
 Open access Proceedings Article DOI:10.1109/INSS.2009.5409946

Wireless sensor deployment for 3D coverage with constraints — Source link

Tycho Andersen, Srikanta Tirthapura

Institutions: Iowa State University

Published on: 17 Jun 2009 - International Conference on Networked Sensing Systems

Topics: Wireless sensor network, Discrete optimization and Software deployment

Related papers:

 Connected K-coverage problem in sensor networks

 Minimum Sensor Relocation for k-Coverage in Wireless Sensor Networks

 The critical-square-grid coverage problem in wireless sensor networks is NP-Complete

 Grid coverage for surveillance and target location in distributed sensor networks

 Coverage and connectivity in three-dimensional networks

Share this paper:

View more about this paper here: https://typeset.io/papers/wireless-sensor-deployment-for-3d-coverage-with-constraints-
x9xvafsnkw

https://typeset.io/
https://www.doi.org/10.1109/INSS.2009.5409946
https://typeset.io/papers/wireless-sensor-deployment-for-3d-coverage-with-constraints-x9xvafsnkw
https://typeset.io/authors/tycho-andersen-2x5rntbeo6
https://typeset.io/authors/srikanta-tirthapura-518etptb20
https://typeset.io/institutions/iowa-state-university-a6g8atpr
https://typeset.io/conferences/international-conference-on-networked-sensing-systems-10n4rbkm
https://typeset.io/topics/wireless-sensor-network-2eic5t0n
https://typeset.io/topics/discrete-optimization-1yl9c901
https://typeset.io/topics/software-deployment-3iiq9zp5
https://typeset.io/papers/connected-k-coverage-problem-in-sensor-networks-3xdfugamwk
https://typeset.io/papers/minimum-sensor-relocation-for-k-coverage-in-wireless-sensor-1zjtion5pn
https://typeset.io/papers/the-critical-square-grid-coverage-problem-in-wireless-sensor-55lj9j6l1o
https://typeset.io/papers/grid-coverage-for-surveillance-and-target-location-in-5d9f6hqo1w
https://typeset.io/papers/coverage-and-connectivity-in-three-dimensional-networks-53hwob30tv
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/wireless-sensor-deployment-for-3d-coverage-with-constraints-x9xvafsnkw
https://twitter.com/intent/tweet?text=Wireless%20sensor%20deployment%20for%203D%20coverage%20with%20constraints&url=https://typeset.io/papers/wireless-sensor-deployment-for-3d-coverage-with-constraints-x9xvafsnkw
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/wireless-sensor-deployment-for-3d-coverage-with-constraints-x9xvafsnkw
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/wireless-sensor-deployment-for-3d-coverage-with-constraints-x9xvafsnkw
https://typeset.io/papers/wireless-sensor-deployment-for-3d-coverage-with-constraints-x9xvafsnkw

Wireless Sensor Deployment for 3D Coverage with

Constraints

Tycho Andersen and Srikanta Tirthapura

Dept. of Electrical and Computer Engineering, Iowa State University.

tanderse@iastate.edu, snt@iastate.edu

Abstract—We consider the problem of deploying wireless
sensors in a three dimensional space to achieve a desired
degree of coverage, while minimizing the number of sensors
placed. Typical sensor deployment scenarios impose constraints
on possible locations of the sensors, and on the desired coverage,
but currently there is no unified way to handle these constraints
in optimizing the number of sensors placed. We present a novel
approach called discretization which allows us to cast the sensor
deployment problem as a discrete optimization problem, and
hence apply well-understood and flexible discrete optimization
techniques for sensor deployment. Our results show that this
approach yields solutions that nearly minimize the number
of sensors used, while providing a high degree of coverage.
Further, unlike typical approaches to sensor deployment, where
3D coverage is significantly more complex than 2D coverage,
discretization is equally easy to apply for 2D as well as 3D
coverage.

I. INTRODUCTION

Many sensor networking applications require the placement

of sensors such that a large fraction, and sometimes, all, of a

“target region” is monitored by the sensors that are placed.

Each sensor is able to monitor physical phenomena in a

certain region around its location. This naturally leads to an

optimization problem where the sensor locations should be

chosen carefully so that the smallest number of sensors are

used to monitor the region.

