
IEEE COMMUNICATION SURVEYS & TUTORIALS

Wireless Sensor Network Virtualization: A Survey
Imran Khan, Student Member, IEEE, Fatna Belqasmi, Member, IEEE, Roch Glitho, Senior Member, IEEE,

Noel Crespi, Senior Member, IEEE, Monique Morrow, Senior Member, IEEE, and Paul Polakos

Abstract—Wireless Sensor Networks (WSNs) are the key com-
ponents of the emerging Internet-of-Things (IoT) paradigm. They
are now ubiquitous and used in a plurality of application domains.
WSNs are still domain specific and usually deployed to support
a specific application. However, as WSNs’ nodes are becoming
more and more powerful, it is getting more and more pertinent to
research how multiple applications could share a very same WSN
infrastructure. Virtualization is a technology that can potentially
enable this sharing. This paper is a survey on WSN virtualization.
It provides a comprehensive review of the state-of-the-art and
an in-depth discussion of the research issues. We introduce the
basics of WSN virtualization and motivate its pertinence with
carefully selected scenarios. Existing works are presented in detail
and critically evaluated using a set of requirements derived from
the scenarios. The pertinent research projects are also reviewed.
Several research issues are also discussed with hints on how they
could be tackled.

Index Terms—Wireless Sensor Network (WSN), Internet-of-
Things (IoT), virtualization, node-level virtualization, network-
level virtualization.

I. INTRODUCTION

THE emerging Internet-of-Things (IoT) concept is consid-

ered to be the next technological revolution, one that real-

izes communication between many types of objects, machines

and devices, and at an unprecedented scale [1]. WSNs can be

seen as the basic constituents of IoT because they can help users

(humans or machines) to interact with their environment and

react to real-world events. These WSNs are composed of nodes

that are amalgamations of micro-electro-mechanical systems,

wireless communications and digital electronics, and have the

ability to sense their environment, perform computations and

communicate [2]. The most obvious drawback of the current

WSNs is that they are domain-specific and task-oriented, tai-

lored for particular applications with little or no possibility of

Manuscript received October 27, 2014; revised March 2, 2015; accepted
March 3, 2015. This work is partially supported by CISCO systems through
grant (CG-576719), European ITEA-2 funded project Web-of-Objects (WoO),
and by the Canadian Natural Sciences and Engineering Research Council
(NSERC) through the Canada Research Chair in End-User Service Engineering
for Communications Networks.

I. Khan and N. Crespi are with the Institut Mines-Télécom, Télécom SudParis,
91011 Evry, France (e-mail: imran@ieee.org; noel.crespi@it-sudparis.eu).

F. Belqasmi is with the College of Innovative Technology, Zayed University,
Abu Dhabi, UAE (e-mail: fatna.belqasmi@zu.ac.ae).

R. Glitho is with the Concordia Institute for Information Systems Engineer-
ing (CIISE), Concordia University, Montreal, QC H3G 2W1, Canada (e-mail:
glitho@ece.concordia.ca).

M. Morrow and P. Polakos are with CISCO Systems, Inc., San Jose, CA
95134 USA (e-mail: mmorrow@cisco.com; ppolakos@cisco.com).

Digital Object Identifier 10.1109/COMST.2015.2412971

reusing them for newer applications. This strategy is inefficient

and leads to redundant deployments when new applications

are contemplated. With the introduction of the IoT, it is not

unrealistic to envision that future WSN deployments will have

to support multiple applications simultaneously.

Virtualization is a well-established concept that allows the

abstraction of actual physical computing resources into logical

units, enabling their efficient usage by multiple independent

users [3]. It is a promising technique that can allow the efficient

utilization of WSN deployments, as multiple applications will

be able to co-exist on the same virtualized WSN. Virtualization

is a key technique for the realization of the Future Internet

[4] and it is indeed quite pertinent to explore it in the context

of WSNs.

Virtualizing WSNs brings with it many benefits; for example,

even applications that were not envisioned a priori may be able

to utilize existing WSN deployments. A second, related benefit

is the elimination of tight coupling between WSN services/

applications and WSN deployments. This allows experienced

as well as novice application developers to develop innova-

tive WSN applications without needing to know the technical

details of the WSNs involved. Another benefit is that WSN

applications and services can utilize as well as be utilized by

third-party applications. It can also help to define a business

model, with roles such as physical WSN provider, virtual WSN

provider and WSN service provider.

The WSN virtualization concept can be applied to several

interesting application areas. Recent advances in smart phones

and autonomous vehicles [5] have made it possible to have

multiple on-board sensors on them. Mobile crowd sensing is

one area that can take advantage of virtualizing these sensors

through participatory and opportunistic sensing [6] and [7].

An opportunistic urban sensing scenario is presented in [7]

in which thousands of sensors are required to monitor the

CO2 concentration in an urban city. Instead of deploying these

sensors and managing them, WSN virtualization can be used

as a key enabling technology to utilize sensors from citizens

to provide the required data. Similarly, Sensing-as-a-Service

(SaaS) model is presented in [8] along with several use case

scenarios. WSN virtualization can help realize the SaaS model

through cost-efficient utilization of deployed sensors. Several

other motivational examples can be found in [9] and [10].

Of course there are many technical challenges to resolve

before such utilization takes place but they also provide a strong

motivation for a deeper and complete search space exploration

to propose innovative solutions in this area. Many researcher

now consider WSN virtualization as a key enabling technol-

ogy and provide its motivation. According to the authors in

1553-877X © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



IEEE COMMUNICATION SURVEYS & TUTORIALS

[11], WSN virtualization is a powerful enabler for information

sharing in the context of IoT by using it along with data

analysis techniques. A smart city environment is considered

in [12], where WSN virtualization could be used to efficiently

utilize the deployed infrastructure. To achieve this type of

utilization, the use of multiple concurrency models is advised,

depending on the usage context. In [13], WSN virtualization

is discussed as a key enabler to promote resource efficiency,

with a cooperative model that captures several aspects of WSN

virtualization. In [14] WSN virtualization is envisioned as an

important technology to create large-scale sensor platforms that

are used to satisfy efficient usage of network resources.

There are surveys (e.g., [15]) that cover wireless network

virtualization at large, but they do not focus on the specifics of

WSN virtualization. Although it is a key enabling technology,

the few surveys published to date on WSN virtualization (e.g.,

reference [16], reference [17]), have several limitations. They

do not include real world motivating scenarios and are also

dated because they do not review the most recent developments

in the area. Furthermore they lack comprehensiveness in terms

of what is reviewed and how it is reviewed. There is for instance

no well-defined yardstick for the critical analysis of the state of

the art. In addition, they do not elaborate on potential solutions

when it comes to research directions.

This paper is a survey on wireless sensor network virtual-

ization. It aims at addressing the shortcomings of the very few

surveys published so far on the topic. From that perspective it

makes the following contributions:

• Real world motivating scenarios for WSN virtualization.

• Comprehensive and in-depth review of the state of the art

including the most recent developments in the area.

• Critical analysis of the state of the art using well defined

yard-sticks derived from the motivating scenarios.

• An overview of the open issues along with insights on

how they might be solved.

In Section II we discuss the basics of WSN virtualization

concepts and its types. In Section III, we first present the

motivating scenarios and then provide a set of requirements.

Based on these requirements we critically review the state-of-

the-art in Section IV. Relevant WSN virtualization projects are

discussed in Section V. Section VI outlines several research

directions and Section VII concludes the paper.

II. WSN VIRTUALIZATION BASICS

WSN virtualization can be broadly classified into two cate-

gories: Node-level virtualization and Network-level virtualiza-

tion. In this section we discuss both these categories.

A. Node-Level Virtualization

WSN node-level virtualization allows multiple applications

to run their tasks concurrently on a single sensor node [18],

so that a sensor node can essentially become a multi-purpose

device. The basic concept of node level virtualization is il-

lustrated in Fig. 1. There are two ways to achieve node-level

virtualization: Sequential and Simultaneous execution.

Fig. 1. Execution of multiple applications in a general purpose WSN node.

Sequential execution can be termed a weak form of virtu-

alization, in which the actual execution of application tasks

occurs one-by-one (in series). The advantage of this approach

is its simple implementation, while the obvious disadvantage

is that applications have to wait in a queue. In simultane-

ous execution, application tasks are executed in a time-sliced

fashion by rapidly switching the context from one task to

another. The advantage of this approach is that application tasks

that take less time to execute will not be blocked by longer

running application tasks, while the disadvantage is its complex

implementation.

B. Network-Level Virtualization

It is WSN network-level virtualization that enables a Virtual

Sensor Network (VSN). A VSN is formed by a subset of a

WSN’s nodes that is dedicated to one application at a given time

[19]. Enabling the dynamic formation of such subsets ensures

resource efficiency, because the remaining nodes are available

for different multiple applications (even for applications that

had not been envisaged when the WSN was deployed), although

not necessarily simultaneously.

WSN network-level virtualization can be achieved in two

different ways. One way is by creating multiple VSNs over the

same underlying WSN infrastructure, as illustrated in Fig. 2(a).

WSN nodes that are not part of any VSN remain available for

other applications or network functions, such as routing. The

second way is where a VSN is composed of WSN nodes from

three different administrative domains, as shown in Fig. 2(b),

facilitating data exchange between them that would not be

possible otherwise.



KHAN et al.: WIRELESS SENSOR NETWORK VIRTUALIZATION: A SURVEY

Fig. 2. VSN concept. (a) Multiple VSNs over single WSN. (b) Single VSN
over multiple WSNs.

III. WSN VIRTUALIZATION—MOTIVATING

SCENARIOS AND REQUIREMENTS

In this section we first present two scenarios that are derived

from the literature, and then come up with a set of requirements.

Using these requirements we critically review the existing

work, grouping our summation of that work under three types:

node-level virtualization, network-level virtualization, and hy-

brid solutions.

A. Motivating Scenarios

The scenarios described here illustrate the motivation and

benefits of using WSN virtualization in common WSN

deployments.

1) Fire Monitoring Scenario: Consider the example of a city

near an area where brush fires are common [9]. We assume

that the city administration is interested in the early detection

of fire eruption and in its course, using a WSN and a fire

contour algorithm to determine the curve, shape and direction

of fire. One approach is that the city administration could

deploy WSN nodes all over the city (i.e., on each street and

at individual houses), but this is not very efficient because

some individuals may have already deployed WSN nodes in

their homes to detect fires. A more efficient approach would

be for the city administration to deploy WSN nodes to areas

under its jurisdiction, i.e., streets and parks, and to re-use the

WSN nodes already deployed in private homes. In this scenario,

two different applications share the same WSN infrastructure:

one, belonging to home owners, is confined to private WSNs

deployed in individual houses, and the other belongs to the

city administration and shares the private WSN nodes with

the WSN nodes deployed by the city administration. Periodic

notification or query-based models are not suitable because the

city administration application requires complete access to all

the WSN nodes for adaptive sampling.

Another issue is that to execute a fire contour algorithm in a

distributed fashion, WSN nodes need to exchange fire notifica-

tion messages with each other. The query-based data exchange

approach is not efficient as it will force the execution of the fire

contour algorithm at a remote centralized location, since two

WSN nodes located in their respective private domains cannot

exchange data directly. An overlay network is one possible so-

lution. This scenario illustrates the need for WSN virtualization,

as two different users need to share a common resource, i.e.,

WSN nodes.

2) Heritage Building Monitoring: A real-world deployment

of a WSN is presented in [20], in which a WSN is used to

monitor the impact of constructing a road tunnel under an

ancient tower in Italy, as it was feared that the tower could

lose its ability to stand on its own and collapse during the

construction. Now consider that there are three users interested

in the fate of the tower. The first is the construction company,

as it needs to make sure that the tower does not lose its ability

to stand on its own, otherwise it will have to pay a heavy

fine. The second user is the conservation board that routinely

monitors all the ancient sites around the city, and the third

user is the local municipality which will have to plan emer-

gency remedial/rescue actions in case the tower falls during the

construction.

It is quite possible that the conservation board has already

deployed its own WSN to monitor the health of ancient sites

including this tower. In this case the construction company and

the local municipality can use the existing sensor nodes during

the construction period. In the absence of WSN virtualization,

there are only two possible solutions. One is to rely on the

information provided by the conservation board’s application.

However this information may not be at the required gran-

ularity level. Worse, some of the information that is needed

might simply not be available because the requirements of

the construction company and of the local municipality were

not considered when the conservation board application was

designed and implemented. The second solution is that each

user deploys redundant WSN nodes. Here WSN virtualization

can play a pivotal role by fulfilling the requirements of each

user.

B. Requirements

In this section we present a list of eight requirements, derived

from the scenarios mentioned above. In Table IV we indicate if

the existing solutions meet our identified requirements, and to

what degree.

The first requirement is the availability of node-level vir-

tualization. This is a fundamental requirement which ensures

that the sensor nodes can support the concurrent execution of

multiple applications.

The second requirement is network-level virtualization,

which concerns the ability of sensor nodes to dynamically form

groups to perform the isolated and transparent execution of

multiple application tasks in such a way that each group belongs

to a different application.



IEEE COMMUNICATION SURVEYS & TUTORIALS

The third requirement is support for application/service pri-

ority. It is our observation that most WSNs are deployed for

mission-critical situations like security, fire monitoring, battle-

field conditions and surveillance. In such situations, mission-

critical applications/services should have prioritized execution

mechanisms.

The fourth requirement is that any WSN virtualization so-

lution should be platform-independent and thus should not

depend on a particular hardware or software platform.

The fifth requirement is that the proposed solution should

have a resource discovery mechanism, for both neighbor dis-

covery and service discovery.

The sixth requirement is based on the applicability of the

proposed solution to resource-constrained sensor nodes, includ-

ing early generation sensor nodes. Mechanisms to allow legacy

sensor nodes to become part of a WSN virtualization solution

are also covered by this requirement.

The seventh requirement is heterogeneity, which means that

the solution should be applicable to a variety of WSN platforms

with different capabilities (e.g., processing power, memory).

These platforms would include MICAZ, MICA2, Atmel AVR

family, and MPS430 among others.

The eight requirement is the ability to select sensor nodes

for application tasks. When multiple applications concurrently

utilize a deployed WSN, selection of proper sensor nodes

is very important because applications may have spatial and

temporal requirements [21].

IV. STATE-OF-THE-ART

In this section we present the state-of-the-art and analyze

it critically. We categorize the existing work as Node-level

virtualization, Network-level virtualization and Hybrid solu-

tions. Hybrid solutions combine both node- and network-level

virtualization. Each category is further classified based on the

approaches used.

A. Node-Level Virtualization

We group the Node-level virtualization approaches under

two umbrellas: sensor operating system (OS) based solutions

and Virtual Machine-/Middleware (VM/M) based solutions. In

sensor OS-based solutions, the node-level virtualization is part

of the sensor OS. In VM/M-based solutions, the node-level

virtualization is performed by a component running on top of

the sensor’s OS.

Node-level virtualization solutions use two types of pro-

gramming models; event-driven and thread-based. Event-driven

programming model is simple to implement in sensors. Event-

driven programs have a main loop that listens for the events,

e.g., the temperature value going above a threshold. When the

event occurs a callback function is called to handle the event,

using an event-handler. When a program is blocked, by an

I/O event, its event-handler simply returns the control without

involving context switching. Thread-based model is more diffi-

cult to implement in sensors, due to limited resources and use

of common address space. Each program consist of multiple

threads, and when a thread is blocked, context switching is

required to execute other threads [22].

