
Review Article

Wireless Sensor Network Design Methodologies: A Survey

Mohammed Sulaiman BenSaleh,1 Raoudha Saida ,2,3 Yessine Hadj Kacem ,4

and Mohamed Abid 2,3

1National MEMS Technology Center, KACST, Riyadh, Saudi Arabia
2ENIS, CES Laboratory, University of Sfax, Sfax, Tunisia
3Digital Research Center of Sfax (CRNS), Safx, Tunisia
4College of Computer Science, King Khalid University, Abha, Saudi Arabia

Correspondence should be addressed to Raoudha Saida; saidaraoudha@yahoo.fr

Received 29 August 2019; Revised 10 December 2019; Accepted 20 December 2019; Published 25 January 2020

Academic Editor: Matthew Brodie

Copyright © 2020 Mohammed Sulaiman BenSaleh et al. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work
is properly cited.

Wireless sensor networks (WSNs) have grown considerably in recent years and have a significant potential in different applications
including health, environment, and military. Despite their powerful capabilities, the successful development of WSN is still a
challenging task. In current real-world WSN deployments, several programming approaches have been proposed, which focus
on low-level system issues. In order to simplify the design of the WSN and abstract from technical low-level details, high-level
approaches have been recognized and several solutions have been proposed. In particular, the model-driven engineering (MDE)
approach is becoming a promising solution. In this paper, we present a survey of existing programming methodologies and
model-based approaches for the development of sensor networks. We recall and classify existing related WSN development
approaches. The main objective of our research is to investigate the feasibility and the application of high-level-based
approaches to ease WSN design. We concentrate on a set of criteria to highlight the shortcomings of the relevant approaches.
Finally, we present our future directions to cope with the limits of existing solutions.

1. Introduction

WSNs have become an integral part of diverse applications
such as environmental monitoring [1], military surveillance
[2], and medicine [3] by providing feasible communication,
reliable inspection, and performing applications. WSNs are
composed of a large number of sensor nodes which are
densely deployed and wirelessly communicated to send and
receive environmental information. Each sensor node is
equipped at least with one or more sensors, a radio trans-
ceiver, a processor, and a power supply section. The develop-
ment of WSNs becomes a very challenging task due to the
complexity of such systems. Additionally, several important
requirements need to be satisfied during the design of WSN
such as the power consumption requirement, which repre-
sents the primary key. For this reason, many current
researches focus on surveying WSNs. In [4, 5], authors
described the concept of WSNs and their characteristics.

They described the generations, routing, architecture, and
storage management of WSN. Other surveys [6, 7] give an
overview of existing routing protocols for sensor networks.
In [8], authors presented several existing middleware for
sensor networks. In [9], authors reviewed several sensor
localization techniques and hierarchical taxonomy and their
applications in different context. They presented new sensor
localization schemes and their implementation for IoT infra-
structure. In the same context [10], authors presented a
survey on sensors’ device-free localization for smart world.
In [11], authors surveyed 9 WSN modeling techniques.
They presented how each technique describes the node
behavior and the network behavior. They presented also
the modeling tool for each approach. However, few works
surveyed and discussed the main state of the practice pro-
gramming approaches and modeling techniques currently
used to develop WSN. Motivated by this idea, we present
in this work a study that aggregates and discusses existing

Hindawi
Journal of Sensors
Volume 2020, Article ID 9592836, 13 pages
https://doi.org/10.1155/2020/9592836

https://orcid.org/0000-0001-9894-930X
https://orcid.org/0000-0002-5757-6516
https://orcid.org/0000-0001-7409-292X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/9592836


WSN design methodologies. We survey low-level-based
approaches that focus on the implementation level and
high-level-based approaches that rely on model concept to
design WSN systems. The main objective of our research is
to investigate the feasibility and the application of high-
level-based approaches that help decrease the complexity of
the development of WSN systems and to improve maintain-
ability and portability. At present, great attention has been
attracted to high-level abstraction design based on MDE
methodology [12] and especially using standard mechanisms
such as the Modeling and Analysis of Real Time and Embed-
ded Systems (MARTE) [13] profile and design patterns [14].
Representing the WSN system at higher abstraction levels
permits reducing the system complexity and increasing the
reusability and flexibility of models. It allows also automation
and ameliorates model quality. Moreover, it provides the sys-
tem at an early design stage, which permits revealing errors
before the real network deployment.

In this paper, we recall several research works for
WSN development. We begin by presenting low-level-
based approaches to investigate then the need for appropriate
high-level design methods. Figure 1 illustrates the classifica-
tion of WSN design approaches. We considered a set of com-
parison criteria related to design environment, power supply
design, reconfiguration scenario, and performance evalua-
tion. In Section 2, we define the comparison criteria. In
Section 3, we present low-level-based approaches for WSN
development. In Section 4, we present high-level-based
approaches for WSN development. Finally, we summarize
our work and we give perspectives in Section 5.

2. Comparison Criteria

We focus on a set of criteria to compare existing related works
(Figure 2). We divide these criteria into four groups: design
environment, power supply design, reconfiguration scenario,
and nonfunctional property (NFP) verification. In this study,
we focus on modeling constraints and requirements typically
imposed in terms of energy efficiency and reconfiguration in
which we are interested for our future work.

Design environment: this group includes the design
abstraction level. We are interested to define if the approach

is MDE-based or developed at a low abstraction level. This
group defines the modeling standards and techniques. We
focus on the use of the UML/MARTE standard and defini-
tion and application of WSN design patterns

Power supply design: this group focuses on the model-
ing of the WSN power supply section. It is an important cri-
terion to be considered since power resources in WSN
applications present a primary concern. This group includes
the support of a typical power supply section using a local
battery. It includes also the modeling of an energy harvest-
ing power supply unit while an energy harvesting alterna-
tive [15, 16] is a promising solution to meet the network
energy requirements

Reconfiguration scenario: this group focuses on the
level and structure of reconfiguration engines. It includes
two reconfiguration scenarios and the MAPE (Monitor,
Analyzer, Planner, and Executor) loop modules [17]. Indeed,
two reconfiguration scenarios are adopted in WSN applica-
tions [18]. The first scenario is the node-level-based recon-
figuration, which corresponds to hardware and software
reconfiguration. The second scenario is the network-level-
based reconfiguration, which consists in modifying the net-
work topology. The general structure of the reconfiguration
engine is based on the MAPE loop

NFP verification: this group focuses on the support of tem-
poral verification and performance evaluation. It includes
works that used transformations from system models to sim-
ulation or analysis tool models in order to perform early
WSN analysis

3. Low-Level-Based Approaches for
WSN Development

Several research works have been contributed in the litera-
ture to develop and design WSN systems and their require-
ments. In the present section, we discuss different low-
level-based approaches for WSN. We classified those works
into three categories: node-level abstraction, group-level
abstraction, and network-level abstraction approaches.

3.1. Node-Level Abstraction Approaches. In node-level
abstraction, programmers decompose the global application

WSN design approaches

Low-level-based approaches

Node-level abstraction approaches

Group-level abstraction approaches

Network-level abstraction approaches

High-level-based approaches

Component-based approaches

MDE-based approaches

Design pattern-based approaches

Model-driven engineering-based approaches

Figure 1: WSN design approaches.

