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ABSTRACT

As various of wireless techniques have been proposed to achieve fast and efficient data

communication, it’s becoming increasingly important to protect wireless communications

from being undermined by adversaries. A secure and reliable wireless physical layer design is

essential and critical to build a solid foundation for upper layer applications. This dissertation

present two works that explore the physical layer features to secure wireless communications

towards the data confidentiality and user authentication.

The first work builds a reliable wireless communication system to enforce the location

restricted service access control. In particular, the work proposes a novel technique named

pinpoint waveforming to deliver the services to users at eligible locations only. The second

work develops a secure far proximity identification approach that can determine whether a

remote device is far away, thus preventing potential spoofing attacks in long-haul wireless

communications. This dissertation lastly describes some future work efforts, designing a

light-weight encryption scheme to facilitate sensitive data encryption for applications which

cannot support expensive cryptography encryption operations such as IoT devices.
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CHAPTER 1

INTRODUCTION

In the past decades, wireless techniques have been remarkably evolved, and pervasively

adopted in our daily life and critical applications. Therefore, it is becoming increasingly

important to design defense approaches to protect emerging wireless techniques from being

undermined by adversaries. Unlike traditional communication, a wireless device can commu-

nicate with any other device within its power range [1]. This makes wireless communication

vulnerable to multiple potential attacks: (1) Eavesdropping becomes one of the major secure

problems to wireless systems, because any devices within the power range of a wireless trans-

mitter can receive the signal from this transmitter through the open public air; (2) Attackers

may also attempt to intercept, jam or even manipulate the transmit signals to take over the

communication between the transmitter and receiver and further launch spoofing attacks.

This dissertation presents two works that renovate the wireless physical layer design

towards improvement of the aforementioned security issues. As the physical layer is the first

and fundamental layer underlying the higher level functions in the computer networking, a

secure and reliable wireless physical layer design is critical and essential to provide a solid

foundation to facilitate the implementation of upper layer applications. The first work builds

a reliable wireless communication systems to enforce the location restricted service access

control, so as to preserve the confidentiality of the data traffic against eavesdropping attacks.

The second work develops a secure far proximity identification approach that can determine

whether a remote device is far away, thus preventing potential spoofing attacks in long-haul

wireless communications.
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1.1 Location-restricted Service Access Control

As the rapid development of wireless technologies, it is highly desirable to enforce location-

oriented service access control that provides wireless services to users at eligible locations

only. For example,

• To focus limited resources on legitimate customers, restaurants and coffee shops may

offer internet access to wireless users only when they are sitting at tables.

• Companies may allow wireless network access only to employees working in select office

cubicles, in order to comply export control policies.

• In wireless surveillance system, the monitor cameras may need to deliver their video

streams to specific users at specific locations, e.g, personnel in the security control

room, to reduce the privacy leakage.

Surprisingly, existing techniques fail to achieve this goal in a secure and efficient manner.

We discuss existing techniques and their shortcomings below.

• User account control: The service access control can be achieved by creating individual

accounts for each user, where a user can obtain the wireless service by providing a

correct username and password. However, this may be insufficient for secure access

control to location-oriented services, as a user might share account information with

friends. This method also requires active account administration which is impractical

for location-oriented services with high turnover such as in the restaurant example.

• MAC address binding: MAC address binding is a variant of the user account control.

A wireless router allows the access of wireless users only when they have valid Me-

dia Access Control (MAC) addresses. Nevertheless, the users may share their MAC

addresses with others who are not at the desired locations.
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• Beamforming techniques: Beamforming techniques (e.g., [2, 3]) use antenna arrays for

directional signal transmission or reception. These techniques may be utilized to send

the service data to the wireless users at the specified directions, but again they cannot

enable the location-oriented service access control, because all other wireless users are

able to receive the service data as long as they reside in the signal coverage range of

the antenna arrays.

• Localization plus encryption: Service providers may use existing localization algorithms

like time-of-arrival (TOA) and angle-of-arrival (AOA) to find the locations of wireless

users, and encrypt the service data so that users at target locations can use appro-

priate keys to decrypt it. However, cryptographic encryption may cause a significant

latency, and thus fail to support common services like high-speed downloading and

online video watching. Also, like the password case, with compromised cryptographic

keys, undesired receivers at other locations can still obtain the service.

In this work, we would like to develop a novel and practical wireless system that achieves

the aforementioned location-oriented service access control to support emerging wireless

technologies. Our basic idea is to leverage the effect of constructive interference as shown in

Figure 1.1. The crests of two identical waves meet at the same point, and then both waves

form a new wave with the same shape but the magnitude is boosted to twice of that of an

individual wave.

This observation inspires us to propose a new wireless system that pinpoints wireless

services to users at eligible locations only. Intuitively, we can set up a naive system as illus-

trated in Figure 1.2. The service provider concurrently sends identical service packets (e.g.,

down-link internet data) using two (or more) transmitters. Assume an ideal synchronization

algorithm is in use and these packets arrive at the receiver at the service location simultane-

3
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Figure 1.2: A naive idea

ously. Thus, they constructively interfere with each other to form a boosted received packet

whose magnitude is twice of that of an individual packet.

In practice, a small time shift among the packet arrival times may exist due to synchro-

nization imperfections. At the service location, such a time shift should be less than a certain

threshold, so that the constructive interference still exists and the receiver is able to decode

the received packet. To prevent leaking the service to undesired wireless receivers, including

receivers close to the service provider, an intuitive way is to transmit at a weak power so

that receivers at undesired locations (where the constructive interference vanishes) will ex-

perience a low signal-to-noise ratio (SNR), and hence a high bit error rate that retards the

correct decoding of the received messages. At the desired location (where the constructive

interference happens), the receiver obtains a boosted SNR that enables the correct message

decoding.

However, how to select an appropriate signal transmit power becomes a challenging

question. If the transmit power is too small, the constructive interference may not incur

enough power to allow the receivers at the service location to correctly decode the received

data. On the other hand, if the transmit power is too large, receivers outside of the service

location may recognize the signal and thus can decode the received data. To avoid the

difficulty of determining the transmit power, we propose to entangle the original transmit

signals by jamming signals, so that the jamming signals can significantly reduce the SNR at

the undesired receivers but cancel each other at the desired receiver to cause no impact.

4



Specifically, for a pair of transmitters T1 and T2, we generate a pair of jamming signals j1

and j2, where j1 and j2 are of the opposite phase (i.e., j1 = −j2). The transmitter T1 then

adds the jamming signal j1 to its transmit signal. Similarly, T2 adds the jamming signal

j2 to its transmit signal. Finally, T1 and T2 send s + j1 and s + j2 to the wireless channel

respectively, where s is the original signal to be sent by both transmitters. At the service

location, due to the constructive interference, the original signal s boosts, but the jamming

signals j1 and j2 cancel each other (they are of opposite phase). At other locations where

constructive interference vanishes, j1 and j2 do not cancel each other, and instead they serve

as jamming signals to decrease the SNR at receivers at these locations. Consequently, the

receivers will experience a service of bad quality.

We point out that in an ideal free space propagation environment, constructive interfer-

ence of the electromagnetic wave occurs whenever the phase difference between the waves is

a multiple of a half period. This means that there exist multiple locations, where the con-

structive interference may happen. However, in a practical wireless environment, because

wireless channels are uncorrelated every a half wavelength, the original transmit signals sent

by different transmitters may experience different channel distortions when they propagate

to the receiver. Therefore, at the locations where the constructive interference should hap-

pen, signals received from different transmitters show different shapes due to the distortion

and thus achieve a poor constructive interference. To solve this problem and pinpoint the

service to the desired location only, we propose a channel synchronization technique that

compensates the channel distortion at the desired constructive interference location, so that

received signals exhibit the same wave shape when they arrive at this location. The channel

synchronization technique is customized for the desired location only. For other constructive

interference locations, the arrived signals still show different shapes, thereby yielding the

same low SNR as other non constructive interference locations as proved in Section 2.5.2.

5



We name the proposed system as the pinpoint waveforming system. Figure 1.2 is a naive

example of this system. Nevertheless, to transform this naive system to a real-world system,

non-trivial effort should be done to answer the following basic questions:

• Synchronization: How can the system achieve propagation synchronization, so that

signals sent by multiple transmitters can arrive at the service location concurrently?

Moreover, how can we achieve the aforementioned channel synchronization?

• Tolerable time shift: Signals sent by transmitters are expected to arrive at the desired

receiver simultaneously to form the constructive interference, but in practice a small

time shift among them might exist due to the processing delay and synchronization

imperfections. What is the tolerable time shift that can still enable the constructive

interference at the desired receiver?

• Service area size: The service area is defined as the neighborhood area, within which

the constructive interference happens and a receiver can receive the service data with

a good quality. It should be hard for receivers outside of the service area to obtain the

service data. To ensure the accurate service access control, a critical question is how

large the service area is.

1.2 Far Proximity Identification in Wireless Systems

As mobile platforms are more and more pervasive and adopted in critical applications,

it is becoming increasingly important to measure the physical proximity of mobile devices

in a secure way. For example, Implantable Medical Devices (IMDs) like pacemakers may

grant access to an external control device only when that device is close enough [4]. As

another example, contactless-payment systems (like Google Wallet), which enable users to

make payments by placing a mobile device in the close proximity of a payment terminal,

6



may require the mobile devices to be within several centimeters or even millimeters of the

payment terminals.

Thus, verifying the close proximity has triggered significant attention and activity from

the research community, and multiple techniques have been proposed to achieve the efficient

identification of close proximity (e.g., [5, 6, 7, 8, 9, 10, 11]), including the well-known distance

bounding protocols and their variants (e.g., [8, 9, 10]).

Although various techniques have been developed to identify whether a device is close,

the problem of identifying the far proximity (i.e., a target is at least a certain distance away)

has been neglected by the research community. Meanwhile, verifying the far proximity is

desirable and critical to enhance the security of emerging wireless applications. By enforcing

far proximity, in addition to traditional access control and cryptographic approaches, we can

enhance the security of various critical wireless applications, such as satellite communication,

long-haul wireless TV, radio, and alarm broadcasting, and Marine VHF radio for rescue and

communication services [12].

For example, GPS devices receive signals, presumably from satellites in space, to deter-

mine their locations. Ideally, the GPS devices could verify that received signals are from

far-away sources, to avoid being deceived by a nearby adversary’s signals. In cellular net-

works, mobile phones may at times expect to receive signals from particular cell towers.

It has been demonstrated that adversaries can set up a fake short-range cell tower to fool

nearby mobile phones [13, 14]. To avoid being deceived by such a fake cell tower, it is de-

sirable that mobile phones can authenticate that the signals they receive originate from a

tower at an expected, further distance away.

Existing close proximity identification techniques (e.g., [5, 6, 7]) qualitatively decide

whether or not a target is nearby, but they cannot be directly extended to address the

far proximity identification problem. The qualitative decision that a target is not nearby

7



doesn’t quantitatively guarantee that the target is at least a certain distance away (i.e., in

the far proximity).

Distance bounding protocols (e.g., [8, 9, 10] demonstrated their success in quantitatively

estimating the distance between two wireless devices. However, they cannot be directly

applied to enforce far proximity identification. In distance bounding protocols, a local device

sends a challenge to a remote device, and the remote device replies with a response that is

computed as a function of the received challenge. The local device then measures the round-

trip time between sending its challenge and receiving the response, subtracts the processing

delay from the round-trip time, and uses the result to calculate the distance between itself

and the remote device. However, by delaying its response to a challenge, a dishonest remote

device can appear to be arbitrarily further from the local device than it actually is.

In this paper, we develop a secure far proximity identification approach that can deter-

mine whether a remote device is far away. The key idea of the proposed approach is to

estimate the proximity from the unforgeable “fingerprint” of the proximity. We develop a

technique that can extract the fingerprint of a wireless device’s proximity from the physical-

layer features of signals sent by the device (i.e. channel impulse response). Since channel

estimation is mandatory for all wireless systems to achieve reliable communications, mobile

devices can easily extract a proximity fingerprint from an estimated channel impulse re-

sponse. The proximity fingerprints are closely related to the distance between the local and

remote devices. They are easy to extract but difficult to forge. We also develop a novel tech-

nique that uses the proximity fingerprint to identify the lower bound of the distance between

the local and the remote devices. We further propose a fine-grained proximity identification

algorithm and derive both lower and upper bounds of the proximity between the local and

the remote devices. Besides, we identify typical types of attacks against proposed schemes

and propose the corresponding defense approaches.

8



1.3 Summary of Contributions

The contributions of the dissertation are summarized herein:

• Location-restricted Service Access Control towards Wireless Communications: (1) We

propose the concept of pinpoint entanglement, which exploits the constructive interfer-

ence to enable the location-oriented service access control; (2) We propose to entangle

the original signals by specifically designed jamming signals to significantly reduce

the SNR at undesired receivers for the service exclusiveness; (3) We demonstrate the

feasibility of the proposed pinpoint entanglement system by answering the two essen-

tial concerns about the tolerable time shift and the service area size; (4) We imple-

ment a prototype of pinpoint entanglement system on top of the Universal Software

Radio Peripherals (USRPs), and evaluate the performance of the prototype system

through comprehensive experiments. Our results show that the receiver obtains a high

throughput that ranges between 0.90 and 0.93 when it is at the desired location, but

this throughput dramatically decreases when the receiver is moved from the desired

location. In particular, at a distance of 0.3 meter, the throughput of the eavesdropper

approaches to 0.

• Far Proximity Identification in Wireless Systems: (1) we develop a novel fingerprinting

technique that enables the local device to extract the fingerprint of a wireless device’s

proximity from the physical-layer features of signals sent by the device; (2) we discover

the theoretical relationship between the proximity and its fingerprint, and we developed

a technique that can use such a relationship to estimate the lower and upper bounds of

the distance between the local and remote devices; and (3) we validate and evaluate the

effectiveness of the proposed far proximity identification method through experiments

on the real-world data. The experiment results show that the proposed approach can

detect the far proximity with a success rate of 0.85 for the non-Line-of-sight (NLoS)

9



scenario, and the success rate can be further increased to 0.99 for the Line-of-sight

(LoS) scenario.

1.4 Dissertation Roadmap

The aforementioned projects are contained in the following chapters. Chapter 2 describes

the physical layer design to enforce the location-restricted service access control in wireless

networks. The far proximity identification against spoofing attack in long-haul wireless com-

munications is presented in Chapter 3. Then, Chapter 4 discusses the preliminary future

work of light-weight encryption schemes in IoT devices, followed by the Conclusion in Chap-

ter 5. The text for Chapters 2 and 3 is taken from their respective publications, [15], [16],

and [17] respectively.

10



CHAPTER 2

LOCATION-RESTRICTED SERVICE ACCESS CONTROL

In this chapter1, we demonstrate the feasibility of the pinpoint waveforming system by

answering essential concerns about synchronization, tolerable time shift, and the service area

size. We implement a prototype of pinpoint entanglement system on top of the Universal

Software Radio Peripherals (USRPs), and evaluate the performance of the prototype system

through comprehensive experiments. Our results show that the receiver obtains a high

throughput that ranges between 0.90 and 0.93 when it is at the desired location, but this

throughput dramatically decreases when the receiver is moved from the desired location. In

particular, at a distance of 0.3 meter, the throughput of the eavesdropper approaches to 0.

2.1 Synchronization

We discuss synchronization first, because synchronization is the basis for the proposed

pinpoint waveforming system to achieve the constructive interference of original signals and

the cancelation of the jamming signals. Synchronization includes three components, and

they are clock synchronization, propagation synchronization, and channel synchronization.

1This chapter was published in ACM CCS 2015 [16], and IEEE Transactions on Dependable and Secure
Computing 2016 [15]. Permission is included in Appendix 5.
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2.1.1 Clock and Propagation Synchronization

Clock synchronization deals with the discrepancy of the clocks of multiple transmitters, so

that they transmit service packets at the same time. In the proposed system, all transmitters

are connected to the same service provider, and thereby their clocks are roughly the same.

The distances between the receiver and each transmitter may be different. Accordingly,

signals sent by these transmitters may arrive at the receiver at different time even if they

are sent at the same time. To compensate the propagation difference, the service provider

needs to perform propagation synchronization through adjusting the transmit time of each

transmitter. Propagation synchronization has been extensively studied in the context of

wireless sensor networks (e.g., [18, 19]). In a traditional way, the receiver broadcasts a

beacon signal, and the transmitter (service provider) adjusts each transmitter’s transmit time

based on beacon arrival time recorded at this transmitter[20]. Since transmitter clocks are

inherently the same, the proposed system is compatible with the traditional synchronization

approach.

Note that after clock and propagation synchronization, due to the processing delay and

synchronization imperfections, the time shift will still exist between the signal arrival times.

In section 2.4, we show the impact of the time shift and the maximum time shift that can

be tolerated by the system.

2.1.2 Channel Synchronization

The impact of channel effect cannot be neglected. The signals sent by different trans-

mitters may undergo different channel effect. When the signals arrive at the receiver, their

shapes accordingly exhibit different distortions, and thus the constructive interference may

diminish due to the wave shape discrepancy. The transmit (jamming) signals should be

calibrated so that they have the same (reverse) shapes when they arrive at the receiver.

12
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Figure 2.2: With channel synchronization

Figure 2.1 shows a real measured example of the channel impact without the channel

synchronization. Two transmitters are separated by a certain distance to result in uncorre-

lated channels (i.e., 0.75 meter for a 2.4 Ghz channel). The receiver is 3 meters away from

both transmitters. Each device is a USRP connected to a PC. Both transmitters send the

same sequence of 64 symbols (i.e., the transmission unit at the wireless physical layer) to the

receiver. As seen in Figure 2.1, the amplitude of symbols received from both transmitters

are different from each other due to the different channel distortions. Figure 2.2 shows the

amplitude of received symbols after the channel synchronization. Both received symbols

then become similar to each other.

