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Wireless Power Transmission to a
Buried Sensor in Concrete

Khan M. Z. Shams, Student Member, IEEE, and Mohammod Ali, Senior Member, IEEE

Abstract—The feasibility of sending wireless power to a buried
sensor antenna within concrete was studied. A receive patch
rectenna with 75.8% conversion efficiency was designed for op-
eration at 5.7 GHz. The received DC power at the rectenna was
measured within dry and wet concrete samples with various cover
thicknesses and air-gaps. For the rectenna buried within 30 mm
of the concrete, the received DC power was 10.37 mW, which was
about 70% of the received DC power in free-space.

Index Terms—Concrete, power transmission, rectenna, wireless
sensor.

I. INTRODUCTION

ROUTINE EVALUATION and prediction of the health
of civil infrastructures, such as bridges, overpasses,

and buildings is crucial to ensure public safety. Currently,
the health monitoring of infrastructures is done by expen-
sive and labor-intensive procedures such as spot checking
[1] and ground penetrating radar (GPR) [2]. An alternative
is to use distributed wireless sensors to perform structural
health monitoring [3]–[5]. Researchers have also proposed the
use of wireless embeddable sensors for infrastructure health
monitoring [6], [7]. Such sensors must be installed within the
structure itself during the construction phase of the infrastruc-
ture. Wireless embedded sensors are low cost and are more
reliable than conventional wired sensors since the presence of
wires within an infrastructure creates the possibility of loss of
connection due to crack and corrosion. Power to the sensor may
be supplied using inductive near-field technique [8] or radiated
far-field technique [9]. For low data rate, RFID tag type sensors
energizing the sensor using inductive coupling is a cheap and
attractive option [10], [11]. A reader or interrogator is generally
used to energize and interrogate the sensor. A passive tag type
sensor does not collect or transmit any data unless energized
and queried by an interrogator.

Unlike the above, there are sensors that collect data routinely
whether queried by an interrogator or not require onboard bat-
teries which must be replenished periodically. However, once
the sensors are embedded within an infrastructure, they may
not be easily accessible physically without damaging the struc-
ture. Thus, to recharge the embedded sensor batteries from out-
side the concept of radiated far-field power transmission to a
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rectenna (an antenna and integrated rectifier) is important. In
that case, a rectenna can be integrated with the embedded wire-
less sensor which will receive radiated rf power, and then con-
vert it to DC to recharge the batteries of the sensor.

Lately, there are reports on sending power to wireless sen-
sors using rectennas [9], [12]–[14]. However, although there has
been considerable research work on antennas that are embedded
within the human body [15]–[17] or within soil or other objects
[18], there has been no report of research activity on wireless
power reception by rectennas that are buried within an infra-
structure. In this paper, we report our observations and findings
on the feasibility of sending wireless power to a buried rectenna
in concrete.

This paper is organized as follows. First, a stacked microstrip
patch antenna was designed for operation in free-space from a
frequency of 5–6 GHz. To investigate the input return loss and
radiation properties of the antenna it was placed within a sample
of concrete. Antenna return loss properties were measured. The
radiation patterns of the stacked patch antenna were computed
using Ansoft HFSS. To study the feasibility of sending wire-
less power to a buried rectenna, a 4 4 transmit patch antenna
array was designed and fabricated for operation at 5.7 GHz. The
rectenna consisted of a stacked microstrip patch antenna, which
was integrated with an HSMS-2862 rectifying Schottky diode,
a smoothing capacitor, and a load resistor.

II. RECEIVE STACKED PATCH ANTENNA

A. Measured Return Loss Characteristics

The stacked patch antenna introduced in this paper was
designed in air following the same basic procedure that was
used to design our earlier stacked patch antenna operating from
1.6–2.0 GHz [19]. The reason for choosing air as the design
environment is because there is considerable variation in the
value of the permittivity of concrete [20]–[23]. Depending on
the moisture content and the porosity the dielectric constant of
concrete can vary from 4.5 [20] to 9 [21]. Another reference
[23] presents permittivity values of concrete as function of slab
depth or thickness which are also in the above range. Thus,
because of the variability of material characteristics of concrete,
we decided to design the antenna in free-space. To ensure that
concrete loading does not alter the antenna characteristics sig-
nificantly, we later on determine an optimum air-gap between
the antenna and the concrete cover. As an advantage, unlike an
antenna which has no air-gap and, hence, has a much smaller
physical aperture the proposed antenna should have increased
directivity due to its larger aperture size. The geometry of the
proposed 5–6 GHz stacked patch antenna is shown in Fig. 1(a).
Patch1 (13 mm 13 mm) was printed on a 1.5-mm-thick
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Fig. 1. (a) Geometry of the stacked patch antenna. (b) Antenna buried in
concrete.

RO4003 substrate . Patch2 (19 mm 19 mm) was
placed on a 4.5-mm-thick Rohacel foam substrate. The ground
plane size was 70 mm 50 mm.