Fig. 3. Example node-level virtualization solutions. (a) OS-based solution
(e.g., Contiki). (b) Middleware-based solution (e.g., Agilla). (c) Virtual machine-
based solution (e.g., Squawk VM).

Fig. 3 shows the node-level virtualization types while Table I

illustrates the characteristics of the existing works addressing

node-level virtualization.

1) Sensor Operating System-Based Solutions: SenSmart

[23] is a recent multitasking sensor OS that supports the

execution of concurrent application tasks in very resource-

constrained sensor nodes. It is designed to tackle the issues

associated with the execution of concurrent application tasks.

Normally, application tasks have their associated predefined

stack space, but in SenSmart the stack allocation is managed

dynamically at run time. Initially, each application task gets

its default (stack) memory region and time slice, but during

its execution SenSmart manages the size and location of the

allocated stack in a transparent way. Each application task uses

logical addresses at runtime, managed by the OS and mapped

onto the physical memory. Stack space can be reclaimed from

those tasks that no longer require it. When a new task is

scheduled to run, the context of the current task is compressed

and saved in a circular buffer for its resumption. The system

architecture consists of a base station that compiles the code,

links it and eventually distributes it to the sensor node. There is

no mention of support for network layer support (6LoWPAN)

or any radio protocol.

The support for node-level virtualization is provided by com-

piling and linking multiple application task codes together in a

single code image. The application task codes are programmed

in nesC and the compiled binary code of each task is then

modified by a rewriter, combined with other binary codes and

finally linked with the precompiled kernel runtime. The kernel

runtime ensures that the application tasks, when instantiated,

follow the multitasking semantics (stack management, context

switching) and run concurrently. Once a final executable code

is generated, it can be disseminated to the sensor node using

any wireless reprogramming approach. The strategy of first

compiling and linking all the binary codes together means that

there is no separation of OS and application tasks, and, when-

ever a new application task is contemplated, all of the software

of the sensor node is updated. The OS uses an event-driven

programming model and follows a sense-and-send workflow

model [24].

SenSmart has been implemented in Mica2/MicaZ hardware

platforms and evaluated for overhead of common system func-

tions, application benchmarking, and task scheduler perfor-

mance when concurrent tasks are executed. The overhead of

common system functions is within acceptable range espe-

cially for important functions such as context saving, restoring



KHAN et al.: WIRELESS SENSOR NETWORK VIRTUALIZATION: A SURVEY

TABLE I
CHARACTERISTICS OF NODE-LEVEL VIRTUALIZATION SOLUTIONS

and switching. All these functions take between 127 µs to

316 µs. For application benchmarking it was found that the

same applications use more CPU cycles in SenSmart than in

TinyOS. For concurrent tasks, the evaluation found that delays

recorded during execution of multiple tasks has same order of

magnitude as context switching.

RIOT [25] is the latest attempt to address the challenges

of designing a flexible OS for diverse hardware in the IoT.

The concept of RIOT is based on the fact that none of the

existing OSs, traditional or resource-constrained, are capable

of supporting diverse hardware resources in the IoT. The focus

of RIOT is to provide features such as real-time multithreading

support, a developer-friendly programming model and POSIX-

like API based on C/C++, as well as full TCP/IP network stack

support for resource-constrained devices using 6LoWPAN and

RPL. RIOT is based on microkernel architecture and requires

only 1.5 kB of RAM and 5 kB of ROM for a basic application.

RIOT can run on 8-bit, 16-bit and full 32-bit processors, and

thus has the potential to become unique operating system for

diverse hardware devices in the IoT paradigm. This adaptability

is achieved by using a hardware abstraction layer. Overall,

RIOT takes a modular approach and the system services and

the user application tasks run as threads. The scheduler is

designed to minimize context switching between threads to

few clock cycles. The kernel is based on FireKernel [26]

providing maximum reliability and real-time multithreading.

System tasks have static memory allocation, but for application

threads dynamic memory management is used. RIOT is a work

in progress and so far there are no performance results or

comparisons with existing OSs, but the code is available on

their website.

In the context of WSN virtualization, RIOT uses a real-

time thread-based programming model where various system

services and application tasks are coded in standard ANSI

C/C++ and run in parallel. Threads can be preempted based on

their priority. Application tasks are coded independently of the

hardware and software, which makes it possible to run them

on different devices. In large-scale deployments such as Smart

Cities, sensor nodes and other IoT devices (e.g., surveillance

cameras) can be programmed conveniently.

So far there are no performance results regarding RIOT OS

however, in [27] the authors do present a theoretical comparison

of their approach against existing competition without any

qualitative or quantitative comparison.

SenSpire OS [28] is another recent effort that supports

both event-driven and thread-based programming models. Their

work has four main features: predictability—to guarantee that

sensor nodes respond to control messages, availability—the

nodes remain available for data forwarding when needed, pro-

gramming mode—which is hybrid, and efficiency—so that the

OS can be used on very resource-constrained sensor nodes.

Another contribution of SenSpire is a multi-layer (radio, re-

source and sensornet layers) abstraction to develop networked

applications. The radio layer makes it possible to write device

drivers using different MAC protocols. The resource layer

exposes the lower layer and allows different application tasks

to use it concurrently. A new object-oriented language (CSpire)

is provided to program user application tasks using a hybrid

programming model. SenSpire uses static optimizations, mean-

ing that application tasks, their states, and the kernel structures

should be known beforehand. This limits its flexibility, a re-

quirement for the real-world deployment of WSNs. The kernel



IEEE COMMUNICATION SURVEYS & TUTORIALS

of SenSpire is written in C and the application tasks are written

in CSpire. The paper describes extensive results based on the

implementation of SenSpire on Mica2, MicaZ, and TelosB

nodes. Its performance at various benchmarks is compared

to that of MANTIS [29] and TinyOS [30]. Overall findings

indicate that SenSpire offers a performance comparable to

those OSs.

For WSN virtualization, SenSpire incorporates both event-

driven and thread-based programming models. Tasks can be

programmed as events or as threads. Event tasks have higher

priority than thread tasks. System tasks are usually imple-

mented as event tasks because they are predictable and easier

to maintain. Application tasks are implanted as thread tasks

with varying priority levels. A thread task is preempted either

by a higher-priority thread task or when it goes to sleep. This

set up is unlike other OSs where thread tasks are executed

in a time-sliced manner. In SenSpire the threads follow run-

to-completion model unless they are preempted by a higher

priority thread. The execution of threads is sequential (First-

in First-out) when they have the same priority level. The use of

CSpire language to program application tasks means a learning

curve for developers. Despite using a layered-approach, appli-

cation tasks are tightly integrated with the OS and so when

new application tasks are contemplated, all of the sensor node

software is updated.

The performance results of SenSpire OS show that its in-

terrupt latency is less than TinyOS. The overhead of task

scheduling is compared against MANTIS OS [29] showing

more delay in case of SenSpire. The energy consumption of

various tasks including radio and CPU are almost similar to

TinyOS.

MANTIS [29] is a thread-based embedded operating system

supporting simultaneous execution on sensor nodes. The OS

kernel and threads are programmed in C language and are

portable across different hardware platforms. There are system-

level threads and user-level threads. The OS kernel, scheduler

and underlying hardware are exposed as APIs for the user-

level threads. MANTIS supports preemptive multithreading

by assigning priorities to threads, thereby allowing the inter-

leaving of tasks and avoiding delays. Long-running threads

can be preempted by short-running threads. Simultaneous ex-

ecution of these threads is achieved by context switching.

When execution of a thread is suspended, all its current states

are stored in its own stack and later retrieved to resume execu-

tion. Every thread has an entry in a thread table managed by

the kernel. Its size is fixed, hence only a predefined number

of user-level threads can be created. The other main features

of the OS include a dynamic reprogramming mechanism for

deployed sensor nodes, a remote debugging mechanism and

an x86-based prototype platform. Dynamic reprogramming

options are, the wireless re-flashing of the entire OS, the re-

programming of single threads and changing the variables of a

thread. The wireless re-flashing of the OS and reprograming of

a single thread is mentioned as work-in-progress. A command

server is used for remote debugging. The sensor nodes run

the client part of the command server. Any user can login

to the sensor node and modify its setting, execute or stop

threads or restart them. The authors implemented several de-

manding tasks with MANTIS on MICA2 nodes, including AES

and RC5 encryption algorithms, compression/decompression

algorithms using arithmetic code, and a 64-bit FFT algo-

rithm. These tasks took low execution time in MANTIS. Nor-

mally the concurrent execution of threads leads to context

switching overhead and the need for additional stack space.

In MANTIS, it was found that while context switching does

not incur much performance loss, a stack estimation tool would

be helpful.

MANTIS is an interesting option for node-level virtualiza-

tion, as it is completely thread-based and easier to program

without having to manage low-level details of stack/memory.

The time-sliced multithreading approach makes it possible to

run application tasks simultaneously without using a run-to-

completion model. The application threads are coded in C

and are independent of the OS. Although MANTIS support

dynamic reprogramming but it has not been fully explained

in the paper. Currently it is not clear whether the work on

MANTIS is underway or not as the project page [31] has quite

old information.

The performance results presented in [29] are very limited.

No comparison is provided in against other competing solutions.

The execution times of some complex tasks (compression/

decompression and RC5 and AES encryption) and power con-

sumption using MICA-2 platform are presented.

LiteOS [32] is a Unix-like OS designed for sensor nodes.

It provides rich features, such as a hierarchical file system,

a command shell that works wirelessly, kernel support for

dynamic execution of multi-threaded applications, debugging

support and software updates. LiteOS maps a WSN as a

UNIX-like file system where different commands can be ex-

ecuted by the user in familiar UNIX-like manner. There are

three components: i) LiteShell, ii) LiteFS and iii) Kernel.

LiteShell is a command shell that resides in a base station

and is used to communicate with sensor nodes to execute file,

process, debugging, environment and device related commands.

Within the wireless range, sensor nodes can be mounted by

LiteShell, similar to how a USB is connected to a computer.

However, this process cannot be achieved via the Internet or

by multi-hop communication. The sensor nodes do not main-

tain any state regarding LiteShell and simply respond to the

commands.

LiteFS is a hierarchical file system partitioned into three

modules that use RAM, EEPROM and Flash memory, respec-

tively. The RAM holds the open files, and their allocation and

data information is in EEPROM and Flash memory, respec-

tively. EEPROM holds the hierarchical directory information

and the actual data is stored in Flash memory. The LiteOS

programming model supports both event-based and thread-

based approaches. The scheduling mechanism is also hybrid

and supports priority-based and round-robin based schedul-

ing. User applications are multithread-based, and concurrent

threads do not have memory conflicts because there is no

memory sharing between them. Overall, LiteOS’s architecture

is inspired by UNIX and works in a distributed manner. The

memory consumption of LiteOS applications is larger than

that of TinyOS because LiteOS applications are multithreaded

whereas TinyOS applications are singe threaded.



KHAN et al.: WIRELESS SENSOR NETWORK VIRTUALIZATION: A SURVEY

LiteOS offers a flexible approach to implement node-level

virtualization. It uses a hybrid programming model hybrid that

allows the concurrent execution of application threads and

handles events through a call-back mechanism. The application

tasks can be programmed in C language. Installing and running

application tasks is very simple and can be accomplished

by dynamically copying user applications. Another advantage

of LiteOS is its separation between applications and the OS

through callgates. Callgates are pointers and act as applica-

tion access points to they can access system software and

resources. This means that new applications can be simply

loaded on a sensor node without reprogramming the sensor

node from scratch.

The performance results of LiteShell show the average re-

sponse time of commands sent using the LiteShell. The average

delay of common network commands is under 500 ms. The

delay to send file in the network using copy command depends

on the file size. The delay for 4 KB file copy is around 3 seconds

to 7.5 seconds for single-hop and two-hop transfer respectively.

The length of source code is compared against TinyOS and it is

found that the same application can be written in LiteOS using

few lines than TinyOS, however because of multi-threading

support LiteOS applications take more memory than TinyOS

counterparts.

PAVENET [33] OS is a thread-based OS designed to ex-

clusively handle the issues related to the preemption of mul-

tithreaded application tasks. However, PAVENET has one

major drawback—its non-portability. It only works with PIC18

microchip, and unlike other sensor OSs it cannot be used

on other hardware platforms such as MICAZ. Two types of

multithreading are provided: preemptive and cooperative. The

former is used for real-time tasks (e.g., radio access, sensor

sampling) and the latter for best-effort tasks (e.g., routing).

PAVENET makes three contributions that deal with the issues

of preemption overhead and stack/memory space management;

it offers a real-time task scheduler, a best-effort task scheduler

and a wireless communication stack to abstract lower layers. To

mitigate the effects of switching overheads, the PIC18 chip’s

functions are used for a real-time task scheduler. One of the

functions is the fast return stack that automatically saves the

context of a task. The best-effort task scheduler makes use

of cooperative task switching to avoid stack/memory issues.

The wireless communication stack includes MAC, network and

socket layers between the physical and application layers. A

buffer is shared by the MAC, network and socket layers to

handle the data flow. Tasks with equal priority are grouped

together and executed as single task, which leads to code

size that is smaller than that of TinyOS. The average clock

cycles required to execute an application are better than those

required for TinyOS. The support for multithreading means

that for complex tasks, PAVENET uses more RAM and ROM

than TinyOS.

For WSN virtualization, PAVENET provides a thread-based

programming model and uses C language. It is possible to pro-

gram multithreaded applications with varying priority levels,

but their execution will be sequential and not simultaneous

because time-sliced execution is not provided. There is also

no separation of application tasks from the OS. The main

drawback of PAVENET is its lack of portability, although it

is an interesting approach that shows how a better hardware

design can lead to an efficient sensor OS.

The performance results of PAVENET show that it uses

more RAM than TinyOS for sample applications. The execution

times of sample applications is comparable to TinyOS. The task

switching overhead is found to be 5 times less than MANTIS

and comparable to TinyOS. Another aspect is the comparison of

lines of codes needed to code sample applications in PAVENET

and TinyOS. PAVENET uses twice as less as TinyOS (even

more for complex applications).

Contiki [34] is by far one of the most popular systems for

WSNs, and over the years has grown to become a leading

platform for the IoT and low-powered embedded networked

systems. It has a kernel based on an event-driven model, but

preemptive multithreading is also provided as an option in the

form of a library and exposed as an API for applications to

call the necessary functions. Preemption is implemented using

a timer interrupt. All threads have their own execution stack.

The concept of protothreads [35] was introduced to com-

bine the concepts of event-driven and thread-based approaches.

Protothreads borrows the block-wait approach of threads and

combines it with the stack-less approach of events. The advan-

tage of protothreads is that they have lower stack requirement

than traditional threads and can be preempted, unlike events.

Contiki makes it possible for applications and services to be

dynamically uploaded/unloaded wirelessly on sensor nodes.

This is made possible by incorporating relocation informa-

tion in the application binary and later performing runtime

relocation.