2.1.2.1 Signal Modulation

Before we discuss the proposed channel calibration algorithm, we first introduce the signal

modulation/demodulation to facilitate the reader’s understanding. We focus our discussion

on I/Q modulation, because it is widely used in modern wireless systems. In I/Q modulation,

signals are transmitted in the form of symbols, which are the transmission unit at the wireless

13



physical layer. We use Quadrature Phase-Shift Keying (QPSK) modulation, a typical I/Q

modulation, as an example to show how I/Q modulation works.

QPSK encodes two bits into one symbol at a time. In Figure 2.3 (a), bits 00, 01, 10,

and 11 are represented by points whose coordinates are (-1,-1), (-1,1), (1,-1), and (1,1) in

an I/Q plane, respectively. The I/Q plane is called a constellation diagram. A symbol is

the coordinate of a point on the constellation diagram. Due to the channel noise, a received

symbol is not exactly the same as the original symbol sent by the sender. To demodulate,

the receiver outputs the point that is closest to the received symbol on the constellation

diagram as the demodulation result.

2.1.2.2 Basic Channel Synchronization

Same signals from different transmitters will exhibit distinct wave shapes when they

come to the receiver, because they undergoes different channel distortion. Thus, on the

constellation diagram, the receiver not only receives multiple symbols from the multiple

transmitters at the same time, but these symbols have different phases and amplitudes. As

an example shown in Figure 2.3 (a), the receiver receives four symbols from four transmitters

and these symbols are at different positions on the constellation diagram. The received

symbols can interfere with each other, and consequently it becomes difficult for the receiver

to correctly decode the received packets. Hence, channel synchronization is required in the

proposed scheme so that the received symbols can converge to the same ideal point to form

a good constructive interference.

In our basic idea, we propose to calibrate the symbols before they are transmitted to

offset the channel distortion. As shown in Figure 2.3 (b), the original symbol sent by the

transmitter is (1,1) and the corresponding received symbol is at point A on the constellation

diagram. For QPSK, the angle between the ideal point (1, 1) and the horizontal axis is

π
4
. Thus, the coordinate of the received symbol can be represented by (

√
2a cos(θ + π

4
),
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Figure 2.3: Basic channel synchronization

√
2a sin(θ + π

4
)), where a is amplitude attenuation factor, and θ is the phase shift between

the received symbol and the ideal point (1, 1).

Channel synchronization aims to calibrate the received symbols to the corresponding ideal

points. Toward this end, rather than transmitting the ideal points, the transmitter transmits

symbols that deviate from the ideal points in a way that offset the channel distortion. As

shown in Figure 2.3 (c), the transmitter transmits a symbol A′, whose phase shift from

the ideal point (1,1) is −θ and the magnitude is 1
a
, in lieu of the ideal point (1, 1). Thus,

the coordinate of the calibrated symbol is ( 1
a

√
2 cos(π

4
− θ), 1

a

√
2 sin(π

4
− θ)). When this

symbol arrives at the receiver, the calibration offset cancels the channel effect, and thereby

the received symbol will converge to the ideal point.

The transmitter needs to know θ and a for the channel synchronization. Due to the chan-

nel reciprocity property, the wireless channel remains the same if the roles of the transmitter

and the receiver are exchanged[21]. Thus, training stages can be utilized for the transmitter

to measure θ and a from the training symbols sent by the receiver. To further reduce the

communication overhead, the transmitter can obtain θ and a in the piggyback way. Specifi-

cally, it can measure them from the symbols that are contained in the existing up-link packets

(e.g., service request packets and acknowledgement packets) sent by the receivers,
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2.1.2.3 Refined Channel Synchronization

Multipath effect is the phenomena that signals sent by the transmitter travel along mul-

tiple paths to reach the receiver. Thus, the receiver can receive multiple copies of the original

signal from the multiple paths. These signal copies can interfere with each other and confuse

the receiver to obtain an incorrect message decoding results.

The signal propagation paths can be generally classified as unresolvable and resolvable

paths. For a transmitted symbol, the copies traveling on unresolvable paths arrive at the

receiver with an arrival time difference less than one symbol duration, i.e., the transmission

time of one symbol. Thus, they form one symbol on the constellation diagram. For resolvable

paths, the copies traveling on these paths arrive at the receiver with a time difference larger

than one symbol duration, and therefore on the constellation diagram they form separate

symbols that interfere future transmitted symbols. In this paper, we only consider the impact

of signal copies from resolvable paths, because they are the major factors that contribute to

the inter-symbol interference and the decoding failures. Specifically, for L resolvable paths,

the receiver will then receive L copies of subsequently transmitted symbols.

Figure 2.4 (a) shows an example of a 3-path channel. The transmitter transmits three

symbols S0, S1, and S2. At time t0, the receiver receives S0 from Path 1. At time t1, the

receiver receives S1 from Path 1 and a delayed copy of S0 from Path 2. At time t2, the

receiver receives S2 from Path 1, the delayed copy of S1 from Path 2, and the delayed copy

of S0 from Path 3.

We propose to cancel the interference caused by multipath symbols via adding a comple-

mentary symbol to the transmitted symbol. Specifically, Figure 2.4 (b) shows the snapshot of

the constellation diagram at time t2 for the aforementioned 3-path channel, the superposed

impact of the delayed copies of S0 and S1 can be represented by an equivalent symbol Sm,

which is the vector sum of S0 and S1. To eliminate the multipath symbols, in addition to
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Figure 2.4: Refined channel synchronization against the multipath effect

sending the desired symbol S2, the transmitter also needs to send a cancelation symbol S̄m

that is at the reverse position of Sm. The magnitude of Sm and S̄m are the same but S̄m shifts

from Sm by an angle of π. As shown in figure 2.4 (c), the vector sum of the desired symbol

S2 and S̄m is S. Thus, the transmitter performs the basic synchronization to calibrate S to

S ′ to resist against the channel noise, and the actually transmitted symbol is S ′.

We would like to point out that S̄m can only eliminate the multipath effects from previous

symbols S0 and S1. However, subsequent symbols will still be interfered by the calibrated

S̄m due to the multipath effects. So all these symbols should be calibrated in the same way,

and the i-th symbol can be calibrated only after all its previous L − 1 symbols are already

calibrated. We discuss the details Section 2.2.

2.2 Multipath Channel Calibration

To achieve the channel calibration, the transmitter must first get the channel impulse

response (CIR), which includes the amplitude attenuation coefficient, phase shift, and the

effects of the multipath propagation. Traditionally, channel estimation algorithms[22] are

applied at the receiver to adapt received signals to the current channel conditions. However,

we cannot directly use these methods in the proposed scheme, because we require that signals
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to reach the receiver with same shapes to gain the constructive interference. Inspired by the

channel reciprocity that the channel effects observed by the transmitter and the receiver

are the same during the communication, we propose to directly estimate the CIR at the

transmitter and then use this information to calibrate the transmit signals.

2.2.1 Preliminary

To facilitate the presentation of the proposed technique, we first give the preliminary

knowledge about the channel estimation. Channel is usually estimated using a predefined

training sequence that are composed of multiple symbols. Specifically, the training sequence

is known to both the transmitter and the receiver prior to their communication. The trans-

mitter sends the training sequence to the receiver through the wireless channel, and upon

receiving, the receiver uses the original training sequence and the received copy to estimate

the channel.

In general, the received training sequence is distorted by both channel effects and the

noise. It can be expressed by r = h ∗ d + n, where h is the channel state information, d is

the original training sequence, ∗ is the convolution operator, and n is the channel noise that

is normally considered as a zero-mean Gaussian noise. We can rewhite this equation in the

matrix form below.

r =

































d1 0 . 0

d2 d1 . 0

. . . .

dL dL−1 . d1

. . . .

dK dK−1 . dK−L+1

























































h1

h2

.

.

hL

























+ n,
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where the vector [d1, d2, ....., dk]
t denotes the known training data d, vector [h1, h2, ....., hL]

t

denotes the unknown channel h, and [n1, n2, ....., nk]
t denotes the unknown channel noise n.

Note that k is the length of the training sequence and it must be larger than L to enable

the estimation of the channel.

To facilitate our analysis, we rewrite the above matrix equation into the compact form

and we can obtain r = Dh + n. Normally, least-square (LS) estimator can be used to

solve h from the compact equation for channel estimation[23], yielding the estimation result

ĥ = {DHD}−1DHr, where H denotes the complex conjugate transpose operator.

In our scheme, channel estimation is done at the transmitter, and the training sequence

is sent from the receiver. Due to the channel reciprocity property, the channel estimated by

the transmitter will represent the channel between itself and the receiver. To cope with the

channel changes, the training sequence can be sent periodically so that the transmitter can

capture the current CIR.

2.2.2 Advanced Channel Calibration

As discussed earlier, we propose to construct a complementary symbol for each transmit-

ted symbol to cancel the multipath effect. The complementary symbol for the i-th transmit-

ted symbol is constructed not only based on the i-th transmitted symbol but also based on

L− 1 previously transmitted symbols.

2.2.2.1 Obtaining Calibrate Symbols

Let ĥ = [ĥ1, ĥ2, ....., ĥL]
T denote the estimated channel, and dr = [d1r , d2r , ....., dkr ]

T

denote the desired, interference-free received symbols. Further let dt = [d1t , d2t , ....., dkt ]
T

denote the calibrated symbols to be transmitted to the receiver. Note that dt combines both

complementary and original symbols. At time t0, d1t is sent and it arrives at the receiver

through the first path. The corresponding received symbol is d1r = d1t · ĥ1. At time t1, d2t
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is sent, it arrives at the receiver through the first path, and meantime the multipath copy

of d1t arrives through the second path. The second received symbol can hence be presented

as d2r = d1tĥ2 + d2tĥ1. Finally, at time tk, the receiver will receive both the symbol dkt via

the first path and the multipath copies of the previous L− 1 symbols. The received symbol

dkr is dkr =
∑L

i=1 dk−i+1tĥi. We rewrite this linear relation using the matrix form and we

obtain:

























d1r
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.

.
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












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=
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






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We use the compact matrix form dr = Dtĥ to represent the above equation. Because Dt

includes the calibrated symbols to be sent by transmitters, we would like to solve Dt from

this equation. Intuitively, it can be computed by Dt = drĥ
H{ĥĥH}−1. However, since ĥ

is a column vector, ĥĥH is always a singular matrix and it’s not feasible to find its matrix

reverse {ĥĥH}−1.

In the proposed scheme, the desired data [d1r , d2r , ..., dkr ] and channel impulse response

[ĥ1, ĥ2, ..., ĥL] are known. We can thus findDt by recursively solving linear equations. Specif-

ically, the first calibrated symbol d1t can be directly calculated by d1t =
d1r
ĥ1

. With d1t , we can

then compute the second calibrated symbol d2t by d2t =
d2r−d1t ĥ2

ĥ1
. In general, the k-th cal-

ibrated symbol can be computed by dkt =
dkr−

∑L
i=2 ĥidk−i+1t

ĥ1
(k > L), where −

∑L
i=2 ĥidk−i+1t

is the complementary component to eliminate the previous multipath copies, and 1

ĥ1
is the

basic calibration component to compensate the power attenuation and phase shift of the

current symbol.
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2.2.2.2 Reducing Channel Estimation Errors

To eliminate the channel noise and accommodate normal temporal variance, we would like

to utilize the zero-mean property of the channel noise, i.e., to use the average values of mul-

tiple channel estimations to reduce the estimation error. Specifically, we set a window of size

N , and advance the window so that it always keeps the most recent N channel estimations.

The ultimate output channel impulse response is the average of the N channel estimations

in the window. Since the channel estimation is given by ĥ = {DHD}−1DHr, and the esti-

mated error is thus {DHD}−1DHn. The average ĥavg of the N estimations is 1
N

∑N
i=1 hi =

1
N

∑N
i=1{DHD}−1DHri, and the average estimation error becomes {DHD}−1DH

∑N
i=1 ni.

When N is chosen large, due to the zero mean property of the channel noise, this error

approximates to a zero vector.

2.3 Jamming Entanglement

Signal to noise ratio (SNR) is always a key metric to evaluate the reliability of a wireless

communication system. According to Shannon Theorem [2], a large SNR can support a high

speed service than a small SNR on the same channel bandwidth. Thus, we would like to

enable a receiver at the desired location to always achieve a large SNR, and an eavesdropper

at an undesired location to encounter a low SNR, so that it cannot distinguish the received

signal from the background noise and fails to decode received data.

The basic idea is to intentionally introduce noise to the raised transmit signal, so that

the noise can significantly reduce the SNR at the eavesdroppers but cancel each other at the

desired receiver to cause no impact.

In order to generate such noise signals for all transmitters, we randomly divide the N

transmitters into N
2
pairs. For each pair, we assign one transmitter with a randomly gen-

erated sequence, whose length is the same as the message length. Then, we generate the
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opposite sequence for the other transmitter. For example, if the randomly generated se-

quence is 1, 1,−1, 1, then the corresponding opposite sequence is −1,−1, 1,−1. The pair of

transmitters add the corresponding noise sequences to the message and send the combined

signals to the wireless channel. Because the noise signals are embedded in the combined

signals, which can synchronize at the desired receiver, the noise signals naturally achieve

the synchronization to enable the cancelation. However, for the eavesdroppers, due to the

lack of the time synchronization and channel calibration, the noise signals fail to cancel each

other and the sum of them still confuse the eavesdroppers. Moreover, the noise sequences

are randomly generated for each message, and thus the eavesdroppers cannot guess and

pre-determine them.

On the other hand, for a receiver that is not located at the desired service location, due

to the lack of channel synchronization, it will experience distorted received signals in various

shapes, and consequently the jamming signals cannot cancel each other, yielding a low SNR

at the undesired location. In Section 2.5.2, we show how the channel distortion affects the

SNR at the undesired location.

2.4 Tolerable Time Shift

In the above discussion, we consider the ideal case where the arrival signals are perfectly

synchronized. In practice, as mentioned, after clock and propagation synchronization, a

slight time shift may still exists among the received signals due to the processing delay and

synchronization imperfections. In the following, we identify the tolerable time shift, within

which received signals can achieve the constructive interference to obtain a boosted SNR.

2.4.1 Impact of the Time Shift on SNR

SNR is the ratio of the received signal power to the noise power. Because the noise power

is independent from the time shift, the received signal power remains as the key metric to
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determine the SNR at the desired receiver. Lemma 1 gives the threshold of the time shift

based on the received signal power. Without loss of generality, we assume that there are two

arrival signals to facilitate the presentation.

Lemma 1 The constructive interference does not happen if δt >
1

4f0
, where δt is the time

shift between two arrival signals and f0 is the frequency and the baseband signal.

Proof: The modulated transmit signal S(t) can be whiten as S(t) = Re[
√
2Amg(t)e

jθm ] =
√
2Amg(t) cos θm, where Am and θm are the amplitude and the phase of the transmit signal

respectively, and g(t) is the baseband signal. Typically, g(t) is a sine, cosine or rectangle

wave[22]. Assume g(t) = sin(2f0t), S(t) then equals to
√
2Am sin(2f0t) cos θm, and its power

is A2
m cos θ2m. When two signals arrive at the receiver with a time shift of δt, the combined

signal power Pc becomes as,

Pc =
1

T

∫ T
2

−T
2

2{Am sin(2f0t) cos θm

+ Am sin[2f0(t+ δt)] cos θm}2dt

=
2A2

m cos θ2m
T

∫ T
2

−T
2

{[1 + cos(2πf0δt)] sin(2πf0t)

+ sin(2πf0δt) cos(2πf0t)}2dt

=2A2
m cos θ2m[1 + cos(2πf0δt)].

We can see that Pc is highly associated with the time shift δt. When δt = 1
4f0

, the

combined signal power Pc is 2A2
m cos θ2m. On the other hand, the SNR is A2

m cos θ2m
Nc

at each

transmitter, where Nc is the noise power. Because two arrival signals bring twice of the noise

power to the receiver, the received signal power Pc must be larger than 2A2
m cos θ2m to achieve

a boosted SNR (i.e., the constructive interference). Thus, the tolerable time shift should be

less than 1
4f0

so that Pc > 2A2
m cos θ2m.
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As a practical example, for the 1Mbps and 10Mbps transmission speed with the QPSK

modulator, a tolerable time shift of 1
4f0

equals to 500 and 50ns respectively.

2.4.2 Impact of the Time Shift on Jamming Signals

In Section 2.3, we propose to increase the SNR through transmitting jamming signals

that can cancel each other at the receiver. In what follows, we will investigate the impact of

the tolerable time shift on the effectiveness of this scheme. We present Lemma 2 below.

Lemma 2 After the jamming entanglement, the expected SNR at the desired receiver is

2{N
2
+
∑N

i=1

∑N
j=1,j>i cos[2πf0

∆(j−i)
N−1

]}

N [1−cos(2πf0
∆
2
)]

, where N is the number of transmitters, and ∆ is the maximum

tolerable time shift.

