
Wireless Sensor Networks as a Service

Flávia C. Delicato1, Paulo F. Pires1, Luci Pirmez2, Thais Batista1
1Dimap – Federal University of Rio Grande do Norte (UFRN)
2NCE/DCC-IM – Federal University of Rio de Janeiro (UFRJ)

PO Box 2324 – 20.001-970 – Rio de Janeiro – RJ – Brasil
{fdelicato, paulo.f.pires, luci.pirmez, thaisbatista }@ gmail.com

Abstract

One major reason for the increasing interest in
wireless sensor networks (WSN) in the last few years
is their potential usage in a wide range of application
domains. However, there is a set of challenges to be
addressed in order to realize the true potential of
current WSNs. The first challenge concerns the effort
needed to develop WSN application since the
developers are required to know several sensor
network and protocol specific details. The second
main challenge is related to the fact that the most of
existent WSNs provide data in proprietary formats that
can be accessed by final user only through a set of
static predefined queries or a graphical interface,
hindering the widespread use of WSN data in different
applications. The third challenge concerns the semantic
gap between the representation of the high-level
application requirements and the low-level data
provided by sensor nodes. We argue that, by adopting a
SOA approach based on integrating WSN to the
concept of web mashups we will be able to leverage
the widespread use of WSNs.

1. Introduction

Recent technological advances have enabled the
development of low-cost, low-power and
multifunctional sensor nodes. These nodes are
autonomous devices, often battery-powered, with
integrated sensing, processing and wireless
communication capabilities. A sensor is an electronic
device able of detecting environmental data such as
temperature, sound, light, movement, among others.
The sensing device measures parameters from the
environment surrounding the sensor node and converts
them into electric signals. Properties of objects located
and/or events happening in the vicinity of the sensor
can be detected by processing such signals [20]. Sensor
nodes send their sensed data, usually via a short range
radio transmitter, to a data-collection station (a sink
node). Typically a sink node includes software for

sophisticated processing of data collected by sensors
and is often connected to external networks.

A Wireless Sensor Network (WSN) is composed of
a large number of sensor nodes, which are densely
deployed either inside the monitored phenomenon or
very close to it, and one or more sink nodes. Typically,
sensors are deployed in an ad-hoc fashion and
communicate through low bandwidth wireless links.
Sensor nodes have to operate unattended, since it is
unviable to service a large number of nodes in remote,
possibly inaccessible locations. Therefore, energy
saving is a crucial requirement in such environment.
WSNs can play the role of a highly parallel, accurate
and reliable data acquisition system.

Data transmission in the wireless media is the main
source of energy consumption. For purposes of energy
saving, the data reports are often sent to the sink node
through a multihop short-distance communication,
with intermediary sensor nodes forwarding their own
and neighbors data. Intermediary sensor nodes and the
sink node can perform operations of fusion and/or
aggregation of the sensed data with the aims of
filtering out erroneous data and anomalies, drawing
conclusions from the reported data over a period of
time, besides further saving energy [20].

One major reason for the increasing interest in
wireless sensor networks in the last few years is their
potential usage in a wide range of application areas
such as civil engineering, health, military, habitat
monitoring and security among others.

The first works in the area [14,10,16] considered
that each sensor network would be designed for one
specific target application. Nowadays, considering that
WSNs can be potentially useful for a wide range of
application domains and that the sensor network
infrastructure is expensive, there is a strong trend in
designing commercial-scale WSNs as being composed
of heterogeneous sensor devices and assisting to a
large range of applications for different groups of
users. However, there is a set of challenges to be
overcome in order to realize the true potential of
current WSNs.

The first challenge concerns the effort needed to
develop WSN applications. In the development of

2010 17th IEEE International Conference and Workshops on Engineering of Computer-Based Systems

978-0-7695-4005-4/10 $26.00 © 2010 IEEE

DOI 10.1109/ECBS.2010.54

410

applications for current WSN platforms the developers
are required to know several sensor network and
protocol specific details and build programs either by
using the low level abstractions provided by the WSN
operating system (for instance, nesC language provided
by TinyOS system [17]) or directly over the sensor
hardware (for instance, in the Sun Spot platform [24]).

The second main challenge regards the extraction
and use of the sensor generated data. Most of existent
WSNs provide data in proprietary formats that can be
accessed by final user only through a set of static
predefined queries or a graphical interface. Such
approach constrain s the use of the data reported by
sensor nodes to the predefined access formats and
queries, hindering the widespread use of WSN data in
different applications.