2 Journal of Sensors



into a set of local node behaviors where an explicit code is
running on each node. Virtual machine approaches and
embedded operating systems (OSs) are often used in this
methodology. OS-based programming focuses on abstracting
hardware allowing a flexible control of hardware resources of
WSN application. TinyOS [19] (implemented with the pro-
gramming language nesC [20]) and Contiki [21] are known
OSs forWSNs used for the node-level abstraction. Both oper-
ating systems support WSN requirements, but there are dif-
ferences. While TinyOS is better when resources are limited
and power applications are low, Contiki is the best choice
when flexibility is needed. The development of OSs for wire-
less sensor devices has been considered a key element for the
IoT systems [22]. Several OSs are proposed in this context
such as RIOT [23], Mbed OS [24], or FreeRTOS [25], which
offer preemptive priority-based task schedulers, include full
real-time support, and facilitate IoT application develop-
ment. Mate [26] is a known virtual machine in WSNs. This
project focuses on the need for new programming examples
to overcome WSN constraints such as limited energy supply
and limited bandwidth. A virtual machine approach provides
the dynamic reprogrammability, but it suffers from the
overhead that the instructions introduce. Several simulator
environments are used for WSN research [27, 28]. The most
cited is the NS-3 simulator which is a discrete-event simula-
tor. NS-3 [29, 30] was developed in the C++ programming
language, with an optional Python [31] scripting interface.
Besides the scalability and performance improvements,
simulation nodes have the ability to support multiple radio
interfaces and multiple channels. Furthermore, NS-3 sup-
ports a real-time schedule that makes it possible to interact
with a real system.

3.2. Group-Level Abstraction Approaches. Each node associ-
ated with a group-level programming entity is considered a
neighbor node for other nodes in the same network. When
nodes are grouped based on physical closeness (geographical
distance, number of communication hops, etc.), the group is
called a neighborhood-based group, such as in Hood [32]
and Abstract Region [33] that are examples of neighborhood
programming abstractions for WSNs. These algorithms
provide local data processing within a neighborhood. Hood
provides support to design distributed algorithms in terms
of the neighborhood abstraction. It uses data sharing to
support scalability and collaboration. It employs a caching
technique to save energy, reduces communication failures
between nodes, and uses mirror to reflect time synchroniza-
tion. Abstract Region provides interfaces for identifying
neighboring nodes, sharing data, and data reduction within
local neighborhoods. Power consumption and scalability
are supported through data sharing.

As for Hood, it provides a caching technique to reduce
failures in the network. It provides also a way to adapt to dif-
ferent network requirements and conditions, to satisfy dif-
ferent levels of energy and bandwidth usage, and to attain
the accuracy level of shared operations. When the group
is constructed according to logical properties (node type,
sensor input, etc.), it is called a logical group. An example
of a logical-based group abstraction is EnviroTrack [34].
It is an application used specifically for target tracking
where a set of nodes that detect the same event are grouped
together. Like Hood and Abstract Regions, EnviroTrack
provides the data sharing and aggregation facilities to satisfy
WSN requirements. However, in a more dynamic situation,
EnviroTrack provides the best support. In [5], authors

Power supply design

Design environment NFP veri�cations

Recon�guration scenarios

Transformation
engine

Network levelNode level

Sensor MCU

Supply voltage
Rx

Tx
A

n
ten

n
a

Sensors CPU Transceiver

Comparison
criteria

Battery
Energy

harvester

Sensor node architecture

Figure 2: Comparison criteria.

3Journal of Sensors



proposed the SPIDEY language, another example of a logical-
based group, where a set of nodes are grouped based on their
shared properties. The node is represented by both static
(e.g., node type) and dynamic (e.g., sensor readings) attri-
butes to determine the nodes’ logical neighbors. As outlined
programming methodologies, SPIDEY uses a data sharing
mechanism to achieve several requirements and also pro-
vides a redundancy mechanism to avoid failures in the net-
work. ZigBee technology [35] is considered one of the most
deployed wireless technologies. It supports the mesh network
topology that uses the most cost-effective path allowing mul-
tihop communication. Hence, mesh connection is secured,
flexible, scalable, and reliable. It consists of three roles of
nodes: a coordinator, several routers, and end devices con-
nected. The mesh topology provides packets passing through
multiple hops to reach destinations and communication
between any source and destination in the network.

3.3. Network-Level Abstraction Approaches. In the network-
level abstraction (called also macroprogramming), the whole
sensor network is treated as a single system describing the
global behavior. TinyDB [7] views the whole network as a
database system. It allows users to issue queries in a declara-
tive SQL-like language. For achieving energy efficiency,
TinyDB focuses on when, where, and how to sample and
deliver the data. TinyDB also optimizes the routing tree for
disseminating a query and collecting the results. Moreover,
there are limitations of database abstraction; for example,
the use of only one table accessible on time is not favorable
for heterogeneous sensors. Regiment [11] is a functional lan-
guage specially designed for macroprogramming sensor net-
works that allows the direct use of a program state used to
represent the finding of each individual node. Kairos [36],
another example of programming abstraction, allows macro-
programming. It uses a caching technique to reduce power
consumption and communications.

3.4. Synthesis. In the previous sections, we concentrated on
low-level-based approaches that have been investigated for
WSN development. We derive from this study that the pre-
sented approaches offer rich support for WSN development.
They considered several WSN features such as OS, power sup-
ply, communication capabilities, and reconfiguration issues.
Moreover, they capture WSN characteristics at three different
levels including node, group, and network levels. The current
design of WSN occurs at the implementation level. This leads
to increasing the complexity of such systems since they are
platform-specific dependent. Raising the abstraction level
enables designers to cope with the challenging increasing
complexity. In this context, we detailed in the next section
high-level-based approaches for WSN development.

4. High-Level-Based Approaches for
WSN Development

The use of modeling techniques and languages involves the
WSN design at higher abstraction levels, facilitates analysis
steps, and resolves problems before deployment. The main
motivation for applying high-level-based approaches is that

new applications can be created with less effort than in
traditional approaches. In the present section, we present
firstly some existing component-based approaches for
modeling WSN. Then, we recall WSN approaches based
on the MDE methodology.

4.1. Component-Based Approaches. Many of modeling tech-
niques support components to model the system because
component-based modeling offers great abstraction by pro-
viding interface-based interaction between elements. We
examine for each approach its modeling language, scopes,
and elements.

4.1.1. High-Level SDLModels (HL-SDL). In [37], authors rep-
resented the HL-SDL modeling language that uses the Spec-
ification and Description Language (SDL) [38] to model,
simulate, and verify communication protocols. SDL is used
to model the component-based architecture of TinyOS using
the SDL process. The system is modeled as a collection of
processes and channels. The SDL approach provides the
modeling of node behaviors and does not permit the model-
ing of the network architecture. Moreover, the generated
code is created manually by the designer.

4.1.2. Insense. Authors proposed the Insense language in [39]
for supporting a component-based model for WSN applica-
tions. Components can be hardware or software entities of
sensor nodes, and they communicate synchronously via
directional channels which abstract over communication
and synchronization. This technique does not support the
modeling of a WSN system architecture.

4.1.3. SensorML. Authors introduced the SensorML [40] lan-
guage in order to provide support for modeling sensor spec-
ifications such as physical location, hardware, and sensor
type. In the SensorML model, components are represented
as processes linked together through inputs and outputs.
The model includes physical elements such as sensors and
actuators and nonphysical components such as mathematical
equations. SensorML supports the modeling of different ele-
ments of the network. But it lacks support for testing and val-
idating the design before its real deployment.

4.1.4. UM-RTCOM. The UM-RTCOM model, which is
developed in [41], presents a component framework for
developing wireless sensor and actor network applications.
This model contains sensors, actors, and a coordinator. The
communication between sensors and actors and between
actors and a coordinator is via channels which are modeled
as a tuple that allows one-to-many and many-to-one com-
munication. The UM-RTCOM model provides three types
of components: generic components, active components,
and passive components. The UM-RTCOM model performs
different kinds of analysis such as liveness property, real-
time, and deadlock freedom.

4.1.5. MathWorks Modeling Approach. Authors proposed in
[42] a framework for modeling, simulation, and generation
of code for WSN applications based on MathWorks tools.
Sensor nodes are modeled by using Stateflow and Simulink

4 Journal of Sensors



blocks. Connectivity between sensor nodes is represented by
a communication medium block which is implemented on
the C language. MathWorks provides analysis tools such as
animated state charts, chart displays, and scopes to perform
WSN analysis. After modeling and simulation, the code
application is generated using the Target Language Compiler,
which generates the nesC code for TinyOS and the C code for
MANTIS [43].