The geometry of the concrete sample fabricated to test the an-
tenna is shown in Fig. 1(b). The sample contained a slit through
which the coaxial cable connecting the antenna could be easily
inserted. For all experimental samples, the distance mm
[see Fig. 1(b)]. Concrete covers with various thicknesses (

, 40, and 60 mm) were built. The air-gap between the front
surface of the antenna and the back surface of the concrete
cover was optimized through experimentation. It was found that

mm resulted in optimum return loss performance.
Measured return loss data of the stacked patch antenna

buried in dry concrete are shown in Fig. 2(a). Free space data
are also included for comparison. The antenna operates from
5 to 6.2 GHz within 10 dB return loss in free-space. Once the
antenna is buried in concrete, the return loss degrades slightly
but the operating bandwidth remains unchanged. The effect
of the concrete cover thickness is minimal on the return loss
characteristics. The return loss of the stacked patch antenna
buried in wet concrete was also measured. The antenna was
taken out and the complete embedding concrete medium was
placed in a bucket of water for 24 hours. After which the wet
concrete was removed from the bucket and the antenna was
placed within the wet concrete and remeasured. The return loss

Fig. 2. (a) Measured return loss data of the stacked patch antenna (b) in free-
space and within dry concrete and (b) in free-space and within wet concrete
(D = 20 mm).

data of the antenna inside wet concrete are shown in Fig. 2(b).
There is very little observable difference in between the data
for the dry and wet concrete.

B. Computed Receive Patch Radiation Patterns

To compute the radiation patterns of the stacked patch an-
tenna, a simulation model of the antenna and the embedding
concrete medium ( and ) was devel-
oped in HFSS. Since the overall size of the concrete block de-
scribed in Fig. 1(b) was too large to run successful simulations,
a simplified model with mm was used. The concrete
back wall facing the antenna ground plane was removed. This
should have negligible effect on antenna performance.

The effect of the concrete cover thickness on the antenna
radiation pattern is shown in Fig. 3. In both the E and H planes,
the beam splits and the beam peak shifts from the di-
rection when increases from 20 to 40 mm. Even though in-
creasing increases the cross polarization slightly, the cross
polarization is generally below 20 dB. The peak gain is 10.1 dBi
for mm and 9.2 dBi for mm. Since the di-
electric constant and the loss tangent of the embedding concrete
medium was not measured and the assumed values used in our
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Fig. 3. Normalized antenna radiation patterns at 5.7 GHz. (a) E-plane; D =

20 mm. (b) H-plane; D = 20 mm. (c) E-plane; D = 40 mm. (d) H-plane;
D = 40 mm.

HFSS simulation could not be confirmed, we will not use these
gain numbers for any future calculation. Instead, we will focus
on experimentally determining the effect of the embedding con-
crete medium in wireless power reception.

III. TRANSMIT PATCH ANTENNA ARRAY

A 4 4 microstrip patch array (90 mm 100 mm total area)
was designed for the transmitter section. The array was printed
on a 1.5-mm thick RO4003 substrate . Each patch
measured 12.7 mm 17.5 mm. The distance between any two
patch elements was 28.7 mm in the direction and 23.9 mm
in the direction. Measured return loss data of the transmitter
array are shown in Fig. 4 along with a photograph of the array.
The array bandwidth extends from 5.6–5.8 GHz. Antenna radi-
ation pattern and gain were computed using HFSS. Patterns are
directional as expected and the computed peak gain of the array
is 13.6 dBi.

IV. MEASURED RECEIVED POWER BY THE BURIED RECTENNA

A photograph of the wireless power measurement setup is
shown in Fig. 5. In the transmitter side, the 5.7 GHz input signal
from the signal generator was fed to a 7 W power amplifier (from
Microwave Power, Model: L0505-38) which was then radiated
by the transmit microstrip patch array. In the receiver side, wire-
less microwave power was received and then converted to DC
by the rectenna buried in concrete. The rectenna consisted of the
stacked patch antenna and a rectifier circuit. The rectifier con-
sisted of a microwave Si Schottky detector diode (HSMS-2862),
a 68 pF capacitor and a load resistor . The photograph of the

Fig. 4. Measured return loss of the transmit patch array.

Fig. 5. Photograph of the rectenna measurement setup and the rectenna.

rectenna is also shown in Fig. 5. The distance between the
transmitter and the receiver was kept fixed at a far-field distance
of 600 mm.

The rectenna conversion efficiency can be defined as
, where is the received RF power by the

antenna without the rectifier and is the received and
converted DC power by the rectenna. To measure first, we
measured the received RF power by a stacked patch antenna
without the rectifier in free-space. Thus, at the receiver side,
we placed a stacked patch antenna without the rectifier which
was directly connected to an RF power meter (Agilent E4417A
power meter and E9326A power sensor). At 5.7 GHz and at a
distance of 600 mm, we measured that the received RF power
was 18.62 mW for a transmit power of 7 W.

