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Abstract: In this paper a new wireless sensor network localization algorithm, based 
on a mobile beacon and TSVM (Transductive Support Vector Machines) is 
proposed, which is referred to as MTSVM. The new algorithm takes advantage of a 
mobile beacon to generate virtual beacon nodes and then utilizes the beacon vector 
produced by the communication between the nodes to transform the problem of 
localization into one of classification. TSVM helps to minimize the error of 
classification of unknown fixed nodes (unlabeled samples). An auxiliary mobile 
beacon is designed to save the large volumes of expensive sensor nodes with GPS 
devices. As shown by the simulation test, the algorithm achieves good localization 
performance.  
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1. Introduction 

How to localize the position of each node? This is a very important research field 
for a wireless sensor network. In sensor networks, in order the data collected by 
nodes to make sense, it must be attached to their position information. Moreover, 
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coverage, deployment, target tracking and other related operations rely much on the 
efficient localization of nodes. After years of research and development, the 
scholars have put forward plenty of node localization algorithms. In accordance 
with the principle whether the practical distance between nodes is to be measured, 
the localization algorithms may be divided into range-based algorithms and range-
free algorithms. In range-based localization algorithms, the most frequently applied 
distance measurement methods include Time Difference Of Arrival (TDOA) [1], 
Angle Of Arrival (AOA) [2] and Received Signal Strength Indication (RSSI) [3]. 
All of them require additional hardware support, and normally, the hardware is 
quite expensive, consuming much energy. The range-free localization algorithms 
include DV-Hop [4], MDS-MAP [5] and MDL [6]. In recent years, many scholars 
proposed also the localization algorithm based on machine learning [7-10]. This 
algorithm firstly builds a prediction model by training and learning in the 
deployment area, and then further estimates the position information of unknown 
nodes in the area. 

Inspired by machine learning algorithms of Transductive Support Vector 
Machines (TSVM) [11] and Progressive Transductive Support Vector Machines 
(PTSVM) [12], in this paper an auxiliary mobile beacon marching forward, 
following a planned route will be employed to present a novel localization 
algorithm – MTSVM to estimate the position information of the unknown nodes in 
wireless sensor networks. The geographical area to be deployed with wireless 
sensor nodes is partitioned into several grids. On this basis the nodes will be 
classified into these grids. Thus, the problem of localization is naturally transformed 
into a problem of classification. The training data required by TSVM is derived 
from signal vectors between the nodes for communication. These signal vectors are 
comprised by few labeled samples and plenty of unlabeled samples. In this paper 
the signal vectors for communication between the auxiliary mobile beacon nodes 
and unknown fixed nodes are referred to as labelled samples. By contrast, the signal 
vectors for communication between the unknown fixed nodes are denoted as 
unlabeled nodes. Another important feature of TSVM is that in the learning process 
with mixed samples, the sample distribution information of a test set will be 
transferred from unlabeled samples to the final classifier. Since the number of 
unlabelled samples is larger, compared to labeled samples, they are able to better 
describe the data feature in the entire sample space, so as to endow the trained 
classified with a better propagation performance. In this paper it is assumed that the 
nodes in the area are able to communicate via a signal. As for this, the algorithm is 
not fit for large scale networks. 

The rest of this paper is organized as follows. Section 2 briefly introduces 
theories related to Support Vector Machines (SVM) [13] and TSVM. Section 3 
gives detailed explanation of MTSVM algorithm. Section 4 shows the simulation 
test result. In Section 5 the research in this paper is summarized and the future work 
is prospected. 
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2. SVM and TSVM 

2.1. SVM 

Assuming that there are n  training data samples , 1, 2, , , ,m
i ix i n x R= ∈L  with 

their corresponding classes separately labeled as 1 2, , , ny y yL , these samples are 
divided into two categories: H  and H¬  (non- H ). If ix H∈  then 1iy = ; or else, 

1iy = − . Afterwards, it is required to predict whether a new data sample x  belongs 
to H  or not. SVM is just designed to solve this problem.    

Defining a kernel function ( , )K x x ′ , this function has to comply with Mercer 
condition [14]. The central station then solves the following optimization problem: 

(1)          
21min || || ,

2
s.t.: [( )] 1, 1, 2, , .i i

w

y w x b i n⋅ + ≥ = L

  

The decision function is defined as 

( ) sgn( ).if x w x b= ⋅ +  

Under the linearly separable condition, all training samples shall comply with 
| ( ) | 1f x ≥ . In the following discussion, the area complying with | ( ) | 1f x <  will be 
denoted as a margin band for the separating hyperplane. 