We faced a sensor deployment problem in the context of

building a “smart” emergency evacuation system. The overall

goal of our project is to build a network of wireless sensors

which can provide informed guidance for evacuation in case of

an emergency. The setup is as follows. Sensors are deployed

throughout a building. Each sensor monitors the region around

itself and detects regions of high temperature in its vicinity.

This information is processed in the network, and is used

to activate appropriate directions on “exit” signs throughout

the building. As a result, evacuation instructions displayed on

the exit signs will depend on the current conditions in the

building, and this is potentially more useful than a traditional

exit sign, which shows the same information regardless of

current conditions. An important component of our project was

to determine the locations where sensors would be deployed,

to achieve the desired level of monitoring. While the sensor

deployment problem has been widely studied in the literature

(for example, [1]–[3]), many requirements in our problem

rendered the prior solutions unusable.

Firstly, the region to be covered by the sensors was three

dimensional, such as the rooms and hallways of a building.

Much of the research on sensor deployment, including [4]–

[6] has focused on two dimensional coverage, and this is not

applicable to our case. In our situation, there were restrictions

on where sensors could be placed, such as: sensors could only

be placed on the walls and ceilings of a corridor, they could

not be placed on the ground, and could not be suspended in

mid air! Even on the walls, there were some regions where

sensors could not be placed, such as on doors or whiteboards.

Previous work on sensor deployment for 3D coverage, such as

[1], [2] are unable to handle such constraints – their approach

returns sensor locations that could be anywhere in the target

region. Further, in our setting, due to the presence of walls

through which a sensor may or may not be able to sense, the

region monitored by a sensor is usually not a sphere, but could

be of a more complex shape. This motivated us to investigate

more flexible techniques for sensor deployment, that could

optimize the number of sensors placed in the presence of all

the constraints described above. We first describe our problem

more precisely before introducing our approach.

A. Problem

The sensor deployment problem can be framed as an

optimization problem as follows. The number of sensors need

to be minimized while certain constraints need to be met:

(1)The target area is “sufficiently” covered by the sensors.

(2)The sensors are placed in “valid” locations.

Our coverage criterion is the general k-coverage require-

ment [4], for some positive integer k. Suppose that R is a

connected 3D target region that needs to be monitored. R
could be of any shape, and is usually the union of cuboids

in our setting. Suppose further that we are given a finite set

of locations L where sensors can potentially be placed. Each

potential sensor location ℓ can be considered as a set Rℓ ⊂ R
of all points in R that are monitored by placing a sensor at ℓ.

Definition 1: A location ℓ is said to cover a point p ∈ R if

p ∈ Rℓ. A set of locations S is said to k-cover a point p ∈ R
if there are at least k different locations in S that cover p. A

set of locations S is said to k-cover a set of points P ⊆ R if

S k-covers each point in P .

The task is to find the set of locations L′ ⊆ L of the smallest

cardinality such that L′ k-covers R. In most cases, as we

describe below, it is sufficient to have near-complete coverage,

i.e. choose a set of locations L′ such that L′ k-covers all but

a small fraction of R.

B. Our Approach: Discretization

The above optimization problem has constraints that deal

with complex geometric shapes, because the region covered by

each sensor is a continuous region, and the union of many such

regions is a complex geometric object. However, we do not

know of appropriate tools to deal with such geometric objects.

Our approach, called discretization, reduces the continuous

optimization problem to a discrete optimization problem. This

reduction is useful since we are now able to apply our wide

selection of tools available for discrete optimization, which are

vastly more flexible than the tools that we have for continuous

optimization.

The basic idea is as follows. We first choose a finite set of

points, say G ⊂ R using a procedure called Discretize, to be

described below. We then choose a set of locations L′ ⊆ L
such that G is k-covered by L′, and the size of L′ is as small

as possible. We then place sensors at the locations in L′.

The latter problem is a generalization of the classic discrete

set-cover problem. Though the set-cover problem is NP-hard,

there exist good heuristics that yield near-optimal solutions,

and we adapt these heuristics for our problem.