Proof: The modulated signal S(t) is Re[
√
2Amg(t)e

jθm ] =
√
2Amg(t) cos θm, where Am

and θm are the amplitude and the phase of the transmit signal respectively, and g(t) is

the baseband signal. Typically, g(t) is a sine, cosine or rectangle wave[22]. Assume g(t) =

sin(2f0t), S(t) then equals to
√
2Am sin(2f0t) cos θm, and its power is A2

m cos θ2m. Assume

the signal arrival times for N transmitters are t0, .....tN−1. For the tolerable time shift ∆, all

signals arrive the receiver within the range t0 ∼ t0 +∆. The boosted power at the receiver

can be represented by

PcN =
1

T

∫ T
2

−T
2

{
N
∑

i=1

√
2Am sin[2f0(t+ ti)] cos θm}2dt

=2A2
m cos θ2m{

N

2
+

N
∑

i=1

N
∑

j=1
j>i

cos[2πf0(tj − ti)]}

Further assume that the arrival time of all the signals follows the uniform distribution

between 0 and ∆. The expected time shift between any two signals is thus ∆
N−1

. The expected
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boosted power E(PcN) can be derived by 2A2
m cos θ2m{N

2
+

∑N
i=1

∑N
j=1
j>i

cos[2πf0
∆(j−i)
N−1

]}. We

can see that E(PcN) increases as N increases.

As discussed in Section 2.3, the boosted SNR is
a2NP ′

t

Nc
in the ideal case when the jam-

ming signals are totally canceled out. When the jamming signals cannot completely cancel

each other, their combined power dominates the actual noise because the jamming sig-

nal power as well as the transmit power are usually chosen much higher than the chan-

nel noise power to result in a satisfiable SNR at the receiver. Hence, we neglect the

channel noise to facilitate the following analysis. Assume the modulated jamming signal

for one transmitter is
√
2Am sin(2f0t) cos θm. The corresponding opposite counterpart is

thus −
√
2Am sin(2f0t) cos θm. Then the combined power of both signals is 2A2

m cos θ2m[1 −

cos(2πf0δt)], and the expected SNR can be derived by

E(SNR) =
2{N

2
+
∑N

i=1

∑N
j=1,j>i cos[2πf0

∆(j−i)
N−1

]}
N [1− cos(2πf0

∆
2
)]

,

where ∆
2
is the expected time shift between the arrival times of camouflage signals.

E(SNR) increases as N increases or ∆ decreases. For example, with 4 transmitters and

a tolerable time shift of 1
4f0

, the expected SNR at the receiver reaches approximately 10 dB.

When the number of transmitters is 8, the expected SNR can be boosted to approximately

13 dB. For a reduced tolerable time shift of 1
8f0

, the achieved SNR is about 20 dB. In a

conclusion, for a service system with the maximum tolerable time shift ∆, the jamming

signals still significantly help to boost the SNR at the desired receiver.

Because signals travel at the speed of light, it seems that a small tolerable time shift

may result in a large service area (e.g. 50ns indicates a distance of 15m). In this section, we

attempt to obtain a fine-grain service area using the channel uncorrelation property, which

states that two receivers will observe different channels from the same transmitter if they

are separate by a couple of wavelength away[24]. In particular, [25] indicates that a distance
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of half wavelength can lead to uncorrelated channels. In the following part, we investigate

how uncorrelated channels affect the boosted SNR.

2.5 Service Area Size

Because signals travel at the speed of light, it seems that a small tolerable time shift

may result in a large service area (e.g. 50ns indicates a distance of 15m). In this section, we

attempt to obtain a fine-grain service area using the channel uncorrelation property, which

states that two receivers will observe different channels from the same transmitter if they

are separate by a couple of wavelength away[24]. In particular, [25] indicates that a distance

of half wavelength can lead to uncorrelated channels. In the following part, we investigate

how uncorrelated channels affect the boosted SNR.

2.5.1 Channel Uncorrelation Property

We first describe the channel uncorrelation property and explore the distance required

to generate the uncorrelated channels. Channel correlation coefficient is normally used to

indicate the similarity between two channels. When two channels are fully correlated, the

coefficient approximates to 1; while when two channels are uncorrelated from each other,

the coefficient is 0. Theoretically, the multipath channel is usually modeled as the Rayleigh

fading channel[26]. In a rich, isotropic scattering environment, multipath components arrive

at the receiver from all the directions, and the corresponding channel correlation coefficient

can be described as a zeroth order Bessel function [27]: ρ(d, f) = J0(2πd/λ), where d is the

distance between the receiver and the eavesdropper, f is the carrier frequency of the signal,

and λ = c
f
is the wavelength of the signal. When we substitute d = λ

2
into this function,

the channel correlation coefficient approximates to 0, which indicates that two channels are

uncorrelated. In practice, [28] presents that a longer distance (e.g. a couple of wavelength)

may be required to get the uncorrelated channels when there are less scatterings.
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2.5.2 Power Attenuation by the Channel Uncorrelation

In this part, we discuss how the uncorrelated channels affect the boosted SNR. As men-

tioned earlier, channels observed by the eavesdropper are uncorrelated from the calibrated

ones. Thus, channel effects cannot be eliminated and signals will exhibit different shapes

when they arrive at the eavesdropper. Lemma 3 gives the SNR at the desired location and

undesired location respectively.

Lemma 3 The SNR at desired location and undesired location are 2Ph·Pt

Nc
(Pt ≫ Nc

Ph
) and Pt

Pj

respectively, where Pt is the transmit power of orignal signal, Nc is the channel noise power,

Pj is the jamming signal power and Ph is the channel variance.

Proof: Without loss of generality, we assume two transmitters. The calibrated signals

from two transmitters are denoted as S1 and S2 respectively. Let Pt be the transmit power

for both signals. Assume the receiver observes two channels h1(τ) and h2(τ). According to

[2], Multipath channel is described as h(τ) =
∑L

l=1 ale
jφlδ(τ − τl), where al and ejθl are the

amplitude attenuation and phase shift of the signal copy that travel along the i-th path. At

time τl, channel h1(τl) and h2(τl) can be modeled as the random variables with zero mean

and a variance that is usually denoted as Ph[29]. Thus, at this time, the received signal is

S1 · h1(τl) + S2 · h2(τl). Since the mean value of the received signal is 0, we can get the

received power by calculating its variance. Specifically, for a random variable x with the

zero mean, its power P =
∫

x2f(x)dt = V ar(x), where V ar(.) donates the variance. Thus,

the combined transmit power at the receiver is as follows,

Ps = V ar[S1 · h1(τl) + S2 · h2(τl)]

= PtE[|h1(τl)|2 + 2|h1(τl) · h2(τl)
∗|+ |h2(τl)|2]

= 2Ph · Pt + 2ρPh · Pt,
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where ρ is defined as the channel correlation coefficient and equals to |h1(τl)·h2(τl)
∗|√

V ar(|h1(τl)|)V ar(|h2(τl)|)
=

|h1(τl)·h2(τl)
∗|

Ph
[30], and ∗ denotes the complex conjugate operator.

At the undesired location, the channels of two transmitters are uncorrelated from each

other. Thus, their coefficient ρ equals to 0 and the received power is Ps = 2Ph · Pt. On

the other hand, two channels observed by the desired receiver are calibrated and are quite

correlated with each other. So their coefficient ρ equals to 1 and thus the received power is

Ps = 4Ph · Pt.

The power of jamming signals can be derived in the same way. Assume two calibrated

jamming signals are denoted as C1 and C2 (C1 = −C2) with the power Pj for each of them.

Assume the receiver observes two channels h1(τ) and h2(τ). At time τl, the combined power

of two jamming signals is given by Pc = V ar[C1 · h1(τl) + C2 · h2(τl)] = 2Ph · Pj − 2ρPh · Pj.

At the desired location, the receiver observes two correlated channels. Thus, ρ equals to

1 and the combined power equals to 0. At undesired location, two channels observed by the

receiver are uncorrelated. Thus, ρ equals to 0, and the combined power equals to 2Ph · Pj,

which can significant affect the SNR of the receiver.

Note that SNR is represented as the ratio of the original signal power (given by Ps) to the

sum of jamming signal power (given by Pc) and channel noise power Nc (i.e. SNR = Ps

Pc+2Nc
).

Note that the power of channel noise is doubled at the receiver, because channel noise from

two received signals combines together. At the desired location, channels are synchronized,

and original signals get boosted and jamming signals cancel each other, yielding an SNR

that equals to 2Ph·Pt

Nc
. The transmit power Pt as well as the jamming signal power Pj are

usually chosen much higher than the channel noise power Nc to result in a satisfiable SNR

at the receiver (Pt ≫ Nc

Ph
). So Nc is negligible compared to the jamming power. Accordingly,

at the undesired location, the channel is not synchronized(i.e. ρ is close to zero) and the

SNR is represented by SNR = Ps

Pc+Nc
≈ Pt

Pj
. If Pj = Pt, SNR approximates to 0dB and the

receiver cannot distinguish between the original and jamming signals.
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2.5.3 Power Attenuation of Multiple Transmitters

In this section, we extend Lemma 3 from a two-transmitter scenario to the multi-

transmitter one, where N transmitters are connected to the same service provider, and

each one transmits a signal that is calibrated based on the channel between the transmitter

and the desired location. The SNR at desired location and undesired locations are given by

Lemma 4 With multiple transmitters, the SNR at desired location and undesired location

are NPh·PT

Nc
(PT ≫ Nc

Ph
) and PT

PJ
respectively, where PT is the power of transmit signals, Nc is

the power of channel noise, PJ is the power of the jamming signal, and Ph is the channel

variance.

Proof: We assume N transmit signals [S1, S2, ...SN ] have the same transmit power PT .

The signal Si will propagate through the channel hi(τ) and each channel hi(τ)(0 ≤ i ≥ N)

has the same channel variance Ph. Therefore, the combined signal power Pms at time tτ is

as follows,

Pms = V ar[
N
∑

i=1

Si · hi(τl)]

= PTE[
N
∑

i=1

|hi(τl)|2 +
N
∑

i=1

N
∑

j=1
j 6=i

|hi(τl) · hj(τl)
∗|]

= NPh · PT +
N
∑

i=1

N
∑

j=1
j 6=i

ρijPh · PT ,

where ρij is the channel correlation coefficient between ith channel and jth channel. At the

desired location, all the transmitted signals are calibrated and channels observed by the

receiver are correlated. Thus, ρij equals one and Pms becomes N2Ph · PT . On the other

hand, channels are not calibrated at undesired locations, and thus the receiver observes
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uncorrelated channels and ρij decreases to zero. Pms then becomes NPh · PT , which is N

times less than the combined power when all the channels are synchronized.

To enable the jamming signal entanglement, N jamming signals [C1, C2, ...CN ] are trans-

mitted with the same power PJ and propagate through different channels [h1, h2, ...hN ]. As

mentioned in Section 2.3, all the transmitters are randomly divided into pairs and each pair

is assigned with a pair of randomly generated jamming signals, whose phases are opposite

to each other. Therefore, if two jamming signals Ci and Cj belong to the same pair, then

Cj = −Ci and their combined power is V ar[Ci · hi(τl) + Cj · hj(τl)] = 2Ph · Pj − 2ρPh · Pj.

Otherwise, Ci and Cj are from different pairs and independent to each other. Thus, the

combined power becomes 2Ph · Pj, and we can get the combined power of jamming signals

as shown below:

Pmc = V ar[
N
∑

i=1

Ci · hi(τl)]

=

N/2
∑

i=1
j 6=i

V ar[Ci · hi(τl) + Cj · hj(τl)],where Ci = −Cj

= NPh · PJ −
N/2
∑

i=1

2ρiPh · PJ

At the desired location, all the channels observed by the receiver are correlated, ρi then

becomes 1, and jamming signals cancel each other. However, receivers at undeisred locations

observe uncorrelated channels due to channel uncorrelation property. Thus jamming signals

still exist at the receiver and can interfere with transmit signals. The combined power of

jamming signals is NPh · PJ .

The SNR of the receiver is the ratio of the combined transmit power to the combined

noise (i.e. SNR = Pms

Pmc+N ·Nc
). At the desired location, channels are synchronized, transmit
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signals boost each other and jamming signals cancel each other. Thus, the maximum SNR

obtained by the receiver is NPh·PT

Nc
, which is dominated by the transmit signal power, and

the receiver can get the desired SNR if appropriate transmit signal power is selected. At

the undesired location, constructive interference vanishes and channels become uncorrelated

to each other. Accordingly, the SNR at the receiver is Ph·PT

Ph·PJ+Nc
. In general, the power

of jamming signals is chosen much larger than the channel noise Nc. Thus, the SNR is

approximately to PT

PJ
. Furthermore, if jamming signal power is chosen at the same level as

the transmit signal power, the SNR at undesired receivers approximately reaches 0dB, which

means transmit signals cannot be recognized from the noise.

2.5.3.1 Impact of SNR on Service Area Size

As the above discussion, when channels are uncorrelated to each other (i.e. ρ = 0), the

SNR at the receiver will achieve the minimum value and the receiver can hardly distinguish

transmit signals from jamming signals. Theoretically, ρ = 0 happens when the receiver is

half wavelength far from the desired location. For example, modern wireless devices like

WIFI, Bluetooth devices usually uses 2.4GHz as their central frequency to transmit signals.

The corresponding wavelength is 0.125m (i.e. (3 × 108)/(2.4 × 109) = 0.125m), and the

service area size is 6.125 × 6.125cm2, when real signal and jamming signal have the same

power.

In practice, a couple of wavelength may be required to gain such uncorrelated channels.

For example, if the uncorrelation is caused by 4 wavelengths, the service size will be 0.5 ×

0.5m2. SNR at the undesired location also shows that SNR decreases as the jamming signal

power Pj increases. Thus, if we require a smaller service area size in this scenario, we may

properly increase the jamming signal power to meet the requirements.
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2.5.4 Security Discussion

An attacker against the proposed system can be either active or passive. An active at-

tacker tries to create, interrupt, intercept, block or overwrite the transmit signals to prevent

the receiver from obtaining the legitimate service. The active attacker may launch multiple

attacks. For example, It may impersonate as an authorized service provider to gain the trust

of a receiver; It may inject malicious information into the channel to mislead the receiver; It

may jam the receiver so that the receiver cannot obtain the service. However, these active

attackers are not unique to our scheme. Existing approaches have been proposed to deal

with these attacks. For example, the receiver can establish the cryptographic authentica-

tion protocol with the service provider to deal with impersonation attacks and confirm the

message integrity[31][32], and spread spectrum techniques like Frequency Hopping Spread

Spectrum(FHSS) and Direct Sequence Spread Spectrum (DSSS) can be designed to defend

against jamming attacks[33][34].

A specific active attack in the proposed scheme is the replay attack. It seems that an

attacker may intentionally introduce a time shift of the received signal at the desired location

by duplicating and transmitting the received signal with a small delay. Nevertheless, we can

consider such replay attacks as the traditional jamming attacks. Because even the attacker

can replay the delayed signal, it cannot disrupt the alignment and cancellation of the original

transmit signals at the desired location, which means the receiver will obtain both desired

signal and replayed signal. The replayed signal will be served as the noise to decrease the

SNR at the receiver and interfere the decoding process. Such attack is different from the

scenario when the receiver is located at undesired locations. First, at undesired location,

desired signals are distorted and can only achieve poor alignment due to lack of channel

and time synchronization. Therefore, the desired signal itself at the undesired location is

distorted and may be not able to decode. In addition, jamming signals in the undesired
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locations cannot cancel each other. Since the jamming signals are usually chosen the same

level as the desired signals, the SNR at the undesired locations will always remain small and

can hardly provide a good service.

Therefore, we can apply traditional methods to defend against such replay attacks. First,

we may increase the power of transmit signals (both desired signal and jamming signal at the

transmitter) to increase the SNR at the desired locations. In addition, we may also apply

FHSS or DSSS to increase the robustness of received signals against the replayed signals.

A passive attacker is usually an eavesdropper, which attempts to obtain the legitimate

service from the service provider. For a basic eavesdropper, as shown in Lemma 3, when the

eavesdropper’s channel is totally uncorrelated from the receiver’s channel, it will not achieve

a boosted SNR to decode the received service data. It seems that multiple eavesdroppers

with high-gain, directional antennas may collaborate to add their received signals together

to form a boosted signal, with which they can decode the original service data. Nevertheless,

even collaborated attackers can obtain jamming entangled signals from different transmitters

respectively, these transmit signals are calibrated to accommodate the distinct channels

between transmitters and the desired receiver only, and consequently received signals are

uncorrelated to each other at attackers. Therefore, the sum of received signals is equivalent

to that of multiple random signals, and both channel distortions and jamming signals can

significantly interfere the correct decoding of the combined signal. Thus, no matter how many

eavesdroppers exist, signals received by these eavesdroppers always suffer from the distortion

from jamming signals and the wireless channel fading, and exhibit different shapes as long

as their channels are not calibrated for homomorphism at the service provider side. As such,

a boosted SNR cannot be obtained for correct decoding.
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2.6 Multi-user Mode

Code Division Multiple Access (CDMA), Time Division Multiple Access (TDMA), and

Frequency Division Multiple Access (FDMA) are three typical methods adopted by modern

wireless communication systems to support multi-user access. For CDMA, users are assigned

with special designed codes that are orthogonal to each other, and an individual user can

extract its own data by correlating received signals with the assigned codes. For TDMA

and FDMA, users are assigned with distinct, non-overlapping time slots/frequency bands to

send and receive wireless signals. By utilizing different codes, time slots, and frequencies,

the interferences among wireless users can be eliminated.

In the following, we demonstrate how to integrate traditional multiple access techniques

into the pinpoint system to support multiple users. Because the location-restricted service

is delivered from the service provider to the receiver, we only discuss how to implement the

pinpoint system for the downlink flow of these multiple access techniques.

2.6.1 CDMA Integrated Pinpoint Waveforming

With CDMA, the transmitter can pinpoint the service to each user using their assigned

CMDA code. In particular, service provider first assigns each user with a unique code A(n)

and the transmitter can then directly encode original signals using the CDMA codes to

deliver information to all users. In addition, because users are located at different locations,

transmit signals of different users may need to be sent at distinct times to compensate the

time difference of arrivals. The following equation exhibits the transmit signals of N users

at the mth transmitter.

