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Abstract

A novel wireless passive temperature sensor based on a reflective patch is demonstrated up to 1050
o
C herein. This reflective 

patch acts as a patch resonator (temperature sensor) and an integrated antenna at the same time. The temperature sensing 

mechanism is the monotonic increase of the dielectric constant of alumina versus temperature, which reduces the resonant 

frequency of a patch resonator formed on such an alumina substrate. By properly designing the shape and dimensions of the 

patch, it can also act as a transmit/receive antenna for wireless passive sensing. Therefore, temperatures can be wirelessly sensed 

by measuring the resonant frequency of the temperature sensor using an interrogation antenna. This temperature sensor uses 

robust alumina and platinum materials for high-temperature applications. In addition, this wireless passive temperature sensor is 

simple in mechanical structure and low in profile, with the potential to be in conformal shape. A temperature sensor using this 

reflective patch was designed, fabricated and tested from 50 to 1050
o
C in ambient. The resonant frequency of the sensor

decreases from 5.07 to 4.58 GHz, which corresponds to a dielectric constant change from 9.7 to 11.4 for the alumina substrate. 

The temperature measurement sensitivity is found to be 0.58 MHz/
o
C at 1050

o
C. Being wireless, passive, planar and low profile,

the proposed high-temperature sensor can be used for various harsh-environment applications.

Keywords: harsh environment, microwave sensor, reflective patch antenna, wireless passive temperature sensor.

1. Introduction

Accurate online monitoring of temperatures as well as other physical parameters is highly desirable inside various harsh 

environments such as gas turbines [1], turbine engines [2] and nuclear reactors [3]. However, these harsh environments are 

typically characterized by high temperatures (>1000
o
C), corrosive gases (containing sodium, vanadium and sulfate), high 

pressures or nuclear radiation. Currently there are no commercially-available sensors which can survive these harsh 

environments and provide continuous monitoring. Novel sensor architectures and sensing mechanisms are necessary to achieve 

the aforementioned goal. Particularly, wireless sensors are highly desirable since they do not need failure-prone wire 

interconnections. In addition, they provide a lot of flexibility in mounting sensors at different locations.

Sensors based on active circuits can always provide longer wireless sensing distance. Recent advances in SiC [4] and GaN [5]

have pushed the operating temperatures to 600
o
C. Nevertheless, in order to use these active-circuit-based sensors, complicated 

heat shielding and wire routing are required to house the active circuits below their critical operating temperatures [6]. Wireless 

passive sensors based on surface acoustic wave (SAW) materials are limited by the phase transformation and chemical stability 

of piezoelectric materials [7]. In [8], it was reported that SAW temperature sensors could sense temperatures up to 900
o
C. 

Alternatively, wireless passive sensors based on LC resonator and inductive coupling were used for high-temperature 

applications. Such sensors using low-temperature co-fired ceramics (LTCC) [9] and high-temperature co-fired ceramics (HTCC) 

[10] were reported to work up to 800
o
C and 600

o
C, respectively. It is noted that inductive coupling has many restrictions in terms 

of coil size, coil orientation and distance to metal surfaces, which limit their applications in harsh-environment applications.

The authors reported wireless passive sensing mechanisms using dielectrically-loaded resonators [11, 12]. When temperature 

rises, the dielectric constant of the material inside the sensor monotonically increases. As a result, by wirelessly detecting the 

resonant frequency, the temperature at the sensor can be extracted. However, the antennas were not integrated with sensors in 

[11, 12]. Using the resonator/antenna integration technique developed in [13-16], the authors demonstrated a wireless passive 

temperature sensor up to 1000
o
C by seamlessly integrating a slot antenna into a cavity resonator [17], which significantly 

reduced the sensor size. However, in [17], all six surfaces of the cavity resonator must be thoroughly metallized (except for the 

slot antenna) in order to guarantee the high quality (Q) factor of the cavity sensor, which is critical for wireless sensing distance 

and accuracy. This requirement on metallization may be a failure mechanism for the sensor in [17] if metals on the side faces or 

corners of the cavity resonator wear away during operations. 