Benefits. The main advantage of discretization is that it

allows us to use flexible discrete optimization techniques to

solve the sensor deployment problem. More specifically, it

has the following benefits: (1)The coverage regions Rℓ need

not always be spheres, as is generally assumed. They can be

more complex shapes, for example, coverage could stop at

a wall, or cross a wall, depending on the circumstance. The

size and shape of Rℓ could vary depending on the location ℓ.

(2)The potential sensor locations (L) can be an input to the

problem, and thus it is possible to easily handle restrictions on

the sensor locations. (3)Three-dimensional coverage, which is

considered a much harder problem than the two-dimensional

version, can also be handled by this framework. (4)It is

possible to compare the cost of the obtained solution with the

optimal, since lower bound techniques are well developed for

discrete optimization. We show that using the algorithms we

studied, it was possible to get solutions where the number of

sensors used was nearly the minimum possible.

Drawbacks. The main drawback of discretization is that it is

not possible to guarantee k-coverage of the complete region

R. In our technique, we place sensors so that all points within

some subset G ⊂ R are k-covered. Clearly, this does not

guarantee that all of R is k-covered. Indeed, for any finite set

of points G ⊂ R it is possible to construct cases such that all

points in G are k-covered, but there are points in R that are

not. Thus, it is possible there are “coverage holes” due to the

deployment recommended by the algorithm.

However, we found in our simulations that if the points

G are chosen densely from R, k-coverage of G results in k-

coverage of almost all of R. As a result, the total volume of the

coverage holes is very small when compared with the volume

of R. As we choose larger sets G, the coverage holes became

smaller, and in our simulations the volume of the coverage

holes was only 1-2 % of the total volume of the region. It is

possible to make this number even smaller by increasing the

size of G.

For many applications, including our emergency evacuation

system, near-complete coverage is perfectly fine. For example,

consider a sensor deployment that 3-covers 99 % of the target

region, and the coverage holes are distributed throughout

the region (as is the case with our approach). If there is a

fire at some location, it will very likely reach at least some

points that are covered by a sensor, and will be detected.

Further, if desired, greater coverage can be achieved at a

greater computational cost, by choosing a larger sized set

G. We believe that such a near-complete coverage suffices

for many other monitoring applications, such as monitoring

gas leaks, temperature, and light. For such applications,

discretization offers a flexible and powerful way to optimize

sensor deployment.

Roadmap: The rest of the paper is organized as follows.

After describing the related work, we present algorithms for

deployment in Section III, followed by an evaluation of these

algorithms through simulations in Section V.

II. RELATED WORK

We first begin with a review of literature on sensor de-

ployment for 3D coverage. [5] distinguishes between two

problems, the sensor coverage problem and the sensor deploy-

ment problem. Quoting from [5], “Given a sensor network,

the coverage problem is to determine how well the sensing

field [region] is monitored or tracked by sensors, while the

deployment problem is to address how to place sensors into a

sensing field [region] to meet certain coverage requirements.”

According to the above definition, ours is a deployment

problem. The above work proposes a solution to the coverage

problem, but does not address deployment.

[1] proposes a solution to the 3D deployment problem

through packing the region by copies of a regular polyhe-

dron with a small “volumetric coefficient”. They consider

various choices of polyhedrons, and conclude that packing

by a truncated octahedron provides the maximum volumetric

coefficient, and hence the minimum number of sensors. This

approach cannot be easily adapted to meet our requirements,

since it assumes that sensors can be placed anywhere in the

target region, which is not true in our case. It also assumes

that the coverage regions of different sensors are all spheres of

the same volume. [7] argues that extending usual 2D coverage

algorithms for 3D coverage may be difficult.

A 3D coverage algorithm is proposed in [6]. They consider

providing coverage while minimizing the energy consumed

by the sensors, thus increasing the network lifetime. In their

algorithm, the sensor nodes are put to sleep in a scheduled

manner so that coverage is maintained all the time. However,

this approach cannot handle the constraints inherent in our

setting.

[4] addresses the following decision version of the k-

coverage problem: given a target region R in 2D, is every

point in this region is covered by k or more sensors? This

work shows that in the case when the coverage region of each

sensor is a disk of unit radius, if every point on the perimeter of

the disks are k covered, then the entire region is k covered. It

also provides extensions for the case when the sensing regions

are not all identical. However, this work also addresses the

coverage problem, rather than the deployment problem.

