

containing the target i obtained as

F i
jk =

{

{

x ∈ R
2|aTx > b

}

, if d̂ij ≤ d̂ik
{

x ∈ R
2|aT

x ≤ b
}

, if d̂ij > d̂ik.
(18)

There is a closed-form solution for the projection

onto the halfplane [33]; hence, POCS can be easily

applied to such hybrid convex sets. In [30], POCS for

halfplanes was formulated, and we used the algorithm

designed there for the projection onto the halfplane in

Section 5.

When there are two different convex sets, we can deal

with hybrid POCS in two different ways. Either POCS is

sequentially applied to discs and other convex sets or

POCS is applied to discs and other sets individually and

then the two estimates can be combined as an initial

estimate for another round of updating. This technique

is studied for a specific positioning problem in [38].

4.1.3 Bounding the feasible set

In previous sections, we studied projection methods to

solve the positioning problem. In this section, we con-

sider a different positioning algorithm based on the con-

vex feasibility problem. As we saw before, the position

of an unknown target can be found in the intersection

of a number of discs. The intersection in general may

have any convex shape. We still assume positive mea-

surement errors in this section, so that the target

definitely lies inside the intersection. This assumption

can be fulfilled for distance estimation based on, for

instance, time of flight for a reasonable signal-to-noise

ratio [43]. In contrast to POCS, which tries to find a

point in the feasible set as an estimate, outer approxi-

mation (OA) tries to approximate the feasible set by a

suitable shape and then one point inside of it is taken as

an estimate. The main problem is how to accurately

approximate the intersection. There is work in the lit-

erature to approximate the intersection by convex

regions such as polytopes, ellipsoids, or discs [19,44-46].

In this section, we consider a disc approximation of

the feasible set. Using simple geometry, we are able to

find all intersection points between different discs and

finally find a smallest disc that passes through them and

covers the intersection. Let zI
k , k = 1, ..., L be the set of

intersection points. Among all intersection points, some

of them are redundant and will be discarded. The com-

mon points that belong to the intersection are selected

as Sint =
{

zI
k|z

I
k ∈ Di

}

. The problem therefore renders

to finding a disc that contains Sint and covers the inter-

section. This is a well-known optimization problem trea-

ted in, e.g., [20,45]. We can solve this problem by, for

instance, a heuristic in which we first obtain a disc cov-

ering Sint and check if it covers the whole intersection.

If the whole intersection is not covered by the disc, we

increase the radius of disc by a small value and check

whether the new disc covers the intersection. This pro-

cedure continues until a disc covering the intersection is

obtained. This disc may not be the minimum enclosing

disc, but we are at least guaranteed that the disc covers

the whole intersection. A version of this approach was

treated in [19].

Another approach was suggested in [45] that yields

the following convex optimization problem:

minimize
λ

∥

∥

∥

∥

∥

∥

∑

j∈Ai

λjzj

∥

∥

∥

∥

∥

∥

2

−
∑

j∈Ai

λj

(

∥

∥zj

∥

∥

2
− d̂2

ij

)

subject to λ ∈ S|Ai|,

(19)

where Sp is a unit simplex, which is defined as

Sp =
{

x ∈ R
p|xi ≥ 0,

∑p
i xi = 1

}

, and |c| is the cardinal-

ity of set c. The final disc is given by a center ẑci and a

radius R̂i , where

ẑci
=

∑

j∈Ai

λjzj

R̂i =

√

√

√

√

√

∥

∥

∥

∥

∥

∥

∑

j∈Ai

λjzj

∥

∥

∥

∥

∥

∥

2

−
∑

j∈Ai

λj

(

∥

∥zj

∥

∥

2
− d̂2

ij

)

.

(20)

Figure 5 A network consists of two reference nodes .

Intersection of two discs centred at reference nodes and one

halfplane determines the position of target.
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Note when there are two discs (|Ai| = 2) , the inter-

section can be efficiently approximated by a disc, i.e.,

the approximated disc is the minimum disc enclosing

the intersection. For |Ai| ≥ 3 , there is no guarantee

that the obtained disc is the minimum disc enclosing

the intersection [45].