The OS is written in C language and can be ported to many

hardware platforms. CPU multiplexing and an event handling

mechanism are the two major functionalities provided by the

kernel. The rest of the system-related functionalities are pro-

vided as system libraries that can be used by applications when

needed. There is no hardware abstraction layer and applications

can directly utilize the underlying hardware. Since the OS is

event-driven, once an event handler is called, it can only be

preempted by an interrupt—otherwise it must run to comple-

tion. A simple over-the-air protocol is used to dynamically load/

unload applications in a WSN. Binary images of the new appli-

cation code are sent to selected network nodes using point-to-

point communication; the remaining sensor nodes receive the

application code as broadcast from them. The current version

of Contiki includes several features like full IP support [36],

including IPv6 [37], CoAP [38], RPL, 6LowPAN, Cooja, a

network simulator to test applications on emulated devices

before actual deployment, the Coffee flash file system [39] for

sensors that have external flash memory, and a command-line

shell for debugging applications.

For node-level virtualization, Contiki is one of the better

choices available. It supports multiple applications that are

independent of the OS and run on top of it. Applications can

be programmed in C language and updated/installed without

reinstalling the whole OS. It provides a hybrid programming

model. With protothreads, it is possible to create efficient

multithreaded applications that share a common stack. Contiki

supports many different hardware platforms.



IEEE COMMUNICATION SURVEYS & TUTORIALS

The original Contiki paper used in this work does not provide

any systematic performance results. However some insights

regarding the performance were presents. For example, repro-

gramming of a sensor node with a new code (6 KB size) took

around 30 seconds, whereas the reprogramming of 40 nodes

with the same code took around 30 minutes. It is found that code

size of similar applications in Contiki is larger than TinyOS but

smaller than MANTIS.

TinyOS [30] is another notable effort to provide OS solution

for sensor nodes. It is an application-specific, component-

based OS based on two characteristics: being event-centric

and offering a flexible platform for innovation. It is written

in nesC, a dialect of C language, and has a component-based

modular design using an event-driven programming model.

Three main abstractions are used in TinyOS: commands, events

and tasks. Commands are requests to perform a service, events

are generated as responses when services are executed, and

tasks are functions posted by commands or events for the

TinyOS scheduler to execute at a later time. TinyOS compo-

nents are sets of services, specified by the interfaces that are

offered to applications. There are two type of components:

modules and configurations. Modules are code snippets written

in nesC for calling and implementing commands and events.

Configurations connect components through their interfaces.

Only components used by the applications are included in the

final binary image.

The TOSThreads [40] library was introduced to combine the

event-based approach with a thread-based approach, similar

to the protothreads in Contiki. Event-based code runs in a

kernel thread and user applications run in application threads.

Application threads can only run when kernel thread becomes

idle. Static optimizations are used during compilation to ensure

the removal of any issues in the final code. The OS and the

applications are bundled together at compile time in a single

file. A component called Deluge [41] is used for over-the-

air network-wide reprogramming. The new application code

is distributed as composite binaries. Many protocols can be

implemented as components. The current version of TinyOS is

portable to many hardware platforms.

TinyOS is not the most suitable OS for WSN node-level vir-

tualization. First of all, the programming mode is event-driven

and it is often difficult to program event-driven applications.

In the context of WSN virtualization, it may not be feasible

to bundle applications with the OS at the time of deployment.

New application tasks can only be installed by propagating the

entire OS image over a virtual machine [42]. TinyOS also has

tight coupling between the applications and the OS. The task

scheduler in TinyOS is sequential (FIFO based) and executes

tasks in run-to-completion mode, meaning a weak form of

WSN virtualization.

The performance results of TinyOS highlight important fea-

tures of the OS. For example, code optimization reduces code

size of the programs as much as 60%. The timer component re-

duces CPU utilization by 38%. The interrupt and task switching

also takes very less time as compared to SenSmart.

2) Virtual Machine-/Middleware-Based Solutions: Maté

[42] is a tiny virtual machine that supports sequential execution

and uses a stack-based binary code interpreter. It was designed

to work on the early-generation, resource-constrained WSN

nodes using TinyOS. The main purpose of Maté is to enable

energy efficient code propagation in WSN with minimal over-

head required to re-task sensors. To achieve this, application

programs are broken into small code capsules and propagated

throughout a WSN with a single command. Only predefined

applications with predefined instruction sets are possible. There

are fixed sets of instructions divided into three classes: basic,

s-class and x-class. Basic instructions include arithmetic op-

erations and the activation of sensors/LEDs, s-class instruc-

tions perform memory access, and x-class instructions perform

branch operations. Up to eight user-defined instructions are

also allowed. These user-defined instructions need to be fixed

when Maté is installed and cannot be changed afterwards.

Each program capsule contains up to 24 instructions. Larger

programs consist of multiple capsules. The instructions in the

capsules are executed in sequence until the halt instruction is

reached. New application code is propagated in the network

in the form of code capsules, using a viral code distribution

scheme. Each capsule contains a version number which is

used by a sensor node to determine if it needs to install new

application code. Network-wide code propagation occurs when

a sensor node forwards the code capsule to its local neighbors,

which in turn forward it to their neighbors. Maté maintains two

stacks, one for normal instructions and the other for instructions

that control the program flow. When an instruction is under

execution, a new instruction cannot be executed. This allows

for simpler programming options. Maté incurs the cost of byte

code interpretations before instructions can be executed.

Regarding node-level virtualization, Maté supports the se-

quential execution of tasks and tries to address the main draw-

back of the original TinyOS implementation. New application

code can be injected without replacing the OS on a sensor

node. However, applications are still tightly coupled. Maté is

more suitable for simple event-driven networks where it is

possible to define events and their outcomes. To end on a

positive attribute, Maté does provide a simple mechanism to

automatically reprogram a WSN using code capsules.

The performance results of Maté are collected by implanting

an ad-hoc routing protocol which is also implemented in stan-

dard TinyOS release with Maté. The implementation of simple

operations (such as AND, rand, sense, sendr) take more CPU

cycles than native TinyOS, worst-case taking 33 times more

CPU cycles and best case taking 1.03 times. A setup of 42

sensor nodes (in a grid pattern) is used to see the propagation

of code using Maté. It is found that Maté takes little over

120 seconds to reprogram all sensor nodes with the new code.

Overall Maté incurs overhead because its each instruction is

executed as a TinyOS task.

VMSTAR [43] is a Java-based software framework for

building application-specific virtual machines. It also allows

for the updating of WSN applications as well as the OS

itself. VMSTAR provides a rich programming interface that

allows developers to develop new applications which can be

portable to a variety of hardware platforms. VMSTAR gen-

erates compact code files rather than regular Java class files.

It supports both the sequential and simultaneous execution of

thread-based applications. The framework is comprised of three



KHAN et al.: WIRELESS SENSOR NETWORK VIRTUALIZATION: A SURVEY

parts: a component language called BOTS [44], a composition

tool and an updating mechanism. The component language

is used to specify software systems. The composition tool

selects/composes the required components and determines the

dependencies between them to satisfy specific constraints.

The updating mechanism uses an incremental update tech-

nique [45] to take actual coding changes rather than structural

changes into account in the program code file like change

in number of lines. For simple applications, sequential thread

execution is supported, but for complex applications requir-

ing input from external events, two event-based programming

models are defined. One is the select model, in which an

application subscribes to an event, acquires the corresponding

event handle and executes it when the event occurs. In the

case of multiple events, the respective handling methods are

executed sequentially. The second model is known as action

listener, in which applications define event handlers by ex-

tending the default handler class from the library—they do

not register for events. When an event occurs, the registered

callback method is invoked. The action listener model allows

for the simultaneous execution of threads, but in the paper

only the select model is implemented. A base station is used

as a repository for application code and as an orchestrator

for deployment and update purposes. A native interface is

also provided to allow access to the underlying resources of a

MICA platform.

For node-level virtualization, VMSTAR does support the

concurrent execution of multi-threaded application tasks but

the implementation presented only supports single-threaded

Java applications. The programming model is thread-based and

applications can be coded in Java language, making it easier

for developers. Concurrent events can be handled using action

listeners. Although VMSTAR discusses the distinction between

the user applications and the OS, for the implementation exam-

ple both are tightly coupled.

The performance results of VMSTAR show that it performs

better than Maté but not so well against native TinyOS. For

example, its memory consumption is almost double as com-

pared to TinyOS. The same is true for CPU utilization, where

VMSTAR sits between TinyOS and Maté.

Squawk [46] is a small Java virtual machine that runs on

sensor hardware. Compared to VMSTAR, Squawk does not

require an operating system to run; it provides the required

functionalities by itself. These include interrupt handling, net-

working functions, resource management, support for the mi-

gration of applications from one SunSpot to another and an

authentication mechanism for deployed applications. Applica-

tions in Squawk are represented and treated as objects. Since

multiple, isolated objects can reside in a virtual machine, con-

current applications can be executed easily. Squawk VM runs

on a specific device platform, Sun Small Programmable Object

Technology (SunSpot) which has more processing, memory

and storage capability than MICA /MICAZ and other WSN

platforms. Squawk VM can use many standard Java features,

such as garbage collection, exception handling, pointer safety,

and thread library. It is written in Java, in compliance with

J2ME CLDC [47]. The device drivers and the MAC layer are

also written in Java. Squawk VM supports split VM architec-

ture, where the class file loading is performed on a desktop

machine to generate its representation file. The representation

file is then deployed and executed on SunSpots. The size of

these files is much less than standard Java class files. Green

threads are used to emulate multi-threaded environments. The

threads are managed, executed and scheduled in user space.

An application’s status, including its temporary state, can be

serialized to a stream for storage. When another Squawk VM,

on another SunSpot, reads that stream it can effectively recon-

stitute the application along with its complete state information.

This allows for live-migration of applications from one SunSpot

to another. This is quite useful in situations when a SunSpot

device is about to run out of battery power.

For node-level virtualization, Squawk VM takes quite a

different approach than its competitors. A robust and efficient

application isolation mechanism is provided, which allows mul-

tiple applications to be represented and treated as Java objects.

These objects are instance of the Isolate class and can be started,

paused and resumed using available methods. Applications can

have multiple threads which are managed by the JVM. The

programming model is thread-based and applications can be

coded in J2ME. There is also an option for Over-The-Air (OTA)

programming which can be used to load, unload, stop and

migrate applications on SunSpots.

The performance results of Squawk are presented using some

benchmark suits and a math application to measure integer and

long computation. For memory footprint, Squawk is compared

with KVM for CLDC which shows that Squawk VM with

debugging support uses less memory than KVM equivalent.

The benchmark suits for Squawk and KVM were run of dif-

ferent sets of ARM platforms with different CPU and memory

sizes. The KVM ran on better hardware and hence exhibited

better results than Squawk VM. The suits files of applications

generated in Squawk have around 37% less size than standard

java class files and JAR files.

Agilla [48] is a mobile agent-based middleware that runs on

top of TinyOS and uses a VM engine to sequentially execute

multiple applications in a round-robin fashion. It uses a mobile

agent and tuple-space programming models. The middleware is

designed to support self-adaptive applications in WSNs. Appli-

cation programs are coded as mobile agents that can migrate

themselves to other sensor nodes in response to changes in the

network or in the physical phenomenon that is being monitored.

Each sensor node can run several autonomous mobile agents.

These mobile agents may perform a strong migration, i.e.,

transfer application code and its state to another sensor. Weak

migration only transfers application code, which means that at

its new destination, a migrated mobile agent will restart the

application. Agents are injected in the WSN from a base station

and propagated one hop at a time. Each mobile agent arrives at

a new destination, starts its execution and then migrates to the

next-hop sensor node. This process can take quite some time

to propagate a new application in the WSN. Each sensor node

has a tuple space and a local memory. In a tuple space, data

is accessed using pattern-matching techniques. This approach

allows mobile agents to be oblivious of each other’s memory

addresses. Mobile agents have a stack space, a heap and three

registers, which are used to store ID of the agent, program



IEEE COMMUNICATION SURVEYS & TUTORIALS

code and condition code. Every agent, including the clones, has

a unique ID. The program code register holds the address of

the next instruction and the condition code register holds the

execution status.

For node-level virtualization, Agilla relies on TinyOS to

provide concurrency, and thus mobile agents are executed in a

round-robin fashion. However, this is an OS issue, since a mul-

tithreaded OS can execute mobile agents in parallel allowing

better concurrency. Mobile agents work independently of the

TinyOS. The use of tuple-space and locally-stored agent states

allows for quick migration, but still much work is left to the

programmers to deal with issues such as stalled migration. In a

highly dynamic WSN where applications utilize sensor nodes

on the fly, such as the IoT, the migration of agents might lead

to performance issues. The programming language of Agilla is

another difficulty, as the agents are programmed in low-level

assembly-like language.

A test-bed of 25 sensor nodes is used to gather the perfor-

mance results. Agent migration is evaluated by varying number

of hops between source and destination sensor nodes. The

migration is 99% successful for up to 3 hops but after that

it starts decreasing. Also more hops mean more latency, a

5-hop migration can take more than 1.1 second. The latency

experienced for remote operations is under 300 ms.

The authors in [49] present an integrated system, UMADE,

to promote the utilization of a deployed WSN among multiple

contending applications. The main contribution of UMADE

is a mechanism to allocate sensor nodes to improve overall

Quality of Monitoring (QoM) for the applications. UMADE

is implemented on TelosB motes and uses Agilla VM on top

of TinyOS. The proposed systems consist of several com-

ponents such as, specification of QoM attributes, application

deployment and relocation of applications to deal with the

network changes, as well as QoM-aware application allocation

algorithm. QoM attributes are specified by variance reduction

and detection probability attributes. A variance reduction QoM

attribute exploits the correlation of sensor readings using prob-

abilistic methods to predict sensor readings. For the detection

probability QoM attribute, a stochastic model is used to find the

probability of an event’s detection by a group of sensor nodes.

It is not clear from the paper whether QoM attributes can only

be specified before the deployment of UMADE or if it is an

evolving process. A simple greedy heuristic is used in a QoM-

aware application allocation algorithm to maximize the overall

WSN utility. Applications are deployed using an application

allocation engine and an application deployment engine. The

allocation engine runs in a base station and uses an allocation

algorithm to find the suitable sensor nodes for an application.

The deployment engine, present in both the base station and the

sensor node, is used to wirelessly send a sensor application to

the selected sensor nodes. The applications run concurrently in

the Agilla VM. Both preemptive and non-preemptive allocation

is used to deal with network dynamics and sensor node failures.

In preemptive allocation existing applications are relocated to

new sensor nodes to increase the overall utility, whereas in non-

preemptive allocation no application is relocated to new sensor

nodes. The base station side code is written in Java and the

sensor node code is written in nesC.

UMADE uses Agilla VM for node-level virtualization. Agilla

VM is extended to provide dynamic memory management for

concurrent applications. UMADE has event-driven program-

ming model and uses nesC language to code application tasks.

Application specific results are presented in the paper (i.e.,

applications that are implemented for evaluation purposes). For

example, an increase in weight of a temperature monitoring

application resulted in increase in its utility by 60%. The time

to execute multiple application over a set of nodes increases lin-

early. Since UMADE uses Agilla over TinyOS its performance

is highly dependent on those two solutions.