Assuming that the training data samples are linearly non-separable, (1) may be 
modified as  

(2)             
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With Wolfe theory the problem can be transformed to its dual problem. 

(3)             1 , 1

1

1max ( ) ( , ),
2

s.t.: 0, 0 , 1, 2, , .

n n

i i j i j i j
i i j

n

i i i
i

W y y K x x

y C i n

α α α α

α α

= =

=

= −

= ≤ ≤ =

∑ ∑

∑ L

 

Assuming that the optimal solution for the quadratic programming problem 
has been worked out, which is * * * * T

1 2( , , , ) ,nα α α α= L  it is hereby possible to 

further obtain * *

1
,

n

i i i
i

w y xα
=

= ∑  *

1

( , ),
n

j i i i j
i

b y y K x xα∗

=

= −∑  with the subscript 

accepted as { | 0}jj j α∗∈ > . Then the decision function is obtained: 

(4)                 
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So far, drawing a support from the kernel function ( , )K x x ′ , the input space is 
successfully projected into a higher dimensional Hilbert space to work out the 
hyperplane ( ).g x  Moreover, the geometric interval of the training sample set in 
this hyperplane is maximized. In this paper, a radial basis function is used as a 
kernel function. 

(5)             
2

2

|| ||( , ) exp .x xK x x
σ

′⎛ ⎞−′ = −⎜ ⎟
⎝ ⎠

 

2.2. TSVM 

Assuming that the following two sample sets are given: A group of independent 
identically distributed labeled training sample sets 1 1( , ), ,( , ), ,m

n n ix y x y x R∈L  
( 1,1)iy ∈ −  and another group of unlabelled sample sets with the same distribution 

* * *
1 2, , , ky y yL , the next step is to find a solution in order to classify the unlabeled 

samples set * * *
1 2, , , ky y yL , and to maximize the spacing of the jointed sequence 

* * * *
1 1 1 1( , ), , ( , ), ( , ), , ( , )n n k kx y x y x y x yL L . Under a normal linearly non-separable 

condition, the training process of TSVM may be described as the following 
optimization problem: 

(6)             
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where C and *C  are the parameters to be assigned and adjusted by users, which 
play the same role as parameter C  in (2). In the training process, 1-2 unlabeled 
samples with possibly major influence on the subsequent training process are 
selected, being endowed with the most possible label under the preset state. On this 
basis, the samples will be included in the label samples for another round of 
training. Normally, new included samples may affect a new round of training, 
leading to a slight offset to present a hyperplane. In this process it might be 
discovered that some previously made labels are unsuitable. Once this happens, the 
unfit labels shall be cancelled, and the samples shall be restored to an unlabelled 
state. By this meticulously designed incremental assignment and dynamic 
adjustment rule, the predicted hyperplane will become closer and closer to the 
optimal hyperplane in training, and finally figure out a local optimal solution  
for (6). 
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3. MTSVM 

3.1. Problem description and model   

It is assumed that m  wireless sensor network nodes 
1 2, , mS S SK  with unknown 

positions are deployed in a 2D area [0, ] [0, ]( 0]D D D× > . Then the 2D area is 
divided into n  grids, as shown in Fig. 1 (the following part of this paper mainly 
discusses the classification of X  axis, while Y axis is exactly the same). Our 
objective is to estimate the 2D coordinates of these unknown nodes. 

Defining two class sets, with each class set containing T classes: 
• Defining T classes 

1 2
{TSVM , TSVM , , TSVM }

Tx x xL  along axis X , while 
each class TSVM

kx contains all the nodes when /X iD T≥ ; 

• Defining T classes 
1 2

{TSVM ,TSVM , ,TSVM }
Ty y yL  along axis Y , while 

each class TSVM
ky contains all the nodes when /Y iD T≥ . 

 
Fig. 1. The 2D area is divided into T T×  grids. Green arrow indicates the moving  

direction of mobile beacon 

Expression SS( , ), 1, 2, , ,jS S j m= L  refers to the Received  

Signal Strength (RSS) of node S  from a random node ;jS  

1 2, (SS( , ), SS( , ), ,SS( , )),j j j j m js s S S S S S S= L  is defined as the signal vector, 

where jy  refers to the class label. In this paper a mobile node bS  is employed to 
assist the localization, which is deployed to march (lingering for a certain period in 
each grid) along the direction pointed by the green arrow in Fig. 1. The mobile 
beacons are usually outfitted with a GPS device, so that mobile beacon bS  may be 
able to generate n  virtual beacon nodes biS  and their separate position 
information. These virtual beacons are configured to receive RSS from all  
unknown fixed nodes in the network, leading to the signal vector 

1 2, (SS( , ), SS( , ), , SS( , )),bi bi bi bi m bis s S S S S S S= L  as well as the class label 

, {1, 2, , },bi biy y T∈ L for each class TSVM
kx . The data information will be used 

as labeled data sample for TSVM. By contrast, the signal vector between unknown 
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fixed nodes, denoted as 1 2, (SS( , ), SS( , ), , SS( , )),j j j j m js s S S S S S S= L  as well as 

the corresponding label *
jy  will be taken as unlabeled data sample for TSVM. 