Different from the resonator/antenna in [17], a novel sensing mechanism is demonstrated in this paper by using a reflective 
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patch. This wireless passive temperature sensor has a simplified mechanical structure and relaxed metallization requirements 

using robust alumina substrate (melting temperature of 2072
o
C) and platinum (melting temperature of 1769

o
C). This reflective 

patch sensor is low profile, very simple in mechanical structure and easy to fabricate. In addition, the metallization area is just on 

the top and bottom sides of the sensor, which minimizes the chance of failure. This reflective patch sensor has its own ground 

plane, which allows the sensor to work even directly on metallic surfaces such as a blade inside a combustion turbine. Finally, 

conformal sensors using this reflective patch concept can also be developed for certain applications demanding curved shapes.
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Fig. 1. Wireless sensing mechanism of the temperature sensor based on a reflective patch.

2. Principle of The Reflective Patch Sensor

As shown in Fig. 1, this new sensor is based on a reflective patch concept. Similar to the sensing mechanisms in [11, 12, 17], 

the resonant frequency of this sensor decreases versus temperature. An open-ended waveguide (OEWG) interrogation antenna 

sends out a wide-band signal to the temperature sensor. With proper designs, this patch resonator can work as an efficient 

radiator to receive the signal from the interrogator. The frequency components close to the resonant frequency of the patch, 

rather than being scattered right away, will enter the sensor, oscillate, and slowly decay over the time. These oscillating 

frequency components eventually leave the sensor through the patch radiator and are collected by the interrogation antenna. A 

time-domain (TD) gating technique will be used to isolate the signals corresponding to the resonant frequency of the sensor. In 

frequency domain, a maximum reflection from the sensor is expected after TD gating. A more detailed view of the sensor 

structure and interrogation antenna is shown in Fig. 2.

For a rectangular patch resonator operating in TM010 mode, its resonant frequency is approximately given by [18]:

0

2
r

eff eff

c
f

L 
 (1)

in which Leff is the effective patch length, εeff is effective relative permittivity of the patch substrate, and c0 is the speed of light in 

vacuum. The patch and ground plane are made of platinum. To illustrate how the patch resonator works, its electric fields 

corresponding to the resonant frequency, a lower off-resonance frequency, and a higher off-resonance frequency, respectively, 

are plotted in Fig. 3, when this patch is interrogated by a G-band (WR-187, 3.95-5.85 GHz) OEWG antenna. It is apparent that at 

the resonant frequency of the patch, the RF energy enters the patch resonator and excites the electric field to the maximum 

intensity. In addition, the electric field reaches the maximum at the two shorter (radiating) edges of the patch. Accordingly, the 

equivalent magnetic current densities at these two edges are given by [18]:

ˆ2s aM n E   (2)

These two magnetic dipoles radiate in the same way as a regular patch antenna except for the fact that there is no feeding port 

for the patch. The strong RF energy at the resonant frequency will be re-radiated from the patch and collected by the 

interrogation antenna. 

In the next section, design details on the patch shape and dimensions in order to achieve the best sensing distance and 

resolution will be discussed.
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Fig. 2. 3-D views of the reflective patch sensor being interrogated by an OEWG antenna.

Fig. 3. Electric field distribution inside the dielectric substrate at (a) resonant frequency fr = 5.05 GHz (b) lower off-resonance frequency f1 = 

5.00 GHz and (c) higher off-resonance frequency f2 = 5.10 GHz. (d) Patch Dimensions. (L = 9.3 mm, W = 8 mm, h = 0.635 mm, and εr = 9.7)

3. Optimized Design of Thickness, Length and Width of the Patch Sensor 

In this section, the effects from the patch length L, substrate thickness h and width W on the wireless passive reflective patch 

sensor will be studied.

Fig. 4. A reflective patch coupled to a coaxial line to simulate the Q factor.
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3.1. design of the patch length L

The patch length L can be calculated using [18]:

L
f

c
L

effr

 2
2

0


(3)

In which fr is the resonant frequency of the patch; εeff is the effective dielectric constant; and ΔL is the difference between the 

physical length and effective length of the patch due to the fringing field effect. The analytical equations to calculate εeff and ΔL
can be found in [18]. In this paper, fr is designed to be 4.7 GHz at 1000

o
C. In the authors’ earlier work [17], the dielectric 

constant of the alumina substrate was found to be 11.2 at 1000
o
C.