4.1.6. SystemC. In [44], authors introduced a model of wire-
less sensor network nodes using SystemC-AMS which is a
C++-based language. Each node is represented as a module
which represents a model for the sensor, the A/D converter,
the microcontroller, and the RF transceiver. SystemC-AMS
models the system behavior using a data flow diagram.
However, this technique does not support the network
architecture modeling. Another related work was proposed
in [45]. Authors presented the XRM modeling language,
which is an extension language of Reactive Modules (RMs),
to model the sensor network. Each node is captured as a
module which contains methods and variables describing
the node behavior, power consumption, memory, and com-
munication capabilities. XRM supports also the modeling
of the WSN system architecture. In [46], authors utilized
the PROMELA model to check ad hoc WSN system commu-
nication. The network is modeled by using communicating
finite-state machines. The PROMELA modeling language is
the input of the model checker SPIN. The SPIN model
checker is the tool used for verifying the WSN specifications,
specifically the network connectivity.

4.1.7. Middleware. A component-based architecture for
adaptive WSN was developed in [47]. Authors used middle-
ware development to enable adaptability in service-oriented
WSNs. They followed the MAPE loop to attend to self-
adaptive WSN requirements. The reference architecture is
created based on layer architectural style, component-based
and service-oriented architectural style, and decorator pat-
tern. In this work, verification and test phases are absent.

4.1.8. Synthesis. The reviewed component-based techniques
enable designers to represent the WSN design at higher
abstraction levels, which facilitates testing and verification of
errors before the real deployment. They used different model-
ing languages to capture WSN features. They tackle either the
node behavior or the WSN system architecture. Despite its
benefits, none of the presented techniques have presented
standard modeling languages to address the behavior and
the structure of the WSN design at a much higher level of
abstraction. In this context, MDE design methodologies are
relatively leveraged. MDE affords many of the benefits to soft-
ware engineering. An overview of the MDE paradigms will be
accurately described in the following section.

4.2. Model-Driven Engineering for WSN Development. In this
section, we first give an overview about the existing MDE-
based approaches for WSN development. We focus on
UML/MARTE-based approaches. Then, we provide a view
on design pattern-based approaches.

4.2.1. MDE-Based Approaches for WSN. The MDE [12]
paradigm is a software engineering approach based on exploit-
ing models in order to address the complexity of embedded
systems. This software development methodology deals with
the shortcomings of complex system development and
reduces the system development costs and time. The MDE
has widely contributed to supporting the development life
cycle of embedded systems inmany fields such asWSN design
and development [48–50], energy supply designs for WSN
[51], and self-adaptive system development [52, 53]. The
MDE has several advantages. First, this approach is aimed at
increasing the abstraction level of development and at discard-
ing the low-level details. Second, MDE permits being less
prone to error, because it enables the system analysis at an
early design stage, which permits revealing errors before the
real network deployment. Third, MDE permits a set of model
transformations and refinements in order to generate codes or
analyze systems. Therefore, the code generation task becomes
easier than in traditional software techniques.

The MDE is based on several basics and concepts [54],
namely, the model, the metamodel, the model transforma-
tion concept, and the UML extension mechanisms.

Researchers on WSN systems have proven the effective-
ness of the MDE paradigm in software development. It helps
in reducing the design complexity of WSN applications
through its principles of abstraction, separation of concerns,
reuse, and automation. The present section recalls several
modeling approaches based on the MDE methodology for
WSN design. We are interested in power supply modeling,
on the one hand, and in reconfiguration modeling for
WSN, on the other hand. Energy efficiency represents a pri-
mary key for most research studies, so does the need for
abstracting energy details. In this context, an MDE-based
framework methodology is proposed in [49]. It is aimed at
defining an architecture for WSN and focuses on energy
consumption analysis. This framework proposed three
modeling languages that allow modeling separately the soft-
ware architecture of the WSN application (Software Archi-
tecture Modeling Language), the low-level details of each
type of nodes used in the network (Node Modeling Lan-
guage), and the physical environment where the WSN nodes
are deployed (Environment Modeling Language). The pro-
posed metamodel of the Node Modeling Language is com-
posed of stereotypes permitting defining the node features.
It uses EnergySource and HarvestedEnergySource stereotypes
to model energy information, the RadioCommunicationDe-
vice stereotype to present the transceiver unit, the Sensor
stereotype to model sensors, and the Node stereotype and
the NodeSpecification stereotype to represent sensor nodes.
An analysis step is also performed through automatic code
generation. Another high-level application model was intro-
duced in [55], which is composed of a feature model and a
class diagram annotated with the WiSeN profile to support
WSN modeling. First, the model defines different features
related to application, network, programming language,
hardware, and communication in the WSN. Then, authors
proposed the WiSeN profile which is an extension of the
UML/MARTE profile for supporting communication, sens-
ing, and synchronization in WSN design. This profile has

5Journal of Sensors



extended the MARTE profile by a set of stereotypes in order
to allow the specification of complementary information for
WSN features, such as the Sensor stereotype extending
«HwSensor» to map sensors and their characteristics and
the Synchronize stereotype extending «SynchronizationRe-
source» used to model synchronization between sensor
nodes. In addition, it supports the Communication stereo-
type extending «SaCommStep» to transmit/receive mes-
sages. To represent nodes, the WiSeN profile uses the Node
stereotype extending «ResourceUsage». It uses the MsgPack-
age stereotype extending «MessageComResource» to give
information about the structure of message. The WiSeN pro-
file contains other information that does not exist in the
MARTE standard. It uses the Gateway stereotype to assist
in the communication with the external system. The WiSeN
profile can be refined and extended to address the power sup-
ply section where the limited energy is the most important
constraint in WSNs. In addition, this profile can provide
new extension of MARTE to support the reconfigurable
aspect of the WSN system since MARTE contains concepts
related to reconfiguration. Authors proposed in [51] a high-
level methodology based on theMARTE profile for designing
the power section for a WSN node.

Four main elements are defined in the design: energy
scavenging device, energy accumulating device, consumption
of the node, and recharging energy. This methodology pro-
vides an extension of the «HW_PowerSupply» with «HW_
Harvesting» to describe the harvester, and the «HW_Har-
vesting» is also extended with «HW_PV» to describe the
harvesting done by a solar panel. In addition, to describe
the details of the energy accumulating device, authors added
modifications to the «HW_Battery», extending «HW_
PowerSupply». This methodology provides an extension to
support harvesting done by a solar panel so we can extend
the MARTE profile to support more energy harvesting such
as vibration. In addition, the WSN requirements (e.g., char-
acteristics of sensors, communication links, and characteris-
tics of nodes) must be considered in the design of the
power section. To address the design of adaptive WSN, mul-
tiple works have been proposed. Authors provided in [56] a
model-driven approach for designing and verifying auto-
nomic network behaviors. They used a generic control loop
based on the decision-making element for establishing the
autoconfiguration in the network. They proposed a model-
driven methodology based on metamodeling, structural
modeling, and behavioral modeling methods. Then, they
provided an evolvable and holistic model for autonomic net-
working and autoconfiguration. But still the autonomic code
generation is not defined for validation and verification pur-
poses. Another work was proposed in [57], which deals with
adaptive sensor networks. Authors proposed a model-driven
development (MDD) framework for modeling and executing
WSN systems. They defined a UML profile, which describes
low-level details of WSN and provides high-level design pre-
sentation. Moreover, they used the Matilda UML virtual
machine for executing and validating WSN application.
Matilda permits the automatic code generation through
M2T transformation from the proposed UML profile. The
proposed MDD framework is designed based on BiSNET

architecture that addresses the dynamic adaptability required
in nodes and the network. The BiSNET consists of agents and
middleware platforms in order to achieve adaptability
requirements. In [58], authors proposed an MDE approach
to develop WSN application, which allows the flexibility and
reusability of their designs. They considered three levels of
abstraction: domain-specific models, platform-independent
models, and platform-specific models. Then, automatic model
transformations are refined until the final code is produced.
M2M and M2T transformation engines are considered using
eclipse plugins to obtain a NesC code for the TinyOS-based
node. The MindCPS approach is proposed by [59] to design
and develop Cyber-Physical Systems (CPS). It is a model-
driven development (MDD) solution that defines a DSL for
describing primitives of the autonomic behavior of CPS and
produces model-to-code transformations. To achieve the
autonomic adaptation, authors used the MAPE loop model
[17]. MAPE loop modules are used to monitor the different
sensor states in order to enable the system functionalities.