Sm =
N
∑

n=1

[(D(n) + J (n))
L
∑

k=1

a
(n)
k g(t− kTc − T

(n)
md )],
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where D(n) and J (n) are the desired signal and jamming signal of the nth user respectively.

a
(n)
k is the kth chip in the code A(n) and Tc is chip time. T

(n)
md is the time delay of transmit

signal of the nth user at mth transmitter. In general, each specific code A(n) is designed to

be orthogonal to each other, so that users can extract the desired information by correlating

the received signals with their assigned codes. However, in the proposed scheme, because M

transmitters cooperate together to pinpoint the service to N users at different positions, time

delay T
(n)
md may vary from different transmitters and different users. Thus, the orthogonality

between codes cannot be maintained due to the time difference, and information decoding

is significantly interfered by transmit signals of other users.

To eliminate such interference, asynchronous coding scheme is required at the transmit-

ter. In particular, we may apply the pseudo-noise (PN) code adopted by the uplink flow

of the traditional CDMA. PN code is a binary sequence that appears random but can be

generated in a deterministic manner. Different PN codes are nearly orthogonal and statis-

tically uncorrelated to each other. Therefore, if signals are encoded by different PN codes,

their correlation always remains small even when there exists time shift between them. This

means undesired signals can only slightly interfere the decoding, and the correct information

can be recovered by using the appropriate error correction code.

2.6.2 TDMA Integrated Pinpoint Waveforming

With TDMA, the transmitter can pinpoint the service to each user during its time slot.

Specifically, the service provider divides each signal frame into time slots and assigns each

user with a particular slot. The transmitter then sends entangled signal of each user at

their corresponding time slot. Transmit signal of nth user at mth transmitter is described as

follows:

S(n)
m = (D(n) + J (n))[u(t− T

(n)
md )− u(t− T

(n)
md − Ts − Tg)],
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where D(n)+J (n) are the jamming entangled signals of the nth user. u(t) is the step function

(i.e. u(t) = 1, when t ≥ 0). T
(n)
md is the delay time of corresponding transmit signals and it

is used to compensate for the time difference of arrivals caused by the distinct propagation

distance between different transmitters and users. Ts is the time period of each slot. Tg is

the guard time to avoid the interference from undesired transmit signals. In particular, the

propagation synchronization may introduce overlapping time slots due to the varying time

shifts experienced by different users. To solve this, transmitters can insert an appropriate

time guard Tg between time slots to eliminate the overlaps and avoid the interference among

multiple users.

2.6.3 FDMA Integrated Pinpoint Waveforming

With FDMA, the transmitter can pinpoint the service to each user at the assigned fre-

quency band. If the Orthogonal Frequency-division Multiplexing (OFDM) is enforced, each

user will be assigned with a particular sub-carrier and jamming entangled signals of each

user will be sent within the corresponding sub-carrier. The transmit signals generated by

the OFDM system can be represented by

Sm =
1√
T

N
∑

n=1

(D(n) + J (n))ej
2π
T

n(t−T
(n)
md

),

where T is the symbol duration, D(n)+J (n) are the corresponding jamming entangled signals,

and T
(n)
md is the time delay of the nth transmit signal. ej

2π
T

n is the assigned subcarrier of the nth

user and the whole bandwidth is divided into N pieces in an OFDM system, and accordingly

the spectrum assigned to each user is limited. Thus, the receiver may experience a weak

multipath effect that causes less distortion to jamming entangled signals. Nevertheless,

the amplitude attenuations and phase shifts are different from different locations, without

channel synchronization, the jamming entangled signals still exhibit random shapes when
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arriving at an undesired receiver, and consequently the jamming portion cannot cancel each

other.

2.7 Performance Evaluation

We develop a prototype pinpoint service system on top of the Universal Software De-

fined Radio Peripherals (USRPs), which are radio frequency (RF) transceivers with high

bandwidth and high dynamic range processing capability. The USRPs use SBX broadband

daughter boards operating in the 400 - 4400 Mhz range as RF front ends. The software

toolkit implementing the prototype is the GNURadio [35].

2.7.1 System Design

The receiver is a standalone USRP, and the transmitter (i.e., the service provider) consists

of two USRPs connected by an multiple-input and multiple-output (MIMO) cable. Both

USRPs follow the master and slave protocol. Specifically, the master USRP connects to

both the slave USRP and the host computer, and the slave USRP only connects to the

master USRP. The master provides the clock scale and the time reference to the slave USRP

through the MIMO cable. The master and slave USRPs are separated by about 0.75 meter

to achieve uncorrelated channels between each USRP and the receiver.

Our software program is developed from the Benchmark TX/RX Program, which is the

communication tool provided by GNURadio for data transmission and file transfer between

two USRPs. The source codes are located at gnuradio/gr-digital/examples. For the trans-

mitter, we redesign the modulation block of the Benchmark TX program by adding two new

modules, namely jamming signal entanglement and channel calibration modules. We also

add a delay compensation module to compensate the difference of signal arrival times mea-

sured at the master and slave USRPs. An input bit sequence is first modulated into physical

layer symbols, then entangled with jamming signals, and finally transmitted to the receiver
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(a) Desired location (b) 0.1 meter away (c) 0.2 meter away (d) 0.3 meter away

Figure 2.5: Received pictures at different positions

after channel calibration and delay compensation. Because the receiver requires no specific

changes, we directly run the Benchmark RX Program at the receiver but add a constellation

sink to observe the real time constellation diagram for analyzing the performance.

2.7.2 Example Pinpoint Service

We choose two typical types of service data, pictures and videos, to visually validate the

effect of the pinpoint prototype. Figure 2.5 shows the received pictures at different positions.

At the desired location, the receiver can successfully download the original picture sent by

the transmitter. We then move the receiver 0.1, 0.2, and 0.3 meter away from the desired

location, and find a drastic worsening of the packet delivery rate. When the receiver is 0.3

meter away, the picture cannot be displayed at all due to the huge number of packet loss.

We also implement the real-time video transmission that sends a live scene captured by

a web camera to the receiver. Specifically, a web camera is connected to the transmitter to

surveillance the surrounding of the transmitter. We encode the video stream using MPEG-4

AVC, which is the most commonly used format for video compression, and input the stream

into the USRPs through the Linux socket interface. We then pinpoint the stream to the

receiver at the desired location. The receiver downloads and decodes packets from the trans-

mitter and displays them on a video player. We observe a clear and fluent video when the

receiver is located at the desired position, and the video quality deteriorates when the receiver

moves away from undesired locations. In particular, we encounter frequent video stucks while
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playing, and severely distorted images. At the physical layer, we find that received symbols

significantly deviate from the ideal points on the constellation diagram, thereby yielding a

huge amount of demodulation errors. We recorded the video deterioration process and an

anonymous demo video on youtube can be found at https://youtu.be/lJ64bxYP5SM. In the

following, we discuss the details of the evaluation results.

2.7.3 Evaluation Metrics

We evaluate the prototype system using the following typical metrics for measuring the

service of quality:

• Signal to noise ratio (SNR): This is the ratio of the received signal power to the noise

power, which is the sum of both the jamming signal power and the channel noise power.

• Packet delivery rate: This is the ratio of the number of correctly received packets to

the total number of received packets. In the prototype implementation, each packet is

appended with a 32-bit cyclic redundancy check (CRC) code for error detection, and

prefixed with a 64-bit access code for packet synchronization. The length of each packet

is 500 bytes. The receiver detects packets by correlating received bits with the access

code. A high correlation indicates the arrival of a packet, and the receiver verifies this

packet by looking at the CRC. We consider a packet to be received correctly only if

the packet passes CRC check.

• Throughput: Throughput is the number of correctly received packets per unit time. To

facilitate the comparison, we normalize the throughput into the range of 0− 1. If the

throughput is close to 1, the bit rate at the receiver is close to that at the transmitter,

and thus the service delay is near zero. If the throughput is 0, no information bits are

received at the receiver and the service delay is regarded as infinity.
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In addition to the pervious metrics, we also introduce a fourth metric, channel cross-

decorrelation, which quantifies disparity between two channels. A small cross-decorrelation

value indicates a strong correlation between two channels, and a large value indicates two

channels are uncorrelated with each other. We include channel cross-decorrelation as an

extra evaluation metric, because the service quality is also highly relevant with this metric.

The cross-decorrelation between the channels of desired and undesired locations should be

large, so that a receiver at a undesired location cannot obtain a service of good quality.

2.7.4 Measuring Channel Cross-decorrelation

SNR values, packet delivery rate and throughput can be easily measured from the com-

munication traffic based on their definitions above. However, how to measure the last metric

channel cross-decorrelation is not as straightforward as the pervious three metrics, because

it reflects the disparity among wireless channels that cannot be directly observed. In the

following, we discuss our methodology to measure this metric.

To achieve the channel calibration, an accurate channel estimation between the trans-

mitter and the receiver is required. We estimate the channel in a training stage, where the

receiver broadcasts a beacon signal to the transmitter, and transmitter then measures the

corresponding channel impulse response from the received beacon signal. At the training

stage, we measure the channel for 500 times and took the average value as the current chan-

nel impulse response. Thus, we can eliminate the impact of the unexpected disturbance

caused by the channel noise, normal temporal variations, and other interferences.

Figures 2.6 and 2.7 plot the magnitude (i.e. amplitude attenuation) and phase (i.e phase

shift) of the average channel impulse response measured at the two USRPs respectively. The

system operates on the central frequency of 2.4 GHz and adopts the binary phase shift keying

(BPSK) modulation. The unit of the X-axis is a symbol duration, which is approximately

the minimum time required to resolve two paths. We can see that the channels of both

40



2 4 6 8 10
0

0.02

0.04

0.06
A

tt
e
n
u
a
ti
o
n

Time delay

 

 

2 4 6 8 10
−4

−2

0

2

P
h
a
s
e
 S

h
if
t

Attenuation

Phase Shift

Figure 2.6: USRP 1
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Figure 2.7: USRP 2

USRPs are quite different in shape and magnitude. This observation is consistent with the

basic experiment setting, in which both USRPs are separated by a certain distance to ensure

the uncorrelated channels.

2.7.4.1 Cross and Auto-variance

Before we introduce how to measure the channel cross-decorrelation to quantize such

channel difference, we first define two terms cross-variance and auto-variance that will be

involved in calculating the channel cross-decorrelation. The cross-variance is defined as the

Euclidean distance between two different channels. For channels i and j, their average

cross-variance Vij is calculated by 1
N

∑N
n=1 |hin − havgj|, where N is the total number of

channel measurements, hin is the n-th estimated channel impulse response of channel i,

and havgj is the average channel impulse response of channel j. When i = j, the cross-

variance degenerates to the auto-variance Vii, which is the Euclidean distance between an

one-time channel measurement and the average of multiple channel measurements for the

same channel. In the experiment, we use the average value of the auto-variance over all

the channel estimations. Figure 2.8 plots the distributions of the cross and auto-variance of

previous channels measured at two USRPs. In addition, we also plot the cross variance of two

channels measured after the channel calibration. The cross-variance before the calibration is
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much larger than the auto-variance, because the channels of both USRPs are uncorrelated

from each other. After the calibration, the cross-variance is closed to the auto-variance

within one channel that indicates two channel are quite correlated.
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Figure 2.8: Distribution of different variance

2.7.4.2 Channel Cross-decorrelation

We use channel cross-decorrelation to normalize the cross-variance to facilitate the com-

parisons of the similarity and difference among wireless channels, and the cross-decorrelation

Rij between channels i and j is defined as Rij =
|Vij−Vjj |

1
2
|havgi+havgj |

.

A cross-decorrelation value of 0.5 means that the channel difference is as large as 50% of

the magnitude of the averages of the two channels. The cross-decorrelation ranges between

0 and 2. If it is larger than 1, the channel difference is even larger than the magnitude

of the averages of the two channels. In Figure 2.8, for USRP 1 (master) and USRP 2

(slave), their cross-decorrelations are R12 = 1.28 and R21 = 1.30, which indicate that the

channels measured at both USRPs are quite different from each other. In addition, after
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the calibration, their cross-decorrelations measured are R12 = 0.040 and R21 = 0.043, which

indicates two channels after the calibration are highly correlated.
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2.7.5 Jamming Signal Entanglement

As mentioned earlier, we entangle the jamming signals into transmit signals to conceal

the real information. The jamming signals should cancel each other at the desired location

but jam the original signals at undesired locations, so that eavesdroppers at those locations

cannot distinguish the original signals from the jamming signals, and thus fail to decode the

data.

We randomly choose an indoor location, namely Position 1, to place the receiver and

calibrate the channel between the receiver and the transmitter. We mark this location as

the desired location. We then randomly choose three other locations, namely Positions 2,

3, and 4, that are about 0.1, 0.2, and 0.3 meter away from the desired location respectively.

We mark these locations as the undesired locations. Figure 2.11(a) plot the symbols on

the constellation diagram with jamming signal entanglement for the desired location, i.e.,

Position 1. We can see that received symbols converge to the ideal points at Position 1.
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(a) Position1 (b) Position2 (0.1 meter from Position1)

(c) Position3 (0.2 meter from Position1) (d) Position4 (0.3 meter from Position1)

Figure 2.11: Jamming signal entanglement

Due to slightly imperfect synchronization and normal oscillator shift, jamming signals may

not exactly cancel each other and the residue introduces an additional noise that cause

the deviation of the received symbols. Nevertheless, such noise is too small to impact the

decoding accuracy and the received symbols still closely fluctuate around the ideal points.

Figures 2.11(b), 2.11(c), and 2.11(d) plot received symbols at undesired locations, i.e.,

Positions 2, 3, and 4, when jamming signal entanglement is enforced. As mentioned earlier,

for undesired locations, transmit signals are not calibrated and they arrive at the receiver

in different shapes and thus the jamming signals do not cancel each other, leading to a high

demodulation error rate. As seen in these figures, received symbols randomly scatter around
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the entire constellation diagram, and become more and more difficult to decode with the

increasing distance from Position 1, the desired location.

2.7.6 Service Area Size

We would like to explore the service area size achieved by the prototype system in the real

world. The experiment environment is a typical indoor room with wooden doors, metal and

wooden obstacles, and electronic devices. Figure 2.9 shows the positions of the transmitter

and the receiver. The transmitter is placed at Position 0 and we pinpoint the service to

Positions 1, 2, 3, and 4. For each test, the transmitter sends 3000 packets to the receiver.

2.7.6.1 Impact of Distance

Without loss of generality, we choose four moving directions for the four positions. For

Positions 1, 2, 3, and 4, the receiver moves towards(⇑), backwards(⇓), to the right(⇒),

and to the left(⇐) of the transmitter. Table 2.1 shows the impact of the distance between

the receiver and the desired location on the aforementioned four evaluation metrics, i.e.,

SNR, packet delivery rate, throughput, and the channel cross-decorrelation. In this test, the

system operates on the central frequency of 2.4Ghz and the ratio of desired signal power

to jamming signal power is set to 1. In this table, Pos., Dir., D, Corr., and PDR denote

position, moving direction, distance between the receiver and the desired location, cross-

decorrelation, and packet delivery rate respectively. These abbreviations are also applied for

the subsequent tables. As seen in Table 2.1, moving directions cause no noticeable impact on

the four metrics. For each of the four desired locations, when the receiver is located at this

location, i.e., distance is equal to 0, the receiver achieves the maximum SNR, packet delivery

rate, and throughput. When the receiver moves away from this location, the channel cross-

decorrelation increases and the corresponding SNR, packet delivery rate, and throughput
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decrease significantly. In particular, when the distance reaches 0.3 meter, the throughput at

all four positions approximately reaches to 0 and thus no service is received.

Table 2.1: Impact of the distance

Pos. Dir. D(cm) Corr. SNR PDR Throughput
1 ⇑ 0 0.038 14.0 99.71% 0.93
1 ⇑ 10 0.33 5.1 68.75% 0.53
1 ⇑ 20 0.66 3.5 57.41% 0.35
1 ⇑ 30 1.25 -1.4 6.28% 0.012

2 ⇓ 0 0.039 14.0 99.18% 0.93
2 ⇓ 10 0.30 7.0 80.65% 0.61
2 ⇓ 20 0.76 3.4 39.70% 0.17
2 ⇓ 30 1.12 0 19.74% 0.031

3 ⇒ 0 0.012 14.9 97.61% 0.92
3 ⇒ 10 0.31 8.2 74.79% 0.47
3 ⇒ 20 0.72 3.5 41.57% 0.26
3 ⇒ 30 1.10 0.8 20.08% 0.078

4 ⇐ 0 0.013 14.9 96.53% 0.90
4 ⇐ 10 0.25 9.5 85.85% 0.64
4 ⇐ 20 0.77 4.4 58.95% 0.30
4 ⇐ 30 1.15 1.5 21.43% 0.062

2.7.6.2 Impact of Central Frequency

Theoretically, reducing the central frequency can enlarge the service area, because it

can increase the signal wavelength and therefore raise the distance required for the channel

uncorrelation. In this test, we reduce the central frequency from 2.4 Ghz to 1.2 Ghz to

remeasure the four metrics at Positions 1 and 2, the ratio of desired signal power to jamming

signal power remains unchanged (i.e 1), and the results are shown in Table 2.2. For the 2.4

Ghz central frequency shown in table2.1, when the receiver is moved 0.3 meter away from

the desired location, the channel cross-decorrelation is 1.21 and 1.16 at Positions 1 and 2

respectively. For the 1.2 Ghz central frequency shown in table2.2, a similar channel cross-

decorrelation, i.e., 1.25 at Positions 1 and 1.12 at position 2, is achieved with an increased
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distance of 0.45 meter. Thus, a lower frequency can cause a larger service area. This

experimental observation is consistent with the theoretical conclusion.