The third challenge is related to both the
aforementioned ones, and concerns the semantic gap
between the representation of high-level application
requirements and the low-level data provided by sensor
nodes. Application needs usually have high-level
descriptions such as “report the detection of any 10
tons four-legged animal in region X” while individual
sensor nodes typically provide individual raw data,
accessed through very simple and low level APIs.
Therefore, further processing is required to convert raw
data reported by sensor nodes and represented in the
primitive and low level formats provided by the
networks to useful information to the applications.

In short, we are interested in answer the following
question: given the huge number of devices monitoring
the physical world already deployed and available for
usage, how to enable people to create applications on
top of such WSN systems? To achieve this goal, a
crucial requirement is to provide a layer of abstraction
to issue sensing tasks and queries to the WSN and to
gather the sensor generated data.

We propose two main ideas to tackle the referred
current challenges to leverage the use of WSNs. The
first idea is to adopt a service oriented (SOA) approach
to design WSNs. We argue that services consist in a
suitable abstraction for developing WSN applications
and the XML is a suitable format for data
representation and exchange among applications and
the network. The second idea is to integrating WSN
and Mashups, since mashups represent a suitable
example of easily building new applications on top of a
virtual ecosystem of services and there are lots of many
available tools to develop such applications.

In our proposal, sensor nodes act as data providers
and each WSN as a whole acts as service provider for
client applications. The provided services are: (i) raw
data generated by sensor nodes, (ii) processed data,
generated through several types of analysis, filtering
and complex processing, and (iii) value added services

provided by web mashups. We argue that, by adopting
an SOA approach based on integrating WSN to the
concept of web mashups we will be able to leverage
the widespread use of WSNs.

This paper is organized as follows. Section 2
provides a brief description of concepts on WSN and
Web Mashups. Section 3 presents our proposal,
including the architectural layers of the system and the
roles played by such components according to the SOA
pattern, as well as details about WS* languages,
protocols and approaches adopted for services
description and data communication in our proposal.
Section 4 concludes the paper presenting a discussion
of related works, future works and final remarks.

2. Background

This section presents background concepts about
WSNs and Web Mashups needed for the
comprehension of the remaining of the paper.

2.1. Wireless Sensor Networks

Wireless sensor networks represent an increasingly
important example of distributed event systems. Most
of these networks work as a reliable data capture
network. Data are collected in the distributed sensors
and relayed to a small number of exit points, called
sinks, for further processing and forwarding to the final
user (or applications). Since energy saving is a crucial
requirement for the battery operated sensors, the short
range hop-by-hop communication is preferred over
direct long-range communication to the destination.
Therefore, the dissemination of information is done by
nodes performing measurements and forwarding data
through neighboring nodes to reach a sink node in the
network. Data sent by different nodes can be
aggregated in order to reduce redundancy and
minimize the data traffic thus additionally saving
energy. To enable data aggregation in network in an
efficient way, application-specific code, such as data
caching and collaborative signal processing should
occurs as close as possible to where data is collected.
Such a processing depends on attribute-identified data
to trigger application-specific code and hop-by-hop
processing of data [10].

WSN can be classified in proactive and reactive
networks, according to the class of the target
application. In proactive WSNs, nodes periodically (in
a pre-defined interval) sense the environment and
transmit data of interest. In reactive WSNs, nodes react
immediately to sudden and drastic changes in the value
of a sensed attribute. These classes of WSN are well
suited for time critical applications. Once the type of

411

network is defined for a given application, protocols
that efficiently route data from source nodes to sinks
have to be used. Several WSN specific protocols were
proposed in the last years [2,10,11,14,15,16,18], each
one focusing a different type of application domain
and/or fulfilling different parameters of Quality of
Service (QoS). Examples of QoS parameters relevant
to the context of WSNs are data delay and accuracy,
network coverage and lifetime.

Most of WSN protocols rely on localized
algorithms and data-centric communication, besides to
exploit application-specific knowledge in the data
dissemination. Localized algorithms are a special kind
of distributed algorithms that achieve a global goal by
communicating with nodes in a restricted
neighborhood. Such algorithms scale well with
increasing network size and are robust to network
partitions and failures. Data-centric communication
introduces a new style of addressing in which nodes
are addressed by the attributes of data they generate
(sensor type) and by their geographical location,
instead of by their network topological location.
Finally, the use of application knowledge in nodes can
significantly improve the resource and energy
efficiency, for example by application-specific data
caching and aggregation in intermediate nodes [10].

Regardless the specific protocol adopted, all
protocols depend on mechanisms for representing the
application queries and interests as well as generated
sensor data, and for triggering application-specific
processing when pre-defined types of data or events
are sensed. Data-centric protocols represent queries
and data through high level descriptions (meta-data)
and disseminate such descriptions in the network
instead of the collected raw data. When a cluster-based
approach is adopted, a further mechanism for
representation of coordination messages exchanged
among nodes is needed.