(1) Synthesis. To deal with the increasing complexity of WSN
systems, several works have proposed the use of high-level
methodologies to fulfill the strict WSN constraints and facil-
itate the development process. Most reviewed approaches
used high-level modeling concepts to specify several WSN
basics. In some works, authors used UML and MARTE
annotations. Others proposed new UML/MARTE extensions
to support relevant WSN information specifically in terms of
power consumption and reconfiguration concerns. In other
cases, some approaches proposed a whole development cycle
that starts with a modeling step to lead to a validation step
through a set of model transformation rules. Therefore, we
can assume that the MDE methodology is the right tool to
deal with WSN complexity. Nonetheless, the relevant exist-
ing studies still present some limitations. There is a lack of
adaptation process that designs and validates WSN models.
In addition, most adaptive works address the node-level-
based reconfiguration scenario. They deal with hardware
reconfiguration such as sensor node adaptation and software
reprogramming such as OS programming. However, archi-
tectural reconfiguration is not well tackled in high-level
modeling. In addition, MAPE loop modules are not consid-
ered in the modeling phase. On the other hand, explicit sup-
port for power requirement modeling is absent. Accordingly,
there is a lack of high level abstraction modeling of energy
harvesting modules. Moreover, NFP verification and valida-
tion steps are not well performed. The use of high-level
modeling languages and methodologies helps designers to
cope with the growing complexity of WSN systems. Never-
theless, there is still a great need for generic and reusable
models to help designers to easily model their systems. In this
regard, design patterns [14] represent a promising solution
since they promote generic models used to propose solutions
for recurrent problems. We give in the following some basic
definitions on design patterns, and we recall existing
pattern-based works for WSN development.

4.2.2. Design Patterns for WSN Development.Design patterns
[14] are widely affirmed as a potential approach towards

6 Journal of Sensors



software design. A design pattern is used to capture the
application flow and the design components at a higher
abstraction view that guarantees the reusability of the design.
Indeed, a design pattern is a general and reusable solution to
a recurrent problem in software design. It has been proven to
be highly effective in modeling and representing complex
systems. In addition, it facilitates the reuse of software
models and improves the quality of software. Each design
pattern is described by essential elements following the pat-
tern template proposed in [14]. A pattern name is a handle
that helps in identifying the pattern, its intent, and its solu-
tion. The pattern intent describes the goal behind the design
pattern. The pattern problem consists in defining the context
of pattern application. Lastly, the pattern structure is a graph-
ical representation of the pattern where class and sequence
diagrams can be used.

With the growing development of WSNs and the pro-
gramming challenges of sensor nodes, software designers
have shown a significant interest in representing design pat-
terns for WSN development. In this context, a design pattern
for a sensor node was developed in [60]. The proposed pat-
tern described the architecture of a sensor node which
includes sensors, a power source, communication channels,
and memory. Authors presented the static and dynamic
aspects of the proposed pattern using, respectively, the
UML class diagram and UML sequence diagram. Another
related work is proposed in [61] that used the previous pat-
tern to design the structure of the network and connections
between devices in order to achieve performance objectives.
Authors presented dynamic diagrams of several use cases
which include network reconfiguration, data gathering, and
others. Another software design pattern is described in [62]
for the TinyOS operating system which is well described in
WSN applications. They presented two behavioral design
patterns, dispatcher and decorator, and three structural
design patterns. In [63], authors presented a set of design pat-
terns using UML diagrams that help designers in defining a
software design of middleware and hardware modules for a
WSN system in order to optimize analysis for power con-
sumption at an early stage of development. Several design
patterns are defined in [64] for unifying different abstractions
and middleware such that users can manipulate various
WSNs using different programming languages. In [65],
authors proposed a programming pattern named sMapRe-
duce for enabling sensor network applications targeting
applications with complex data aggregation. A set of design
patterns is developed in [66] towards the self-adaptability
for RTES. In this work, authors suggested four design pat-
terns as solutions for four MAPE loop modules: Monitor,
Analyzer, DecisionMaker, and Actor. The proposed patterns
are described following the pattern template [14]. Authors
used the UML diagrams annotated with the UML/MARTE
profile stereotypes. They used class diagrams to present the
structural views of the patterns and sequence diagrams to
explain the behavioral views. The authors combined the four
patterns based on integration rules in order to form the
design of the MAPE adaptation loop and enable its applica-
tion. The RTE Monitor pattern allows continuous monitor-
ing to reflect the current state of the system in order to

detect trigger events and relevant changes. It considers the
system stability problem by minimizing the events triggered
through the choice of the significant context variations. It
also deals with concurrency and real-time specifications asso-
ciated with the control tasks. The RTE Analyzer pattern
enables the verification of the constraints which fit an RTE
system in order to request adaptation if needed. It handles
concurrency and real-time specifications associated with the
control tasks. The RTE DecisionMaker pattern decides an
adaptation plan once an adaptation request is sent. It pro-
vides adaptation policies. It also defines what elements to
modify and how to meet constraints and requirements. The
adaptation strategy can be based on changeable parameters
or the modification of the structure of the RTE system. The
RTE Actor pattern permits the final adaptation plan within
a set of adaptation actions, which are related to the relative
changeable element of a system. It specifies the effector
responsible for an adaptation action.

(1) Synthesis. According to the previous study, research
works based on design patterns are still limited in the WSN
domains. Most existing approaches focus on either sensor
node components or network architecture. Few works dealt
with reconfiguration scenarios. Nevertheless, the studied
works do not cope with WSN requirements such as power
consumption or real-time constraints. Moreover, they do
not offer explicit support for architectural reconfiguration
in WNS. They offer limited support for modeling of WSN
systems and most research does not explore high-level
modeling languages and specific standards.

5. Summary and Synthesis

In this paper, we presented a study about programming meth-
odologies and modeling techniques for WSN development.
We classified those works into two categories according to
the abstraction level of their design. The first category con-
cerned low-level techniques for WSN and particularly pro-
gramming models. The second category dealt with high-
level-based approaches including component-based modeling
techniques andMDE-based approaches and particularly those
that used UML and MARTE standards and pattern-based
concepts. Table 1 summarizes the previous sections by illus-
trating a comparison of the discussed related works.

We conclude from our study that the development of
WSN can be investigated at different abstraction levels. Var-
ious development techniques have been presented at low
abstraction level to address either the node behavior or the
network architecture [7, 19, 21]. These approaches have
proven their effectiveness for developing WSNs; however,
there is a lack of standard mechanisms that fit with WSN
complexity. Therefore, raising the abstraction level is a prom-
ising solution to handle the shortcomings of low-level-based
approaches. In fact, MDE and specifically the MARTE profile
have received enormous attention inWSN development. The
UML/MARTE profile offers the modeling of hardware and
software elements of the WSN system. Table 2 illustrates
how existing high-level approaches have applied UML con-
cepts and MARTE stereotypes to model WSN elements.

7Journal of Sensors



T
a
b
l
e
1:
C
om

pa
ri
so
n
of

de
ve
lo
pm

en
t
ap
pr
oa
ch
es

fo
r
W
SN

.