Table 2.2: Impact of the central frequency (1.2Ghz)

Pos. Dir. D(cm) Corr. SNR PDR Throughput
1 ⇑ 0 0.018 26.0 99.42% 0.96
1 ⇑ 15 0.29 10.45 88.33% 0.77
1 ⇑ 30 0.65 4.1 63.93% 0.33
1 ⇑ 45 1.21 0 20.66% 0.089

2 ⇓ 0 0.025 22.5 99.33% 0.98
2 ⇓ 15 0.34 8.0 88.75% 0.56
2 ⇓ 30 0.74 4.4 62.27% 0.35
2 ⇓ 45 1.16 0 14.45% 0.055

2.7.6.3 Impact of Signal to Jamming Power Ratio

As discussed in Section 2.5.2, we can reduce the service area size by decreasing the ratio

of desired signal power to jamming signal power. Unlike previous experiment settings that

use a ratio of 1, we decrease the ratio from 1 to 0.5 to test the impact in position 1 and 2, and

our experimental observation matches the previous discussion result. Specifically, as shown

in table2.1 with a ratio of 1, the throughput reduces to approximately 0 when the receiver is

0.3 meter away from a desired location. However, with a ratio of 0.5, the throughput reaches

zero when the receiver is 0.2 meter away from the desired location as shown in table2.3. So

the service area shrinks with the decreasing signal to jamming power ratio.

Table 2.3: Impact of the power ratio of desired signal to jamming signal ( ratio = 0.5)

Pos. Dir. D(cm) Corr. SNR PDR Throughput
1 ⇑ 0 0.042 10.1 90.33% 0.72
1 ⇑ 10 0.36 1.3 25.76% 0.12
1 ⇑ 20 0.67 -1.15 4.78% 0.01

2 ⇓ 0 0.039 11.0 96.28% 0.69
2 ⇓ 10 0.35 1.9 32.33% 0.13
2 ⇓ 20 0.74 -1.3 23.93% 0.024
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2.7.7 Pinpoint Accuracy

We test how accurate the prototype system can pinpoint the service to a desired location

in a meeting room. Figure 2.10 shows the positions of the transmitter and receivers. We

place the transmitter in the front of the room (i.e. position 0) and the desired receiver in the

middle of the room (i.e. Position 1). We also place 8 eavesdroppers scattering around the

desired receiver (i.e. at Positions 2 to 9). The wireless communication system operates on the

central frequency of 2.4GHz and adopts the binary phase shift keying (BPSK) modulation.

The power ratio of the desired signal to jamming signal is set to 1 and the bit rate is 1Mbps.

The pinpoint accuracy is displayed in Table 2.4. The receiver at the desired location can

approximately achieve a SNR of 14dB, a packet delivery rate of 99.27%, and a throughput of

0.98, while eavesdroppers at undesired locations get a much worse performance. For example,

an eavesdropper at position 5 can only achieve a SNR of 1.6dB, a packet delivery rate of

23.26%, and a throughput of 0.03. In addition, even an eavesdroppers is located closer to

the transmitter than the receiver (e.g. position 4), its performance is still quite limited (e.g.,

a SNR of 0.8dB, a packet delivery rate of 13.70%, and a throughput of 0.02) due to the poor

jamming signal cancelation.

Table 2.4: Pinpoint accuracy

Pos. Cross-decorrelation SNR PDR Throughput
1 0.026 14.0 99.27% 0.98
2 0.65 2.4 31.68% 0.20
3 0.81 2.4 19.39% 0.12
4 0.92 0.8 13.70% 0.02
5 1.14 1.6 23.26% 0.03
6 0.91 1.9 23.71% 0.07
7 1.66 -1.5 2.69% 0.003
8 1.62 -1.0 24.72% 0.02
9 0.96 0 29.69% 0.04
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2.8 Related Work

The proposed pinpoint system utilizes multiple antennas to deliver the service data to

desired locations. The existing Multiple Input Multiple Output (MIMO) techniques (e.g.,

[36, 24, 37, 2]) also explore multiple antennas to achieve high transmission efficiency. The

antennas used in MIMO systems can send same signals to enhance the reliability of the

data transmission (e.g., [36]), or different signals to increase the capacity of the wireless

channel (e.g.,[2]). With the proliferation of beamforming techniques [3], multiple directional

antennas have been recently integrated into MIMO systems to grant the wireless accesses

to different users simultaneously. This technique is known as MU-MIMO. However, MIMO

and MU-MIMO techniques do not aim to pinpoint service data to desired locations. For

these techniques, any user residing in the signal coverage range of the antennas can hear the

transmit data.

There exist two other recent papers that are relevant to this one. The scheme proposed in

[38] utilizes multiple directional antennas to deliver the service to desired locations. Specif-

ically, each antenna sends different portion of an original message, and thus this message

can be reconstructed at locations where transmit signals overlap each other. However, due

to the lack of channel calibration, an attacker with high-gain, directional antennas can still

capture the transmit signals to recover the original information, even if they are not at the

desired locations. The scheme presented in [39] proposes to jam undesired locations to pre-

vent illegal accesses to the confidential data, whereas this paper provides service to desired

locations through jamming entanglement. Both papers are complementary to each other.

2.9 Summary

In the paper, we propose the pinpoint waveforming system to enable location-oriented

service access control. To design such a system, we create the channel calibration technique
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that compensates the channel distortion and enables signals sent by different transmitters

to arrive at the desired receiver with the same shapes. We also created the jamming en-

tanglement technique that introduces jamming signals to significantly reduce the SNR at

the eavesdropper but raise the SNR at the desired receiver. We develop a prototype system

using USRPs and the experiment evaluation results validate the feasibility of the proposed

system.
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CHAPTER 3

FAR PROXIMITY IDENTIFICATION IN WIRELESS SYSTEMS

In this chapter1, we develop a novel fingerprinting technique that enables the local device

to extract the fingerprint of a wireless device’s proximity from the physical-layer features

of signals sent by the device. We also present a theoretical analysis to demonstrate the

feasibility of the far proximity identification using the proposed fingerprint. We validate

and evaluate the effectiveness of the proposed far proximity identification method through

experiments on the real-world data. The experiment results show that the proposed approach

can detect the far proximity with a success rate of 0.85 for the non-Line-of-sight (NLoS)

scenario, and the success rate can be further increased to 0.99 for the Line-of-sight (LoS)

scenario.

3.1 System and Threat Models

To facilitate the presentation, we refer to the local device, which verifies the proximity,

as the verifier and the remote device, whose proximity is being verified, as the prover. The

verification system consists of a verifier and a prover. Both are equipped with radio interfaces

that can transmit and receive wireless signals.

The verifier aims to determine whether or not a prover is at least a certain distance away,

and it analyzes the signals emitted by the prover to achieve this goal. The verifier can work

in both active or passive modes. In the active mode, the verifier sends a message to the

prover to initialize the proximity identification, and the prover cooperates with the verifier

1This chapter was published in ESORICS 2014 [17]. Permission is included in Appendix 5.
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by sending wireless signals back to the verifier to enable the verification. In the passive

mode, instead of actively sending out signals, the verifier monitors the wireless channel to

capture the prover’s signal. Once the prover’s signals are captured, the verifier can identify

the prover’s proximity.

We assume that the prover is untrusted. The prover may provide the verifier with fake

messages and wrong configuration information regarding its hardware and software settings,

such as device type, signal processing delay, and protocols in use. The prover may intention-

ally delay its replies to the verifier’s messages or send bogus replies at any time to mislead

the verifier. However, we assume that the verifier can receive wireless signals sent by the

prover. As the long-haul wireless applications (e.g., space communications and TV broad-

casting) usually have the stronger LoS feature, we assume that there are no metal shields

on the straight line between the verifier and the prover to block wireless signals from the

prover.

3.2 Far Proximity Verification

A simple and naive method to identify whether a prover is far away is to examine the

received signal strength (RSS). A signal decays as it propagates in the air. Thus, it seems

that strong RSS indicates a short signal propagation length and a close transmitter, whereas

weak RSS strength implies a far-away transmitter. However, a dishonest prover can increase

or decrease its transmit power to pretend to be close to, or far from, the verifier. The root

reason for the failure of the naive method is that RSS can be easily forged. In this paper,

we discover unforgeable and unclonable fingerprints of the proximity and propose techniques

that can identify the far proximity based on these fingerprints.
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3.2.1 Proximity Fingerprints

Because of the multipath effect [40], a signal sent by the prover generally propagates to the

verifier in the air along multiple paths due to reflection, diffraction, and scattering. Each path

has an effect (e.g., distortion and attenuation) on the signal traveling on it [41]. A channel

impulse response characterizes the overall effects imposed by the multipath propagation, and

it reflects the physical feature of a wireless link [40]. Because it is difficult to change the

physical feature, channel impulse responses have been used as ”link signatures” to uniquely

identify the wireless link between a wireless transmitter and a receiver [42, 41, 43].

Figure 3.1 (a) shows a simple example of multipath propagation. The signal sent by the

prover is reflected by an obstacle (i.e., a building), and thus it travels along Path 1 (the

direct path from the prover to the verifier), and Path 2 (the reflection path). The signal

copy that travels along one path is usually referred to as a multipath component [40]. Let r1

and r2 denote the multipath components that travel along Path 1 and Path 2 respectively.

Figure 3.1 (b) is an example of the corresponding channel impulse response, which shows

that r1 arrives at the verifier first and the peak of the signal amplitude of r1 is Ar1, and r2

arrives after r1, and its peak is Ar2.

Intuitively, if the prover increases (decreases) the transmit power, both Ar1 and Ar2 will

increase (decrease), but the prover cannot adjust its transmit power such that it arbitrarily

manipulates only one of Ar1 and Ar2, because it is difficult for the prover to identify and

modify the physical paths over which multipath components propagate [41]. On the other

hand, the length of the signal propagation path is closely related to the amplitude of the

received signal. A far-away prover results in weaker Ar1 and Ar2 than a close prover. Based

on this intuition, we give the definition of proximity fingerprint below.
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Figure 3.1: An example of the multipath effect.

Definition 1 (Proximity Fingerprint) Let Ar1 and Ar2 be the amplitudes of the first and the

second received multipath components, respectively. The proximity fingerprint f is the ratio

of Ar1 to Ar2, i.e., f = Ar1

Ar2
.

In Lemma 5, we prove that increasing or decreasing the transmit power does not affect

the proximity fingerprint.

Lemma 5 Let Pt denote the transmit power. Let Pr1 and Pr2 be the amplitudes of the first

and the second received multipath components. If the prover changes Pt to nPt (n > 0), then

both Pr1 and Pr2 will change to
√
nPr1 and

√
nPr2.

Proof: The amplitude Pr of a received signal can be modeled as [40]

Pr =











√

Ptk(
d0
d
)α d > d0,

√
Ptk d ≤ d0,

(3.1)

where Pt is the transmit power, d is the length of the path along which the signal propagates

from the transmitter to the receiver (d > d0), k is a scaling factor whose value depends on

the antenna characteristics and the average channel attenuation, d0 is a reference distance

for the antenna far-field, and α is the path loss exponent. The values of k, d0, and α can
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be obtained either analytically or empirically [40]. Assume d1 > d0 and d2 > d0. Thus,

according to Equation 3.2.2.2, Pr1 and Pr1 can be approximated by

Pr1 =

√

Ptk(
d0
d1

)α, Pr2 =

√

Ptk(
d0
d2

)α, (3.2)

where d1 and d2 are the lengths of the path along which the first and the second received

multipath components travel respectively. If Pt is changed to nPt (n > 0), then Pr1 and Pr2

will accordingly change to
√
nPr1 and

√
nPr2, and the proximity fingerprint (the ratio of Pr1

to Pr2) remains the same.

Note that due to the bandwidth limitation, the verifier can only distinguish two signals

when their arrival time difference is larger than the resolvable time (i.e., 1/B, where B is the

channel bandwidth). Therefore, Pr1 and Pr2 may not be the amplitude of received signals

from exact first and second paths. Nevertheless, Lemma5 always holds as long as the prover

cannot modify Pr1 and Pr2 simultaneously.

3.2.1.1 Key Features of Proximity Fingerprints

Lemma 5 shows that the prover cannot adjust its transmit power to arbitrarily manipulate

the proximity fingerprint, but it appears that an attacker (i.e., a dishonest prover or a third-

party adversary against benign provers) could affect the proximity fingerprint by intentionally

placing a reflector nearby the prover to generate a fake path, in addition to the direct signal

path from the prover to the verifier.

However, at the verifier’s view, the direct and fake paths are still one unresolvable path

if the difference between the arrival times of the signals traveling on both paths is much

smaller than the symbol duration, which is the transmission time of a wireless physical-layer

unit [40]. To be successful, an attacker has to place the reflector far enough away from the

prover (i.e., δc meters, where δ is the symbol duration and c is the speed of light [40]), such
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that the difference between the two path arrival times is resolvable at the verifier. More

crucially, at this distance the attacker must make sure that the prover’s signal can exactly

hit his reflector and be bounced back to the target verifier. However, it is quite uncertain

for the prover’s signal to be delivered to the reflector, then reflected by the reflector to the

verifier due to the random scattering effect caused by long distance propagation [40].

For example, GPS satellites have a typical symbol duration of 0.01 second [44]. It is

impractical for the satellite’s signal to exactly hit a reflector that is 3,000,000 meters away,

and moreover be reflected by the reflector to hit a target GPS navigation device on earth.

To summarize, proximity fingerprints are caused by wireless reflections somewhere, which

the verifier does not need to know and identify. The verifier can easily extract Ar1 and Ar2

from the channel impulse response and compute the proximity fingerprint as Ar1/Ar2. Note

that estimating the channel impulse responses is a must-have function for most modern

wireless systems [40, 45]. But in order for the attacker to be successfully, the attacker has to

know (1) how to pinpoint a far-away place to put a reflector or an active wireless device, and

(2) exactly where to direct the reflector to shoot a needle in a haystack. Thus, significant

practical hurdles exist for attacking proximity fingerprints. In this way, verifiers can easily

extract proximity fingerprints, but it is difficult for attackers to forge or manipulate a specific

fingerprint.

The attacker may also launch active attacks to undermine the verification of proximity

fingerprints. In later section (3.3), we will discuss these active attacks and the corresponding

countermeasures.

3.2.1.2 Impact of Directional Antennas

When directional antennas are used, the multipath effect may be reduced. However, direc-

tional antennas cannot provide perfect laser-like radio signals. For example, the beamwidth

of a 3-element Yagi Antenna, the most common type of directional antenna, is 90 degrees

56



in the vertical plane and 54 degrees in the horizontal plane [46]. Thus, it is not possible to

completely eliminate the multipath effect, and accordingly the multipath propagation has

been also considered in designing wireless communication systems equipped with directional

antennas (e.g., [47, 48]). The proximity fingerprint can be calculated based on a very lim-

ited number of paths (i.e., two paths), and thus it is compatible to wireless systems with

directional antennas in use.

3.2.1.3 Proximity Fingerprint with Single or Many Peaks

In cases where channel has more than two resolvable peaks, we still select the first two

peaks to estimate the distance. That’s because the first two peaks are usually largest ones

in channel and more resilient to the channel noise.

The scheme cannot be applied to the scenario where CIR only has one peak. But such

situation happens only when the signals are transmitted through the ideal environment (e.g.

free space propagation) or within a narrow bandwidth. Practical GPS or cellular networks

do not assume free space propagation. In addition, even the transmit signals have a narrow

bandwidth (e.g. 5MHz or 10MHz), it’s still highly likely that the CIR has multiple resolvable

peaks due to the long propagation distance (e.g. thousands of meters). For example, if

the signal bandwidth is 5MHz, the resolvable time is about 0.2 microsecond and thus the

minimum path difference required to distinguish two peaks is about 60 meters. Since the

transmitter is usually thousands of meters away from the receiver, it’s highly possible that

there exist two propagation paths whose distance difference is larger than 60 meters.

3.2.2 Far Proximity Identification Using Proximity Fingerprints

Based on the study of proximity fingerprint, we now reveal the relationship between the

proximity fingerprint and the actual proximity, and we propose far proximity identification
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techniques that can provide fine granularity and lower bounds on proximity (i.e., the prover

is at least a certain distance away from the verifier) using the proximity fingerprint.

To calculate the proximity of the prover, we first model the fingerprint of the proximity.

We consider signal propagation in two typical wireless environments, i.e., the outdoor and

the indoor environments.

There are multiple signal propagation models that characterize the path loss of wireless

signals, such as the free space path loss model, ray tracing path loss models, the simpli-

fied path loss model, and empirical path loss models [40]. The common feature of these

models is that they all indicate that the power of the transmitted signal decreases as the

propagation distance increases. In the channel impulse response, each resolvable multipath

component is the superposition of multiple non-resolvable signals arriving within the resolv-

able time. Because the empirical path loss model is able to characterize the path loss in

complex propagation environments, we would like to apply the empirical model to quanti-

tatively estimate the amplitude of resolvable multipath component in channel response. In

the following discussion, without loss of generality, we focus on two well-known propagation

models (Okumura Model [40] and ITU Indoor Propagation Model [45]) for both outdoor and

indoor environments.