When the problem is inconsistent, a coarse estimate

may be taken as an estimate, e.g., the arithmetic mean

of reference nodes as

ẑci
=

1

|Ai|

∑

j∈Ai

zj. (21)

Finally, we introduce a method to bound the position

error of POCS for the positive measurement errors where

the target definitely lies inside the intersection. In the best

case, the error of estimation is zero, and in the worst case,

the absolute value of position error is equal to the largest

Euclidian distance between two points in the intersection.

Therefore, the maximum length of the intersection area

determines the maximum absolute value of estimation

error that potentially may happen. Hence, the maximum

length of the intersection defines an upper bound on the

absolute value of position error for the POCS estimator.

To find an upper bound, for instance for target i, we need

to solve the following optimization problem:

maximize
∥

∥z − z’
∥

∥

subject to z, z’ ∈ Di.
(22)

The optimization problem (22) is non-convex. We

leave the solution to this problem as an open problem

and instead use the method of OA described in this sec-

tion to solve the problem, e.g., for the case when the

measurement errors are positive, we can upper bound

the position error with R̂i [found from (20)].

4.2 Cooperative networks

4.2.1 Cooperative POCS

It is not straightforward to apply POCS in a cooperative net-

work. The explanation why follows in the next paragraph.

However, we propose a variation of POCS for cooperative

networks. We will only consider projection onto convex

sets, although other sets, e.g., rings, can be considered.

To apply POCS, we must unambiguously define all the

discs, Dij , for every target i. From (4), it is clear that some

discs, i.e., discs centered around a reference node, can be

defined without any ambiguity. On the other hand, discs

derived from measurements between targets have unknown

centers. Let us consider Figure 6 where for target one, we

want to involve the measurement between target two and

target one. Since there is no prior knowledge about the

position of target two, the disc centered around target two

cannot be involved in the positioning process for target

one. Suppose, based on applying POCS to the discs defined

by reference nodes 5 and 6 (the red discs), we obtain an

initial estimate ẑ2 for target two. Now, based on distance

estimate d̂12, we can define a new disc centered around ẑ2

(the dashed disc). This new disc can be combined with the

two other discs defined by reference nodes 3 and 4 (the

black solid discs). Figure 6 shows the process for localizing

target one. For target two, the same procedure is followed.

Algorithm 3 implements cooperative POCS (Coop-

POCS). Note that even in the consistent case, discs may

have an empty intersection during updating. Hence, we

use relaxation parameters to handle a possibly empty

intersection during updating. Note that the convergence

properties of Algorithm 3 are unknown and need to be

further explored in future work.

4.2.2 Cooperatively bounding the feasible sets

In this section, we introduce the application of the outer

approximation to cooperative networks. Similar to non-

cooperative networks, we assume that all measurement

errors are positively biased. To apply OA for cooperative

networks, we first determine an

Algorithm 3 Coop-POCS

1: Initialization: Tij = R
2, j ∈ Bi, i = 1, ..., M

2: for k = 0 until convergence or predefined number

K do

3: for i = 1,...,M do

4: find ẑi with POCS such that

ẑi ∈ Di =
⋂

j∈Ai

Dij

⋂

j∈Bi

Tij

5: for m = 1,...,M do

6: if m is such that i ∈ Bm , then update sets

Tmi as

Tmi =
{

z ∈ R
2|

∥

∥z − ẑi

∥

∥ ≤ d̂mi

}

7: end for

8: end for

9: end for

outer approximation of the feasible set by a simple region

that can be exchanged easily between targets. In this paper,

we consider a disc approximation of the feasible set. This

disc outer approximation is then iteratively refined at every

iteration finding a smaller outer approximation of the feasi-

ble set. The details of the disc approximation were

explained previously in Section 4.1.3, and we now extend

the results to the cooperative network scenario.