Another direction is to simultaneously ensure coverage as

well as sensor connectivity [8], [9]. These works consider the

2D case, and show that if certain conditions hold between

the sensing and the transmission radii, then coverage implies

connectivity. Some other representative work on 2D coverage

includes [3], [10].

The goal of the work in [11] is to deploy sensors to

guaranteeing “point coverage”, which is the case when a

only a finite number of points have to be monitored. The

resulting optimization problem is solved using integer linear

programming, using techniques similar to our methods. In

contrast, we pursue a different goal. Our goal is to cover almost

all of the continuous target region, and we use discretization

followed by discrete optimization as a means to this goal. A

similar approach is taken by [12].

[2] models sensor coverage in a probabilistic manner.

Rather than saying that a sensor either covers a point or does

not cover a point, they consider a more general model, where

the event of a sensor covering a point in a region is assigned

a certain probability that depends on the distance between the

sensor and the point. [2] goes on to construct a table with

this probability as a function of the distance to the sensor.

Finally, sensors are deployed so that every point in the region

is covered with at least a certain target probability. A similar

approach is pursued in [13].

III. THE DEPLOYMENT ALGORITHM

We first describe our procedure for discretization. The

procedure Discretize(R, d, ℓ) returns a “representative” set

of points within R that are further used by the set covering

algorithms. The procedure takes two other parameters, d and

ℓ, where d is a real number, and ℓ is a 3-tuple describing

the coordinates of a single point within R. A 3-dimensional

grid is constructed with a side length d along each dimension,

starting with ℓ as one of the grid points. The procedure finally

returns the set of all grid vertices that lie inside the region R.

The overall algorithm for placement is given as Algorithm 1.

Algorithm 1: Sensor Deployment for k-coverage

1) Choose parameters d and ℓ. Parameter ℓ should be

the coordinates of some point inside R. Let G ←
Discretize(R, d, ℓ).

2) Use an discrete set cover algorithm with multiplicity k
(described below) to find the smallest possible subset of

L, say L′, such that L′ k-covers G.

3) Return L′ as the set of locations to deploy the sensors.

A. Discrete Set Cover with Multiplicity k

After discretization, the inputs to the remaining problem

are G, the result of the discretization, L, the potential sensor

location, and the parameter k. The goal is to find the smallest

sized subset of L that k-covers G. We call this problem

“set cover with multiplicity k”. For the case of k = 1, this

reduces to the well known set cover problem. The set cover

problem is known to be NP-complete, so it is unlikely that

there are polynomial time algorithms that return an optimal

set cover. Hence, the set cover with multiplicity k is also NP-

hard, and it is unlikely there are polynomial time algorithms

for this either. However, there are heuristics known for set

cover, which perform well in practice, and we adapted these

algorithms for our problem.

We first discuss a strategy for finding a lower bound for

a solution, using linear programming. Then we discuss three

algorithms for the problem.

1) Lower Bound: The set cover with multiplicity k can

be written as an integer linear program. Given a set G to

be covered, and L, the set of potential sensor locations,

the integer program is as follows. There is a variable xs

corresponding to each potential sensor location x ∈ L. For

point g ∈ G, let S(g) denote the set of all sensors in L that

cover g.

Integer Program ILP.

minimize
∑

ℓ∈L

xℓ

subject to

1. For each g ∈ G
∑

ℓ∈S(g)

xℓ ≥ k

2. For each ℓ ∈ L xℓ ∈ {0, 1}

Constraint 1 ensures that each point in G is covered

by at least k selected locations. Constraint 2 is a set of

constraints ensuring integrality of the xℓ variables. Note that

this formulation does not help in solving our optimization

problem, since integer programming is NP-hard in general.

However, it leads to a way of finding a lower bound for the

optimal solution through the LP-relaxation technique. We

relax the integrality constraints in the integer program to get

the following linear program.