We assume that there are no large metallic obstacles that can significantly block the

straight line propagation between the verifier and the prover. Thus, the first received

multipath component normally travels along the straight line due to the penetration and

diffraction-around-object effect, and the propagation distance is approximately d meters,

where d is the distance between the verifier and the prover. The second received multipath

component travels along a reflection path. Assume that the difference between the arrival

times of the first and the second multipath components is ∆t. The propagation distance of

the second arrived multipath component is thus d+∆tc meters, where c is the speed of light.
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3.2.2.1 Outdoor Signal Propagation

One of the most common models for outdoor signal propagation in urban, suburban, and

rural areas is the Okumura Model [40]. According to the Okumura model, the signal path

loss in decibels (dB) in urban areas can be modeled as

L(dB) = 69.55 + 26.16 log10(fc)− 13.82 log10(hte)

− a(hre, fc) + (44.9− 6.55 log10(hte)) log10(d),

where d is the length of the path along which the signal propagates from the transmitter to

the receiver, fc is the central frequency, hte and hre are the transmitter’s and the receiver’s

antenna heights respectively, and a(hre, fc) is a correction factor computed using hre and

fc [40]. Based on the Okumura Model, we give Lemma 6

Lemma 6 The proximity fingerprint in the outdoor environment is
√

(d2
d1
)

γ
10 , where d1 and d2

are the lengths of the paths along which the first and the second received multipath components

travel respectively, γ = 44.9− 6.55 log10(hte), and hte is the transmitter’s antenna height.

Proof: The received signal power Pr can be represented as Pr(dB) = Pt(dB) - L (dB),

where Pt is the transmit power. To facilitate the calculation, we change the unit of Pr from

dB to watt (W). The relationship between Pr(dB) and Pr(W) is Pr(dB) = 10 log10 Pr(W).

Thus, we can derive

Pr(W) = 10
1
10

(Pt(dB)−L(dB)) =
10

1
10

Pt(dB)

10
1
10

L(dB)
=

Pt(W)

L(W)
.

Similarly, we can derive L(W) as

L(W) = 10
1
10

L(dB) = 10
1
10

(β+γ log10(d)),
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where β = 69.55+26.16 log10(fc)−13.82 log10(hte)−a(hre, fc) and γ = 44.9−6.55 log10(hte).

The amplitude of a signal is the square root of the received signal power. Thus, the

amplitudes Ar1 and Ar2 of the first and the second received multipath components can be

represented by

Ar1 =
√

Pr1(W) =

√

Pt(W)

10
1
10

(β+γ log10(d1))
,

Ar2 =
√

Pr2(W) =

√

Pt(W)

10
1
10

(β+γ log10(d2))
,

where d1 and d2 are the lengths of the paths along which the first and the second received

multipath components travel respectively. Note that both multipath components have the

same values for γ and β, because they are from the same signal source (i.e., the prover) and

exhibit the same frequency fc. Thus, the proximity fingerprint f can be written as

f =
Ar1

Ar2

=

√

(
d2
d1

)
γ
10 . (3.3)

According to the Okumura model, the signal path loss models in suburban and rural

areas are, respectively,

Lsuburban(dB) = L(dB)− 2[log10(fc/28)]
2 − 5.4,

and

Lrural(dB) = L(dB)− 4.78[log10(fc)]
2 + 18.33 log10(fc)−K,

where K ranges from 35.94(countryside) to 40.94 (desert). By using the same analytical

approach, we can obtain the similar result that the proximity fingerprint in the suburban

and rural areas is
√

(d2
d1
)

γ
10 .
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3.2.2.2 Indoor Signal Propagation

The path loss in the indoor environment can be usually represented by the ITU Indoor

Propagation Model [45] as shown below

L(dB) = 20 log fc + λ log d+ Pf (Nf ),

where λ is the empirical path loss at the same floor, Nf denote the number of floors between

the transmitter and receiver, and Pf (Nf ) denotes the floor penetration loss. Based on the

ITU indoor model, we give Lemma 7

Lemma 7 The proximity fingerprint in the indoor environment is
√

(d2
d1
)

λ
10 , where d1 and d2

are the lengths of the paths along which the first and the second received multipath components

travel respectively, and λ is the empirical floor penetration loss factor.

Proof: As discussed earlier, the received signal power Pr can be represented as Pr(dB)

= Pt(dB) - L (dB). By converting the unit of Pr from dB to W, we can obtain

Pr(W) =
Pt(W)

L(W)
=

Pt(W)

10
1
10

(20 log fc+λ log d+Pf (Nf ))
.

The proximity fingerprint, the ratio of Ar1 to Ar2 can be written as

f =

√

Pr1(W)
√

Pr2(W)
=

√

(
d2
d1

)
λ
10 . (3.4)

3.2.2.3 Far Proximity Identification

Assume there are no large metallic obstacles that can significantly block the signal prop-

agation between the verifier and the prover. The path that the first received multipath com-

ponent usually travels along (i.e., Path 1) is roughly straight between the verifier and the

prover due to penetration and diffraction-around-obstacles features of wireless signals [40].
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Thus, d1 approximately equals to the distance between the verifier and the prover. The lower

bound of d1 is given in Lemma 8.

Lemma 8 Let d be the distance between the prover and the verifier. We have d ≥ c

B(f
2
α−1)

,

where c is the speed of light, B is the bandwidth of the communication system, α is the path

loss exponent, and f is the proximity fingerprint.

Proof: Let t denote the time at which the prover’s signal starts to propagate to the

verifier. Let t1 and t2 denote the arrival times of the first and the second received multipath

components, respectively. Therefore, d1 = (t1 − t)c and d2 = (t2 − t)c, and we have the

following:

d2 = (t2 − t)c = (t1 − t)c+ (t2 − t1)c = d1 +∆c,

where ∆ = t2 − t1. From Equations 3.3 and 3.4, we know that for both the outdoor and

indoor environments, the proximity fingerprint f can be generalized by the same expression

f =
√

(d2
d1
)α, where α equals to γ

10
and λ

10
for the outdoor and indoor propagation respectively.

The first received multipath component travels along the straight line between the verifier

and the prover. Hence, the distance d between the verifier and the prover is equal to d1.

According to [40], for resolvable multiple path components, ∆ ≥ 1
B
, whereB is the bandwidth

of the wireless communication system. Thus,

f =

√

(
d2
d
)α =

√

(
d+∆c

d
)α

and we have

f ≥
√

(
d+ c

B

d
)α,
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and

d ≥ c

B(f
2
α − 1)

. (3.5)

3.2.2.4 Fine-grained Proximity Identification

A more accurate time difference estimation between arrivals can be obtained from the

measured channel impulse response. Figure 3.2 shows an example of a real-measured chan-

nel impulse response obtained from the CRAWDAD data set [49], which contains channel

impulse responses collected in an indoor environment with obstacles (e.g., cubicle offices

and furniture) and scatters (e.g., windows and doors). As shown in Figure 3.2, the time

difference between the first and second peaks is about 75 nanoseconds. Since signals arriving

within the resolution time cannot be distinguished from each other, the estimation error is

considered as ± 1
2B

, where B is the bandwidth of the communication system. Assume the

time difference observed from the channel impulse response is δt, we can model the time

difference range as (δt− 1
2B

, δt+ 1
2B

).
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Figure 3.2: An example of the real-measured channel impulse response obtained from the
CRAWDAD data set
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We would like to utilize such fine-grained time difference to further refine the proximity

identification. In addition, with the range of the time difference, we can yield both lower and

upper bounds of the proximity between the verifier and the prover. Assume the estimated

time difference is within (δt− 1
2B

, δt+ 1
2B

). We have Lemma 9 as stated below:

Lemma 9 Let d be the distance between the prover and the verifier. d can be estimated

within the range of (
(δt− 1

2B
)c

f
2
α−1

,
(δt+ 1

2B
)c

f
2
α−1

), where c is the speed of light, α is the path loss

exponent, and f is the proximity fingerprint.

Proof: In the proof of Lemma 8, we generalize the proximity fingerprint f as f =
√

d2
d1

α
,

where d1 and d2 are the propagation distance of the first and second multipath components

respectively. Since the first received multipath component approximately travels along the

straight-line between the verifier and the prover, we have d = d1.

Assume the time difference between two multipath components is ∆t. We have the

relationship between d1 and d2 as d2 = d1+∆tc, where c is the speed of light. By substituting

the relationship into the proximity fingerprint, we can derive the distance as the following

equation 3.6:

d =
∆tc

f
2
α − 1

. (3.6)

Since the time difference ∆t is within the range of (δt − 1
2B

, δt + 1
2B

), where δt is the

time difference observed from the corresponding channel impulse response, we can have the

upper bound of the distance between the prover and verifier by substituting ∆t ≤ δt+ 1
2B

.

d ≤ (δt+ 1
2B

)c

f
2
α − 1

.

Similarly, lower bound of the proximity can be obtained by substituting ∆t ≥ δt − 1
2B

into the equation 3.6.
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d ≥ (δt− 1
2B

)c

f
2
α − 1

.

Therefore, we have the proximity range between the prover and the verifier as (
(δt− 1

2B
)c

f
2
α−1

,

(δt+ 1
2B

)c

f
2
α−1

).

3.2.2.5 Choosing α

For the outdoor signal propagation, according to the Okumura model, γ = 44.9 −

6.55 log10(hte), where hte is the height of the transmitter’s antenna. If the verifier has spe-

cific types of targets, for example, the verifier aims to verify the proximity of a satellite, a

cellular base station, or a TV tower, then the verifier can directly compute γ by looking up

the typical values of hte from the corresponding wireless device handbooks. Alternatively,

the verifier can also get an estimate of γ by using the typical transmitter antenna height

in the outdoor environment (e.g., the typical transmitter antenna height ranges between 1

to 200 meters [45], and thus γ approximately lies between 44.9 and 29.83). After obtaining

γ, the verifier can compute α = γ
10
. For the indoor signal propagation, α = λ

10
, where λ is

the indoor path loss factor that doesn’t rely on the antenna height and it can be obtained

through empirical experiments.

Note that the path loss exponent α for both outdoors and indoors can be actually regarded

as an attenuation factor that reflects the attenuation caused by the propagation path [50].

Previous studies have performed extensive empirical experiments to measure typical values

of such an attenuation factor in different wireless environments [40]. For example, the atten-

uation factor is 2.0 for vacuum free space, 2.7–3.5 for urban areas, 3.0–5.0 for suburban areas,

and 1.6–1.8 for indoors [40]. In the following discussion, without loss of generality, we use

these typical empirical values of the attenuation factor as the example α. Nevertheless, the

verifier can obtain α empirically using existing readily-available approaches (e.g., [51, 52]),
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and a real-measured attenuation factor can help to improve the accuracy of the proximity

lower bound estimation.

3.2.2.6 Experimental Examples

Figure 3.3 shows the estimated lower bound of the proximity as a function of the proximity

fingerprint f . The speed of light c is 2.99792458 × 108, and the bandwidth B is 20 Mbps.

From Figure 3.3, we can see that the proximity lower bound of the prover decreases as the

proximity fingerprint f increases. The indoor environment has the smallest α, and with

f = 5 the verifier can know that the prover is at least 3.01 meters away. The suburban

environment has the largest α, and with f = 5 the verifier can know that the prover is at

least 16.59 meters away.
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Figure 3.3: The estimated lower bound of the proximity as a function of the proximity
fingerprint f . The indoor environment has the smallest α, and with f = 5 the verifier can
know that the prover is at least 3.01 meters away. The suburban environment has the largest
α, and with f = 5 the verifier can know that the prover is at least 16.59 meters away.

As mentioned, figure 3.2 shows an example of a real-measured channel impulse response

obtained from the CRAWDAD data set. The channel impulse response was measured when

the distance between the transmitter and the receiver is 4.09 meters. From Figure 3.2, we can
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see that each received multipath component leads to a triangle in shape with a peak [41].

The second multipath component arrives at the receiver about 75 nanoseconds after the

arrival of the first one. The proximity fingerprint is 5.6499. The channel impulse response

was measured indoors, and thus α ranges between 1.6 and 1.8.

We use Lemma 8 to estimate the lower bound of the proximity of the transmitter, and

Figure 3.4 shows the result. We can observe that the estimated lower bound increases as

α increases. However, when α reaches the maximum value (i.e., 1.8) of the indoor environ-

ment, the real distance is still bounded by (i.e., greater than) the estimated lower bound.

Specifically, when α = 1.8, the lower bound of the proximity is 3.84 meters. This means

the transmitter should be at least 3.84 meters away from the receiver. The actual distance

between the transmitter and the receiver is 4.09 meters, which is slightly greater than the

lower bound 3.84 meters.
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Figure 3.4: Estimated lower bound v.s. the real distance regarding different path loss expo-
nent α

Note that long-haul communications may desire a much relaxed tightness of the proximity

lower bound. For example, GPS satellites running on the Low Earth Orbit have an altitude

of approximately 2,000,000 meters (1,200 miles). With a proximity lower bound of 1,000,000

meters (i.e., the bound is less than the actual proximity by 50%), it would be possible to
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prevent most attackers from impersonating the satellites, because it is usually very difficult

for the attacker to achieve such a long transmission range.

3.2.3 System Design

In what follows, we show how the theoretical result of Lemma 8 can be used in a practical

communication system to achieve the far proximity identification.

The verifier’s objective is to find out the proximity lower bound of the prover, i.e., to verify

that the prover is at least a certain distance away. According to Lemma 8, the proximity

lower bound is computed by c

B(f
2
α−1)

. Thus, the verifier can simply compute this bound with

the knowledge of the speed of light c, the system bandwidth B, the path loss exponent α,

and the proximity fingerprint f . The speed of light c is a universal physical constant and

the bandwidth B is a system configuration parameter, and both of them are known to the

verifier. The path loss exponent α can be either obtained empirically, or can be determined

using the typical values. The proximity fingerprint f is the only remaining factor that the

verifier needs to decide to compute the lower bound.

As we discussed earlier, the fingerprint f is the ratio of Ar1 to Ar2, where Ar1 and Ar2 are

the amplitudes of the first and the second received multipath components. Ar1 and Ar2 can

be extracted from the channel impulse response. A wireless packet is usually preceded by a

preamble, a special data content that indicates the beginning of an incoming packet. When

the prover sends a packet to the wireless channel, the verifier will first capture the preamble

using the match filtering technique [53]; then the verifier knows that there is an incoming

packet and continues to receive the payload. The preamble not only enables packet capture,

but also enables the estimation of the channel impulse response at the verifier.

After receiving the preamble, the verifier can use existing channel estimation techniques

(e.g., least-square (LS) and linear minimum mean squared error (LMMSE) estimators [54])

to estimate the channel impulse response from the preamble, and thereby obtain the values
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of Ar1 and Ar2 and the proximity fingerprint f = Ar1/Ar2. It is worth pointing out that using

the preamble is not the only way to obtain Ar1 and Ar2. The verifier can also use blinding

estimation methods (e.g., [55]) to estimate the channel impulse response from the entire

content of the preamble and the payload. In addition, the verifier can use hybrid methods

(e.g., [56]) that combine preamble-based estimation and blind estimation together to improve

the estimation accuracy. After obtaining the proximity fingerprint f and demodulating the

payload and authentication information, the verifier then verifies the prover’s proximity using

Lemma 8.

3.2.3.1 Dealing with the Wireless Uncertainty

Wireless channels can be affected by random environmental factors like temperature, hu-

midity, and vegetation. Thus, the estimated channel impulse response may be time-varying

and fluctuate around a center value. To improve the proximity authentication accuracy,

instead of using only one channel impulse response to estimate the proximity, we propose to

estimate the proximity based on multiple channel impulse responses, which are collected over

a certain time window. Each channel impulse response can yield a set of amplitude ratios,

and the corresponding set of estimated proximity. Suppose there are L multiple paths and

n channel impulse responses, the verifier will obtain a total of L ∗n estimates of the prover’s

proximity. The verifier then uses the mean value of these estimates as the proximity authen-

tication output, so that the impact of random noises can be mitigated with the boosted size

of the sample space.

In addition, the path loss exponent α plays an important role in authenticating the

proximity. To make α resilient against environmental changes, we propose to use training

phases to calibrate α periodically. In a training phase, the verifier estimates the proximity

of an authenticated beacon transmitter, whose real distance is already known to the verifier.

The verifier compares the estimated proximity with the real distance between the beacon
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transmitter and itself. Based on the comparison result, the verifier adjusts α so that the

difference between the estimation output and real distance can be minimized. After the

training phase, the verifier uses calibrated α to identify the proximity of an unknown wireless

device.

By averaging over multiple channel measurements and using a real time α, the verifier

can cope with environment changes and improve the proximity authentication performance.

3.2.4 Implication

Lemma 8 indicates that the prover is at least c

B(f
2
α−1)

meters away from the verifier.

This range is determined by the speed of light c, the system bandwidth B, the path loss

exponent α, and the proximity fingerprint f . Note that c, α, and B are system constants

that are determined by the physical features of the propagation medium. Thus, they are are

not manipulatable. Also, there are significant practical hurdles to manipulate the proximity

fingerprint f , as described in Section III-A. Therefore, the provers can prove (or cannot

repudiate) that it is at least c

B(f
2
α−1)

meters away.

On the other hand, Lemma 8 reveals a good feature of the proposed technique, i.e., it

supports passive proximity identification. As we discussed earlier, c, α, and B are system

constants that are already known to the verifier. The proximity fingerprint f is computed

based on channel impulse responses. Existing channel estimation techniques are typically

passive, and they do not rely on active two-way interactions between the prover and the

verifier to estimate channel impulse responses. With the knowledge of c, α, B, and f ,

the verifier can directly compute the proximity lower bound of the prover. The passive

verification not only reduces communication overhead, but also increases the difficulty for

an adversary to recognize an on-going proximity identification activity.

70



3.3 Attacks and Countermeasures

A proximity fingerprint itself is unforgeable, because it is extracted from channel impulse

responses, which have been regarded as ”signatures” to uniquely identify the wireless link

between a transmitter and a receiver. However, an attacker may launch attacks targeting at

the verification decision process such that the verifier gets an incorrect verification decision.