To see how this method works, consider Figure 7 where

target two helps target one to improve its positioning. Tar-

get two can be found in the intersection derived from two

discs centered around z5 and z6 in non-cooperative mode

(semi oval shape). Suppose that we outer-approximate this
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intersection by a disc (small dashed circle). In order to

help target one to outer-approximate its intersection in

cooperative mode, this region should be involved in find-

ing the intersection for target one. We can extend every

point of this disc by d̂12 to come up with a large disc (big

dashed circle) with the same center. It is easily verified

that (1) target one is guarantee to be on the intersection of

the extended disc and discs around reference nodes 3 and

4; (2) the outer-approximated intersection for target one is

smaller than that for the non-cooperative case. Note if we

had extended the exact intersection, we end up with an

even smaller intersection of target one. Cooperative OA

(Coop-OA) can be implemented as in Algorithm 4.

We can consider the intersection obtained in Coop-OA

as a constraint for NLS methods (CNLS) to improve the

performance of the algorithm in (3). Suppose that for target

i, we obtain a final disc as D̂i with center ẑi and radius R̂i .

It is clear that we can define
∥

∥zi − ẑi

∥

∥ ≤ R̂i as a constraint

for the ith target in the optimization problem (3). This pro-

blem can be solved iteratively similar to Algorithm 2 con-

sidering constraint obtained in Coop-OA. Algorithm 5

implements Coop-CNLS.

Algorithm 4 Coop-OA

1: Initialization: Tij = R
2, j ∈ Bi, i = 1, ..., M

2: for k = 0 until convergence or predefined number K

do

3: for i = 1,...,M do

4: find outer approximation (by a disc with center

ẑi and radius R̂i ) using (20) or other heuristic methods

such that

(

ẑi, R̂i

)

− OA

⎧

⎨

⎩

⋂

j∈Ai

Dij

⋂

j∈Bi

Tij

⎫

⎬

⎭

5: for m = 1,...,M do

6: if m is such that i ∈ Bm , then update sets

Tmi as

Tmi =
{

z ∈ R
2|

∥

∥z − ẑi

∥

∥ ≤ d̂mi + R̂i

}

7: end for

8: end for

9: end for

Figure 6 Initial estimate for target two, ẑ2 , can be obtained based on reference node five and six and then a new disc with radius

d̂12
can be defined, shown as a dashed circle, that can be involved to improve the position accuracy for target one.
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Algorithm 5 Coop-CNLS

1: Run Algorithm 4 to obtain final discs

D̂i =
{

z ∈ R
2|

∥

∥z − ẑi

∥

∥ ≤ R̂i

}

, i = 1, ..., M

2: Initialization: initialize ẑi ∈ D̂i, i = 1, ..., M
3: for k = 0 until convergence or predefined number K

do

4: for i = 1,...,M do

5: Obtain the position of ith target using non-lin-

ear LS as

ẑi = arg min
zi∈D̂i

∑

j∈Bi

(

d̂ij −
∥

∥zi − ẑj

∥

∥

)2
+

∑

j∈Ai

(

d̂ij −
∥

∥zi − zj

∥

∥

)2

6: end for

7: end for

5 Simulation results
In this section, we evaluate the performance of POCS for

non-cooperative and cooperative networks. The network

deployment shown in Figure 8 containing 13 reference

nodes at fixed positions is considered for simulation for

both non-cooperative and cooperative networks. In the

simulation, we study two cases for the measurement noise:

(1) all measurements are positive and (2) measurements

noise can be both positive and negative. For positive mea-

surement errors, we use an exponential distribution [47]:

f
(

∈ij

)

=

⎧

⎪

⎨

⎪

⎩

1

r
e
−

1

r
∈ij

, ∈ij ≥ 0

0, ∈ij < 0.