2.2. Web Mashups

A Mashup has the ability to create dynamic, user-

centric solutions through the combined functionality or
content from different and possibly unrelated existing
sources. These existing sources can be SOAP or REST
Web Services, RSS feeds or even just other Websites
(in this case the data should be extracted by screen-
scraping). Mashups can be seen as a composition
technology, since its ultimate goal is to make possible
the creation of new services and applications starting
from the integration of different sources available on
the Web. Compared to other web services enabled
composition technologies, such as BPM [21] or
Enterprise service bus (ESB) [3], mashups propose

more agile and user-centric composition process. Such
agility is achieved through the use of Web 2.0 related
technology. Web 2.0 leverage WebPages from static
HTML documents to more dynamic and interactive
data application that can be easily consumed by
different types of clients.

According to Merrill [19], a mashup application is
architecturally comprised of three different
components: content providers, the mashup site, and
the Web browser.

The content providers are the origin of the
information being mashed. A key issue for content
providers is to facilitate data retrieval. This issue can
be addressed exposing the content to be mashed
through standard Web protocols such as REST, Web
Services, and Atom.

The mashup site hosts the mashup logic. Mashups
can be implemented similarly to traditional Web
applications using server-side dynamic content
generation technologies like Java servlets, CGI, PHP
or ASP. Moreover, the mashed content can be
generated within the client web browser through web
browse scripting (for example using JavaScript). This
client-side mashup logic is often the combination of
code directly embedded in the mashup's Web pages as
well as scripting API libraries or applets (furnished by
the content providers) referenced by these Web pages.

The client Web browser is where the Mashup
application is graphically rendered and also the place
where the client-side mashup logic runs.

Frequently mashups use a combination of both
server and client-side logic to perform data
aggregation/composition. Data composition that
requires powerful computations such as complex
queries on multiple-sourced data are better performed
by server-side mashups while local small sets of data
can be mashed by client-side mashups.

3. Proposal: the WSN as a Service

Our work proposes a generic and flexible

architecture for sensor networks based on the Web
services and Web Mashup technologies. Web services
are built according to the service-oriented architecture
(SOA pattern) and they can be described by a trio of
interoperability stacks [8]. In the proposed architecture,
sensor nodes act as data providers and the WSN acts as
service provider for client applications, providing: (i)
raw data generated by sensor nodes, (ii) processed
data, generated through several types of analysis,
filtering and complex processing, and (iii) value added
services provided by web mashups.

Section 3.1 describes the WSN physical
components considered in this work. Sections 3.2 and

412

3.3 present the architectural layers of the proposed
system and the roles played for such components
according to the SOA pattern. Sections 3.4 and 3.5
details WS* languages, protocols and approaches
adopted for services description and data
communication in our proposal.

3.1 WSN Physical Components

In our proposal, we consider a WSN comprising of
two main physical components: sensor nodes and sink
nodes. The architectural components of the proposed
system are present in both sink and sensor nodes,
above network level protocols and operating system.

A sensor node can contain one or more specialized
sensing devices. Furthermore, it can have routing and
data aggregation capabilities. Thus, the routing
function is distributed among all nodes. Concerning
data aggregation capabilities, we assume that all the
sensor nodes have enough processing and storage
capacities to store and execute aggregation programs.

Sink nodes provide an interface through which the
other architectural components (regarding mashups
technology) of the proposed system can obtain the
information collected by the sensor network. Such
interfaces can be accessed locally or remotely (i.e.,
through the Internet). Sink nodes can also aggregate
data, but they do not have sensor devices. We assume
that they are more powerful regarding to processing
and communication capabilities than sensor nodes.

3.2 Architecture Layers

The proposed system adopts a three layered
architecture composed of: (i) Data Provision Layer, (ii)
Data Extraction and Interoperability Layer, and (iii)
Composition Layer (Figure 1). The Data Provision
layer is physically composed of sensor nodes which
are responsible for gathering the environmental raw
data and performing simple data processing such as
computation of averages, min/max, etc. The next layer,
Data Extraction and Interoperability Layer, is
physically composed of sink nodes. This layer is
responsible for extracting sensor generated data,
possibly from different WSNs, and providing a
common interface for accessing such data. Moreover,
since sinks are powerful devices, sophisticated post-
processing can be performed over the extracted data.
The Composition Layer consists of Web Mashups.
This layer provides value-added services through the
composition of data extracted from different WSNs
using the sink node common interface. Such mashups
allow different levels of both visualization and
processing of a WSN ecosystem. For illustration

purpose, suppose two different WSNs. The WSN_1
provides temperature data of a geographic area A,
while WSN_2 provides humidity and light data of a
geographic area B. We should also consider that there
is an overlapping area C between A and B. Now,
consider a user interested in continuously monitoring
the humidity data and in obtaining the average
temperature of a region geographically located inside
area C. Besides integrating data from WSNs 1 and 2, a
Web Mashup allows easy spatial visualization of the
integrated data, for instance, by using Google Map
service [7].