At each step of the training, the present labeled samples will be used to do 
inductive learning to figure out the decision function for the present hyperplane, 
with the form shown in (4). In addition, the decision function value for all present 
unlabeled samples will also be calculated. On this basis, a new positive label will be 
made according to the following expression (7) and a new negative label will be 
made according to (8), i.e., labeling of two unlabelled sample nodes at once. 
(7)              * *max ( ( )), s.t. 0 ( ) 1,i if x f x< <  

(8)             * *min ( ( )), s.t. 1 ( ) 0.i if x f x− < <  
If there is no unlabeled sample that complies with (7) after training no new 

position label will be made in the current circulation. Similarly, if there is no 
unlabeled sample that complies with (8), no new negative label will be made in the 
current circulation. This process will be continued, until no unlabeled sample 
appears within the margin band area of the present optimal hyperplane. Then it 
would be considered that the problem has got its optimal solution. All the rest 
unlabeled samples will be classified and labeled by a current decision function. 
After that the calculation is ended and the result is obtained. This process is defined 
as a pair-based labeling method. In the labeling process, it is possible that after 
training, the labeled no-label sample value is different from the label value obtained 
by classification with the present hyperplane. This may be caused by an error 
labeling at the early stage of the iteration process. Under such circumstance, the 
sample will be reset as unlabeled, so as to continue to go through the iteration 
process. In this way this sample may get a more reliable new label in future 
trainings, and this approach is referred to as a label reset. 

If an unknown node is estimated belonging to TSVM
kx  and not belonging to 

1
TSVM ,

kx +
 the horizontal coordinate of the unknown node may hereby be denoted 

by 1 / .
2

k D T⎛ ⎞+⎜ ⎟
⎝ ⎠

 If the classification estimation is correct, the maximum 

localization error of the unknown node will be / 2 .D T  

3.2. Classification strategy and algorithm description 

It may be seen from the above discussion that the classification problem in this 
paper belongs to a multi-class classification problem. Common multi-class 
classification methods include one-to-rest, one-to-one and a decision binary tree 
method. In accordance with the feature of the training samples, a multiple class to 
multiple class classification method is proposed in this paper, in order to construct 
T  two-class classifiers. Each classifier will be used to separate the samples on the 
left side from the samples on the right side. On this basis we are to estimate the 
attribution of unknown nodes. 

The detailed classification strategy is described in two steps as follows: 
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Step 1. Defining a training set 
1 1{( , ), , ( , )},n nP x y x y= L  

where , {1, , }, 1, 2, , .m
i bi ix s R y T i n= ∈ ∈ =L L  

Step 2. For 1,2, ,k T= L , the following calculation will be made. According 
to Fig. 1, the training samples on the right of class T SV M

kx  are taken as positive 
samples, and the samples on the left will be considered as negative samples. A 
Decision Function fk(x) is applied to decide whether the input x  belongs to 
T SV M

kx or not:  

(9)             
1

( ) sgn( ( )) sgn( ( ) ( , ) ).
n

k k k k k
i i i

i

f x g x g x y K x x bα
=

= = = +∑  

MTSVM localization algorithm based on TSVM is described in five steps as 
follows: 

Step 1. As described in 3.1, after a mobile beacon gets TSVM training data, 
the parameters C  and *C  will be configured, while SVM training program will be 
executed, and figure out α ∗  and the corresponding b∗  for class TSVM

ix . Then, 
the mobile beacon will transmit the data to the entire network. All unknown nodes 
will store the data information, and then calculate the decision function of each 
class. 

Step 2. The auxiliary mobile beacon retreats from the network. The unknown 
nodes establish mutual communication and all the nodes may get a signal vector js . 
Plugging the signal vector into (9), it is easy to figure out the classification result of 
all unknown fixed nodes with regard to all the classes. Then the nodes are labeled. 
Afterwards, the aforementioned pair-based labeling method is applied to make a 
new positive label and a new negative label for unlabeled samples in the present 
margin band. 