LP-relaxation of ILP.

minimize
∑

ℓ∈L

xℓ

subject to

1. For each g ∈ G
∑

ℓ∈S(g)

xℓ ≥ k

2. For each ℓ ∈ L 0 ≤ xℓ ≤ 1

Since the feasible region of the LP-relaxation is a superset

of the feasible region of ILP, the optimal solution to the LP-

relaxation is smaller than or equal to the optimal solution to

ILP. Thus the optimal solution to the LP serves as a lower

bound to the optimal solution to the integer program, and helps

us assess the quality of the solutions returned by the heuristics.

We solved the linear programs with the help of the CPLEX

software [14].

2) Algorithms: We evaluated three algorithms for this

set cover problem with multiplicity k: (1) a simple greedy

algorithm, (2) an algorithm based on Linear Programming

and (3) a variation of the ITEG algorithm proposed in [15].

Randomized Greedy Algorithm. The first solution that we

investigated is an adaption of the standard Randomized Greedy

(RG) algorithm [16]. While the greedy algorithm was origi-

nally designed for the set cover problem, we modified it to

account for k-coverage. The randomized greedy algorithm is

described as algorithm 2. The function U(ℓ, G, S) returns the

set of points in G which are covered by ℓ but are not k-covered

by S. For each location ℓ ∈ L, the region covered by placing

a sensor at ℓ is denoted by Rℓ.

Algorithm 2: Randomized Greedy Algorithm

Input: A set of possible sensor locations L, a representative

set G, and a coverage parameter k
Output: A set of sensor locations S which are suggested

locations for placing sensors

S ← ∅
while

⋃

s∈S

C(s) does not k-cover G do

Select ℓ∗ = argmaxℓ∈L−S(|U(ℓ, G, S)|), breaking ties

randomly

Add ℓ∗ to S
end while

Iterated Enhanced Greedy (ITEG). The most effective solu-

tion was an algorithm based on the ITerated Enhanced Greedy

(ITEG) algorithm, proposed in [15]. ITEG is a heuristic solu-

tion to the set cover problem which showed excellent practical

performance. We extended ITEG to handle set cover with mul-

tiplicity k, and we describe some of the details here. ITEG uses

a baseline algorithm called Enhanced Greedy (EG). Our mod-

ified version of EG is given as algorithm 3. The helper func-

tions k select add(), k select remove(), remove is ok(),
and optimize() are explained below. Throughout this analysis,

we use a metric of “cover value”, as in ITEG. The cover value

of a sensor cv(ℓ) | ℓ ∈ L to be |U(ℓ, G, S)|, that is, the number

of points p in G such that p is covered by ℓ, but no other

sensor in S covers p. (Note that cv(ℓ) is the same for ℓ ∈ S
and ℓ /∈ S).

The following functions are based on their counterparts in

ITEG, and have been modified for k-coverage, we describe

them for completeness.

k select add(): This function returns a sensor location which

Algorithm 3: Enhanced Greedy

Input: A set of possible sensor locations L, a representative

set G, and a coverage value k
Output: A set of sensor locations S which are suggested

locations for placing sensors

while
⋃

s∈S

C(s) does not k-cover G do

S ← S ∪ {k select add()}
while remove is ok() do

S ← S − k select remove()
end while

end while

S = optimize(S)

should be added to S. Let candidates = {s ∈ L−S | cv(s) =
m}, where m = maxs∈L−S(cv(s)). k select add() returns

the element in candidates with the maximum add value:

add val =
∑

g∈G

1

(|Sensors(g)|+ 1)2

With small probability, k select add() returns a random

sensor location in L− S.

k select remove(): This function returns a sensor location

which should be added to S, and its definition is very similar to

that of k select add(). Let candidates = {s ∈ S | cv(s) =
m}, where m = mins∈S(cv(s)). k select remove() returns

the element in candidates with the maximum remove value:

rmv val = −
∑

g∈G

1

|Sensors(g)|2

Again with small probability, k select remove() returns a

random sensor location in S.

remove is ok(): This function detects redundant sensor

locations and indicates that they should be removed. If any

s ∈ S has a cover value which is 0, this method should return

true. If no sensor has a cover value which is 0, this method

returns true with a small probability.

optimize(): The optimize function tries to improve the cover

by finding columns in L − S which are better than those in

S. The function is defined as follows: first, we find the set

Sup of superior sensor locations. A superior sensor location

is defined as one which, when added to S, makes at least two

other sensor locations redundant (that is, cv(ℓ) = 0). Next, we

identify the set Inf of inferior sensor locations. An inferior

sensor location is one which is made redundant by an element

in Sup. Finally, we set S = S−Inf and call k select add()
until a complete k-cover is obtained.