3.2. design of the substrate thickness h

The effect of h on the total Q factor (QT) of the reflective patch is investigated herein. QT is defined as the parallel combination 

of Q factors due to conductor loss (Qc), dielectric loss (Qd), radiation loss (Qr) and surface wave loss (Qsur). QT is a directly-

measurable value from the interrogation antenna. Therefore, it is highly desirable to achieve higher QT which leads to better

sensor resolution and longer wireless sensing distance. In order to simulate QT, a coaxial line is used to feed the patch in ANSYS 

High Frequency Structure Simulator (HFSS) simulations, as shown in Fig. 4. S11 at the coaxial port is illustrated in Fig. 5. QT can 

be extracted from S11 using the equation given by [19]:
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in which, k is defined as:
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and the S11


in Fig. 5 is given by:

min
11 /10
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Fig. 5. Simulated S11 response of the coaxial port when the coaxial line is coupled to the patch. (L = W = 9.3 mm, h = 0.635 mm)
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Fig. 6. QT versus alumina substrate thickness h. (L = W = 9.3 mm)

The relationship between QT and substrate thickness h for particular patch dimensions (L = W = 9.3 mm) is shown in Fig. 6. It 

is observed that QT increases versus h when h < 0.75 mm. Then QT starts to decrease when h further increases. This phenomenon

can be explained using the following equations. 

0c rQ h f                      (7)

1 1 1 1 1

T r sur c dQ Q Q Q Q
    (8)

 When h is small, the loss is dominated by the conductor loss. Typically radiation Q factor is higher for patch antennas on 

thinner substrates. In addition, there is not much surface wave excitation for thin substrates [20]. When the substrate becomes 

thicker, the conductor loss reduces. However, Qr and Qsur get smaller. It is noted that Qd is approximately equal to 1/tanδ if the 

fringing field effect is neglected. Therefore, the maximum QT is expected at a certain optimum substrate thickness. We choose h

= 0.635 mm (25 mil) since this is a commercially-available alumina substrate thickness and this h provides a near-maximum QT.

In the simulations, the conductivity (σ) of the platinum paste is set to 5×10
5
 S/m and the loss tangent (tan) of alumina substrate 

is defined as 0.012, which are extracted from the experiment results at 1000
o
C [17].

3.3. design of the patch width W

In this section, the effect of patch width W on QT and Qext of the patch is studied, in which Qext is defined as the parallel 

combination of Qr and Qsur and given by:

1 1 1

ext r surQ Q Q
  (9)

As implied in Eq. (8), Qext is equal to QT when there are no metallic and dielectric losses. This can be realized by setting these 

two losses to be zero in HFSS simulations. Using the same method described in the Section 3.2, Qext can be extracted from

simulated S11 at the coaxial port.
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Fig. 7. QT and Qext versus patch width W. (h = 0.635 mm, L = 9.3 mm)
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The relationship between W and QT/Qext is plotted in Fig. 7. The antenna efficiency is simply given as the ratio between these 

two Q factors and given by [18]: 

ext

T

Q

Q
 (10)

It is observed in Fig. 7 that Qext is generally much larger than QT, which implies that the metallic and dielectric losses are 

dominant. When W is small, the metallic loss is large due to the crowded current on the patch. Qext decreases with the patch 

width, implying higher antenna efficiency. Therefore, the maximum QT is expected at an optimum patch width, which is around 

6 mm. However, the change in QT is very small for different W. By considering Eq. (10), a higher antenna efficiency requires a 

smaller Qext. Therefore, W = 8 mm is selected as the patch width to achieve near-maximum QT and higher antenna efficiency, 

while maintain TM010 still being the dominant mode for the patch (requiring W < L).

The final dimensions of the reflective patch sensor are L = 9.3 mm, W = 8 mm, and h = 0.635 mm.