R
el
at
ed

w
or
ks

D
es
ig
n
en
vi
ro
n
m
en
t

P
ow

er
su
pp

ly
de
si
gn

R
ec
on

fi
gu
ra
ti
on

sc
en
ar
io

N
FP

ve
ri
fi
ca
ti
on

M
D
E

U
M
L/
M
A
R
T
E

D
es
ig
n
P
at
te
rn
sf
or
W
SN

E
n
er
gy
So
ur
ce
C
on

ep
ts

E
n
er
gy
ha
rv
es
ti
n
gc
on

ce
p
ts

N
od

e-
le
ve
lb
as
ed
re
co
n
fi
gu
ra
ti
on

N
et
w
or
k-

le
ve
lb
as
ed
re
co
n
fi
gu
ra
ti
on

M
A
P
E
lo
op

m
od

ul
es

C
la
ss
ic
al
an
al
ys
is

A
ut
om

at
ic
an
al
ys
is

[3
9,
42
]

-
-

-
-

-
-

-
-

-
-

[2
1,
26
]

-
-

-
X

-
X

-
-

-
-

[5
,7
,1
1,
32
–
34
,

36
,3
7,
44
]

-
-

-
X

-
-

-
-

-
-

[4
0]

-
-

-
-

-
-

-
-

X

[4
1,
45
]

-
-

-
X

-
-

-
-

-
X

[5
7]

-
-

-
-

-
X

-
X

-
-

[4
6]

X
-

-
X

X
-

-
-

-
X

[4
7,
58
]

X
-

-
-

-
X

-
-

-
X

[4
9]

-
X

-
-

-
-

-
-

X
-

[5
5]

-
X

-
X

X
-

-
-

X
-

[5
1]

X
-

-
-

-
-

X
-

-
-

[5
6]

X
-

-
X

-
-

-
-

-
X

[5
9]

X
-

-
X

-
X

-
X

-
X

[6
0–
62
]

-
-

X
-

-
-

-
-

-
-

[6
3]

-
-

X
X

-
-

-
-

-
X

[6
4,
65
]

-
-

X
X

-
-

-
-

-
-

[6
6]

-
X

X
-

-
X

-
X

-
-

P
ro
po

se
d

ap
pr
oa
ch

X
X

X
X

X
-

X
X

-
X

Le
ge
n
d:

X
:s
up

po
rt
ed
;-
:u

n
su
pp

or
te
d.

8 Journal of Sensors



T
a
b
l
e
2:
E
xi
st
in
g
U
M
L
co
n
ce
pt
s
an
d
M
A
R
T
E
st
er
eo
ty
pe
s
to

m
od

el
W
SN

el
em

en
ts
.

A
pp

ro
ac
h

[4
9]

[5
5]

[5
1]

[5
7]

[5
9]

[6
0,
61
]

[6
6]

M
od

el
in
g
sc
op

e

N
od

e
«N

od
e»

«M
A
R
T
E
::G

R
M
::R

es
ou

rc
eU

sa
ge
::N

od
e»

N
ot

su
pp

or
te
d

«S
en
so
rN

od
e»

N
ot

su
pp

or
te
d

«N
od

e»
N
ot

su
pp

or
te
d

G
at
ew

ay
N
ot

su
pp

or
te
d

«G
at
ew

ay
»

N
ot

su
pp

or
te
d

N
ot

su
pp

or
te
d

N
ot

su
pp

or
te
d

N
ot

su
pp

or
te
d

N
ot

su
pp

or
te
d

A
ct
ua
to
r

«A
ct
ua
to
r»

«M
A
R
T
E
::H

R
M
::H

W
A
ct
ua
to
r»

N
ot

su
pp

or
te
d

N
ot

su
pp

or
te
d

«A
ct
ua
to
r»

N
ot

su
pp

or
te
d

N
ot

su
pp

or
te
d

C
om

m
un

ic
at
io
n

«R
ad
io
C
om

m
un

ic
at
io
n
D
ev
ic
e»

«M
A
R
T
E
::S
A
M
::S
aC

om
m
St
ep
::C

om
m
un

ic
at
io
n
»

N
ot

su
pp

or
te
d

«W
ir
el
es
sl
in
k»

N
ot

su
pp

or
te
d

«T
ra
n
se
iv
er
»

N
ot

su
pp

or
te
d

Se
n
so
r

«S
en
so
r»

«M
A
R
T
E
::H

R
M
::H

w
Se
n
so
r»

N
ot

su
pp

or
te
d

N
ot

su
pp

or
te
d

«S
en
so
r»

«S
en
so
r»

N
ot

su
pp

or
te
d

E
n
er
gy

so
ur
ce

«E
n
er
gy
-S
ou

rc
e»

«M
A
R
T
E
::H

R
M
::H

W
P
ow

er
Su
pp

ly
»

«M
A
R
T
E
::H

R
M
::H

W
B
at
te
ry
»

N
ot

su
pp

or
te
d

N
ot

su
pp

or
te
d

«P
ow

er
-

Su
pp

ly
»

N
ot

su
pp

or
te
d

E
n
er
gy

ha
rv
es
ti
n
g

«H
ar
ve
st
ed
-E
n
er
gy
So
ur
ce
»

N
ot

su
pp

or
te
d

«M
A
R
T
E
::H

R
M
::H

w
_P

V
»

N
ot

su
pp

or
te
d

N
ot

su
pp

or
te
d

N
ot

su
pp

or
te
d

N
ot

su
pp

or
te
d

R
ec
on

fi
gu
ra
ti
on

N
ot

su
pp

or
te
d

N
ot

su
pp

or
te
d

N
ot

su
pp

or
te
d

N
ot

su
pp

or
te
d

«R
ea
lT
im

e-
Sy
m
pt
om

»
«A

ct
io
n
»

«P
la
n
»

N
ot

su
pp

or
te
d

«M
A
R
T
E
::G

R
M
::R

tU
n
it
::M

on
it
or
»

«M
A
R
T
E
::G

R
M
::R

tU
n
it
::A

n
al
yz
er
»

«M
A
R
T
E
::G

R
M
::R

tU
n
it
::D

ec
is
io
n
M
ak
er
»

«M
A
R
T
E
::G

R
M
::R

tU
n
it
::A

ct
or
»

9Journal of Sensors



The studied approaches [49, 55] used MARTE to deal
with the modeling of the power supply section of WSN. In
the same context, [51] defined new extensions to MARTE
to support only solar energy harvesting modeling. The use
of high-level mechanisms and languages facilitates the
designer’s tasks, decreases the complexity of WSN systems,
and minimizes cost and time to market. However, the major-
ity of studies tackle only node-level-based reconfiguration
[58, 59]. They addressed hardware and software reconfigu-
ration in a sensor node whereas network-level-based recon-
figuration modeling is absent. According to our study,
network-level-based reconfiguration and energy harvesting
modeling are not well considered by model approaches based
on the MARTE profile. We therefore need to add extensions
to MARTE to allow a generic specification and modeling of
energy harvesting modules. We need also to create a new
package extending the MARTE standard for supporting
architectural reconfiguration for WSN. Additionally, the
automatic analysis of WSN regarding power efficiency and
reconfiguration concerns is not well supported. Design pat-
terns have been also investigated to cope with RTES com-
plexity. They offer generic and reusable models that are
used to solve a recurrent problem. In addition, they facilitate
the reuse of software models and improve the quality of soft-
ware. We derived from our study that design patterns are
still not well tackled. Most of existing works described
either node components or network architecture [60, 61].
Only one work [66] dealt with patterns devoted for adaptive
systems. This work offers new MARTE extensions for
presenting MAPE loop modules. We cited in Table 2 the rel-
ative MARTE extension: «MARTE::GRM::RtUnit::Monitor»,
«MARTE::GRM::RtUnit::Analyzer», «MARTE::GRM::RtU-
nit::DecisionMaker», and «MARTE::GRM::RtUnit::Actor».
Yet no attention was given to real-time constraints in the
development of WSN patterns.