Next, we replaced the stacked patch antenna with the rectenna
and measured the received DC voltage at the rectenna in free-
space by varying its load resistance. The objective was to de-
termine an optimum load resistance value that can provide op-
timum conversion efficiency. These results are shown in Table I.
Clearly, increasing increases the DC voltage as expected.
The received DC power is about 9 mW for , which
increases to 14.1 mW for . The received DC power
decreases monotonically as increases. Since
resulted in the highest DC power, we decided to use that re-
sistance value for all subsequent measurements. Considering

, the rectenna conversion efficiency is 75.8%.
The rectenna with was placed within the con-

crete, as shown in Fig. 5 for further measurements. For the
rectenna buried in dry concrete, measurements were conducted
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TABLE I
MEASURED DC VOLTAGE ACROSS R IN FREE SPACE AS

FUNCTION OF THE LOAD RESISTANCE, R (r = 600 mm)

TABLE II
MEASURED DC VOLTAGE ACROSS R AS FUNCTION

OF THE AIR GAP d. OTHER PARAMETERS:
r = 600 mm, D = 20 mm, AND R = 200 


TABLE III
MEASURED DC VOLTAGE ACROSS R AS FUNCTION OF

D AND CONCRETE CONDITION. OTHER PARAMETERS:
r = 600 mm, d = 10 mm, AND R = 200 


to determine an optimum air gap in order to ensure max-
imum received DC voltage and, hence, also power. These re-
sults are shown in Table II. Clearly, increasing from 0 to
10 mm increases the load voltage significantly. The small DC
voltage received for indicates that the antenna is largely
mismatched due to dielectric loading. As increases beyond
10 mm, the load voltage decreases gradually perhaps because
the antenna being further inside the concrete suffers from at-
tenuation from the nearby walls. Since mm resulted in
the highest DC voltage, we considered that to be the optimum
air-gap for this particular frequency and measurement scenario.

Further measurements were performed by varying the con-
crete cover thickness , while was fixed (see Table III). Note
that for all measurements the distance between the transmit
and receive antennas is 600 mm. Measurement results for the
rectenna buried in dry concrete indicate that the power received
is 10.37, 6.38, and 1.86 mW for , 40, and 60 mm, re-
spectively. The received DC power decreases significantly with
increasing concrete cover thickness as expected. Interestingly,
for the rectenna buried within 30 mm of the concrete ,
the received DC power is 10.37 mW, which is about 70% of the

received DC power in free-space (14.1 mW). As an example,
an ML 2430 series Sanyo lithium coin cell battery requires a
charging voltage of 3.1 V and a charging current of 0.5 mA, re-
spectively [24]. Such batteries are cheap and should be generally
suitable for sensor applications. The power received by the em-
bedded rectenna proposed here is 10.37 mW for mm,
which is adequate to recharge such batteries.

For the rectenna buried in wet concrete, the received DC
power is 2.11, 0.48, and 0.07 mW for , 40, and 60 mm,
respectively. These numbers are significantly smaller than the
ones for dry concrete due to severe attenuation in wet concrete.
For the rectenna buried within 30 mm of the wet concrete

, the received DC power is 2.11 mW, which is only about 15%
of the received DC power in free-space (14.11 mW). Clearly,
sending wireless power to a buried sensor when the embedding
concrete medium is completely wet will be more inefficient than
when the concrete is dry.

V. CONCLUSION

The feasibility of beaming wireless power to a buried
rectenna in concrete was explored. The return loss character-
istics of a stacked microstrip patch antenna were measured in
free-space and within dry and wet concrete. In all cases, the
antenna demonstrated an operation bandwidth extending from
about 5 to 6.2 GHz within 10 dB return loss. Simulations per-
formed on a simplified concrete and antenna model showed the
evidence of beam splitting when the concrete cover thickness
increased from 20 to 40 mm. The rectifier designed and inte-
grated with the antenna tested to achieve optimum performance
by varying its load resistance. An optimum resistance value
of 200 was identified which resulted in the highest received
DC power. Interestingly, it was found that while the received
DC power by the rectenna was 14.11 mW in free-space, it was
10.37 mW when buried inside concrete with the concrete cover
thickness being 20 mm. For both cases, the distance between
the transmitter and receiver was the same. The amount of power
received (10.37 mW for mm) is sufficient to energize
the battery of a miniature wireless sensor. The major contrib-
utor of the loss is the RF path loss from the transmitter to the
rectifier which can be reduced by using high gain antennas and
by reducing the operating frequency. However, not all of these
will go together since higher antenna gain at low frequencies,
such as 900 MHz or 2.45 GHz will require relatively larger
antennas. This investigation was limited to simple concrete as
the embedding medium. Further investigation may be needed
which uses more realistic concrete structure consisting of steel
rebars etc.
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