Specifically, the attacker is able to intercept, interfere, or even jam the signal transmission

between the prover and verifier, and aims at causing false negative/positive errors to fool the

verifier to get a wrong decision on a dishonest/benign prover. In addition, a dishonest prover

may manipulate the channel estimation process to create a fake channel impulse response

at the verifier or collaborate with attackers to generate a mixed received signal to fool the

verifier with a wrong decision.

To fool the verifier, the attacker may try to collaborate with another active wireless device

or equip with multiple antennas to create a fake second path by transmitting signals from a

different direction. In this case, the attacker must make sure that there is no multipath effect

for the signals traveling on the direct path (e.g., the path from the prover to the verifier)

and the fake path (e.g., the path from the active wireless device to the verifier). Otherwise,

the attacker cannot control and guarantee that the fake path is exactly the second received

path at the verifier side. Eliminating the multipath effect completely is normally regarded

as infeasible.

In this paper, we focus on three other major attacks against the far proximity finger-

printing and they are:

• Jam-and-replay attack: The attacker may jam the prover and replay an intercepted

signal to fool the verifier taking the attacker’s proximity as the prover’s proximity.
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• Flipping attack: The attacker may collaborate with malicious provers to generate

mixed received signals at the verifier, and thus result in the false negative and positive

errors.

• Spoofing attack: A dishonest prover may try to create a fake channel impulse response

at the verifier by manipulating the channel estimation process.

3.3.1 Dealing with Jam-and-replay Attacks

3.3.1.1 Attack Methodology

In the jam-and-replay attack, the attacker first intercepts the transmit signal from the

prover, and at the same time jams the transmission to prevent the verifier from receiving the

original signal from the prover. Then the attacker replays the intercepted signal from the

prover at the attacker’s own location, such that the verifier is fooled into taking the attacker’s

proximity as the prover’s proximity. Because the attacker jams the original transmission

between the prover and verifier, traditional anti-replay mechanisms such as sequence numbers

do not work.

3.3.1.2 Defense Approach

A common method to address jam-and-replay attacks is to explore timestamps (e.g., [7]).

In such a method, the sender includes a timestamp in the transmitted message, which indi-

cates the time when a particular bit or byte called the anchor (e.g., the start of the message

header) is transmitted over the air. Upon receiving a frame, the receiver can use this times-

tamp and its local message receiving time to estimate the message traverse time. An overly

long time indicates that the message has been forwarded by an intermediate attacker.

Timestamps-based method requires clock synchronization between the sender and the

receiver, but it generally has a low synchronization requirement in common wireless appli-
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cations. For example, in an 11 Mbps 802.11g wireless network, the transmission of a typical

1500-byte TCP message requires 1.09 (i.e., 1500∗8
11×103

) milliseconds. Thus, the attacker at least

doubles the transmission time of the message to 2.18 milliseconds. As long as the verifier

and the prover have coarsely synchronized clocks that differ in the order of milliseconds,

the verifier can detect jam-and-replay attacks. In practice, multiple schemes can be applied

to satisfy such clock synchronization requirement to detect the attack [57]. For example,

in IEEE 802.11 standard, it specifies the timing synchronization function (TSF) to fulfill

timing synchronization among users. Since the TSF is based on a 1 MHz clock and ”ticks”

in microseconds, it can achieve the time accuracy in the range of few microseconds (us),

which is orders of magnitude smaller than milliseconds (ms). Note that the synchronization

requirement can be further relaxed in GPS applications. GPS satellites have a transmission

rate ranging between 20 bits/s and 100 bits/s [44]. The transmission of a standard 1500-bits

GPS navigation message [44] takes 15 – 75 seconds, and accordingly the synchronization

accuracy can be reduced to the order of seconds.

In addition, to launch jam-and-replay attacks, the attacker must send jamming signals

to jam the wireless transmission. Jamming attacks have been extensively studied in the

literature, and various techniques regarding jamming detection and countermeasures have

been proposed (e.g., [58, 40, 59]). The prover and the verifier can also use existing jamming

detection or anti-jamming techniques to discover the presence of jam-and-replay attacks, or

to defend against such attacks.

3.3.2 Dealing with Flipping Attacks

3.3.2.1 Attack Methodology

The attacker can collaborate with malicious provers or interfere legitimate provers to

generate a mixed received signals at the verifier, and thus result in a flipped decision (i.e.,
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in far proximity → out of far proximity and out of far proximity → in far proximity).

Specifically, the attacker uses its own proximity to “pollute” the prover’s proximity. Assume

the prover and the attacker are dp and da meters away from the verifier respectively, where

dp ≫ da or da ≫ dp. The attacker sends signals to the verifier along with the transmission of

the prover. Suppose the attacker and the prover do not overwrite each other’s signal (e.g.,

by using a very high transmission power). Thus, the verifier receives a mixed signal formed

by both the prover and the attacker’s signals. Intuitively, the proximity fingerprint extracted

from the mixed signal will reflect proximity features of both the attacker and the prover, and

thus the corresponding proximity lower bound d estimated based on the proximity fingerprint

can greatly deviate from the real proximity lower bound dp of the prover.
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Figure 3.5: Example of flipping attacks: the mixed channel impulse response reflects prox-
imity features of both the transmitter A and B.

We conducted experiments using the CRAWDAD dataset to examine the impact of the

attacker. The dataset includes over 9,300 real channel impulse response measurements in a

44-node wireless network [49]. Two transmitters (nodes 31 and 35) and a receiver (node 44)

from the data set are used for the experiments. Figure 3.5 shows the real measured channel

impulse responses between the transmitters and the receiver. Transmitter A is positioned

1.83 meters away from the receiver. The proximity fingerprint, the amplitude ratio of the
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first received multipath component to that of the second one, is about 11.06. Accordingly,

the estimated lower bound of the transmitter’s proximity is 1.67 meters. Compared to trans-

mitter A, transmitter B is farer away from the receiver. The distance between transmitter

B and the same receiver is 14.15 meters. Transmitter B’s proximity fingerprint is about 1.80

and the estimated proximity lower bound is 12.99 meters. We let transmitters A and B send

signals to the receiver at the same time. Thus, the receiver receives a mixed signal from

both transmitters. The mixed signal can result in a channel impulse response as shown in

Figure 3.5. The proximity fingerprint estimated from this channel impulse response is 2.44,

and the corresponding estimated proximity lower bound is 8.85 meters, which falls between

the true bounds of transmitter A (1.67) and transmitter B (12.99).

The experiment results show that it is possible for an attacker to use its own proximity

to significantly affect the estimated proximity lower bound of the prover. Consequently, a

nearby attacker may fool the receiver into believing that a far-away prover is not far away,

and vice versa.

3.3.2.2 Defense Approach

A basic solution to deal with flipping attacks is to use existing jamming detection ap-

proaches. The attacker’s signals cause the wireless interference to the transmission, and thus

they can be regarded as jamming signals. Jamming attacks have been extensively studied

in the literature, and various techniques regarding jamming detection have been proposed

(e.g., [58, 60, 59, 61, 62, 63, 64, 65]). The verifier may use existing jamming detection

techniques to discover the presence of flipping attacks.

However, one drawback of jamming detection techniques is that they require the attacker

to constantly jam the prover’s transmission for a relatively long time, such that the receiver

can collect enough jammed signal samples. By analyzing those samples, the receiver can

obtain important statistical values, including packet loss rate, bit error rate, and received
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Figure 3.6: Channel impulse response
measured in normal scenario
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Figure 3.7: Channel impulse response
measured in the scenario of flipping at-
tacks

signal strength. Those values enable the receiver to make a decision regarding whether or

not the communication system is under jamming attacks. However, if the attacker jams the

transmission for a short time, the receiver may not be able to get an accurate estimate of

those statistical values, thereby reporting an incorrect decision.

We propose advanced defense techniques to deal with flipping attacks. Traditional jam-

ming detection techniques require constant long-term jamming, because the detection deci-

sion is based on statistical values obtained from a certain amount of jammed signal samples.

To deal with a short-term flipping attacker, we design defense techniques without relying on

statistical values. Intuitively, due to the absence or imperfect synchronization, there exists

a tiny clock discrepancy between the attacker and the prover. This clock discrepancy is

actually a time-varying random variable. When there exist flipping attacks, the attacker’s

and the prover’s signals mix together, and the clock discrepancy introduces randomness to

the mixed signal.

We performed experiments using the CRAWDAD dataset to compare the channel impulse

responses obtained from non-mixed and mixed signals. We considered a normal scenario and

an attack scenario. In the first scenario, only the prover transmits signals to the verifier,

while in the second one, the attacker launches flipping attacks by interfering the prover’s
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transmission. Figure 3.6 shows 5 channel impulse responses in the normal scenario and each

of them is extracted from a short-term signal that lasts for about 250 nanoseconds. We can

observe that those channel impulse responses are similar to each other in shape. Figure 3.7

shows 5 channel impulse responses extracted from the mixed signals in the attack scenario.

Unlike the normal scenario, the channel impulse responses exhibit random shapes and they

are quite different from each other.

Therefore, we can detect the presence of flipping attacks through checking the consis-

tency among channel impulse responses. Specifically, we can compute the difference between

successive channel estimations. The channel is considered as polluted, if two successive es-

timated channels change significantly. Specifically, assume we have two successive channel

estimations hi and hj, their difference is denoted as the Euclidean distance dij = ||hi − hj||.

Then we compare dij with a threshold τ , for a constant τ > 0. When dij > τ , the channel

is considered as polluted and a flipping attack is detected.

The flipping attack detection can be viewed as a choice between two events F0 and F1,

where F0 indicates the event of a normal scenario, while F1 indicates the event of a flipping

attack. The density functions conditioned on F0 and F1 can be denoted as fdij(dij|F0)

and fdij(dij|F1) respectively. Accordingly, we can obtain the probability of false alarm and

missed detection as Pf =
∫∞

x=τ
fdij(x|F0)dx and Pm =

∫ τ

x=0
fdij(x|F1)dx respectively. As both

probabilities are functions of the threshold τ , there is a tradeoff between the false alarm

rate and missed detection rate. In practice, we may empirically select a threshold τ to

achieve a high detection rate and at the same time, maintain a relatively low false alarm

rate. In addition, to further minimize the false alarm caused by the normal channel fading,

we compare the differences among n channel estimations(n > 2). The channel will be treated

as polluted, only when p out of n channel estimations are dramatically changed, where p is

the threshold of the flipping attack indicator.
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3.3.3 Dealing with Spoofing Attacks

3.3.3.1 Attack Methodology

Instead of creating real-world fake paths, the attacker may target the channel estimation

process, such that the verifier obtains a fake impulse response specified by the attacker. Let

Sv denote the symbols (i.e. transmission units in physical layer) received by the verifier,

and Sv can be represented as Sv = h ∗ Sp + nv, where Sp are the preambles, h is the

actual channel impulse response between the verifier and the prover, and nv is the channel

noise, respectively. Upon receiving Sv, the verifier uses Sp and Sv as the input of the

channel estimation algorithm (e.g., LS and LMMSE), and the output of the algorithm is the

estimated channel impulse response.

In general, the prover and the verifier must agree on the same preambles to achieve

the accurate channel estimation. However, it is possible for a dishonest prover to specify

a fake channel impulse response by modifying the transmit preambles. Let S′
p denote the

preambles to be transmitted by a dishonest prover, and let S′
v denote the corresponding

received symbols. S′
v can be represented by S′

v = h ∗ S′
p + n′

v [66]. Further let ha denote

the fake channel estimation result chosen by the dishonest prover. The goal of the dishonest

prover is to find symbols S′
p, such that when S′

p arrive at the verifier, the corresponding

received symbols S′
v can result in an estimated channel impulse response that is equal to ha.

To achieve this goal, the prover let S′
v = ha ∗ Sp + nv, i.e., h ∗ S′

p + n′
v = ha ∗ Sp + nv.

Upon receiving S′
v, the verifier uses Sp and S′

v to estimate the channel impulse response.

Because S′
v = ha ∗Sp +nv, the estimated channel impulse response will be equal to ha. We

rewrite the equation h ∗ S′
p + n′

v = ha ∗ Sp + nv as h ∗ S′
p + n = S, where S = ha ∗ Sp

and n (= n′
v − nv) is the white Gaussian channel noise. By using the standard least square

approach [54], we can obtain that S′
p = (HHH)−1HHS, where H is the Toeplitz matrix of

h. By sending S′
p to the verifier, the prover can fool the verifier to obtain a fake channel
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results ha. Because all elements in ha are chosen by the dishonest prover, the verifier will

obtain fake amplitude ratios that are specified by the prover.

3.3.3.2 Defense Approach

To launch a successful spoofing attack, the dishonest prover must first know the actual

channel h between the prover and the verifier. Otherwise, the attacker can only generate

a unpredictable channel estimation by randomizing the preambles. To defend against the

attack, we propose to introduce a passive auxiliary node, which we refer to as the helper.

Specifically, the prover and the verifier agree on two different preambles Sp1 and Sp2, and the

verifier and the helper use Sp1 and Sp2 to estimate the channel impulse responses from two

successive transmissions of the prover. The basic idea is that the dishonest prover cannot

maintain the consistent channel impulse responses at both the verifier and the helper with

two different preambles Sp1 and Sp2, especially when the prover has no idea of the channel

between the prover and the passive helper.

To facilitate the presentation, without loss of generality, we omit the noise part in the

following equations. To generate a fake channel impulse response ha, the prover solves the

fake preamble S′
p1 from the equation h ∗ S′

p1 = ha ∗ Sp1, so that the verifier will regard ha

as the channel impulse response when uses Sp1 to estimate the channel. The helper also

uses Sp1 to estimate its channel impulse response from hh ∗ S′
p1 = hah ∗ Sp1, where hh

and hah are the actual and the estimated channel impulse response between the helper and

the prover. For the attacker’s next transmission, both the verifier and the helper will use

the preamble Sp2 to estimate the channel. Similarly, to fool the verifier, the attacker must

generate another fake preamble S′
p2 such that it satisfies h ∗ S′

p2 = ha ∗ Sp2. However, the

attacker can hardly fool the verifier and the helper at the same time. Because the attacker

cannot know the channel between the attacker and the helper, the fake preamble S′
p2 will

not necessary satisfy the helper node’s equation hh ∗ S′
p2 = hah ∗ Sp2. Thus, the channel
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estimation result at the helper will be different from the previous channel estimation result

hah.

If the successive estimated channel impulse responses show dramatic changes in a short

time at the helper, the spoofing attacks are detected and the helper triggers an alert at the

verifier. To avoid false alarms caused by normal channel fading, we can further increase the

number of preambles. The verifier and the helper agree on n preambles (n > 2), and the

alert will be triggered only when p out of n channel estimations are detected as inconsistent,

where p is the threshold of the spoofing attack alerts.

3.3.4 Impact of a Cloned Prover

In an extreme scenario, a dishonest prover may use a collaborator at a different loca-

tion to forge the proximity. The collaborator claims to be the prover and sends signals to

the verifier. As a result, the verifier will take the collaborator’s proximity as the prover’s

proximity. In this case, the verifier will send the data to a higher layer for authenticity

verification. Such verification will fail if the prover does not disclose its personal information

(e.g., user ID, network address, private key) to the collaborator. However, the verification

does succeed if the collaborator has all the information of the prover, in which case the col-

laborator is essentially a full copy of the prover. Therefore, it is not practical to detect such

a same-identity attack in any proximity detection system, including all distance bounding

protocols. To defeat such attacks, the verifier needs to enforce existing security mechanisms

like duplicated nodes detection (e.g., [67]) or hardware biometrics authentication (e.g., [42]),

which are orthogonal to this work.

3.4 Experimental Evaluation

The proposed far proximity identification approach identifies whether a prover is at least

a certain distance away from the verifier. To evaluate the performance of the proposed far
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proximity detection approach, two key questions are of particular interest. The first question

is how likely it is that the detection method makes an error. An error happens when a prover

is identified as at least β meters away, while the real distance d between the verifier and the

prover is less than the identified lower bound β. The second question is how tight the

estimated lower bound is. Let ǫ denote the difference between the real distance d and the

lower bound β, i.e., ǫ = d− β. Ideally, to obtain a good estimation accuracy, one would like

to achieve a small ǫ. In this section, we perform experiments using real-world channel data

to evaluate the performance of the proposed approach in a real wireless environment.

3.4.1 Experiment Setup

Wireless propagation can be either line-of-sight (LoS) or non-LoS (NLoS). In LoS scenar-

ios, there exist no major or very few obstacles residing between the transmitter and receiver,

and thus LoS scenarios usually feature better signal quality. In NLoS scenarios, there exist

a number of major obstacles between the transmitter and receiver, and NLoS scenarios are

more complicated with higher signal distortion and sharper changes in signal strength.

Far proximity identification often applies to long-haul wireless communications (e.g.,

GPS) in outdoor environments, which are usually open and have a much stronger feature

in LoS than NLoS. Compared to outdoor environments, indoor environments like offices,

residential homes, and shops, are more complicated due to the frequent occurrences of walls,

people, furniture, cubicles, etc. Thus, indoor environments usually have a fairly large number

of NLoS propagation paths. In our experiment, we choose the more challenging indoor envi-

ronment for our evaluation to examine the worst-case performance of the proposed method.

3.4.1.1 Data Set

We validate the proposed far proximity identification technique using the CRAWDAD

data set [68], which contains more than 9,300 real channel impulse response measurements
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(i.e., link signatures) in a 44-node wireless network [49]. There are 44× 43 = 1, 892 pairwise

links between the nodes, and multiple measurements are provided for each link [49]. The

map of the 44 node locations is shown in [41]. The measurement environment is an indoor

environment with obstacles (e.g., cubicle offices and furniture) and scatters (e.g., windows

and doors). More information regarding the CRAWDAD data set can be found in [68, 49].