4. Wireless Interrogation of the Reflective Patch Sensor

In this section, wireless interrogation of the reflective patch sensor is discussed. Fig. 8(a) shows simulated S11 responses for 

successive sensing distances between the OEWG antenna and reflective patch. The resonant frequency of the sensor is 

unidentifiable due to reflections from the OEWG antenna and scattering from the patch and ground. However, in the time 

domain as shown in Fig. 8(b), these interference signals can be separated from the sensor response due to a time delay between 

them. It is noted that Fig. 8(b) presents two S11 responses with and without the sensor in front of the OEWG, for a sensing

distance of 30 mm. The main peak immediately after 0 ns is due to the reflection at the open aperture of the OEWG. For the case 

without the sensor, S11 quickly drops to the noise floor. When the reflective patch is present, it absorbs the incident wave from 

the OEWG first and then re-radiates back to the OEWG in a periodically-decaying manner. A TD gating window is set in 

between 1.3 and 20 ns. Similar gating procedures are carried out for sensing distances of 40, 50 and 60 mm, respectively. 

Finally, TD-gated signals are transformed back into the frequency domain and shown in Fig. 8(c). The resonant frequency of the 

sensor can be clearly identified and is independent of the sensing distance.
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Fig. 8. (a) Simulated S11 at the input port of the OEWG before TD gating. (b) S11 responses of the OEWG in time domain with and without the 

sensor. (c) S11 responses of the OEWG for different sensing distances after the TD gating.
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When patch dimensions and substrate thickness are fixed, the only parameter which can cause a resonant frequency change in 

the sensor is the dielectric constant of the alumina substrate. To illustrate this phenomenon, the dielectric constant of alumina is 

swept from 9.6 to 11.6 in HFSS simulations. The S11 of the OEWG corresponding to different dielectric constants shown in Fig. 

9 clearly indicates a resonant frequency downshift. The sensor resonant frequency fr versus dielectric constant is extracted from

Fig. 9 and plotted in Fig. 10. The monotonic relationship between the dielectric constant and sensor resonant frequency is 

apparent, which provides the wireless temperature sensing mechanism.
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Fig. 9. Simulated S11 at the input port of the OEWG for various dielectric constants of the alumina substrate.
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Fig. 10. Simulated resonant frequency of the patch sensor for various dielectric constants of the alumina substrate.
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Fig. 11. Ground effect on the sensor response.

In many applications, sensors need to be mounted on highly-reflective surfaces such as engine blades or metallic walls. 

Therefore, it is highly desirable that the wireless passive temperature sensor studied herein can still work when it is mounted on 

the aforementioned surfaces. In HFSS simulations, for a sensing distance of 30 mm, a metallic ground plane of 0×0 at 4.7 GHz 
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is placed behind the sensor. The comparison between the two cases with and without the ground plane is shown in Fig. 11. The 

resonant frequency of the sensor is barely influenced by the large ground plane. However, a 5-dB reduction in S11 is observed. 

5. Fabrication and Measurement of the Wireless Reflective Patch Temperature Sensor

The patch sensor is fabricated on an alumina substrate (ADS-96R) with dimensions 21×21×0.635 mm
3

cut by an MTI 

Precision CNC Dicing/Cutting Saw (SYJ-400). A layer of platinum paste (ESL 5542) is applied and patterned on both top and 

bottom surfaces of the substrate to form the rectangular patch and ground plane, respectively. Then the alumina substrate with

platinum paste is dried at 110ºC for 10 minutes and sintered at 980ºC for 10 minutes to form a dense platinum film. The ramp-up 

and ramp-down rates during the sintering are set to 10ºC/min. This procedure is repeated for six times to ensure continuous metal 

coverage and a total thickness of approximately 25 µm. The fabrication process is shown in Fig. 12 and described as follows. (a) 

The antenna layout is printed on a toner transfer paper by using a laser printer with 1200-dpi resolution. (b) The transfer paper is 

placed on an alumina substrate and then the ink is transferred to the alumina substrate using a thermal compression process. (c) 

Platinum paste is applied on the alumina substrate to form the antenna layout and ground plane. The sensor in the final form is 

shown in Fig. 12(d)-(e).