For the mixed positive and negative measurement

errors, we use a zero-mean Gaussian distribution, i.e.,

εij ∼ N (0, σ 2). In the simulation for both non-coopera-

tive and cooperative networks, we set g = s = 1 m. For

every scenario (cooperative or non-cooperative), we study

both types of measurement noise, i.e., positive measure-

ment noise and mixed positive and negative measurement

errors. To compare different methods, we consider the

cumulative distribution function (CDF) of the position

Figure 7 Extending the convex region involving target two to help target one to find a smaller intersection.
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error ei =
∥

∥x̂i − xi

∥

∥. For the non-cooperative network, one

target is randomly placed inside the network shown in Fig-

ure 8 in which we assume it can communicate with all

reference nodes. For the cooperative network, 100 targets

are randomly placed inside the area, i.e., in Figure 8, and

we assume a pair of nodes, i.e., a pair of (target, reference)

or a pair of (target, target), can connect and estimate the

distance between each other if that distance is less than 20

m. To evaluate the NLOS condition, we add a uniform

random variable b ∼ U(0, U) to a measured distance in

20% of cases. For non-cooperative and cooperative net-

works, we set U = 100 m and U = 20 m, respectively.

For implementation of POCS for a target in both coop-

erative and non-cooperative networks, we run the algo-

rithm for 10Na, where Na is the number of nodes

connected to the target. In the simulation for inconsistent

scenario, the relaxation parameters are first set to one,

and after a given number k0 of iteration, decrease as [29]

λk =

⌈

k − k0 + 1

Na

⌉−1

, (23)

where [x] denotes the smallest integer greater than or

equal to x. In the simulation, we set k0 = 5Na. To imple-

ment NLS for non-cooperative and constrained NLS for

cooperative networks (Coop-NLS), we use the MATLAB

routine lsqnonlin[48] initialized randomly and

fmincon[48] initialized and constrained with outer

approximation, respectively. For the cooperative net-

work, every target broadcasts its estimates, i.e., a point

or a disc, 20 times over the network.

For Gaussian measurement errors, the feasibility set might

not be consistent. For the OA approach in this case, we take

the average of (pseudo) reference nodes connected to a tar-

get as a coarse estimate. For hybrid approaches, we only

study the combination of discs with halfplanes since it has

not been studied previously and for other two methods

introduced in Section 4.1.2, we refer the reader to [18,19,29].

5.1 Non-cooperative positioning

In this section, we evaluate the performance of POCS,

Hybrid Halfplane POCS, OA, NLS, and CLNS for both

LOS and NLOS. Figure 9 depicts the CDFs for different

methods for both positive and positive-negative measure-

ment errors in LOS conditions. As can be seen, NLS has

almost the best performance among all algorithms. Since

the objective function for NLS in this scenario is convex

(see [11]), NLS converges to the global minimum and

outperforms other methods. For positive measurement

errors, it is seen that POCS outperforms NLS for small

position errors, i.e., e ≤ 1m. Combining discs with half-

planes improves the performance of the POCS for large

errors. OA shows good performance compared to other

methods. To summarize for LOS conditions, we see that

NLS outperforms other methods except for very small

position error when measurement errors are positive. For

the positive measurement errors, the performance of

POCS, H-POCS, and OA are compared in Table 1.

To evaluate the robustness of different algorithms against

NLOS conditions, we plot the CDFs of the various methods

in Figure 10. We see that POCS and OA are robust against

NLOS conditions for both scenarios. It is also seen that

NLS has poor performance and the performance of NLS

can be improved by involving the constraint derived from

OA. The hybrid POCS, i.e., projection onto halfplanes and

discs, has poor performance compared to POCS. The rea-

son for the poor performance is that in NLOS conditions,

the distance measured from a target to reference node i

might be larger than the distance measured from the target

to the reference node j even the target is closer to reference

nodes i. Therefore, we might end up in the wrong halfplane

which results in a large error. Here, we can compare differ-

ent methods similar to LOS case and rank various algo-

rithms and make some concluding remarks.

To assess the tightness of the upper bound on the posi-

tion error for POCS, derived in Section 4.1.3, we will inves-

tigate the difference between the upper bound, R̂i and the

true error ei = ||ẑi-zi||. In Figure 11, we have plotted the

CDF of the relative difference, i.e.,
(

R̂i − ei

)

/ei , for posi-

tive measurement errors for LOS and NLOS conditions.

As seen, the bound is not always tight. In fact, in more

than 10% of the simulated scenarios, the upper bound is

more then 25 times as large as the true error.