A macro-programming framework, Nano-CF, for the in-

network programming and execution of multiple applications

over a deployed WSN is presented in [50]. Nano-CF runs

over the Nano-RK operating system [51] and allows several

applications to utilize a common WSN infrastructure. Using

Rate-Harmonized Scheduling (RHS) [52], Nano-CF realizes

the coordinated delivery of data packets from multiple appli-

cation tasks that run on sensor nodes. RHS also allows for data

aggregation and ensures that small data packets are combined

together before being sent to their respective applications.

Nano-CF is a three-layer architecture consisting of a Coordi-

nated Programming Environment (CPE) layer, an integration

layer and a runtime layer. The CPE layer is present at the user/

programmer side and allows them to write application programs

in the Nano-Coordination Language (Nano-CL). Nano-CL is

descriptive language with a C-like syntax. Its programs have

two sections: service descriptor and job descriptor. The service

descriptor section has tasks that are executed by the sensor

nodes, as services. The job descriptor section has multiple

services along with a set of nodes which will execute them.

The programmer has to specify the timing and the periodic rate

at which the services (tasks) will be executed at each sensor

node. The program code is parsed to byte-code and sent to the

sensor nodes by a dispatcher module in the CPE layer. The

integration layer is responsible for handling the data and control

packets. It consists of a sender module in the gateway and a

receiver module in the sensor nodes to deliver the application

task in byte-code. The runtime layer resides in each sensor

node and consists of a code interpreter module which translates

the received task byte-code for the underlying Nano-RK OS. It

also provides routing functionality using DSR protocol. A data

aggregation module collects aggregated data from the sensor

nodes and sends it to the user applications using RHS. The

proposed architecture is evaluated using a university campus

multi-application sensing test-bed called sensor Andrew [53].

Nano-CF makes several contributions to node-level virtualiza-

tion. It allows independent application developers to write appli-

cation tasks for a common WSN infrastructure. Each application

task runs independently and is not coupled with the sensor OS.

The proposed framework is suitable for data collection applica-

tions and for sensor nodes that have multiple on-board sensors.

The programming model is event-driven and applications are

programmed using their descriptive language, Nano-CL.

The performance results of the solution cover the energy

and overhead of code interpreter. Using RHS allows energy

savings especially using multiple applications since packets are

aggregating first and then transmitted. However, the packet size



KHAN et al.: WIRELESS SENSOR NETWORK VIRTUALIZATION: A SURVEY

Fig. 4. Network-level virtualization solutions. (a) Virtual network-based so-
lutions. (b) Cluster-based solutions.

has an impact on this because bigger packets means they cannot

be aggregated due to size issues. When code interpreter is used,

the extra-overhead is around 55%.

B. Network-Level Virtualization

We group the network-level virtualization approaches under

two umbrellas: virtual network/overlay-based solutions and

cluster-based solutions. Virtual network/overlay-based solutions

utilize the concept of virtual networks and application over-

lays to achieve network-level virtualization. Virtual network/

overlay are logical networks created on top of physical net-

work(s). In cluster-based solutions, the nodes in a physical

network are grouped to work together in connected groups, i.e.,

clusters. Unlike virtual network/overlays, clustering is more

like the physical partitioning of the network where one part

of the network is used to one application and another part is

used by a different application. Nodes inside a cluster have spe-

cific roles, such as cluster-head and cluster-member. Typically

cluster-based solutions in WSNs are used to monitor dynamic

events.

Fig. 4 shows the network-level virtualization types while

Table II illustrates the characteristics of the existing work

dealing with node-level virtualization.

1) Virtual Network/Overlay-Based Solutions: The work in

[9] uses overlays to create application-specific virtual networks

on top of the deployed WSN. The overlay is used to allow

data exchange between sensor nodes in different administrative

domains. This work is more suitable for situations where it

is difficult to bundle applications during the deployment of a

WSN. A three-layer architecture is presented to allow multi-

ple end-user applications to utilize sensor nodes concurrently.

The bottom layer has new-generation sensor nodes like Java

SunSpots, as well as older and less capable ones. To allow older

and less capable sensor nodes to participate in overlays, another

entity called Gates-to-Overlay (GTO) nodes is incorporated.

TABLE II
CHARACTERISTICS OF NETWORK-LEVEL VIRTUALIZATION SOLUTIONS

The functionality of these GTO nodes can be implemented

in gateways and sink nodes, as well as more powerful sensor

nodes. The middle layer abstracts the simultaneous tasks ex-

ecuted by the physical sensors as virtual sensors. This is the

basic assumption of the work, that the sensor nodes are capable

of executing multiple application tasks concurrently. The top

layer consists of applications implemented as overlays. These

independent applications utilize the data sent by their respective

tasks running on the sensor nodes. Each application has an inde-

pendent overlay with virtual sensors as members of that overlay.

This logical grouping allows data exchange even when sensors

are physically located in different administrative domains. The

architecture has separate paths for data and control messages.

A fire monitoring scenario is used as an example, in which the

sensor nodes in private homes are used to monitor the progress

of fire eruption using a fire contour algorithm. Since sensor

nodes are in private homes they cannot send data to each other

directly. An overlay network is created to facilitate such data

exchange and execute the fire contour algorithm. The authors

assume the prior publication of sensor nodes to a registry which

the end-user applications use to select the required sensors. The

paper does not provide any implementation details. However,

certain protocols are suggested for data, control interfaces and

for overlays.



IEEE COMMUNICATION SURVEYS & TUTORIALS

For network-level virtualization this work makes use of

application-specific overlays to provide a robust and efficient

mechanism for sensors to communicate. There have been some

efforts to utilize DHT overlays in WSNs e.g., [54]–[57]. Each

sensor can be part of several overlays at the same time and

can execute their tasks. In the absence of any implementation

details, it is difficult to determine the effectiveness of this solu-

tion, but it is quite relevant to IoT, where WSNs will be utilized

by different users to provide new applications and services

that were not envisioned during their initial deployment. Even

geographically dispersed WSNs can be combined to provide

data for new applications.

No performance results are presented in this work.

The work in [58] discusses the “Managed Ecosystems of

Networked Objects” (MENO) concept, with its broader scope

to connect sensor nodes as well as other IP-smart objects to

the Internet for end-to-end communication without the use of

traditional gateway-based approaches. The idea behind MENO

is to create a virtual network on top of physical networks and

thereby allow communication with different types of devices,

including sensor nodes. Within each virtual network, end-to-

end communication is possible using different protocols. Once

end-to-end communication is enabled, it becomes possible for

application developers to write new applications that utilize

sensors, actuators and other devices. This work is still at the

conceptual level, without any implementation details or results.

It appears to be on track to use a clean-slate approach to

integrate the physical world with the Internet in a seamless way.

Some motivational scenarios are presented to make a case for

integrating WSNs to the Internet.

The concept utilized by MENO is used to develop the In-

ternet of Things Virtual Network (IoT-VN) [59]. That study

presents some implementation details by applying the concept

of the IoT-VN to constrained and non-constrained environ-

ments. For constrained environments, the IDRA framework

[60] is used to implement neighbor detection and a tunneling

mechanism to create virtual links between the members of the

virtual network. For non-constrained environments, the Click

Router [61] is used, which is a C++ based framework capable

of realizing network packet processing functionality. Routing

the data over virtual links is accomplished by means of the

AODV protocol. They have extended the AODV header to

include IoT-VN ID header and a network header. A simple

ping application implements basic request and reply messages

to demonstrate data exchange inside a virtual network.

For network-level virtualization, the work in [58] and [59]

uses the concept of virtual links built over either layer 3 or

layer 2 in traditional networks, and over IEEE 802.15.4 in

WSNs. Not much detail about the actual protocols is provided,

but the researchers do mention some motivational scenarios to

open up WSN deployments and connect them to the Internet.

Overall, the focus here is on connecting different devices

(resource-constrained and non-resource constrained) together

and allowing end-to-end communication for the deployment of

new applications and services.

The work in [58] does not provide any performance results,

however [59] presents early results using a simple two sensor

test-bed setup. Round trip times of a ping command are shown

which was sent from one sensor to another. Overall the results

do not give much insight in to the solution.

An embedded agent-based approach is presented in [62] to

create and maintain Virtual Sensor Networks (VSNs). This

agent-based solution is built on top of Java SunSpot devices, as

they offer Java programming support and are easier to program.

The authors first provide an analysis of the layered approach

normally used to create and maintain a VSN. In this approach

a new VSN layer is introduced to create and maintain a VSN,

but it is not flexible when the sensor nodes’ sleep and wake

patterns are taken into account. A sensor node that is part of

more than one VSN at a time cannot sleep abruptly without first

coordinating with other sensor nodes to inform them about its

unavailability. Since the layers in sensor nodes are tightly cou-

pled and cannot be changed without affecting the other layers,

an agent-based solution is proposed in this work. Agent Factory

Micro Edition (AFME) [63] library is used to create agents.

Each agent resides on a sensor node and is responsible for creat-

ing and maintaining a VSN, as well as for communicating with

the agents working for the same VSN on other sensor nodes.

These agents can communicate with each other to optimize

performance. AFME allows communication between agents for

easy message exchange. AFME also allows the migration and

cloning of agents in the network, which makes it easy for new

sensor nodes to join a VSN. Using the agent-based approach

has obvious benefits, not least because a sleep broker can

make intelligent decision about the sleep and wake duration of

sensor nodes.

For network-level virtualization the work in [62] considers

independent VSNs created over a WSN for different applica-

tions. To create such VSNs, mobile agents create a virtual topol-

ogy linking sensor nodes together for an application. Although

the agents are implemented using AFME, there are no details

about VSN formation and its operation.

Interestingly the work does not provide any performance

results of the agent-based approach instead it present simulated

results of layered approach showing their obvious drawbacks.

Pioneering work regarding network-level virtualization was

first presented in [19] and extended in [64] and [65]. In [19],

a subset of WSN nodes dynamically forms a VSN. Applica-

tions with attributes or situations such as being geographically

dispersed, using heterogeneous WSN nodes with different ca-

pabilities and that monitor dynamic phenomenon are partic-

ularly suited to take advantage of VSNs. Each independent

subset executing an application is a VSN. In this approach,

it is clear that different applications can execute sequentially,

due to the dynamic VSN formation by different node subsets.

However, the authors do not give any information about how

these applications might eventually be executed simultaneously.

Two illustrative applications are presented. One is a geo-

graphically overlapped application which works in scenarios

where heterogeneous WSN nodes are deployed to monitor

two different events spread over a large area. Each WSN

needs to be deployed without using resource sharing even in

those areas where there is no event of interest, to provide

communication and routing. With resource sharing however,

other WSNs can help, resulting in a more efficient use of

resources.



KHAN et al.: WIRELESS SENSOR NETWORK VIRTUALIZATION: A SURVEY

The second application illustrates the concept of monitoring

a dynamic event with a subset of WSN nodes. This subset

can expand or reduce depending on the dynamics of the event.

The work discusses the management issues of these VSNs

and describes functions to create VSNs. WSN nodes that are

not part of any subset help in the overall WSN operation,

with data routing for example, or remain asleep to conserve

energy.

For network-level virtualization the authors in [19] present

the basic motivation to create VSNs. Example applications

are discussed. However, the paper presents high-level details

and does not include any technical details, e.g. how to realize

these VSNs. The paper provides the basic concept of multiple

applications sharing a WSN and using multiple WSNs for new

applications without additional deployments.

No performance results are presented in this work.

2) Cluster-Based Solutions: A self-organizing tree-based

solution is presented in [64] to facilitate the creation, oper-

ation and maintenance of VSNs. When an event has been

detected, a dynamic cluster tree is formed, ensuring that nodes

will join a VSN to monitor the event in a reactive manner.

In this approach the sequential execution of applications is

possible, since VSNs are formed dynamically, but it is not

clear if (or how) it is supported by the WSN nodes. This

approach uses cluster heads and child cluster heads inside

VSNs to carry out different functions. This structural organi-

zation provides logical connectivity among WSN nodes and

ensures that two different notifications of the same event are

detected and treated as one; meaning that no event in the

deployed WSN remains unknown. Once an event is detected,

a dynamic cluster tree is formed by exchanging VSN formation

messages.

VSNs provides unicast, broadcast and multicast communi-

cation. For unicast communication, a hierarchical addressing

scheme like DNS is used while broadcast and multicast commu-

nication use a list. This list is used by each cluster head to keep

track of the child cluster heads it serves. A new hierarchical

clustering algorithm is proposed to create VSNs. A simulation-

based performance analysis of the proposed algorithm is pre-

sented using a custom-built simulator in C language. However,

advanced VSN functions like the merging and splitting of VSNs

are not implemented.

A cluster tree mechanism is used to group the sensor nodes

that work for an application, as a way to realize network-level

virtualization. This work is an extension of the work in [19].

Dynamic trees are formed and communication between the

sensor nodes is also supported. There is no discussion about

the actual implementation of the proposed scheme.

For performance results a discrete-event simulator is used.

Three scenarios are implemented to detect events in different

regions and use sensor nodes to monitor them. The results show

a linear increase in number of hops similar to the increase in

sensor nodes monitoring the event. When an event occurs, with

source and destination node in the same region, more unicast

messages are exchanged but these messages are not affected by

the network size. On the other hand, when an event occurs in

another region more multicast messages are exchanged and are

affected by network size.

A proof-of-concept study that monitors an underground

plume is presented in [65]. It is based on a single application,

and so it is difficult to find a link with sequential or simulta-

neous execution. The authors also discuss a phenomena-aware

clustering algorithm to create and maintain VSNs. Using this

algorithm, clusters are comprised of groups of WSN nodes that

are close to dynamic phenomenon and report on it frequently

throughout their lifetimes. With these reports, the algorithm is

able to select those WSN nodes which are relevant for clusters

and that are close to the dynamic phenomenon, allowing less-

relevant WSN nodes to save their energy for other applications.

This technique considerably reduces the required data reporting

since only relevant data is sent. As the deployed WSN is event-

based and not always on, sudden bursts of data are avoided

whenever an event of interest occurs. The algorithm is also re-

silient to WSN node and link failures. To adapt to the dynamics

of an event, i.e., a merger or a split, another algorithm, called

DRAGON, is presented. When an event is detected, DRAGON

ensures its location is found and used as a reference point to

track its movement. Sensor readings and the relative positions

of WSN nodes are then used to make decisions about whether

two events should logically remain distinct or be merged into a

single event.

For network-level virtualization this work is based on [19]

and [64]. The proof-of-concept prototype is used to demon-

strate the viability of the concepts presented in earlier papers,

however only one application is demonstrated.

There are not much performance results of the prototype

except that the sensors were able to track a plume similar to

the conductivity probes.

C. Hybrid Solution

Hybrid solutions combine both node- and network-level vir-

tualization mechanisms. We group the Hybrid solutions under

three types: middleware and cluster-based solutions, middle-

ware and virtual network/overlay-based solutions and virtual

machine and dynamic grouping-based solutions.

In middleware and cluster-based solutions, a middleware

handles node-level virtualization, while network-level virtu-

alization is achieved by grouping sensor nodes into clusters.

In middleware and virtual network/overlay-based solutions a

middleware handles node-level virtualization while network-

level virtualization is achieved using virtual network/overlays.