Figure 1. System Architecture Layers

3.3 System Components According to the
Service-Oriented Architecture Pattern

The proposed system is based on the concept of
service-oriented architecture (SOA) [8] (Figure 2). A
client application or a Web Mashup interested in
obtaining sensor data plays the role of service
requestor of other Web Mashups. At the same time,
Web Mashups act as service providers to client
applications and other Web Mashups. This behavior of
playing two different roles occurs since each mashup
provides a different type of information and/or
visualization obtained from different data composition
and transformation. By its turn a given mashup
composition can be built from other existent mashups.
Web Mashups are published and discovered using the
Mashup Catalogue that plays the role of service
registry. The Mashup Catalogue can be implemented
as a regular UDDI register [25].

Sink nodes act primarily as service providers to the
external environment (in our case, Web Mashups).
They expose the descriptions of services provided by
the whole sensor network, and they offer access to
such services. At the same time, sink node act as

413

requestors to the sensor nodes, requesting their
specialized data services.

Sensor nodes are data providers, providing raw
and aggregated data. During the initial phase of WSN
configuration, sensor nodes send their services
description to sink nodes, thus executing the basic
publish operation. Sink nodes also act as registries (at
a lower level comparing to the Mashup Catalogue),
keeping a repository with services descriptions of each
sensor type existing in the sensor network. Therefore,
Sink nodes act as registries for a single WSN,
providing access to its different types of data as a Web
service, while the Mashup catalogue acts as a register
that virtualizes several WSNs as a single one,
providing a vision of an ecosystem of sensor data.

Figure 2. Architecture According to SOA

At the Sink nodes, the functionalities described by

the SOA operations find and bind are grouped in one
single one. Sink nodes provide the services description
interface and, at the same time, provide access to such
services. The Web Mashups interact with sink nodes,
and sink nodes access sensor nodes passing the
resulting data to the mashup. In fact, the operation find
is only accomplished internally by sink nodes, which
consult their repositories of services descriptions.
When a Web Mashup submits a query to the WSN, it is
actually executing a bind to the services supplied by
the sensor nodes through Sink nodes. Therefore, a
SOA bind operation issued by a Web Mashup is
translated by the Sink to a find operation followed by a
bind to the sensor nodes that can meet the request. The
find operation sent to the Mashup Catalogue as well as
the bind operation exchanged among Web Mashups
follows the traditional SOA semantics.

3.4 Service Description

The generic services provided by a sensor network
are described through two WSDL documents,

describing the Sink node interface and the Web
Mashup interface. In the Sink node interface the port
types elements contain service descriptions used to
access data provided by sensor nodes. In the Web
Mashup interface the port type elements contain
service descriptions used to access data provided by
different WSN as well as other data compositions
provided by other Web Mashups. Each service port
type contains operations that can be thought as system
APIs. Those operations contain parameters, defined in
the document through messages. Bindings of operation
definitions to their concrete implementation should be
defined according to the underlying protocol. A port
identification, indicating the place containing the
operation implementation, can be done through any
unique identifier (the device address, for sensor nodes
and uri, for Sinks and Web Mashups).

The operations defined for the Web services
specified in our system are [4]:
Publish_Sensor_Description: This operation is
exposed only by Sink nodes and it is used by sensor
nodes to advertise their sensing capabilities. Messages
invoking such operation are exchanged by sensors in
an initial phase of network configuration, soon after the
WSN physical deployment. These massages include
the node identification, a timestamp, the types of
sensing devices available in each sensor node,
geographical location, residual energy, maximum and
minimum degree of confidence (concerns the accuracy
of the sensor generated data), maximum data
acquisition rate, among other parameters, and they are
broadcast in the network until reaching a Sink Node.
The following operations are exposed both by Sink
nodes and Web Mashups.
Query_Sensors: This operation has the goal of
exposing the specific features and capabilities in terms
of data sensing of a given WSN (when this operation is
invoked in Sink nodes) or of the sensing data
compositions provided by a given Web mashup. The
Query_Sensors operation is represented by two
massages: an input message, without parameters, to
call the respective operation, and an output message
containing the answer which includes parameters as
types of sensors, confidence degree, maximum data
acquisition rate, etc. After knowing the sensing
capabilities of a given uri (representing either a Web
mashup or a Sink node associated to a WSN), the
application (of a final user or a mashup application) is
able to issue its interests, through different types of
messages of interest subscription.
Subscribe_Synch_Interest: Operation used to send a
message representing a synchronous interest. Such
kind of interest corresponds to a simple query on the
current state of some physical phenomenon monitored
by the WSN. An example would be “which is the