We can conclude from our study that existing approaches
on model-based WSN design present shortcomings regard-
ing energy and reconfiguration requirements. In addition,
there is still a lack of high-level modeling standards and reus-
able models that support the specification of requirements
related to WSN development. Moreover, there are still open
issues regarding the verification of the system’s nonfunc-
tional properties (NFPs).

In this regard, we plan, as a future work, to propose an
MDE-based approach for developing an energy-aware recon-
figurable WSN. The proposed framework used MDE con-
cepts, UML/MARTE profile, and design patterns to support
high-level specification and automatic analysis of WSN. A
first study was devoted to the energy sources in WSN. As
we mentioned, existing studies lacks explicit support for

power requirement modeling. Accordingly, high abstraction
modeling of energy harvesting modules is absent. In this
context, we proposed well-structured support for energy
harvesting specification based on the MARTE profile.
Given the fact that WSN can be analyzed similar to a real-
time system, MARTE can be suitably adopted to support
the modeling of such systems. We extended this profile with
seven new energy harvesting devices including vibration,
thermal, kinetic, acoustic noise, RF, biochemical, and hybrid
energy harvesting types. A second study was devoted to
the reconfiguration scenarios in WSN. Our study shows
that existing works focus on low-level specifications. They
addressed the node-level-based reconfiguration scenario and
dealt with hardware and software reconfiguration. Moreover,
they do not offer explicit support for network-level-based
reconfiguration. To solve all these problems, we defined an
MDE-based process for supporting the architectural recon-
figuration in WSN applications, which we named EARN-
(Energy-Aware Reconfigurable Node-) MDE-based process.
It allows the automatic generation of a high-level reconfigur-
able WSN model in an energy harvesting environment. It is
based on the detection, instantiation, and integration of
design patterns. It starts by annotating the systemmodel with
reconfiguration semantics. Then, the pattern instances are
automatically generated and integrated into the initial system
model based on a set of instantiation and integration rules.

Finally, verification and simulation steps are realized to
check the system constraints. For this end, model-to-text
(M2T) transformations are performed to generate scripts
for simulation purposes and NFP verification. Moreover, it
is important to mention that our research work is initiated
in the EARN project [67]. We will thus test and evaluate
our proposed process in terms of resource efficiency on a real
demonstrator platform. Table 3 summarizes how the pro-
posed approach achieves the design criteria explained in
Section 2. The development of WSN using high-level tech-
niques and reusable models is a promising solution to
decrease the growing complexity of heterogeneous systems
such as the IoT (Internet of Things) systems. The use of
MDE and models has been proven as an enabling and prom-
ising solution [68, 69] through its principles of abstraction,
separation of concerns, reuse, and automation. Indeed, in
MDE, models represent the core concept and are considered
in abstraction of the system under development. In addition
to abstraction, automation is performed in terms of model
manipulation and refinement through model transforma-
tions. Additionally, MDE solves the challenge heterogeneity
management of software and hardware thanks to the use
of modeling languages, more specifically domain-specific
ones. Models defined through these languages are meant to

Table 3: Evaluation of the proposed MDE-based approach.

Design environment Power supply design Reconfiguration scenario NFP verification

Proposed
approach

(i) New UML/MARTE
extensions

(ii) MAPE loop design
patterns

(iii) M-2-T transformation

(i) It supports energy
source (battery)

(ii) It proposes new energy
harvesting source design

(i) It proposes a new
network-level-based
reconfiguration strategy
based on the MAPE loop

(i) Automatic generated
analysis scripts

(ii) Simulation and real
deployment steps

10 Journal of Sensors



be much more human-oriented than common code artifacts
that enhance reusability. In this direction, an interesting per-
spective thus is to extend the proposed EARN-MDE process
for designing complex and critical reconfigurable applica-
tions. In fact, the EARN-MDE process offers powerful sup-
port for the management of heterogeneity of software and
hardware by using the MARTE profile that permits the
modeling of hardware components as well as allocations of
software to hardware. Additionally, it supports the MAPE
loop as a reconfigurable managing system that optimizes
the management of the system even in complex situations.

Conflicts of Interest

The authors declare that they have no conflicts of interest

Acknowledgments

This work was supported by King Abdulaziz City for Science
and Technology (KACST) and Digital Research Center of
Sfax (CRNS).

References

[1] N. K. Suryadevara, S. C. Mukhopadhyay, S. D. T. Kelly, and
S. P. S. Gill, “WSN-based smart sensors and actuator for power
management in intelligent buildings,” IEEE/ASME Transac-
tions on Mechatronics, vol. 20, no. 2, pp. 564–571, 2015.

[2] M. P. Durisic, Z. Tafa, G. Dimic, and V. Milutinovic, “A survey
of military applications of wireless sensor networks,” in 2012
Mediterranean Conference on Embedded Computing (MECO),
pp. 196–199, Bar, Montenegro, June 2012.

[3] H. Furtado and R. Trobec, “Applications of wireless sensors in
medicine,” in 2011 Proceedings of the 34th International Con-
vention MIPRO, pp. 257–261, Opatija, Croatia, May 2011.

[4] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci,
“Wireless sensor networks: a survey,” Computer Networks,
vol. 38, no. 4, pp. 393–422, 2002.

[5] L. Mottola and G. P. Picco, “Logical neighborhoods: a
programming abstraction for wireless sensor networks,” in
Distributed Computing in Sensor Systems. DCOSS 2006. Lec-
ture Notes in Computer Science, vol 4026, P. B. Gibbons, T.
Abdelzaher, J. Aspnes, and R. Rao, Eds., pp. 150–168, Springer,
Berlin, Heidelberg, 2006.

[6] Q. Jiang and D. Manivannan, “Routing protocols for sensor
networks,” in First IEEE Consumer Communications and Net-
working Conference, 2004. CCNC 2004, pp. 93–98, Las Vegas,
NV, USA, January 2004.

[7] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong,
“Tinydb: An acquisitional query processing system for sensor
networks,” ACM Transactions on Database Systems, vol. 30,
no. 1, pp. 122–173, 2005.

[8] M. M. Molla and S. I. Ahamed, “A survey of middleware for
sensor network and challenges,” in 2006 International Confer-
ence on Parallel Processing Workshops (ICPPW'06), pp. 6–228,
Columbus, OH, USA, August 2006.

[9] R. C. Shit, S. Sharma, D. Puthal, and A. Y. Zomaya, “Location
of things (lot): a review and taxonomy of sensors localization
in Iot infrastructure,” IEEE Communications Surveys & Tuto-
rials, vol. 20, no. 3, pp. 2028–2061, 2018.

[10] R. C. Shit, S. Sharma, D. Puthal et al., “Ubiquitous localization
(UbiLoc): a survey and taxonomy on device free localization
for smart world,” IEEE Communications Surveys & Tutorials,
vol. 21, no. 4, pp. 3532–3564, 2019.

[11] R. Newton, G. Morrisett, andM.Welsh, “The regiment macro-
programming system,” in 2007 6th International Symposium
on Information Processing in Sensor Networks, pp. 489–498,
Cambridge, MA, USA, April 2007.

[12] D. C. Schmidt, “Guest editor’s introduction: model-driven
engineering,” Computer, vol. 39, no. 2, pp. 25–31, 2006.

[13] OMGObject Management Group, A UML Profile for MARTE:
Modeling and Analysis of Real-Time Embedded Systems,
ptc/2011-06-02, Object Management Group, 2011.

[14] J. Vlissides, R. Helm, R. Johnson, and E. Gamma, Design pat-
terns: elements of reusable object-oriented software, Reading:
Addison-Wesley, 1995.