In virtual machine and dynamic grouping-based solutions,

node-level virtualization is achieved using a virtual machine,

and a tailored, sensor node grouping scheme is used for

network-level virtualization.

Fig. 5 shows the hybrid virtualization solution while Table III

shows the characteristics of hybrid solutions.

1) Middleware and Cluster-Based Solutions: In [66], a mid-

dleware solution, Sensomax, for Java SunSpot [67] devices

is presented. Sensomax follows a components-based approach

and provides several operational paradigms such as data-driven,

event driven, time-driven and query-driven, to offer more flex-

ibility. The main contributions of Sensomax are support for

multi-tasking, dynamic task modification and re-programming

at runtime. At node-level, user applications are coded as



IEEE COMMUNICATION SURVEYS & TUTORIALS

Fig. 5. Hybrid virtualization solutions. (a) Middleware and cluster-based
solutions. (b) Middleware and virtual network-based solutions. (c) Virtual
machine and dynamic grouping-based solutions.

application-specific agents. Concurrency is implemented using

a main Monolithic Kernel, abstracting the sensor resources.

Applications act as Microkernels running atop the Monolithic

Kernel and access underlying resources in a uniform way. When

an application starts its execution in a sensor node, its corre-

sponding agent is loaded to an execution space and queued for

execution. A resource-algorithm is used for allocating resources

to multiple agents in the execution space. However, no details

of such allocation algorithms are discussed. Application agents

can be data-driven, event-drive, time-driven, query-driven or

hybrid models.

At the network level, the deployed WSN is divided into

multiple clusters consisting of sensor nodes. Each cluster is

dedicated to a single or multiple applications and treated as a

single entity by the application programmers. The applications

can span over multiple clusters by running application-specific

agents in each cluster. Each cluster consists of a sensor node

acting as the cluster-head and several sensor nodes acting as

cluster members. Sensor nodes can have dual roles, i.e., a sensor

node can act as cluster-head for an application while at the same

time it can be a cluster member for a different application. Such

roles depend on the application agents residing in a sensor node.

The agent-based approach is used for network-level communi-

cation in Sensomax. The global agents enable different network

entities to communicate with each other. The local agents

are used for intra-cluster communication, allowing the cluster-

heads to communicate with their cluster-members and vice-

versa. The system agents are used by the base-station to send

configuration instructions to cluster members via cluster heads.

The system agents are used to reprogram or update sensor nodes

on the fly. The WSN resources are divided into three main

classes: global, local and system resources. Global resources

include sensors, actuators and processes that are shared among

different network entities. Local resources include resources

found inside a cluster and can only be shared between members

of that particular cluster. System resources include items such

as system properties where resource states are defined. A one-

hop broadcasting of agents is used to propagate application-

specific agents in the WSN.

For node-level virtualization, Sensomax uses Java SunSpot

devices and exploits their ability to run concurrent application

tasks. Each user application is programmed as an agent, and

multiple agents can reside on a single sensor node. Agents

are submitted via a base station and propagated into the WSN

using a one-hop broadcast. The network-level virtualization

uses the clusters concept. The WSN is divided into multiple

clusters, each with its own cluster head. Different types of

communication modes are provided to enable communication

between different network entities.

The performance results are collected by means of a test-bed

consisting of 12 sensor nodes and a simulator. The processing

time of each agent is found to be around 200 ms when the

sensor node is executing 30 concurrent applications. The sim-

ulation results follow the same trend. The sample applications

report temperature and light level with various conditions. The

dynamic update processing time is under 100 ms for the same

number of applications.

The work in [68] presents a multi-set architectural model to

allow the execution of multiple applications over a deployed

WSN. This work is based on the concept of agents, similar to

Agilla. The agents are not application-specific, instead they are

used to control the node- and network-level functionality. The

overall design goal is the ability to run multiple applications

in a pre-defined execution order and to be able to adjust their

functional parameters. A configuration agent (C-Agent) is used

to modify the functional parameters of an application running

on a sensor node, e.g., to change its sampling interval. The

C-Agent is first propagated in the WSN from the base station

to the cluster-heads and then from cluster-heads to the sensor

nodes in their clusters. Before the deployment of a WSN, the

applications and their order of execution are defined. This step

limits flexibility, as new applications cannot simultaneously use

the deployed WSN. At node-level, TinyOS is used to provide

concurrent execution of application tasks on a sensor node

using a middleware that runs on top of TinyOS. The solution

inherits the drawbacks of TinyOS; making applications to be

executed in their predefined order.

At the network-level, the scoping building block concept [69]

is used to divide a WSN into subsets. Within these subsets,

nodes can be grouped as clusters according to the application

requirements. Each subset is dedicated to execute only one ap-

plication, hence a WSN with n subsets will execute n number of

applications. The role of cluster-head is performed by powerful



KHAN et al.: WIRELESS SENSOR NETWORK VIRTUALIZATION: A SURVEY

TABLE III
CHARACTERISTICS OF HYBRID SOLUTIONS

sensor nodes, so there is no selection of cluster-heads on the

fly. When the WSN is deployed initially, only one applica-

tion begins its execution, according to a pre-defined sequence.

The sensors in other subsets sleep to conserve their energy until

it is their turn to execute their application. A switching agent

(S-Agent) is used to switch from one application to another

by putting awake sensor nodes into sleep mode and vice-versa.

There is no information about how S-Agent is propagated in the

network.

For node-level virtualization, the solution works similar to

the TinyOS and provides a weak form of virtualization. Pre-

defining applications and their execution sequences does not

make this solution very attractive. For network level virtual-

ization, the WSN is divided into subsets that have multiple

clusters. At any given time the sensor nodes in one subset are

active while others sleep to save their energy.

No performance results are presented in this work.

2) Middleware and Virtual Network/Overlay-Based Solu-

tions: The authors in [70] discuss SenShare, a platform to

execute multiple applications over a WSN. This is the first

significant effort to tackle the issue of allowing open access

WSN deployments running multiple applications concurrently.

Two roles, those of WSN infrastructure owners and applica-

tion developers, are considered. This separation opens up the

possibilities for new business models, innovative applications,

improved utilization of WSN resources, and flexibility, along

with cost benefits. At node-level a hardware abstraction layer

(HAL) and a node runtime layer is used in each sensor node

to support multiple applications. Each application is a TinyOS

program which runs on top of a multi-tasking OS that allows

the simultaneous execution of multiple application tasks. The

HAL is shared by each application and is used to break the

tight coupling between TinyOS applications and the sensor

hardware and to allow shared access to the sensor hardware.

Each application contains virtual hardware controllers (e.g.,

access to LEDs, sensors, timers and network I/O) that are

linked to all TinyOS application at compile time. When an

application requires access to, e.g., a sensor, the corresponding

virtual hardware controller passes the request to a runtime layer

between the applications and the multi-tasking OS. The runtime

layer is OS-specific and all of the TinyOS applications use it

to access the sensor hardware. It runs as a separate process

inside every sensor node and mediates between the applications

and the sensor hardware. The sensor I/O and network I/O

are two components in the runtime layer that allow managed

access to sensing components and to the network interface,

respectively. This access is allowed asynchronously to multiple

applications. Each application in SenShare, has a unique ID

which is used to manage it. To deploy an application, SQL-like

commands are used to select the target nodes according to the

application’s requirement. Afterwards the application’s binary

code is sent to the selected nodes using a modified version of the

Deluge protocol [71]. Once the application is up and running,

the virtual topology is formed to provide isolation from other

data/control traffic. The WSN is globally synchronized using

the TPSN protocol [72].

At the network level, a network-level overlay is created

to group WSN nodes that execute similar application, using

the Collection Tree Protocol (CTP) [73]. Physically scattered

groups executing similar applications can be joined into a single

overlay network. CTP is also used to route data and control

messages in the WSN. To provide isolation between the traffic

from multiple applications, each application packet is modified

to include the application ID along with sequence number,

origin and destination addresses. The runtime layer attaches and

removes this information at the source and destination nodes,

respectively.

An application could be executed by physically scattered

sensor nodes. Linking these scattered sensor nodes (clusters)

into a single virtual connected network requires an overlay

formation protocol that utilizes the underlying CTP topology

to connect clusters together in a virtual connected network. The

protocol works by making each sensor node route its packets to

the closest cluster.

For node-level virtualization, SenShare implements applica-

tion tasks as TinyOS programs over a multi-tasking OS. The



IEEE COMMUNICATION SURVEYS & TUTORIALS

programming model is similar to TinyOS. Incorporating virtual

hardware controllers with the applications makes the solution

less flexible, as developers need to be aware of the type of

hardware each sensor node has. The runtime layer between the

OS and the applications does not expose the sensor hardware

to the developers, so they cannot write applications on the fly.

For network-level virtualization, SenShare uses the concept of

overlays and uses CTP protocol to create independent overlays

for applications.

The performance results of this work cover the application

isolation penalty and overlay management. With more concur-

rent applications in a sensor node, it is observed that sampling

rate decreases by 28% as compared to a single application

sampling the same phenomenon. The CPU utilization also

increases linearly and has less impact on the SenShare runtime.

The same is observed for memory usage. The extra overlay

traffic is found to be decreasing over the period of time to

around 10% of the network traffic.

The work in [10] discusses the node- and network-level

virtualization of sensor nodes in the context of the VITRO

project. The goals of this work are i) to design a middleware

to act as a bridge between applications and the sensor nodes,

and ii) to design advanced sensor node architecture. Node-level

virtualization is achieved by instantiating various instances of

routing and of MAC layers. There is a Node Virtualization

Manager (NVM) inside every sensor node which is responsible

for managing the available resources and fulfilling the requests

to utilize those resources [74]. NVM interacts with each layer

to ensure the optimal, secure and energy-efficient utilization

of sensor nodes. Each sensor node has a middleware which

is responsible for its discovery and the services it provides.

This middleware sits on top of the network layer. The network

layer uses routing protocols that can support multiple routing

instances. A trust-aware routing protocol [75] is used to route

the data, and delay-tolerant network mechanisms are suggested

to counter the connectivity issues. For each application, a newly

configured MAC layer is instantiated.

A reference architecture is presented at the network level,

consisting of several autonomous WSN domains. Each of these

domains is connected to VITRO service providers through a

gateway node. The gateway node plays a major role in provid-

ing network-level virtualization. It consists of modules that help

in the creation and management of VSNs. The gateway node

uses several registries to create and manage a VSN. In VITRO,

only gateway nodes can be part of the VSN, which can be re-

alized by creating a routing link between them using protocols

such as RPL. Individual sensor nodes can only be part of the

VSN, on their own, if they support the functionalities of the

gateway node, otherwise they can only join a VSN with the help

of a gateway node. Details such as sensor selection and task

dissemination are not discussed. A VSN manager is responsible

for service negotiation, session establishment and monitoring.

Functional architectures of gateway nodes and advanced sensor

nodes are also presented, along with the details of the inter-

faces between system components. No implementation details

are discussed and no protocol recommendations are given for

interfaces or functions such as service registration or service

negotiation.

For node-level virtualization, VITRO relies on advanced sen-

sor nodes that enable the efficient utilization of resources and

concurrent access. However, there is no discussion regarding

the OS that will provide such functionalities, nor is there any

information on the hardware platform in the paper. Most of

the details are at the conceptual level; no technical details

such as programming model, programming language, and OS

are provided. For network-level virtualization, this work only

connects already VSN-aware/legacy/proprietary WSNs through

a gateway node. The mechanisms for creating a VSN-aware

network are not discussed, nor is there any mention of protocols

to be used.

No performance results are presented in this work.

3) Virtual Machine and Dynamic Grouping-Based Solution:

Melete [18] provides both node- and network-level support for

the concurrent execution of applications in WSNs. At the node-

level, Melete supports simultaneous execution by enhancing

Maté, supporting the interleaved execution of multiple ap-

plications on a single WSN node. Application code images

are stored, each with its own dedicated execution space. Ap-

plications do not share variables with each other to ensure

that an application failure does not affect other applications

executing on the same WSN nodes. The number of concurrent

applications that can be executed by WSN nodes depends on

the available RAM; the implementation in the paper supports

up to five applications. Melete uses an event-driven program-

ming model. Another contribution of Melete is that it supports

application task code dissemination. Task code dissemination

has two main goals. One is to select the sensor nodes which

are part of a group, and send new code to them. The second

is to reactively send code to the sensor nodes that require it.

Both goals allow the task code of the relevant sensor nodes

to be sent while discouraging its unnecessary dissemination.

Actual code forwarding is done region-wise using multi-hop

communication.

At a network-level, Melete supports the dynamic grouping of

deployed WSN nodes to execute multiple applications simulta-

neously. The supported network topology is a connected graph.

It is possible for WSN nodes to be part of more than one logical

group at a time. Each logical group is dedicated to a single

application, and the implementation supports up to 16 groups

coexisting in a WSN. A new application code is disseminated

passively between members of the group using the above-

mentioned design goals. All WSN nodes maintain the version

information of the applications, and advertise it in the group,

hence making WSN nodes aware of when to update their appli-

cation codes. This saves energy by reducing unnecessary com-

munications, but at a cost of the delay incurred. Sensor nodes

in a logical group execute a single application at a time, hence

each application cannot be influenced by the run-time error

of another application. The paper presents extensive simulation-

based as well as actual implementation results.

For node-level virtualization, Melete improves on Maté, but

since application tasks have their own data and execution space,

only a limited number of application tasks can run concurrently.

The programming model is based on the event-driven approach

of TinyOS. The application programs are written in TinyScript.

A dynamic grouping scheme is provided for network-level



KHAN et al.: WIRELESS SENSOR NETWORK VIRTUALIZATION: A SURVEY

TABLE IV
SUMMARY OF THE STATE-OF-THE-ART

virtualization. By default, all sensor nodes are members of a

parent group, with its code stored in them. How a sensor node

will join a new group depends on the task code it is executing.

The programmer needs to be aware of the many situations that

may arise in the network and program the responses, and this

approach is not flexible at all.

The performance results of Melete include mathematical

analysis of the impact of parameters on the task code dissemina-

tion scheme. The code size and memory consumption of Melete

was compared to Maté. The code size of Melete is bigger

than Maté even when there was only one application. Similarly

Melete exhibits higher memory consumption than Maté. The

result pertaining to dynamic grouping show delays in the order

of seconds for a motion tracking application in an office setting.

D. Summary

Table IV illustrates the evaluation of the existing work based

on the requirements identified in section 2.4. We have found

several capable node-level virtualization solutions. In the early-

generation sensor nodes, the programming model of choice

was event-driven, as it was simple to implement, but once its

limitations were found, the thread-based approach was used to

implement more complex and concurrent tasks in sensor nodes.

Of all these works, TinyOS and Contiki have become extremely

popular and have good community support. Contiki is now

considered as a platform for the IoT [76] and has incorporated

many innovative features over the last decade. RIOT [25] is a

new work to design a capable OS to run C/C++ applications on

heterogeneous sensor platforms.

For network-level virtualization, the early work used the con-

cept of clusters but managing clusters itself is quite challenging.

The majority of work on cluster-based solutions in WSNs is

focused on improving routing, energy efficiency and security.