Step 3. Repeating the training for all the samples, and calculating the 
discrimination function output for all unlabeled samples. If the label value of a 
certain preliminarily marked unlabeled sample is inconsistent with respect to 
current discrimination function output value, the label for the sample shall be 
cancelled according to a previously discussed label reset rule. 

Step 4. The pair-based labeling method is applied to seek for unlabeled no-
label samples in the present margin band, which complies with the new labeling 
condition. If there is such unlabeled sample, it must be labeled and then turn to Step 
(3). If there is no such unlabeled sample, the present hyperplane decision function 
will be used to classify and label the rest of all unlabeled samples and output the 
result. 

Step 5. If an unknown fixed node jS  belongs to T SV M
kx  and does not 

belong to 
1

TSVM ,
kx +

 then the horizontal coordinate (X axis) of jS  is estimated to 

be  1( ) /
2

k D T+ . The vertical coordinate of jS  may be figured out in the same 

way. 
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4. Simulation 

Assume that a wireless sensor network 1 2{ , , , }mS S SK  comprised by m  unknown 
fixed nodes is randomly deployed in a 60m×60m 2D area, with 500m =  and  

300m = . The ID of the nodes are separately 1, 2, , mL , while the communication 
radius is 60 mr = . Then the 2D area is divided into T T×  square grids, separately 
denoting 6T = , 8T = , 10T = , 12T = , 15T = , and 20T =  (i.e., the side length 
of the square grid is separately configured as 10 m, 7.5 m, 6 m, 5 m, 4 m and 3 m). 
The objective of the node localization is to work out the estimated position ˆ ˆ( , )i ix y  
of the unknown fixed node, in order to make ˆ ˆ( , )i ix y  closer to the real coordinates 
( , )i ix y  of the unknown fixed node as much as possible. In this paper MATLAB is 
applied to invoke LIBSVM software to implement the algorithm, and Average 
Localization Error (ALE) is adopted to measure the performance of the algorithm. 
The formula is as follows: 

(10)                

2 2

1

ˆ ˆ( ) ( )
ALE ,

m

i i i i
i

x x y y

m
=

− + −
=
∑

  

where ˆ ˆ( , )i ix y  denotes the estimated coordinates of i-th node, and m  stands for the 
number of unknown fixed nodes. Fig. 2 shows the distribution of nodes when 

500m =  and T = 6, and T = 10. 

      
(a)                                                                                    (b)  

Fig. 2. Node distribution under two different classification patterns when m = 500. Blue “o” stands for 
the unknown nodes, red “*” stands for generated virtual beacon nodes: T = 6 and m = 500 (a); T = 10 

and m = 500 (b) 

It can be seen from Fig. 3 that as the number of classes increases, the average 
localization error tends to decrease.  

However, when 15T ≥ , the descending tendency is no longer obvious. This is 
mainly caused by the classification error. On the other hand, according to the Fig. 3, 
the average localization error, when 500m =  is slightly lower than that when 
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300m = . However, the difference is not significant. This may help to demonstrate 
that the higher density of nodes leads to higher localization precision. Besides, on 
the premise with dense nodes in the network, the localization effect of MTSVM is 
more stable and MTSVM is insensitive to nodes distribution and number variation. 

 

 
Fig. 3. MTSVM average localization error 

Fig. 4 shows the average localization error of a traditional SVM and MTSVM 
under the environment when 500m =  and 300m = . As shown in the graph, the 
localization error of MTSVM is obviously lower than SVM’s. This must be due to 
the high classification accuracy of MTSVM. 

    
(a)                                                                              (b)  

Fig. 4. ALE comparison of SVM vs. MTSVM: average localization error when m = 500 (a); average 
localization error when m = 300 (b) 

5. Conclusion 

In connection with the defects of the wireless sensor networks, such as limited 
energy and high beacon node cost, in this paper a mobile beacon is adopted to 
generate a virtual beacon. Inspired by the learning algorithm, TSVM-based 
MTSVM algorithm is proposed to estimate the position, achieving high localization 
accuracy. However, since direct communication between nodes is required to get 
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the signal vector, MTSVM is only applicable to dense wireless sensor networks. In 
addition, when there are too many unlabeled samples (unknown fixed nodes), 
frequent pairing labeling and re-training after the label reset have increased the 
complexity of MTSVM algorithm. This is one disadvantage of MTSVM. One 
possible improvement is to accelerate the training speed by using some faster 
learning algrithms, such as the incremental and decremental learning methods [15]. 
Furthermore, the way to apply a learning algorithm in node localization under a 
large scale network environment is our next. 
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