Forced Greedy Algorithm. We used the LP-relaxation as

the basis of another heuristic algorithm called the “forced

greedy algorithm”. The idea is as follows. We first solve the

linear program described above (LP-relaxation of ILP). Then,

we select all locations ℓ ∈ L that have been assigned a weight

larger than some threshold, and then run the greedy algorithm

2. Details are in algorithm 4.

Algorithm 4: Forced Greedy Algorithm

1) Obtain the solution to the linear program using an

optimization framework. That is, the variables xℓ for

ℓ ∈ L.

2) For i = 0...1 incrementing by some user specified

threshold t, add the sensors to a set S whose xℓ values

are larger than i. If S does not k-cover G, obtain a k-

cover using the randomized greedy algorithm starting

with S instead of ∅.
3) Output the best solution obtained from the iterations in

the above step.

IV. EVALUATION METHODOLOGY

We evaluated our algorithms through simulations. We con-

structed four different input cases, oneroom, tworooms, four-

rooms, and fiverooms. The input case “oneroom” consists

of a single large room. The tworooms case is pictured in

6, and consists of one long room (imagine a hallway) and

another room which runs parallel to it, which is half the

size (possibly a conference room). The two rooms share a

wall that is “transparent” to sensing, i.e. sensors can sense

through the wall. This might either indicate the absence of

a physical wall, or some other phenomena, which allows the

user to decide that sensors are able to sense through the wall.

The input cases fourrooms and fiverooms are similar, both

input cases have a single long hallway connected to three or

four rooms, respectively. These input cases model real world

situations, similar to the ones that we encountered in our

emergency evacuation system setup. We also generated the set

L corresponding to potential sensor locations. We generated

two different types of input sets L. In some simulations, we

allowed sensors to be placed everywhere, so that L consisted

of all vertices in a 3D grid of side length 0.5, covering the

whole region. In some cases, sensors were allowed to be placed

only one the walls, so the set L consisted of all vertices of a

2D grid that covered the walls.

We considered the following metrics:

1) Cost: The number of sensors.

2) Coverage: The fraction of the input region that was k-

covered by the solution that was returned.

We first evaluated how different algorithms performed on

the input data sets. Then, we performed an in depth analysis of

the “tworooms” input case to explore the influence of the two

parameters, the coverage multiplicity k, and the grid spacing

d. Specifically, we investigates the following questions.

1) How does the coverage vary with d?

2) How does the cost vary with d?

3) How does the cost vary with k?

Volume Measurement. One challenge here was to measure

the volume of the region that was k-covered. Since these

regions are of a very irregular shape, it is not possible to

compute the volumes analytically. Thus, we employed the

“Monte-Carlo” method to estimate these volumes to within

a high degree of accuracy. Let R′ denote the set of all points

x ∈ R such that x was not k-covered by our chosen set. For

region T , let v(T) denote the volume of T . The method is as

follows. Select n random points within R (with replacement),

and let f ′ be the fraction of these points that were within

R′. Then, f ′ · v(R) is an unbiased estimator of v(R′). By

making n large enough, the estimator can be made as close to

v(R′) as desired, with very high probability. For a more formal

treatment of this technique, we refer the reader to [17].

V. RESULTS

In this section, we present the results of our simulations.

We began by exploring how different algorithms performed

on the input data sets, and then explored one input case in

detail to determine the effects of the different parameters in

our discretization. First, we present a comparison of the results

of different algorithms on the input cases. For all the inputs,

we allowed sensors to be placed anywhere in the region (not

just on the walls), and we used a grid side length d = 0.2 for

discretization. The results are shown in Figure 5 Four numbers

are shown for each input: “LP lower bound” is a lower bound

on the optimal number of sensors needed, obtained through

the linear program.

Figure 5: All algorithms, compared with the lower bound.