We need solutions that facilitate the creation of application-

specific clusters that adapt to the dynamics of the network

and of the monitored events. Recently overlay solution are

being used for network-level virtualization but it is still largely

unexplored territory. We have works like [54] discussing, quite

convincingly, that it is not ‘mission impossible’ to use over-

lays in WSNs. Most recent research work has focused on

providing hybrid solutions for WSN virtualization. A few

recently-concluded research projects have addressed WSN vir-

tualization, but their solutions are embryonic and multiple

issues remain. For example, some solutions are platform de-

pendent, others are theoretical and at conceptual level.



IEEE COMMUNICATION SURVEYS & TUTORIALS

TABLE IV
(Continued). SUMMARY OF THE STATE-OF-THE-ART

V. WSN VIRTUALIZATION RESEARCH PROJECTS

In this section we introduce some relevant projects that envi-

sion the utilization of WSNs by multiple applications. Table V

lists these projects and provides their summary based on the

following characteristics.

1) Project Aim: Provides the holistic aim of the overall

project. FRESnel and VITRO are the only two projects that are

aimed directly at WSN virtualization. The remaining projects

have more extended scopes, such as smart city realization,

smart health in the context of IoT, or aim to provide a large-

scale test bed for network research.

2) Project Scope: Indicates if a project is a part of academic

or industrial research, or is being developed as a multi-partner

effort. VITRO, Smart Santander, iCore and Butler are all Eu-

ropean FP7 projects involving large consortiums of industrial,

telecom and academic partners. FRESnel is a joint project

between Cambridge and Oxford Universities, UK.

3) Virtualization Level: Indicates the type of WSN virtu-

alization. FRESnel and VITRO are the two projects that aim

to provide both node- and network-level virtualization. City-

Sense, iCore, Butler and ViSE do not explicitly address WSN

virtualization, but they do consider the utilization of sensors by

multiple applications.

4) Virtualization Type: The true realization of WSN vir-

tualization does not involve any gateway node managing the

virtualization-related tasks; instead, sensor nodes themselves

handle such tasks. On the other hand the gateway-based vir-

tualization solutions make WSNs act as capillary networks

connected to the Internet or to other networks through a single

node. It is important to mention that the presence of a gateway

node for communication is difficult to rule out since sensor

nodes may use sense and sleep mechanisms.

5) Network Devices: Another important characteristic of

these projects is the type of devices they use in their work.

CitySense, Butler and ViSE use high-end devices. While sen-

sors are considered, they are usually connected to high-end

PCs/nodes that compliment them for processing, data storage,

power supply and connectivity. FRESnel and VITRO utilize

the usual/normal sensor nodes, which is more relevant to WSN

virtualization.

6) Evaluation Setup: All of the projects discussed here eval-

uate their contributions using real test bed setups; however the

size of these setups varies considerably. For example, the Smart



KHAN et al.: WIRELESS SENSOR NETWORK VIRTUALIZATION: A SURVEY

TABLE V
WSN VIRTUALIZATION-RELATED PROJECTS

Santander project will use around 20 000 nodes deployed over

four European cities, providing a massive platform for research

and evaluation purposes. This gigantic setup will also be used

by the iCore project. In comparison, Fresnel’s in-campus test

bed has 35 nodes while ViSE test bed has only 3 nodes.

The ViSE and CitySense projects were not designed to

provide solutions for WSN virtualization, but they do in-

corporate the important virtualization concept, i.e., to allow

multiple applications to utilize the deployed WSN infras-

tructure. The Smart Santander, iCore and Butler projects are

aimed to realize the IoT, and consider sensors and devices of

different types. VITRO and FRESnel are focused on WSN

virtualization, but VITRO provides gateway-based virtualiza-

tion, which is not a true realization of WSN virtualization.

The FRESnel project however, considers the true realiza-

tion of WSN virtualization, but it provides platform-specific

solutions. Overall it is clear that the idea of WSN virtu-

alization is receiving considerable attention, not only from

academic quarters but also from major industrial and telecom

players.

VI. RESEARCH ISSUES

We identify some important research issues that need to be

addressed to provide innovative WSN virtualization solutions.

1) Advanced Node-Level Virtualization: Node-level virtual-

ization has attracted considerable attention from the research

community. In many ways, it is provided as part of the sen-

sor OS. Multi-threaded OSs and application-specific virtual

machines (VM), working on top of an OS, can support the

concurrent execution of application tasks. As the trend moves

towards more powerful IP-WSNs, more efforts are required to

virtualize the individual components of sensor nodes, such as

MAC and routing layers. The VITRO project has put forth

the concept [10], but there are no real implementations to

date. PAVENET OS [33] takes advantage of capable hard-

ware to design efficient OSs but is tied to a single platform.

To exploit the recent advances in sensor hardware, a fresh

approach like RIOT OS [25] can be taken to come up with

new and general purpose solutions. Some new solutions provide

separation between the sensor OS and the user application

tasks but we still need functions like OTA installation/updating



IEEE COMMUNICATION SURVEYS & TUTORIALS

of new user tasks without disturbing the existing ones. One

possible solution to tackle this issue is to design an abstraction

layer that works on top of sensor OS to provide application

portability like in [83]. A modular-based approach will work

much better since it will be applicable to heterogeneous OSs,

programming languages and models.

2) Network-Level Virtualization: Not much work has been

done in the area of network-level virtualization to support

multiple applications over a deployed WSN, hence there is a

tremendous opportunity to make valuable contributions. Over-

lay networks can provide an efficient solution as they are robust

and can work efficiently without changes in the underlying

network. Some solutions like those in [54], [56], and [57]

do exist, but they are still embryonic in nature and do not

consider the requirements of multiple applications utilizing

a WSN concurrently. As multiple overlays may need to co-

exist, preventing them from interacting with each other in a

harmful way remains a challenge. Cluster-based approaches

have traditionally been used in WSN’s for improving routing,

energy-efficiency, management and security. Managing clusters

in a virtualized WSN is not trivial, however, cluster-based

solutions can be quite useful in scenarios where a deployed

WSN is used to monitor dynamic events. These solutions can

also be helpful in mobile WSNs, Robotic and Vehicular Ad hoc

Networks.

3) Discovery and Publication: The discovery and publica-

tion of resources and services in WSN is already challenging,

but it becomes more sophisticated in virtualized WSNs. For

example, it will be interesting to find whether certain kind of

relationships exist between physical and virtual sensors and

whether they can be exploited to provide quick publication and

discovery solutions. As virtual sensors are created on-demand

and destroyed when no longer required, their publication and

discovery needs to be efficient, robust, scalable and manage-

able. Discovery and publication of resources and services on

the fly are very important functions, especially in the context

of IoT. A P2P based architecture can be a solution like [84]

that does not rely on any central mechanism to discover the ser-

vices. However, no such solution exists for virtualized WSNs.

Similarly a service recommendation system can be developed,

for virtualized WSNs, which allows context-aware discovery

of resources and services. Recent IETF service discovery pro-

tocols like CoAP resource discovery [85], [86] and DNS-SD

[87] can be used to design efficient discovery and publica-

tion solutions in resource-constrained environments. Moreover,

new algorithms that adapt to evolving WSN conditions and

nodes’ mobility or failures are required, to ensure service

continuity.

4) Service Composition: Service composition using virtual

sensor nodes is another important research challenge. In our

view, future WSN deployments will involve multiple actors,

such as WSN providers, virtual sensor providers, service

providers, third-party application/services providers and end-

user applications. A cloud-based approach could be a solution

[88]. WSN resources could be offered as Infrastructure-as-a-

Service (IaaS) and used by Platform-as-a-Service (PaaS) to

offer services to end users. In this regard, existing projects like

[79], [80], and [81] can be used for inspiration about end user

services. Using semantics and ontologies to compose services

based on application requirements and the capabilities of sensor

nodes can provide improved solutions. It is also important to

note that the service composition may also use existing or third-

party services on the fly. Location and mapping services are

typical examples of such services.

5) Sensor Node Selection and Task Assignment: The issues

of sensor selection and task assignment are very much related

to each other. Selecting the right set of sensor nodes according

to the temporal and spatial requirements of applications is

crucial [21] to improving the overall Quality of Monitoring

(QoM) systems. A more detailed task assignment problem

formulation and its solutions are presented in detail in [89],

but it does not consider the possibility of multiple applications

using a single sensor node at the same time. In [90] cost-

effective market-based algorithms are used for task allocation

and resource management. But the proposed algorithms are

OS specific (Sensomax) and require more work to determine

their suitability. A QoS-aware task allocation algorithm in [91]

brings a new dimension into the sensor node selection while

satisfying QoS requirements of multiple applications at the

same time. New algorithms that not only consider the QoS

requirements of the applications but also take into account the

properties of the events being monitored by the sensor nodes

are needed to advance in this area.

6) Application Task Dissemination: When new applications

are being contemplated, it is not unrealistic to assume that

a new algorithm or application task will need to be sent for

the sensor node(s) to execute. Sending the new task code (or

updating an existing one) in a seamless way, with no disruption

of existing tasks, is quite a challenge. Much of this will depend

on the sensor OS and its ability to install and update user

tasks without disturbing the existing ones or requiring the

reboot of the sensor node. Another issue is how to get the

user input, program it, and compile it to generate executable

code. In the context of IoT, the user may not have technical

expertise to code the required program. There needs to be a

clear separation between the WSN infrastructure and the user.

This can be achieved by having an entity, like service provider,

to allow a user to provide her requirements in an easy man-

ner, e.g., in a web-form. This way only some aspects of the

(re)programming a sensor nodes can be exposed to the user.

Once the input is gathered, the service provider can send it to

the physical WSN provider to generate executable code for the

selected sensor node(s) and reprogram them. Such a system

will have two benefits: one is that the sensor nodes not able

to fulfill a task, due to some reason, can be filtered out. Second,

based on previous usage patterns of the user, a recommendation

system can be devised that makes use of the historical data to

recommend and (re)program the sensor nodes. An alternative

approach would be to develop a cloud-based PaaS solution

and provide toolkits specifically designed to develop, compile,

verify, test and deploy sensor application tasks for different

sensor platforms.

7) Reference Designs and Architectures: A comprehensive

virtualization platform for WSNs is required, one that cov-

ers all aspects: data acquisition from the sensors, end-to-end

communication (including data management and computation),



KHAN et al.: WIRELESS SENSOR NETWORK VIRTUALIZATION: A SURVEY

as well as service composition for end-user applications.

Such a platform will allow a deeper and complete search space

exploration to find the optimal solution for any given WSN

application. Furthermore, this complete framework will ensure

that all the relevant aspects can be modeled and evaluated

comprehensively. Decentralized architectures are required that

will enable robust and objective-based solutions depending

on application requirements like time sensitivity, QoS, and

QoM. Another important aspect is that most of the exist-

ing work focuses on the fixed WSNs but in the context of

IoT, we can expect more and more deployments of mobile

WSNs and even spontaneous ad hoc WSNs. These ad hoc

WSNs will be created when large number of sensors commu-

nicate together to provide on-demand services for a certain

time period and then cease to exist. Participatory sensing and

crowed-based sensing, using smart phones, are two forms of

the ad hoc WSNs. There is an early work in this area [92]

that aims to utilize external sensors with the smart phones.

This is achieved by means of a sensor virtualization module

developed for the android platform. Still we require more

solutions that focus on mobile, ad hoc WSNs and even hybrid

variations.

8) New Protocols, Algorithms and Simulation Tools: As

mentioned in the introduction, recently WSN virtualization

is getting attention from the research community and we’re

now seeing some new contributions in this area. For example,

in [93] a harmonized transmission protocol is presented that

combines transmissions from a sensor node when it is being

used by multiple concurrent applications. References [94] and

[95] put forth a reconfiguration scheme and a management

scheme, respectively, to manage concurrent applications over

a deployed WSN. It will be a good idea to have a capable

simulation tool to analyze and evaluate proposed protocols and

solutions, simply because initially it may not be possible to

have a sizeable WSN deployment for such purposes. A new

simulation tool is presented in [96] which simulates multiple

concurrent applications over a WSN. While it is a good start,

more effort is required to integrate such support in already well-

known and established simulation tools.

9) WSN Virtualization Business Model & Standardization:

A viable business model is required to allow broader (and

more commercial) acceptance of WSN virtualization. This can

be accomplished easily if WSN entities are decoupled into

distinct roles of WSN providers, virtual sensor providers, ser-

vice providers and third-party applications/service providers.

Allowing third-party applications will allow for the rapid devel-

opment of applications and solutions, since the existing compo-

nents will be reusable. Another benefit of such business model

is that it will pave the way for standardization activities in this

area. In our review of WSN virtualization area we strongly

felt the need for harmonization between different protocols,

data formats, encoding schemes, and consortium-led efforts

such as Sensor Web Enablement (SWE) [97]. Currently these

incompatibilities act as major roadblocks for proposing generic

and open solutions.

10) Energy Efficient Solutions: Energy efficiency will re-

main a key research area in WSNs, even more so when WSN

virtualization is involved. While we can safely predict that fu-

ture sensor nodes will be more capable and resourceful, energy

efficient communications, discovery, routing and applications

will still be required. So far the main focus has been on making

a sensor node sleep for maximum duration possible so that

it utilizes less energy. This strategy has worked reasonably

well for simple applications but this trend is not sustainable in

emerging IoT paradigm. Energy harvesting mechanisms need

to be incorporated with WSN platforms as main or alternative

source of energy. This will ensure that sensor nodes have a

continuous power supply in addition to their batteries. Example

of energy harvesting mechanisms are, use of ambient energy

like vibrations or solar energy to generate energy [98]. There

is considerable research work in this area [99] but commercial

platforms are missing.

11) Access Control, Authentication, and Accounting: An-

other important area is to provide a controlled access to de-

ployed WSN resources. In the context of the IoT, sensors

deployed by entities like city administrations will probably

allow for public access, but they will still require access control,

authentication and authorization. For example, such deploy-

ments will also be used for monitoring or security applications

along with public applications, hence providing access accord-

ing to users will be challenging. Another aspect is that it may

not be feasible for a single authority to deploy a WSN on a

large scale. For areas where WSN deployments are not possible,

participatory sensing can be used as an alternative. Motivating

private owners to share their deployed sensors and allow remote

access is a challenge. Incentives like tax rebates or reduced

utility rates need to be devised to encourage voluntary participa-

tion. Using a WSN deployment for monetary benefits brings in

the accounting issue—how to charge users in accordance with

service contracts.

12) WSN Virtualization Application Scenarios and Test-

Beds: Applications from domains such as smart cities, smart

health, smart homes, green computing and pervasive com-

puting can potentially use the WSN virtualization concept

for cost effective solutions. New trends like mobile WSNs,

participatory/crowd-based sensing, cloud-based remote sens-

ing and vehicular networks can also benefit from this con-

cept. The availability of test-bed setups like Smart Santander

[79] provides a massive basis for prototyping and evaluation

purposes.

VII. CONCLUSION

We have presented a detailed overview of WSN virtualiza-

tion, as well as the current state of the art. First we catego-

rized state-of-the-art into node-level, network-level and hybrid

solutions, and explained them. We then provided a critical

analysis of the existing state-of-the-art in each category and

evaluated them based on a set of requirements derived from

the motivating scenarios. Several research projects pertinent to

this topic were also presented. We outlined several important

research challenges and their possible solutions. WSN virtual-

ization is very much relevant in the context of the IoT, in which

small-scale devices, at an unprecedented scale, are expected

to provide services to multiple applications concurrently, but

we have yet to find a comprehensive solution that meets this

challenge.