[15] F. K. Shaikh and S. Zeadally, “Energy harvesting in wireless
sensor networks: a comprehensive review,” Renewable and
Sustainable Energy Reviews, vol. 55, pp. 1041–1054, 2016.

[16] S. Basagni, M. Y. Naderi, C. Petrioli, and D. Spenza, “Wireless
sensor networks with energy harvesting,” in Mobile Ad Hoc
Networking, Cutting Edge Directions, S. Basagni, M. Conti, S.
Giordano, and I. Stojmenovic, Eds., pp. 701–736, John Wiley
& Sons, 2013.

[17] Autonomic Computing, An architectural blueprint for auto-
nomic computing, IBM White Paper, 31, 2006.

[18] C. Rajasekaran, R. Jeyabharath, and P. Veena, “Hardware-soft-
ware reconfigurable techniques for wireless sensor network,”
Research Journal of Applied Sciences, Engineering and Technol-
ogy, vol. 8, no. 17, pp. 1855–1862, 2014.

[19] P. Levis, S. Madden, J. Polastre et al., “TinyOS: an operating
system for sensor networks,” in Ambient Intelligence,
pp. 115–148, Springer, Berlin, Heidelberg, 2005.

[20] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and
D. Culler, “The nesC language,” ACM SIGPLAN Notices,
vol. 49, no. 4, pp. 41–51, 2014.

[21] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - a lightweight
and flexible operating system for tiny networked sensors,” in
29th Annual IEEE International Conference on Local Computer
Networks, pp. 455–462, Tampa, FL, USA, November 2004.

[22] R. Rodriguez-Zurrunero, R. Utrilla, A. Rozas, and A. Araujo,
“Process management in Iot operating systems: cross-
influence between processing and communication tasks in
end-devices,” Sensors, vol. 19, no. 4, p. 805, 2019.

[23] E. Baccelli, O. Hahm, M. GÃijnes, M. WÃďhlisch, and T. C.
Schmidt, “RIOT OS: towards an OS for the Internet of things,”
in 2013 IEEE Conference on Computer CommunicationsWork-
shops (INFOCOM WKSHPS), pp. 79-80, Turin, Italy, April
2013.

[24] Arm Mbed, “Mbed OS,” https://www.mbed.com/en/platform/
mbed-os/.

[25] FreeRTOS, “The FreeRTOS™ reference manual,” https://www
.freertos.org/Documentation/FreeRTOS_Reference_Manual_
V9.0.0.pdf.

[26] P. Levis and D. E. Culler, “Maté: a tiny virtual machine for sen-
sor networks,” in ASPLOS X: Proceedings of the 10th interna-
tional conference on Architectural support for programming
languages and operating systems, pp. 85–95, San Jose, CA,
USA, October 2002.

[27] M. Živković, B. Nikolić, J. Protić, and R. Popović, “A survey
and classification of wireless sensor networks simulators based

11Journal of Sensors

https://www.mbed.com/en/platform/mbed-os/
https://www.mbed.com/en/platform/mbed-os/
https://www.freertos.org/Documentation/FreeRTOS_Reference_Manual_V9.0.0.pdf
https://www.freertos.org/Documentation/FreeRTOS_Reference_Manual_V9.0.0.pdf
https://www.freertos.org/Documentation/FreeRTOS_Reference_Manual_V9.0.0.pdf


on the domain of use,” Adhoc and Sensor Wireless Networks,
vol. 20, 2014.

[28] A. S. Toor and A. K. Jain, “A survey on wireless network sim-
ulators,” Bulletin of Electrical Engineering and Informatics,
vol. 6, no. 1, pp. 62–69, 2017.

[29] “Ns-3 overview,” August 2010, http://www.nsnam.org.

[30] M. Lacage, “Experimentation with ns-3,” Trilogy Summer
School, vol. 14, 2009.

[31] A. L. S. Saabith, M. M. M. Fareez, and T. Vinothraj, “Python
current trend applications-an overview,” International Journal
of Advance Engineering and Research Development, vol. 6,
no. 10, 2019.

[32] K. Whitehouse, C. Sharp, D. E. Culler, and E. A. Brewer,
“Hood: a neighborhood abstraction for sensor networks,” in
MobiSys ‘04, Proceedings of the Second International Confer-
ence on Mobile Systems, Applications, and Services, pp. 99–
110, Hyatt Harborside, Boston, MA, USA, June 2004.

[33] M. Welsh and G. Mainland, “Programming sensor networks
using abstract regions,” in 1st Symposium on Networked Sys-
tems Design and Implementation (NSDI 2004), pp. 29–42,
San Francisco, CA, USA, March 2004.

[34] T. Abdelzaher, B. Blum, Q. Cao et al., “Envirotrack: towards an
environmental computing paradigm for distributed sensor
networks,” in 24th International Conference on Distributed
Computing Systems, 2004. Proceedings, pp. 582–589, Tokyo,
Japan, March 2004.

[35] G. Omojokun, “A survey of Zigbee wireless sensor network
technology: topology, applications and challenges,” Interna-
tional Journal of Computer Applications, vol. 130, no. 9,
pp. 47–55, 2015.

[36] R. Gummadi, O. Gnawali, and R. Govindan, “Macro-program-
ming wireless sensor networks using Kairos,” in Distributed
Computing in Sensor Systems. DCOSS 2005. Lecture Notes in
Computer Science, vol 3560, V. K. Prasanna, S. S. Iyengar, P.
G. Spirakis, and M. Welsh, Eds., pp. 126–140, Springer, Berlin,
Heidelberg, 2005.

[37] D. Dietterle, J. Ryman, K. Dombrowski, and R. Kraemer,
“Mapping of high-level SDL models to efficient implementa-
tions for TinyOS,” in Euromicro Symposium on Digital System
Design, 2004. DSD 2004, pp. 402–406, Rennes, France, August-
September 2004.

[38] K. K. Sandhu, “Specification and description language
(SDL),” in IEE Tutorial Colloquium on Formal Methods
and Notations Applicable to Telecommunications, London,
UK, March 1992.

[39] A. Dearle, D. Balasubramaniam, J. Lewis, and R. Morrison, “A
component-based model and language for wireless sensor net-
work applications,” in 2008 32nd Annual IEEE International
Computer Software and Applications Conference, pp. 1303–
1308, Turku, Finland, July 2008.

[40] M. Botts and A. Robin, “OpenGIS sensor model language
(SensorML) implementation specification,” in Open Geospa-
tial Consortium (OGC, 07-000), Wayland, MA, USA, 2007.

[41] M. Diaz, D. Garrido, L. Llopis, B. Rubio, and J. M. Troya, “A
component framework for wireless sensor and actor net-
works,” in 2006 IEEE Conference on Emerging Technologies
and Factory Automation, pp. 300–307, Prague, Czech Repub-
lic, September 2006.

[42] M. M. R. Mozumdar, F. Gregoretti, L. Lavagno, L. Vanzago,
and S. Olivieri, “A framework for modeling, simulation and
automatic code generation of sensor network application,” in

2008 5th Annual IEEE Communications Society Conference
on Sensor, Mesh and Ad Hoc Communications and Networks,
pp. 515–522, San Francisco, CA, USA, June 2008.

[43] S. Bhatti, J. Carlson, H. Dai et al., “MANTIS OS: an embedded
multithreaded operating system for wireless micro sensor plat-
forms,” Mobile Networks and Applications, vol. 10, no. 4,
pp. 563–579, 2005.

[44] M. Vasilevski, N. Beilleau, H. Aboushady, and F. Pecheux, “Effi-
cient and refined modeling of wireless sensor network nodes
using SystemC-AMS,” in 2008 Ph.D. Research in Microelectron-
ics and Electronics, pp. 81–84, Istanbul, Turkey, June 2008.

[45] A. Demaille, S. Peyronnet, and B. Sigoure, “Modeling of sensor
networks using XRM,” in Second International Symposium on
Leveraging Applications of Formal Methods, Verification and
Validation (isola 2006), pp. 271–276, Paphos, Cyprus, Novem-
ber 2006.