��
��
��
��

����

����

��
��
��
��

LP Lower Bound
ITEG
Forced Greedy
Randomized Greedy

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

oneroom tworooms fourrooms fiverooms

N
u

m
b

er
 o

f
se

n
so

rs
 u

se
d

Figure 6: tworooms

Impact of Grid Spacing d on Coverage and Cost. For

the first question, Figure 7 shows the percentage of region

covered, as a function of the grid spacing d, and Figure 8

shows the cost of the solution, as a function of the grid spacing

d. We experimented with d in the range [0.2, 0.5], in steps

of 0.01, and used sensors with a radius 1. For each value

of d, we discretized the region with many different points

for the origin ℓ in Discretize(R, d, ℓ), and the result shown

is the average taken over all these different discretizations.

The percentage of the region covered was computed using the

Monte-Carlo method, as described in Section IV. We used the

ITEG algorithm with 10 iterations in all cases, since ITEG

outperformed all other algorithms that we considered.

Figure 7 shows that even with d = 0.5, which is half the

sensing radius, the coverage is 91 percent. As d decreases,

and the grid becomes finer, the coverage increases to nearly

99 percent for d = 0.2. When the grid spacing increased

to a value close to the sensing radius, the coverage quickly

deteriorated. For example, when the grid spacing was

d = 0.75, which is 75% of the sensing radius, the coverage

was only about 79%. From the above results, we can

recommend that the grid spacing d should be much smaller

than the sensing radius, to get good coverage. The coverage

is plotted as a function of the cost in Figure 9.

Figure 7: Coverage vs. Grid Spacing d

 91

 92

 93

 94

 95

 96

 97

 98

 99

 0.2 0.25 0.3 0.35 0.4 0.45 0.5

S
am

pl
e

C
ov

er
ag

e
in

 %

d

Impact of k on Cost. We next turn to the coverage cost as a

function of k. By keeping d fixed at 0.2, we varied k from 1
to 6. The results of this are shown in Figure 10. Interestingly,

the number of sensors required grows nearly linearly with k.

Nature of Coverage Holes. We saw earlier from Figure 7

that the volume occupied by the coverage holes were rather

small when compared with the total volume (about 1 %

for d = 0.2). We next sought to investigate the nature of

the coverage holes due to the deployment recommended by

our algorithm. Foe example, were the coverage holes one

connected region? Or were they dispersed through the target

region? To visualize this, we performed a simulation on a

10 × 10 2D region with d = 0.2, and plotted the coverage

holes. The results are shown in Figure 11. The dark regions

are the coverage holes, while the rest is covered. Note that

Figure 8: Cost vs. Grid Spacing d

 95

 100

 105

 110

 115

 120

 125

 130

 135

 140

 145

 0.2 0.25 0.3 0.35 0.4 0.45 0.5

N
um

be
r

of
 S

en
so

rs
 U

se
d

d

Figure 9: Cost vs. Coverage

 91

 92

 93

 94

 95

 96

 97

 98

 99

 95 100 105 110 115 120 125 130 135 140 145

S
am

pl
e

C
ov

er
ag

e
in

 %

Number of Sensors Used

the coverage holes are spread through the region somewhat

uniformly. Also, since every grid point must be covered, it is

not possible to have a large uncovered region in the shape of

a square – such a region would necessarily contain a grid point.

Comparison of Cost with Optimal. Another question is: how

does the cost of these solutions compare to the cost of the

optimal solution? To answer this question, we look to the lower

bounds provided by the linear programs for each instance of

the problem. Figure 5 shows that our solution method nearly

minimizes the number of sensors used. The LP lower bound is

a lower bound on the cost of k-covering G, and since G ⊂ R,

this is also a lower bound on the cost of k-covering the entire

region R.

VI. CONCLUSION

We presented discretization, a flexible way to optimize

sensor deployment in the presence of constraints such as

restrictions on sensor locations, and non-uniform sensing re-

gions. None of the previous approaches to sensor deployment

could handle these constraints. Our flexibility comes at the

Figure 10: Cost vs. Multiplicity Parameter k

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

 1 2 3 4 5 6

N
um

be
r

of
 S

en
so

rs
 U

se
d

k

Figure 11: Coverage Holes in a 10× 10 2D region with d =
0.2

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

cost of coverage holes. Through simulation, we found that

the size of these coverage holes were as small as 1 % of

the total volume in the cases we considered, and this number

can be made even smaller with greater computational expense.