IEEE COMMUNICATION SURVEYS & TUTORIALS

REFERENCES

[1] M. A. Feki, F. Kawsar, M. Boussard, and L. Trappeniers, “The Internet

of Things: The next technological revolution,” Computer, vol. 46, no. 2,

pp. 24–25, Feb. 2013.

[2] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless

sensor networks: A survey,” Comput. Netw., vol. 38, no. 4, pp. 393–422,

Mar. 2002.

[3] S. Loveland, E. M. Dow, F. LeFevre, D. Beyer, and P. F. Chan, “Lever-

aging virtualization to optimize high-availability system configurations,”

IBM Syst. J., vol. 47, no. 4, pp. 591–604, 2008.

[4] N. M. M. K. Chowdhury and R. Boutaba, “Network virtualization: State

of the art and research challenges,” IEEE Commun. Mag., vol. 47, no. 7,

pp. 20–26, Jul. 2009.

[5] Z. J. Chong et al., “Autonomy for Mobility on Demand,” in Intelligent

Autonomous Systems, 12th ed., S. Lee, H. Cho, K.-J. Yoon, and J. Lee,

Eds. Berlin Germany: Springer-Verlag, 2013, pp. 671–682.

[6] G. Cardone, A. Cirri, A. Corradi, and L. Foschini, “The participact mobile

crowd sensing living lab: The testbed for smart cities,” IEEE Commun.

Mag., vol. 52, no. 10, pp. 78–85, Oct. 2014.

[7] H. Ma, D. Zhao, and P. Yuan, “Opportunities in mobile crowd sensing,”

IEEE Communications Magazine, vol. 52, no. 8, pp. 29–35, Aug. 2014.

[8] C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos, “Sensing as

a service model for smart cities supported by Internet of Things,” Trans.

Emerging Tel. Technol., vol. 25, no. 1, pp. 81–93, Jan. 2014.

[9] I. Khan, F. Belqasmi, R. Glitho, and N. Crespi, “A multi-layer architec-

ture for wireless sensor network virtualization,” in Proc. 6th Joint IFIP

WMNC, Dubai, UAE, 2013, pp. 1–4.

[10] L. Sarakis, T. Zahariadis, H.-C. Leligou, and M. Dohler, “A framework

for service provisioning in virtual sensor networks,” J. Wireless Commun.

Netw., vol. 2012, no. 1, pp. 1–19, Dec. 2012.

[11] A. Merentitis et al., “WSN Trends: Sensor infrastructure virtualization as

a driver towards the evolution of the Internet of Things,” in Proc. 7th Int.

Conf. UBICOMM, Porto, Portugal, 2013, pp. 113–118.

[12] R. Ramdhany and G. Coulson, “Towards the coexistence of divergent ap-

plications on smart city sensing infrastructure” in Proc. 4th Int. Workshop

CONET/UBICITEC, Philadelphia, PA, USA, Apr. 8, 2013, pp. 26–30

[13] E. Patouni, A. Merentitis, P. Panagiotopoulos, A. Glentis, and

N. Alonistioti, “Network virtualisation trends: Virtually anything is pos-

sible by connecting the unconnected,” in Proc. IEEE SDN4FNS, 2013,

pp. 1–7.

[14] S. Abdelwahab, B. Hamdaoui, M. Guizani, and A. Rayes, “Enabling smart

cloud services through remote sensing: An Internet of everything enabler,”

IEEE Internet Things J., vol. 1, no. 3, pp. 276–288, Jun. 2014.

[15] C. Liang and F. R. Yu, “Wireless network virtualization: A survey, some

research issues and challenges,” IEEE Commun. Surveys Tuts., vol. 17,

no. 1, pp. 358–380, 2015.

[16] M. M. Islam, M. M. Hassan, G.-W. Lee, and E.-N. Huh, “A survey

on virtualization of wireless sensor networks,” Sensors, vol. 12, no. 2,

pp. 2175–2207, Feb. 2012.

[17] M. M. Islam and E.-N. Huh, “Virtualization in wireless sensor network:

Challenges and opportunities,” J. Netw., vol. 7, no. 3, pp. 412–418,

Mar. 2012.

[18] Y. Yu, L. J. Rittle, V. Bhandari, and J. B. LeBrun, “Supporting concurrent

applications in wireless sensor networks,” in Proc. 4th Int. Conf. Embed-

ded Netw. Sensor Syst., New York, NY, USA, 2006, pp. 139–152.

[19] A. P. Jayasumana, Q. Han, and T. H. Illangasekare, “Virtual sensor

networks—A resource efficient approach for concurrent applications,” in

Proc. 4th ITNG, 2007, pp. 111–115.

[20] M. Ceriotti et al., “Monitoring heritage buildings with wireless sensor

networks: The Torre Aquila deployment,” in Proc. Int. Conf. Inf. Process.

Sensor Netw., Washington, DC, USA, 2009, pp. 277–288.

[21] X. Wang, J. Wang, Z. Zheng, Y. Xu, and M. Yang, “Service composition

in service-oriented wireless sensor networks with persistent queries,” in

Proc. 6th IEEE CCNC, 2009, pp. 1–5.

[22] W. Dargie and C. Poellabauer, Fundamentals of Wireless Sensor

Networks: Theory and Practice. Hoboken, NJ, USA: Wiley, 2010.

[23] R. Chu, L. Gu, Y. Liu, M. Li, and X. Lu, “SenSmart: adaptive stack

management for multitasking sensor networks,” IEEE Trans. Comput.,

vol. 62, no. 1, pp. 137–150, Jan. 2013.

[24] S. Nath, P. B. Gibbons, S. Seshan, and Z. Anderson, “Synopsis diffu-

sion for robust aggregation in sensor networks,” ACM Trans. Sen. Netw.,

vol. 4, no. 2, pp. 7:1–7:40, Apr. 2008.

[25] E. Baccelli, O. Hahm, M. Gunes, M. Wahlisch, and T. C. Schmidt “RIOT

OS: Towards an OS for the Internet of Things” in Proc. 32nd IEEE

INFOCOM Poster, 2013, pp. 79–80.

[26] H. Will, K. Schleiser, and J. Schiller, “A real-time kernel for wireless

sensor networks employed in rescue scenarios,” in Proc. IEEE 34th Conf.

LCN, 2009, pp. 834–841.

[27] E. Baccelli, O. Hahm, M. Gunes, M. Wahlisch, and T. C. Schmidt, “OS

for the IoT—Goals, challenges, and solutions,” in Proc. WISG, Troyes,

France, 2013, pp. 1–6.

[28] W. Dong et al., “SenSpire OS: A predictable, flexible, and efficient

operating system for wireless sensor networks,” IEEE Trans. Comput.,

vol. 60, no. 12, pp. 1788–1801, Dec. 2011.

[29] S. Bhatti et al. “MANTIS OS: An embedded multithreaded operating

system for wireless micro sensor platforms,” Mobile Netw. Appl., vol. 10,

no. 4, pp. 563–579, Aug. 2005.

[30] P. Levis et al., “TinyOS: An operating system for sensor networks,”

in Ambient Intelligence, W. Weber, J. M. Rabaey, and E. Aarts, Eds.

Berlin, Germany: Springer-Verlag, 2005, pp. 115–148.

[31] (Accessed 27/10/2014). [Online]. Available: www.cs.colorado.edu/~rhan/

sensornets.html

[32] Q. Cao, T. Abdelzaher, J. Stankovic, and T. He, “The LiteOS operating

system: Towards unix-like abstractions for wireless sensor networks,” in

Proc. Int. Conf. IPSN, 2008, pp. 233–244.

[33] S. Saruwatari, M. Suzuki, and H. Morikawa, “PAVENET OS: A compact

hard real-time operating system for precise sampling in wireless sensor

networks,” SICE J. Control, Meas., Syst. Integr., vol. 5, no. 1, pp. 24–33,

2012.

[34] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki—A lightweight and

flexible operating system for tiny networked sensors,” in Proc. 29th Annu.

IEEE Int. Conf. Local Comput. Netw., 2004, pp. 455–462.

[35] A. Dunkels, O. Schmidt, T. Voigt, and M. Ali, “Protothreads: Simplifying

event-driven programming of memory-constrained embedded systems,”

in Proc. 4th Int. Conf. Embedded Netw. Sensor Syst., New York, NY, USA,

2006, pp. 29–42.

[36] D. Yazar and A. Dunkels, “Efficient application integration in

IP-based sensor networks,” in Proc. 1st ACM Workshop Embedded

Sens. Syst. Energy-Efficiency Buildings, New York, NY, USA, 2009,

pp. 43–48.

[37] M. Durvy et al., “Making sensor networks IPv6 ready,” in Proc. 6th

ACM Conf. Embedded Netw. Sensor Syst., New York, NY, USA, 2008,

pp. 421–422.

[38] M. Kovatsch, S. Duquennoy, and A. Dunkels, “A low-power CoAP for

contiki,” in Proc. IEEE 8th Int. Conf. MASS, 2011, pp. 855–860.

[39] N. Tsiftes, A. Dunkels, Z. He, and T. Voigt, “Enabling large-scale storage

in sensor networks with the coffee file system,” in Proc. Int. Conf. Inf.

Process. Sensor Netw., Washington, DC, USA, 2009, pp. 349–360.

[40] K. Klues et al., “TOSThreads: Thread-safe and non-invasive preemp-

tion in tinyos,” in Proc. 7th ACM Conf. Embedded Netw. Sensor Syst.,

New York, NY, USA, 2009, pp. 127–140.

[41] J. Hui, “Deluge 2.0-TinyOS network programming,” 2005. [Online].

Available: http://www.cs.berkeley.edu/jwhui/research/deluge/deluge-

manual.pdf

[42] P. Levis and D. Culler, “Maté: A tiny virtual machine for sensor net-

works,” in Proc. 10th Int. Conf. Rec. IEEE IAS Annu. Meeting ASPLOSX,

San Jose, CA, USA, 2002, pp. 85–95.

[43] J. Koshy and R. Pandey, “VMSTAR: Synthesizing scalable runtime envi-

ronments for sensor networks,” in Proc. 3rd Int. Conf. Embedded Netw.

Sensor Syst., New York, NY, USA, 2005, pp. 243–254.

[44] R. Pandey and J. Wu, “BOTS: A constraint-based component system

for synthesizing scalable software systems,” in Proc. ACM SIGPLAN/

SIGBED Conf. Language, Compilers, Tool Support Embedded Syst.,

New York, NY, USA, 2006, pp. 189–198.

[45] J. Koshy and R. Pandey, “Remote incremental linking for energy-efficient

reprogramming of sensor networks,” in Proc. 2nd Eur. Workshop Wireless

Sensor Netw., 2005, pp. 354–365.

[46] D. Simon et al. “Java on the bare metal of wireless sensor devices: The

squawk java virtual machine,” in Proc. 2nd Int. Conf. Virtual Execution

Environ., New York, NY, USA, 2006, pp. 78–88.

[47] J. W. Muchow, Core J2ME Technology and MIDP. Englewood Cliffs,

NJ, USA: Prentice-Hall, 2001.

[48] C.-L. Fok, G.-C. Roman, and C. Lu, “Agilla: A mobile agent middleware

for self-adaptive wireless sensor networks,” ACM Trans. Autonom. Adapt.

Syst., vol. 4, no. 3, pp. 16:1–16:26, Jul. 2009.

[49] S. Bhattacharya, A. Saifullah, C. Lu, and G. Roman, “Multi-application

deployment in shared sensor networks based on quality of monitoring,” in

Proc. 16th IEEE RTAS, 2010, pp. 259–268.

www.cs.colorado.edu/~rhan/sensornets.html
www.cs.colorado.edu/~rhan/sensornets.html
http://www.cs.berkeley.edu/jwhui/research/deluge/deluge-manual.pdf
http://www.cs.berkeley.edu/jwhui/research/deluge/deluge-manual.pdf


KHAN et al.: WIRELESS SENSOR NETWORK VIRTUALIZATION: A SURVEY

[50] V. Gupta et al., “Nano-CF: A coordination framework for macro-

programming in wireless sensor networks,” in Proc. 8th Annu. IEEE

Commun. SECON, 2011, pp. 467–475.

[51] A. Eswaran, A. Rowe, and R. Rajkumar, “Nano-RK: An energy-aware

resource-centric RTOS for sensor networks,” in Proc. 26th IEEE Int.

RTSS, 2005, pp. 10–265.

[52] A. Rowe, K. Lakshmanan, H. Zhu, and R. Rajkumar, “Rate-harmonized

scheduling and its applicability to energy management,” IEEE Trans. Ind.

Informat., vol. 6, no. 3, pp. 265–275, Aug. 2010.

[53] A. Rowe et al., “Sensor Andrew: Large-scale campus-wide sensing

and actuation,” IBM J. Res. Develop., vol. 55, no. 1.2, pp. 6:1–6:14,

Jan. 2011.

[54] A. Muneeb and K. Langendoen. “A case for peer-to-peer network overlays

in sensor networks” in Proc. Int. WWSNA, 2007, pp. 56–61.

[55] G. Fersi, W. Louati, and M. B. Jemaa, “Distributed hash table-based

routing and data management in wireless sensor networks: A survey,”

Wireless Netw, vol. 19, no. 2, pp. 219–236, Feb. 2013.

[56] H. V. Luu and X. Tang. “Constructing rings overlay for robust data

collection in wireless sensor networks” J. Netw. Comput. Appl., vol. 36,

no. 5, pp. 1372–1386, Sep. 2013.

[57] A. A.-B Al-Mamou and H. Labiod, “ScatterPastry: An overlay routing

using a DHT over wireless sensor networks,” in Proc. Int. Conf. IPC,

2007, pp. 274–279.

[58] J. Hoebeke, E. D. Poorter, S. Bouckaert, I. Moerman, and P. Demeester,

“Managed ecosystems of networked objects,” Wireless Pers. Commun.,

vol. 58, no. 1, pp. 125–143, May 2011.

[59] I. Ishaq, J. Hoebeke, I. Moerman, and P. Demeester, “Internet of

things virtual networks: Bringing network virtualization to resource-

constrained devices,” in Proc. IEEE Int. Conf. GreenCom, 2012,

pp. 293–300.

[60] E. De Poorter, E. Troubleyn, I. Moerman, and P. Demeester, “IDRA:

A flexible system architecture for next generation wireless sensor net-

works,” Wireless Netw., vol. 17, no. 6, pp. 1423–1440, Aug. 2011.

[61] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, “The click

modular router,” ACM Trans. Comput. Syst., vol. 18, no. 3, pp. 263–297,

Aug. 2000.

[62] R. Tynan, G. M. P. O’Hare, M. J. O’Grady, and C. Muldoon, “Virtual

sensor networks: An embedded agent approach,” in Proc. ISPA, 2008,

pp. 926–932.

[63] C. Muldoon, G. M. P. O’Hare, and J. F. Bradley, “Towards reflective

mobile agents for resource-constrained mobile devices,” in Proc. 6th Int.