[46] V. A. Oleshchuk, “Ad-hoc sensor networks: modeling, specifi-
cation and verification,” in Second IEEE International Work-
shop on Intelligent Data Acquisition and Advanced
Computing Systems: Technology and Applications, 2003. Pro-
ceedings, pp. 76–79, Lviv, Ukraine, September 2003.

[47] J. M. T. Portocarrero, F. C. Delicato, P. F. Pires, and T. V.
Batista, “Reference architecture for self-adaptive management
in wireless sensor networks,” in Adaptive and Intelligent Sys-
tems. ICAIS 2014. Lecture Notes in Computer Science, vol
8779, A. Bouchachia, Ed., Springer, Cham, 2014.

[48] A. Hac, Wireless Sensor Network Designs, John Wiley & Sons
Ltd, 2003.

[49] K. Doddapaneni, E. Ever, O. Gemikonakli, I. Malavolta,
L. Mostarda, and H. Muccini, “A model-driven engineering
framework for architecting and analysing wireless sensor net-
works,” in 2012 Third International Workshop on Software
Engineering for Sensor Network Applications (SESENA),
pp. 1–7, Zurich, Switzerland, June 2012.

[50] P. Boonma, Y. Somchit, and J. Natwichai, “A model-driven
engineering platform for wireless sensor networks,” in 2013
Eighth International Conference on P2P, Parallel, Grid, Cloud
and Internet Computing, pp. 671–676, Compiegne, France,
October 2013.

[51] I. Argyris, M. Mura, and M. Prevostini, “Using MARTE for
designing power supply section of WSNs,” in M-BED 2010:
Proceeding of the 1st Workshop on Model Based Engineering
for Embedded Systems Design 2010, Germany, 2010.

[52] F. Krichen, B. Hamid, B. Zalila, and M. Jmaiel, “Towards a
Model-Based Approach for Reconfigurable Dre Systems,” in
Software Architecture, Springer, 2011.

[53] M. Ben Said, Y. H. Kacem, N. Ben Amor, M. Kerboeuf, and
M. Abid, “Fine-grain adaptation for real time embedded sys-
tems using UML/MARTE profile,” in Proceedings of the 2013
Forum on specification and Design Languages (FDL), pp. 1–8,
Paris, France, September 2013.

[54] A. R. da Silva, “Model-driven engineering: a survey supported
by the unified conceptual model,” Computer Languages, Sys-
tems & Structures, vol. 43, pp. 139–155, 2015.

[55] A. R. Paulon, A. A. Frohlich, L. B. Becker, and F. P. Basso,
“Wireless sensor network UML profile to support model-
driven development,” in 2014 12th IEEE International Confer-
ence on Industrial Informatics (INDIN), pp. 227–232, Porto
Alegre, Brazil, July 2014.

[56] A. Prakash, R. Chaparadza, and A. Starschenko, “A
model-driven approach to design and verify autonomic

12 Journal of Sensors

http://www.nsnam.org


network behaviors,” in 2011 IEEE GLOBECOM Workshops
(GC Wkshps), pp. 701–706, Houston, TX, USA, Decemebr
2011.

[57] H. Wada, P. Boonma, J. Suzuki, and K. Oba, “Modeling and
executing adaptive sensor network applications with the
Matilda UML virtual machine,” in Proceedings of the 11th
IASTED International Conference on Software Engineering
and Applications, pp. 216–225, ACTA Press, 2007.

[58] C. Vicente-Chicote, F. Losilla, B. Álvarez, A. Iborra, and
P. Sánchez, “Applying MDE to the development of flexible
and reusable wireless sensor networks,” International Jour-
nal of Cooperative Information Systems, vol. 16, pp. 393–
412, 2007.

[59] C. Vidal, C. Fernández-Sánchez, J. Díaz, and J. Pérez, “A
model-driven engineering process for autonomic sensor-
actuator networks,” International Journal of Distributed Sensor
Networks, vol. 11, no. 3, Article ID 684892, 2015.

[60] A. Sahu, E. B. Fernandez, M. Cardei, and M. Vanhilst, “A pat-
tern for a sensor node,” in Proceedings of the 17th Conference
on Pattern Languages of Programs - PLOP '10, pp. 7:1–7:7,
ACM Press, 2010.

[61] M. Cardei, E. B. Fernandez, A. Sahu, and I. Cardei, “A pattern
for sensor network architectures,” in Proceedings of the 2Nd
Asian Conference on Pattern Languages of Programs - Asian-
PLoP ‘11, pp. 10:1–10:8, ACM Press, 2011.

[62] D. Gay, P. Levis, and D. Culler, “Software design patterns for
TinyOS,” ACM Transactions on Embedded Computing Sys-
tems, vol. 6, no. 4, 2007.

[63] J. K. Jacoub, R. Liscano, J. S. Bradbury, and J. Fisher, “UML
modelling of design patterns for wireless sensor networks,”
in Proceedings of the 2nd International Conference on Sensor
Networks - Volume 1: SENSORNETS, pp. 89–93, Barcelona,
Spain, 2013.

[64] K. Tei, Y. Fukazawa, and S. Honiden, “Applying design
patterns to wireless sensor network programming,” in 2007
16th International Conference on Computer Communications
and Networks, pp. 1099–1104, Honolulu, HI, USA, August
2007.

[65] V. Gupta, E. Tovar, L. M. Pinho, J. Kim, K. Lakshmanan, and
R.(. R.). Rajkumar, “sMapReduce: a programming pattern for
wireless sensor networks,” in Proceeding of the 2nd workshop
on Software engineering for sensor network applications -
SESENA '11, pp. 37–42, ACM Press, 2011.

[66] M. B. Said, Y. H. Kacem, M. Kerboeuf, N. B. Amor, and
M. Abid, “Design patterns for self-adaptive RTE systems spec-
ification,” International Journal of Reconfigurable Computing,
vol. 2014, Article ID 536362, 21 pages, 2014.

[67] EARN project2015, http://www.crns.rnrt.tn/event/earn-2015.

[68] F. Ciccozzi and R. Spalazzese, “MDE4Iot: supporting the Inter-
net of things with model-driven engineering,” in Intelligent
Distributed Computing X. IDC 2016. Studies in Computational
Intelligence, vol 678, C. Badica, A. El Fallah Seghrouchni, A.
Beynier, D. Camacho, C. Herpson, K. Hindriks, and P. Novais,
Eds., pp. 67–76, Springer, Cham, 2016.

[69] F. Ciccozzi, I. Crnkovic, D. Di Ruscio, I. Malavolta,
P. Pelliccione, and R. Spalazzese, “Model-driven engineering
for mission-critical Iot systems,” IEEE Software, vol. 34,
no. 1, pp. 46–53, 2017.

13Journal of Sensors

http://www.crns.rnrt.tn/event/earn-2015

	Wireless Sensor Network Design Methodologies: A Survey
	1. Introduction
	2. Comparison Criteria
	3. Low-Level-Based Approaches for WSN Development
	3.1. Node-Level Abstraction Approaches
	3.2. Group-Level Abstraction Approaches
	3.3. Network-Level Abstraction Approaches
	3.4. Synthesis

	4. High-Level-Based Approaches for WSN Development
	4.1. Component-Based Approaches
	4.1.1. High-Level SDL Models (HL-SDL)
	4.1.2. Insense
	4.1.3. SensorML
	4.1.4. UM-RTCOM
	4.1.5. MathWorks Modeling Approach
	4.1.6. SystemC
	4.1.7. Middleware
	4.1.8. Synthesis

	4.2. Model-Driven Engineering for WSN Development
	4.2.1. MDE-Based Approaches for WSN
	4.2.2. Design Patterns for WSN Development


	5. Summary and Synthesis
	Conflicts of Interest
	Acknowledgments