For applications that work well with near-complete coverage,

discretization is a compelling approach.

So far, we considered a simple method for discretization

by dividing the region into a regular grid. It is possible that

there are better ways to discretize the region, and this is an

area for future research.

Acknowledgment: We thank Puviyarasan Pandian for his help

in the initial phase of this work, and in exploring related work.

REFERENCES

[1] S. M. N. Alam and Z. J. Haas, “Coverage and connectivity in three-
dimensional networks,” in Proc. Annual ACM International Conference

on Mobile Computing and Networking (MOBICOM), 2006, pp. 346–
357.

[2] N. Ahmed, S. S. Kanhere, and S. Jha, “Probabilistic coverage in wireless
sensor networks,” in LCN ’05: Proceedings of the The IEEE Conference

on Local Computer Networks, 2005, pp. 672–681.

[3] X.-Y. Li, P.-J. Wan, and O. Frieder, “Coverage in wireless ad hoc sensor
networks,” IEEE Transactions on Computers, vol. 52, no. 6, pp. 753–
763, 2003.

[4] C.-F. Huang and Y.-C. Tseng, “The coverage problem in a wireless
sensor network,” in WSNA ’03: Proc. ACM International Conference on

Wireless Sensor Networks and Applications, 2003, pp. 115–121.
[5] C.-F. Huang, Y.-C. Tseng, and L.-C. Lo, “The coverage problem in

three-dimensional wireless sensor networks,” in IEEE GlobeCom ’04:

Global Telecommunications Conference, 2004, pp. 3182–3186.
[6] M. K. Watfa and S. Commuri, “A coverage algorithm in 3d wireless

sensor networks,” in 1st International Symposium on Wireless Pervasive

Computing, 2006, pp. 10–16.
[7] S. Poduri, S. Pattem, B. Krishnamachari, and G. S. Sukhatme, “Sensor

network configuration and the curse of dimensionality,” in The Third

IEEE Workshop on Embedded Networked Sensors, 2006.
[8] X. Wang, G. Xing, Y. Zhang, C. Lu, R. Pless, and C. Gill, “Integrated

coverage and connectivity configuration in wireless sensor networks,”
in SenSys ’03: Proceedings of the 1st international conference on

Embedded networked sensor systems, 2003, pp. 28–39.
[9] H. Zhang and J. C. Hou, “Maintaining sensing coverage and connectivity

in large sensor networks,” International Journal of Wireless Ad Hoc and

Sensor Networks, vol. 1, pp. 89–124, 2005.
[10] S. Meguerdichian, F. Koushanfar, M. Potkonjak, and M. B. Srivastava,

“Coverage problems in wireless ad-hoc sensor networks,” in INFOCOM

2001. Twentieth Annual Joint Conference of the IEEE Computer and

Communications Societies, 2001, pp. 1380–1387.
[11] J. Wang and N. Zhong, “Efficient point coverage in wireless sensor

networks,” Journal of Combinatorial Optimization, vol. 11, no. 3, pp.
291–304, 2006.

[12] H. Q. Krishnendu Chakrabarty, S. Sitharama Iyengar and E. Cho,
“Grid coverage for surveillance and target location in distributed sensor
networks,” IEEE Transactions on Computers, vol. 51, no. 12, pp. 1448–
1453, 2002.

[13] M. Hefeeda and H. Ahmadi, “A probabilistic coverage protocol for
wireless sensor networks,” in IEEE International Conference on Network

Protocols, 2007, pp. 41–50.
[14] “Ilog cplex,” http://www.ilog.com/products/cplex/.
[15] E. Marchiori and A. Steenbeek, “An iterated heuristic algorithm for the

set covering problem,” 1998.
[16] U. Feige, “A threshold of ln n for approximating set cover,” Journal of

the ACM, vol. 45, no. 4, pp. 634–652, 1998.
[17] M. Mitzenmacher and E. Upfal, Probability and Computing. Cambridge

University Press, 2005.