Joint Conf. Autonom. Agents Multiagent Syst., New York, NY, USA,

2007, pp. 141:1–141:3.

[64] H. M. N. D. Bandara, A. P. Jayasumana, and T. H. Illangasekare, “Cluster

tree based self organization of virtual sensor networks,” in Proc. IEEE

GLOBECOM Workshops, 2008, pp. 1–6.

[65] Q. Han, A. P. Jayasumana, T. Illangaskare, and T. Sakaki, “A wireless sen-

sor network based closed-loop system for subsurface contaminant plume

monitoring,” in Proc. IEEE IPDPS, 2008, pp. 1–5.

[66] M. Haghighi and D. Cliff, “Multi-agent support for multiple concurrent

applications and dynamic data-gathering in wireless sensor networks,” in

Proc. 7th Int. Conf. IMIS, 2013, pp. 320–325.

[67] R. B. Smith, “SPOTWorld and the sun SPOT,” in Proc. 6th Int. Conf. Inf.

Process. Sensor Netw., New York, NY, USA, 2007, pp. 565–566.

[68] A. Majeed and T. A. Zia, “Multi-set architecture for multi-applications

running on wireless sensor networks,” in Proc. IEEE 24th Int. Conf.

WAINA, 2010, pp. 299–304.

[69] J. Steffan, L. Fiege, M. Cilia, and A. Buchmann, “Towards multi-purpose

wireless sensor networks,” in Proc. Syst. Commun., 2005, pp. 336–341.

[70] I. Leontiadis, C. Efstratiou, C. Mascolo, and J. Crowcroft, “SenShare:

Transforming sensor networks into multi-application sensing infrastruc-

tures,” in Wireless Sensor Networks, G. P. Picco and W. Heinzelman,

Eds. Berlin, Germany: Springer-Verlag, 2012, pp. 65–81.

[71] J. W. Hui and D. Culler, “The dynamic behavior of a data dissem-

ination protocol for network programming at scale,” in Proc. 2nd

Int. Conf. Embedded Netw. Sensor Syst., New York, NY, USA, 2004,

pp. 81–94.

[72] J. Lu et al., “The smart thermostat: Using occupancy sensors to save

energy in homes,” in Proc. 8th ACM Conf. Embedded Netw. Sensor Syst.,

New York, NY, USA, 2010, pp. 211–224.

[73] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P. Levis, “Collection

tree protocol,” in Proc. 7th ACM Conf. Embedded Netw. Sensor Syst.,

New York, NY, USA, 2009, pp. 1–14.

[74] M. Navarro, M. Antonucci, L. Sarakis, and T. Zahariadis, “VITRO archi-

tecture: Bringing virtualization to WSN world,” in Proc. IEEE 8th Int.

Conf. MASS, 2011, pp. 831–836.

[75] T. Zahariadis, P. Trakadas, H. C. Leligou, S. Maniatis, and P. Karkazis,

“A novel trust-aware geographical routing scheme for wireless sen-

sor networks,” Wireless Pers. Commun., vol. 69, no. 2, pp. 805–826,

Mar. 2013.

[76] P. Levis, “Experiences from a decade of tinyos development,” in Proc.

10th USENIX Conf. Oper. Syst. Des. Implementation, Berkeley, CA, USA,

2012, pp. 207–220.

[77] R. N. Murty et al., “CitySense: An urban-scale wireless sensor net-

work and testbed,” in Proc. Conf. Technol. Homeland Security, 2008,

pp. 583–588.

[78] C. Efstratiou, I. Leontiadis, C. Mascolo, and J. Crowcroft, “A Shared

Sensor Network Infrastructure,” in Proc. 8th ACM Conf. Embedded Netw.

Sensor Syst., New York, NY, USA, 2010, pp. 367–368.

[79] L. Sanchez et al., “SmartSantander: IoT experimentation over a smart city

testbed,” Comput. Net., vol. 61, pp. 217–238, Mar. 2014.

[80] F. Berkers et al., “Constructing a multi-sided business model for a smart

horizontal IoT service platform,” in Proc. 17th Int. Conf. ICIN 2013,

pp. 126–132.

[81] A. Andrushevich et al., “Leveraging multi-domain links via the Internet

of Things,” in Internet of Things, Smart Spaces, and Next Generation

Networking, S. Balandin, S. Andreev, and Y. Koucheryavy, Eds. Berlin,

Germany: Springer-Verlag, 2013, pp. 13–24.

[82] D. Irwin et al., “Towards a virtualized sensing environment,”

in Testbeds and Research Infrastructures. Development of Net-

works and Communities. Berlin, Germany: Springer-Verlag, 2011,

pp. 133–142.

[83] R. S. Oliver, I. Shcherbakov, and G. Fohler, “An operating system ab-

straction layer for portable applications in wireless sensor networks,” in

Proc. ACM Symp. Appl. Comput., 2010, pp. 742–748.

[84] J. Mäenpää, J. J. Bolonio, and S. Loreto, “Using RELOAD and CoAP for

wide area sensor and actuator networking,” J. Wireless Commun. Netw.,

vol. 2012, no. 1, pp. 1–22, Dec. 2012.

[85] Z. Shelby, “Embedded web services,” IEEE Wireless Commun., vol. 17,

no. 6, pp. 52–57, Dec. 2010.

[86] Z. Shelby et al., “Constrained Application Protocol (CoAP),” work in

progress, Internet Eng. Task Force-IETF, Fremont, CA, USA, Draft-ietf-

core-coap-18, Jun. 2013.

[87] S. Cheshire and M. Krochmal, “Multicast DNS,” IETF, Fremont, CA,

USA, RFC 6762, Feb. 2013.

[88] R. Glitho, M. Morrow, and P. Polakos, “A cloud based—Architecture

for cost-efficient applications and services provisioning in wire-

less sensor networks,” in Proc. 6th Joint IFIP WMNC, 2013,

pp. 1–4.

[89] H. Rowaihy et al., “Sensor-mission assignment in wireless sensor net-

works,” ACM Trans. Sensor Netw., vol. 6, no. 4, pp. 36:1–36:33,

Jul. 2010.

[90] M. Haghighi, “Market-based resource allocation for energy-efficient ex-

ecution of multiple concurrent applications in wireless sensor networks,”

in Mobile, Ubiquitous, and Intelligent Computing, J. H. Park, H. Adeli,

N. Park, and I. Woungang, Eds. Berlin, Germany: Springer-Verlag,

2014, pp. 173–178.

[91] W. Li, F. C. Delicato, P. F. Pires, and A. Y. Zomaya, “Energy-

efficient task allocation with quality of service provisioning for concur-

rent applications in multi-functional wireless sensor network systems,”

Concurrency Comput., Pract. Exp.., vol. 26, no. 11, pp. 1869–1888,

Aug. 2014.

[92] J. Ko, B.-B. Lee, S. G. Hong, and N. Kim, “Poster abstract: Virtual-

izing external wireless sensors for designing personalized smartphone

services,” in Proc. 12th Int. Conf. Inf. Process. Sensor Netw., New York,

NY, USA, 2013, pp. 353–354.

[93] V. Gupta, N. Pereira, E. Tovar, and R. Rajkumar, “Poster abstract:

A harmony of sensors: Achieving determinism in multi-application sen-

sor networks,” in Proc. 13th Int. Symp. Inf. Process. Sensor Netw.,

Piscataway, NJ, USA, 2014, pp. 299–300.

[94] C.-M. Hsieh, Z. Wang, and J. Henkel, “DANCE: Distributed application-

aware node configuration engine in shared reconfigurable sensor net-

works,” in Proc. Conf. Des., Autom. Test Eur., San Jose, CA, USA, 2013,

pp. 839–842.

[95] T. M. Cao, B. Bellata, and M. Oliver, “Design of a generic management

system for wireless sensor networks,” Ad Hoc Netw., vol. 20, pp. 16–35,

Sep. 2014.

[96] M. Haghighi, “An agent-based multi-model tool for simulating multiple

concurrent applications in WSNs” in Proc. 5th Int. Conf. Commun. Softw.

Netw. JACN, Malaysia, Jun. 2013, pp. 1–6.

[97] C. Reed et al., “Ogc sensor web enablement:overview and high level

achhitecture” in Proc. IEEE Autotestcon, 2007, pp. 372–380.



IEEE COMMUNICATION SURVEYS & TUTORIALS

[98] E. Gelenbe, D. Gesbert, D. Gunduz, H. Kulah, and E. Uysal-Biyikoglu,

“Energy harvesting communication networks: Optimization and demon-

stration (the E-CROPS project),” in Proc. 24th TIWDC, 2013, pp. 1–6.

[99] S. Sudevalayam and P. Kulkarni, “Energy harvesting sensor nodes: Sur-

vey and implications,” IEEE Commun. Surveys Tuts., vol. 13, no. 3,

pp. 443–461, Sep. 2011.

Imran Khan (S’11) received the B.S. degree in
computer science from COMSATS Institute of
IT, Pakistan, and the M.S. degree in multimedia
and communication from M.A. Jinnah University,
Pakistan. He was member of Center of Research in
Networks and Telecom (CoReNeT) from 2008 to
2010 and worked on projects funded by French Min-
istry of Foreign Affairs and Internet Society (ISOC).
Currently, he is pursuing the Ph.D. degree at Institut
Mines-Télécom, Télécom SudParis jointly with Paris
VI (UPMC). He is also a collaborating researcher

at Concordia University, Montreal, Canada, working on a project funded by
Cisco. He has contributed to the IETF standardization. His research interests are
Internet of Things (IoT), virtualization, cloud computing, service engineering,
and wireless sensor networks.

Fatna Belqasmi (M’09) received the M.Sc. de-
gree in electrical and computer engineering and
the Ph.D. degree from Concordia University,
Canada. Previously, she worked as a research
associate at Concordia University, Canada, and
as a researcher at Ericsson Canada. She was
part of the IST Ambient Network project (a re-
search project sponsored by the European Com-
mission within the Sixth Framework Programme
-FP6-). She worked as an R&D Engineer for Maroc
Telecom in Morocco. Currently, she is working as

Assistant Professor at Zayed University, Abu Dhabi, UAE. Her research inter-
ests include next generation networks, service engineering, distributed systems,
and networking technologies for emerging economies.

Roch Glitho (SM’97) received the M.Sc. degrees
in business economics from University of Grenoble,
France, and in pure mathematics and in computer
science from University of Geneva, Switzerland. He
also received the Ph.D. (Tekn. Dr.) degree in tele-
informatics from the Royal Institute of Technol-
ogy, Stockholm, Sweden. He works in Montreal,
Canada, as an Associate Professor of networking
and telecommunications at the Concordia Institute
of Information Systems Engineering (CIISE) where
he leads the telecommunication service engineering

(TSE) research laboratory (http://users.encs.concordia.ca/~tse/). In the past,
he has worked in industry for almost a quarter of a century and has held
several senior technical positions at LM Ericsson in Sweden and Canada (e.g.,
expert, principal engineer, senior specialist). His industrial experience includes
research, international standards setting (e.g., contributions to ITU-T, ETSI,
TMF, ANSI, TIA, and 3GPP), product management, project management,
systems engineering and software/firmware design. In the past, he has served as
IEEE Communications Society distinguished lecturer, Editor-in-Chief of IEEE
COMMUNICATIONS MAGAZINE and Editor-in-Chief of IEEE COMMUNICA-
TIONS SURVEYS & TUTORIALS. His research areas are: virtualization and
cloud computing; machine-to-machine communications (M2M) and Internet of
Things; distributed systems (e.g., SOAP based—web services, RESTful web
services); rural communications and networking technologies for emerging
economies.

Noel Crespi (M’07–SM’08) received the master’s
degree from the Universities of Orsay (Paris 11) and
Kent (U.K.), a diplome d’ingénieur from Telecom
ParisTech, the Ph.D. and Habilitation from Paris
VI University (Paris-Sorbonne). From 1993, he was
with CLIP, Bouygues Telecom, and with Orange
Labs in 1995. He took leading roles in the creation
of new services with the successful conception and
launch of Orange prepaid service and in standardiza-
tion (from rapporteurship of IN standard to coordina-
tion of all mobile standards activities for Orange). In

1999, he joined Nortel Networks as telephony program manager, architecting
core network products for the EMEA region. He joined Institut Mines-Telecom
in 2002 and is currently Professor and Program Director, leading the Service
Architecture Lab. He coordinates the standardization activities for Institut
Mines-Telecom at ITUT, ETSI, and 3GPP. He is also an Adjunct Professor at
KAIST, an Affiliate Professor at Concordia University, and is on the four-person
Scientific Advisory Board of FTW (Austria). He is the Scientific Director the
French-Korean laboratory ILLUMINE. His current research interests are in
service architectures, services webification, social networks, and Internet of
Things/Services.

Monique Morrow (SM’09) holds the title of CTO
Cisco Services. Her focus is in developing strategic
technology and business architectures for Cisco cus-
tomers and partners. With over 13 years at Cisco, she
has made significant contributions in a wide range of
roles, from Customer Advocacy to Corporate Con-
sulting Engineering. With particular emphasis on the
Service Provider segment, her experience includes
roles in the field (Asia-Pacific) where she undertook
the goal of building a strong technology team, as well
as identifying and grooming a successor to assure a

smooth transition and continued excellence. She has consistently shown her
talent for forward thinking and risk taking in exploring market opportunities
for Cisco. She was an early visionary in the realm of MPLS as a technology
service enabler, and she was one of the leaders in developing new business
opportunities for Cisco in the Service Provider segment, SP NGN. She holds
three patents, and has an additional nine patent submissions filed with US
Patent Office. She is the co-author of several books, and has authored numerous
articles. She also maintains several technology blogs and is a major contributor
to Cisco’s Technology Radar, having achieved Gold Medalist Hall of Fame
status for her contributions. She is also very active in industry associations. She
is a new member of the Strategic Advisory Board for the School of Computer
Science at North Carolina State University. She is particularly passionate about
Girls in ICT and has been active at the ITU on this topic—presenting at the EU
Parliament in April of 2013 as an advocate for Cisco. Within the Office of the
CTO, first as an individual contributor, and now as CTO, she has built a strong
leadership team, and she continues to drive Cisco’s globalization and country
strategies.

Paul Polakos received the B.S., M.S., and Ph.D.
degrees in physics from Rensselaer Polytechnic In-
stitute and the University of Arizona. He is cur-
rently a Cisco Fellow and member of the Mobility
CTO team at Cisco Systems focusing on emerging
technologies for future Mobility systems. Prior to
joining Cisco, he was Senior Director of Wireless
Networking Research at Bell Labs, Alcatel-Lucent in
Murray Hill, NJ, USA, and Paris, France. During his
28 years at Bell Labs he worked on a broad variety of
topics in physics and in wireless networking research

including the flat-IP cellular network architecture, the Base Station Router,
femtocells, intelligent antennas and MIMO, radio and modem algorithms and
ASICSs, autonomic networks and dynamic network optimization. Prior to
joining Bell Labs, he was a member of the research staff at the Max-Planck
Institute for Physics and Astrophysics (Munich) and visiting scientist at CERN
and Fermilab. He is an author of more than 50 publications and 30 patents.

http://users.encs.concordia.ca/~tse/