    
(a) (b)  (c)

W

L

   

Lg

Lg

(d) (e)
Fig. 12. Fabrication process of the reflective patch sensor. (a) Antenna layout on transfer paper. (b) Antenna layout transferred to alumina 

substrate. (c) Patterned and dried platinum paste. (d) Top and (e) bottom view of the sintered reflective patch sensor. (W = 8 mm, L = 9.3 mm, 

Lg = 21 mm, and h = 0.635 mm).

The sensor testing is performed using a 2-inch-diameter heat pad (Micropyretics Heaters International Inc.), which can 

precisely control the temperature from 50 to 1050ºC. As shown in Fig. 13(a), the sensor is placed inside the heat pad and a K-

type thermocouple (Omega HH11) is used to read the temperature and provide the feedback to the temperature controller. To 

prevent air convection and maintain a stable temperature environment, alumina boards are placed over the sensor to cover the 

heat pad as shown in Fig. 13(b).

  
(a) (b)
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(c)
Fig. 13. Sensor measurement using an OEWG (a) without and (b) with alumina board cover. (c) Schematic showing the wave reflections due to 

the alumina board cover with a thickness d = 0.635 mm.

The re-radiated wave from the patch antenna experience a certain amount of reflections when passing through the alumina 

board cover as shown in Fig. 13(c). The total transmission coefficient can be calculated by:

2 2

1 2
1 2

2

(1 )(1 )
j d j de e   
   




(11)

For the alumina board used in the measurements, this additional loss is found to be approximately 0.4 dB, which does not 

degrade the measurement results too much.

A one-port Short-Open-Load (SOL) calibration is performed with the reference plane at the input port of the G-band OEWG 

using an Agilent 40-GHz PNA-L (N5230A). The distance between the OEWG antenna and patch sensor is fixed at 30 mm for 

measurements at all temperatures from 50 to 1050
o
C. The S11 responses after TD gating for different temperatures are compared 

in Fig. 14. It is noted that the curve at 1000
o
C is higher than that of 800

o
C. This is due to the fact that the response at 1000

o
C is 

quite close to the noise floor therefore the S11 data for the 1000
o
C was taken at a slightly shorter sensing distance. 
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Fig. 14. Measured S11 at successive temperatures.

The resonant frequencies of the patch sensor versus temperature are plotted in Fig. 15. The measured resonant frequency 

monotonically decreases from 5.07 to 4.58 GHz, when the temperature is increased from 50 to 1050ºC, as shown in Fig. 15(a). 

The resonant frequency fr is also simulated up to 1000
o
C, based on the dielectric constant of alumina characterized in [17]. The 

simulated and measured resonant frequencies closely match each other, with the largest deviation of 2% at 1000
o
C. The 

coefficient of thermal expansion (CTE) for alumina substrate is 8.2×10
-6

/ºC, which corresponds to a 0.82% dimensional change 

of the substrate from 50 to 1050ºC. While the measured resonant frequency change in this temperature range is 9.7%. Therefore, 

the dielectric constant change is the dominant contributing factor to the resonant frequency variations. Additionally, the sensor 

sensitivity is extracted to be within the range of 0.41-0.58 MHz/
o
C as shown in Fig. 15(a). QT of the reflective patch sensor 

decreases from 64 to 30 for temperature from 50 to 1050
o
C as shown in Fig. 15(b). This is mainly due to the increased dielectric 

and metallic losses at higher temperatures. It is noted that each fr or QT data is the average of ten independent measurements. The 

standard deviation of fr in measurement is 5.9 MHz. 
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Fig. 15. (a) Measured and simulated resonant frequency of the sensor as well as measurement sensitivity, (b) measured QT versus temperature.

6. Conclusion

A novel wireless temperature sensor based on a reflective patch has been successfully designed, fabricated and measured up to 

1050
o
C. This design represents the highest level of integration by using the reflective patch as both the temperature sensor and 

radiating antenna simultaneously. The simple mechanical structure, low profile, and stable materials will make this type of 

wireless passive sensors survive harsh environments. Temperature sensors using different robust materials can be realized using 

this reflective patch structure for specific applications. In addition, conformal temperature sensors on curved surfaces can also be 

formed using polymer-derived ceramics (PDC). In future works, we will study the stability and repeatability of this type of 

sensors mounted inside harsh environments.
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