3.4.1.2 Evaluation Metrics

We herein use error rate and tightness of the bound as metrics to evaluate the performance

of the proposed technique in the real world. In addition, the proximity lower bound is

computed based on a key factor, the proximity fingerprint. Thus, the proximity fingerprints

plays a vital role in proximity identification. To further validate the the feasibility of using

proximity fingerprints for proximity identification, we also perform experiments to reveal

the relationship between the real distance and the proximity fingerprints. Our evaluation

metrics are summarized below.

• Error rate: The error rate is the ratio of the number of failed trials (i.e., error happens

in the trail) to the total number of trials. An error happens when the real distance

between the verifier and the prover is less than the identified proximity lower bound.

The error rate indicates how possible a nearby adversary will be considered as a remote

legitimate device. A small error rate indicates a nearby adversary can hardly pretend

to be far away from the prover, and vice versa.

• Tightness of the bound: Tightness is the normalized difference between the estimated

lower bound and the real distance (i.e., d−β
d
, where β is the estimated proximity lower

bound, and d is the real distance between the verifier and the prover).
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Tightness indicates how close between the estimated result and the real distance. A

small tightness indicates a remote device will not be falsely considered as a nearby

adversary, and vice versa.

• Proximity Fingerprints: The proximity fingerprint is the ratio of the amplitude of the

first received multipath component to that of the second one.

3.4.2 Experiment Results

Based on the CRAWDAD data set, we perform experiments under both LoS and NLoS

scenarios to show the error rate, tightness of the bound, and the relationship between the

proximity fingerprint and the distance.

We distinguish two types of channel impulse responses: if a LoS path exists and there are

no obstacles between the transmitter and the receiver, we mark the corresponding channel

impulse responses as LoS channel impulse responses. Otherwise, we mark them as NLoS

channel impulse responses. Thus, we obtain two sets of data. The first set is formed by all

LoS channel impulse responses, and the second one is formed by all NLoS channel impulse

responses. We perform our experiments using both sets.

3.4.2.1 Proximity Fingerprint vs. Distance

The proximity fingerprint is an important parameter in computing the proximity lower

bound. According to Lemma 8, the theoretical proximity lower bound is calculated as

c

B(f
2
α−1)

. From this formula, we can easily derive that as the proximity fingerprint f increases

(other parameters remain the same), the proximity lower bound decreases and vice versa.

Note that the proximity lower bound reveals the least distance between the verifier and the

prover. Thus, the increase of the proximity fingerprint f may also indicate the decrease of the

real distance and vice versa. We plot the proximity fingerprint as a function of the distance
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Figure 3.8: Relationship between the dis-
tance and the proximity fingerprint.
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Figure 3.9: Error rate as a function of
pathloss exponent α.

in Figure 3.8. We can see that the proximity fingerprint in the NLoS scenario slightly differs

from that of the LoS scenario in magnitude due to the reflection loss. However, for both

scenarios, their proximity fingerprints exhibit the same tendency, i.e., they both decrease as

the distance increases. This observation is consistent with our theoretical result.

3.4.2.2 Error Rate vs. Pathloss

To obtain the error rate, we experiment as follows. Let NLoS denote the number of

channel impulse responses in the LoS data set. For each channel impulse response in the

data set, we compute the proximity fingerprint and the corresponding proximity lower bound

using Lemma 8. We also compute the real distance between the transmitter and the receiver

based on their coordinates. If the lower bound is less than the real distance, we mark the trial

as successful. Otherwise, we mark the trial as failed. Accordingly, the error rate is calculated

as
Nf

NLoS
, where Nf is the number of failed trails and NLoS is the total number of trials. We

perform the experiment again using the NLoS data set and obtain the corresponding error

rate for the NLoS scenario.

The channel impulse responses are collected from an indoor environment, and the cor-

responding pathloss exponent α empirically ranges between 1.6 and 1.8. Thus, we perform
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our experiment for different values of α in this range. Figure 3.9 plots the error rate as a

function of α. The pathloss exponent α reflects how a signal is distorted and attenuated

during its propagation, and a large α can result in higher signal distortion and attenuation.

Accordingly, from Figure 3.9 we can observe that the error rate increases as α increases.

However, when α reaches the maximum value for indoor environments, the achieved error

rate in the LoS scenario is as low as 0.075. For the minimum α of 1.6, the proposed approach

has a reduced error rate of 0.05.

For the NLoS scenario, we can still achieve an error rate between 0.17 and 0.22. Note

that NLoS scenarios are the worst-case scenarios. Far proximity identification is typically

used in outdoor environments, which have the stronger LoS feature. As shown in Figure 3.9,

the error rate of LoS scenarios is much lower than that of the NLoS scenarios.

3.4.2.3 Error Rate vs. Distance

We then perform experiments to examine how the real distance affects the error rate.

For each channel impulse response in the LoS data set, we compute the distance between

the corresponding transmitter and the receiver. Let dmax and dmin denote the maximum

and minimum distance among all computed distances. We calculate the error rate using
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the set formed by channel impulse responses whose corresponding distance are larger than

a threshold distance. The threshold is initially set as dmin and increases each time until it

reaches dmax. We perform the experiments again using the NLoS set.

Figure 3.10 shows the error rate as a a function of various distances in the LoS scenario.

The error rate decreases as distance increases. The obvious reason is that a larger distance

indicates a longer distance between the transmitter and the receiver, and thus a higher

chance that the estimated proximity lower bound is less than the distance. When distance

approaches the maximum distance between the sender and the receiver, the corresponding

error rate is 0.01. When distance approaches the minimum distance, the error rate slightly

increases but it is still a small rate that ranges between 0.05 and 0.07 for different α.

Figure 3.11 plots the error rate of the NLoS scenario for α = 1.80, which results the worst

error rate as compared to other values of α. Contrary to the LoS scenario, the error rate

of the NLoS scenario increases as distance increases. That’s because in the NLoS scenario

a longer distance between the transmitter and the receiver indicates a higher chance that

there are more obstacles, and thus a reduced proximity detection accuracy. The “worst

worst case” happens when distance approaches the maximum distance dmax for the worst

case NLoS scenario. However, as we can observe from Figure 3.11, the achieved error rate

of the “worst worst case” is about 0.25. This means that we can successfully obtain the

proximity lower bound for a majority number (75%) of verifiers. As distance decreases, the

error rate decreases quickly. When distance approaches the minimum distance, the achieved

error rate is about 0.15. Again, the experiment is performed in an indoor environment

(e.g., WiFi and Bluetooth), which has a short signal propagation distance. Outdoor wireless

applications (e.g., space communications and TV broadcasting) usually have the stronger

LoS feature, and therefore can substantially benefit from the proposed method in terms of

significantly reducing the error rate.
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with a distance of 50 meters

3.4.2.4 Tightness of the Proximity Bound

Our second evaluation metric is the tightness of the bound. To evaluate the tightness,

we perform the following experiments using LoS and NLoS data sets. In all experiments,

the pathloss exponent α is set to the minimum and maximum values of 1.6 and 1.8. For

each channel impulse response in the LoS data set, we compute the distance between the

corresponding transmitter and the receiver and the proximity lower bound. Based on the

bound and the actual distance, we can calculate the tightness of the bound. We then sort

all the tightness values and compute the empirical cumulative distribution function (CDF)

for them. We perform the experiment again using NLoS data set and obtain the CDFs of

the NLoS tightness values.

Figure 3.12 shows the CDF curves of the tightness computed using channel impulse

responses collected in LoS and NLoS scenarios. For the LoS scenario with α = 1.8, we

can observe that 95% of the tightness values are less than 0.2. The indoor environment

typically features a short propagation path, and thus a 0.2 tightness indicates a small absolute

difference in distance. For example, if the distance between the transmitter and receiver is 5

meters, the achieved tightness can be around 1 meter. In particular, the maximum distance
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dmax between the transmitter and the receiver is about 11 meters, and the corresponding

proximity bound is 9.56 meters, which is very close to the actual distance.

For the NLoS scenario with α = 1.8, we can observe from Figure 3.12 that 90% of the

tightness values are less than 0.3. Compared to the LoS Scenario, the NLoS scenario has a

reduced performance due to the existence of obstacles. Again, the experiment is conducted

based on short-range communications, and a 0.3 tightness still suggests a small absolute

difference in distance. When α decreases to 1.6, the achieved tightness increases. That’s be-

cause the corresponding estimated proximity lower bound decreases, and a decreased bound

grows the difference between the bound and the real distance, and thus augments the tight-

ness. However, for α = 1.6, we can still observe that a great majority of the tightness values

are fairly small, e.g., 95% and 80% of the tightness values are less than 0.25 and 0.3 in the

LoS and the NLoS (worst-case) scenarios respectively. Note that such tightness is usually

sufficient to prevent attackers from impersonating the transmitters in typical long-haul out-

door wireless applications. For example, GPS satellites running on the Low Earth Orbit

have an altitude of approximately 2,000,000 meters (1,200 miles). With a proximity lower

bound of 1,000,000 meters (i.e., a tightness of 0.5), it would be possible to prevent most at-

tackers from impersonating the satellites, because it is usually very difficult for the attacker

to achieve such a long transmission range.

3.4.2.5 Experiment for a Longer Distance Scenario

We further conduct an experiment to evaluate the performance of the proposed scheme in

the scenario of a longer distance between the prover and the verifier on top of the Universal

Software Radio Peripherals (USRPs), which are the radio frequency transceivers.

In the experiment, the transmit rate is set as 10 Mbps and the distance between the

prover and the verifier is set as 50 meters, which are the maximum rate and largest distance

we can achieve due to the hardware limitations of USRPs (i.e. processing capability and
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transmission power). The experiment is done in the outdoor scenario, and the corresponding

path loss exponent α is chosen as 5.0. We measure the channel impulse response for 1000

times, and for each measurement we estimate the corresponding lower bound proximity.

Note that during the measurements, the environment may change since there are people

walking between the transmitter and receiver.

From the experiment results, we can observe an error rate of 0.0939. We also draw the

empirical CDF of tightness in Figure 3.13. As shown in this figure, the maximum tightness

value is 0.3385. As discussed earlier, such tightness is usually sufficient to prevent attackers

from impersonating a nearby transmitters in typical long-range outdoor wireless applications.

3.5 Related Work

Related work falls into the following areas.

3.5.1 Distance Bounding Protocols

Distance bounding protocols are a class of protocols that determine an approximate

distance between a local device and a remote device. (e.g., [8, 9, 10]). Distance bounding

protocols and their variants are based on the common observation that the distance between

the local and the remote devices is equal to the product of the speed of electromagnetic wave

and the one-way signal propagation time. The approximate distance is obtained from a series

of wireless packets exchanged between the local device and the remote device. Specifically,

the local device sends a challenge to the remote device, which then replies with a response

that is generated based on the challenge. The local device measures the round-trip time

between sending the challenge and receiving the response, subtracts the processing delay

from the round-trip time, and uses the result to compute the distance. Because the response

is generated based on the challenge, the distance bounding protocol can prevent the remote
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device from pretending to be closer than it actually is by sending a fake response before it

receives the challenge.

However, by delaying its response to a challenge, a remote device can appear to be arbi-

trarily further from the local device than it actually is. Hence, distance-bounding protocols

cannot enforce lower bounds on proximity (i.e., requirements that the remote device be at

least a certain distance from the local device). For this reason, the GPS-device and mobile-

phone examples used for motivation cannot be enforced by distance-bounding protocols.

3.5.2 Close Proximity Identification

There also exist traditional close proximity detection techniques (e.g., [69, 70]) that can

detect the presence of nearby objects without any physical contact. These techniques use

electromagnetic field changes to identify a close object. A proximity sensor generates an

electromagnetic field or a beam of electromagnetic radiation (e.g., infrared). If an object

moves into the field range of the sensor, a field change can result, and thus the sensor senses

the presence of the object. For example, a sound alert is triggered when a vehicle moves

into the close proximity of a worker or an obstacle. However, traditional techniques cannot

identify the proximity of a specific object, because the proximity sensor reports all nearby

objects as long as those objects are in the field range.

Researchers later developed techniques that identify the close proximity of an individual

target if the target can emit wireless signals (e.g., [71, 5, 6]). For example, based on the

observation that a strong received signal usually indicates a close transmitter, Macii et al

developed approaches that determine the proximity of the remote wireless device by measur-

ing received signal strength [71]. However, the use of signal strength to determine proximity

was found to be insecure, as a dishonest remote device can easily pretend to be close to the

local device by boosting its transmit power.
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More recent efforts overcome this drawback with the assistance of special hardware [5, 6].

Cai et al. proposed a scheme that identifies the presence of a close wireless device by using

multiple antennas [5]. Halevi et al. proposed to use ambient sensors to detect whether a

Near-Field-Communication (NFC) device is nearby or not [6]. Although those approaches

can prevent attackers manipulating transmit power to deceive the local device, they cannot

be directly extended to address the far proximity identification problem. They output a

decision regarding whether a target is nearby, but such a decision cannot guarantee that

the target is at least a certain distance away. Also, the requirement of special hardware

such as multiple antennas and ambient sensors introduces extra cost and may reduce their

compatibility.

Liu et al. proposed a new close proximity identification approach that does not rely on

special hardware [7]. By using the wireless physical features that uniquely identify a wireless

link between a transmitter and a receiver, the proposed technique enables the local device to

distinguish between a nearby and a far-away remote device. An attacker cannot manipulate

such physical features to pretend to be close to the local device. However, similar to all

previous approaches, this approach is a decision-based, i.e. outputs a simple “yes” or “no”

to indicate whether the remote device is very close or not. Hence, it does not provide the

quantitative lower bound of the proximity, which is the primary contribution of this paper.

3.5.3 CSI Based Distance Tracking Scheme

Existing CSI distance tracking ideas mainly focus on providing accurate distance esti-

mation schemes. For example, Sen et al. proposed a distance estimation scheme that can

extract the signal strength and the angle of only the direct path utilizing the channel state

information, and thus provide an accurate estimation result in WiFi based localization sys-

tems [72]. On the other hand, the proposed scheme aims to estimate the lower bound of the

proximity and focus on preventing a nearby adversary from impersonating a remote legiti-
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mate device. Existing CSI distance tracking schemes (e.g. [72]) may be vulnerable to such

attacks, since attackers can pretend to be a further distance away from the receiver if they

reduce the transmit power. In this way, the proposed scheme is complementary to existing

schemes to provide an accurate and secure distance estimation scheme.

3.6 Summary

In this paper, we proposed a far proximity identification approach that determines the

lower bound of the distance between the verifier and the prover. The key idea of the proposed

approach is to estimate the proximity lower bound from the unforgeable fingerprint of the

proximity. We developed a technique that can extract the fingerprint of a wireless device’s

proximity from the channel impulse response of the signals sent by the device. We also

developed a technique that uses proximity fingerprint to calculate the proximity lower bound.

We have examined the proposed approach through the real-world experimental evaluation

using the CRAWDAD data set [68]. Our results indicate that the proposed approach is a

promising solution for enforcing far proximity policies in wireless systems.
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CHAPTER 4

FUTURE WORK

I would like to discuss two possible future works that can further improve the system

and network security.

4.1 Light-weight Encryption Schemes

Traditional cryptography encryption schemes have been widely applied to preserve the

confidentiality of users’ privacy and sensitive data [73]. However, traditional cryptography

schemes are usually computational-capability dependent. They are time and energy consum-

ing, and cannot be applied in applications with limited processing capability. For example,

IoT devices nowadays are widely deployed in our daily life and may collect our privacy.

It’s essential to build a covert channel when IoT devices communicate with others. How-

ever, since many IoT devices are battery limited and integrated with simple chips, they may

not be able to afford expensive cryptography encryption operations. Simply applying the

traditional cryptography schemes may significantly reduce the life time of the IoT devices.

We attempt to design a light-weight encryption scheme that can achieve the confiden-

tiality of the data traffic, and at the same time consumes few processing capabilities. The

intuitive idea is to utilize the physical layer features to implement a practical light-weight

encryption scheme.
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4.2 Security Evaluation on Current Third-party Script over the Internet

As Internet now involves various of our privacy information, privacy disclosure has be-

coming a main concern when surfing the Internet. It’s essential to reveal potential security

risks over the Internet. JavaScript, as a popular client-side programming language has been

widely applied in modern web applications to achieve fast and responsive user interactions.

For example, it can be utilized to gather and manage web cookies, track users’ activities, and

can also be utilized to create a login form to validate user access to other resources. However,

we find that web developers nowadays heavily depend on third-party JavaScript providers

(e.g., jQuery and Google Analytics) to facilitate the web development, which means the

security of the web application will depend on the reliability of third-party service providers.

Therefore, we would like to present a measurement study to learn existing third-party

JavaScript deployment within the websites and identify insecure practices of web developers.
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CHAPTER 5

CONCLUSION

This dissertation presents two works to renovate the wireless physical layer design towards

the improvement of wireless network security.

In the first work, we developed a novel and practical wireless technique named pinpoint

waveforming to achieves the location-restricted service access control. We also implemented a

real-time video streaming service to validate the proposed scheme. Compared to traditional

access control techniques, this work allows the system to securely deliver the service to

eligible locations without incurring expensive cryptographic encryption operations.

The second work develops a secure far proximity identification approach that can deter-

mine whether a remote device is far away. We propose to extract a physical layer fingerprint

that is quite related with the proximity, and is unique and unforgeable. We also developed

a technique that uses the proximity fingerprint to calculate the proximity lower bound, thus

preventing potential spoofing attacks in long-haul wireless communications.
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