5.2 Cooperative positioning

In this section, we evaluate the performance of Coop-

POCS, Coop-OA, Coop-NLS, and Coop-CNLS for the
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Figure 8 Simulation environment consists of 13 reference

nodes at fixed positions.
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cooperative network for both LOS and NLOS condi-

tions. Figure 12 shows the CDFs of different algorithms

for LOS conditions. As can be seen, Coop-OA and

Coop-CNLS show good performance. Coop-POCS exhi-

bits an acceptable performance, and Coop-NLS has poor

performance compared to the other methods. We also

see that cooperation between targets can significantly

improve the position estimates. In Table 2, we make a

comparison between different methods for LOS condi-

tions based on position error e.

To evaluate the performance of different methods in

NLOS conditions, we plot the CDFs of various methods

in Figure 13. As this figure shows, Coop-OA outperforms

other methods. Involving constraints of outer approxima-

tion to Coop-NLS improves the performance of this non-

linear estimator.

6 Conclusion
In this semi-tutorial paper, the problem of positioning

was formulated as a convex feasibility problem. For non-

cooperative networks, the method of projection onto con-

vex sets (POCS) as well as outer approximation (OA) was

employed to solve the problem. The main properties of

Figure 9 The CDFs of different algorithms for non-cooperative

network in LOS condition for a positive measurement errors

(drawn from an exponential distribution) and both positive

and negative measurement errors (drawn from a zero-mean

Gaussian distribution).

Table 1 Comparison between POCS, H-POCS, and OA for

LOS conditions for positive measurement errors

Position error e [m] Algorithm ranking (best to worst)

Small error e ≤ 3.5 POCS, H-POCS, OA

Medium error 3.5 ≤ e ≤ 7.5 H-POCS, POCS, OA

Large error 7.5 ≤ e ≤ 16 H-POCS, OA, POCS

Very large error e > 16 OA, H-POCS, POCS

Figure 10 The CDFs of different algorithms for non-

cooperative network in NLOS condition for a positive

measurement errors (drawn from an exponential distribution)

and both positive and negative measurement errors (drawn

from a zero-mean Gaussian distribution).
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POCS were studied and an upper bound on the position

error, for the case when the distance estimation errors

are positive, was found by solving a non-convex optimi-

zation problem. Motivated by non-cooperative networks,

we derived two new distributed algorithms based on

POCS and OA for cooperative networks. POCS and OA

as pre-processing methods can provide reliable coarse

estimates for model-based positioning algorithms such as

maximum likelihood or non-linear least squares (NLS)

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R̂i−ei

ei

C
D

F

LOS

NLOS

Figure 11 The CDF of normalized error
R̂i − ei

ei

in both LOS

and NLOS for consistent case.

Figure 12 The CDF of different algorithms for cooperative

network (LOS) for a positive measurement errors (drawn from

an exponential distribution) and both positive and negative

measurement errors (drawn from a zero-mean Gaussian

distribution).

Table 2 Comparison between Non-Coop-POCS, Coop-

POCS, Coop-OA, Coop-NLS, and Coop-CNLS for LOS

conditions

Position error e [m] Algorithm ranking (best to worst)

Small e ≤ 10 Coop-CLNS, Coop-OA, Coop-POCS

Coop-NLS, Non-Coop-POCS

Medium 10 ≤ e ≤ 17 Coop-CLNS, Coop-OA, Coop-POCS

Non-Coop-POCS, Coop-NLS

Large e > 17 Coop-OA, Coop-CLNS, Coop-POCS

Non-Coop-POCS, Coop-NLS

Figure 13 The CDF of different algorithms for cooperative

network (NLOS) for a positive measurement errors (drawn

from an exponential distribution) and both positive and

negative measurement errors (drawn from a zero-mean

Gaussian distribution).
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estimator. We also proposed to combine constraints

derived in OA with NLS yielding a new constrained NLS.

Simulation results show that the proposed methods are

robust against non-line-of-sight conditions for both non-

cooperative and cooperative networks.
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