414

temperature of region A?”. So, messages to invoke
such operation contain as parameters the type of data to
be monitored (and so the type of required sensor), and
the geographical location of the target area. On the
other hand, asynchronous interests can correspond to
long running queries or queries about some event
detection, requiring different types of messages.
Subscribe_Long_Running_Interest: This operation
is called by a message representing a long running
query, as for instance: “which is the average
temperature in area A for the next 24hs?”. Parameters
for these messages are the type of data (sensor), the
geographical target area, the duration of the monitoring
and the data acquisition rate.
Subscribe_Event_driven_Interest: This operation is
invoked to report about the occurrence of a specific
event in a target area, for instance: “Report whenever
an elephant traverses area A”. Messages to invoke such
operation must include the type of sensor to be used (in
this example, a movement sensor or an accelerometer),
the description of the event to be detected and the
geographical area to be monitored.
Publish_Data: When detecting data for which they
have received a requisition (represented by interests),
sensors nodes issue publish data messages (to trigger
the respective operation in the Sink node). Such
messages advertising data contain the data type, the
instance (or value) of that type that was detected, the
sensor current location (sensors can be mobile), the
signal intensity, the confidence degree in the
accomplished measurement, a timestamp, and the
current sensor amount of energy. While in Sink nodes
such operation is called whenever a sensor generates a
raw data, or a data resulted from some simple
aggregation procedure, this same operation when sent
to Web mashups will return values of processed data
generated in response to a given interest message, and
resultant of the mashup composition process.

3.5 Communication Protocols

Web Mashups can obtain sensor data by issuing
queries either to other Web Mashups or directly to a
WSN through some sink node. The communication
between Mashups and sink nodes is accomplished
through conventional TCP/IP sockets (Figure 3). Web
Mashups must generate a SOAP message describing
their interests. Such a message is generated based on
the sensor network service descriptions stored in the
sink repository. Services descriptions are written in
WSDL language. Since WSDL is an open and
ubiquitous standard for services description, there are
many tools [12,23] for automatic generating SOAP
proxies. Proxies build SOAP messages and receive
query results, thus representing the software interface

among Web Mashups and sink nodes. By using our
Web services complemented by the Mashup approach,
instead of submitting queries in a WSN proprietary and
pre-defined format, applications are able to choose the
way they want to view and receive data.

The communication between Sink nodes and the
sensor network is accomplished using a WSN specific
data dissemination protocol (for instance [14]) and
formatted as XML messages. Although SOAP is
currently the de-facto Web services standard for
message exchange, a fully compliant SOAP server
implementation requires considerable processing and
memory resources that are not available in most of the
sensor devices. Moreover, the message size produced
by SOAP is incompatible with the resource constrained
environment of WSN [20]. Therefore, a more
lightweight approach for sending Web services
messages is needed to implement the communication
between Sink nodes and sensor nodes. Fortunately, the
WSDL language allows different bindings besides the
SOAP binding. We make use of the HTTP binding
[26] to encapsulate the message exchange between
Sink and sensor nodes. A standard compliant HTTP
server can easily implemented on most of the resource
constrained WSN devices [20]. The HTTP binding is
ideal for WSN communication since it reduces both the
need of processing power and memory usage.

Figure 3. Communication Stack

Regarding the techniques for encoding operations

and parameters within HTTP, the WSDL standard
specifies different options [26]. In [20] the authors
realized in-depth analyses of the performance of using
the Web services approach on sensor devices.
According to their results, the Web services
implementations on sensor nodes should use url
encoding or url replacement methods whenever
possible since these techniques produces smaller size
of messages and requires less processing compared to

415

sending a full XML message. However, there are
situations where the sensor generated data are complex
and requires a more structure message format. In this
case, a POST-based XML encoding should be used
instead of url encoding or url replacement techniques.

To enable sensor nodes to handle XML messages,
an XML parser is needed. In order to minimize the
processing requirements, a simplified and lightweight
custom XML parser can be implemented within the
sensor devices.

In our proposal, the communication is managed by
two different components: SOAP modules and HTTP
module. The SOAP module must be present in both
Web Mashups and Sink nodes. The HTTP module
must be present in sensor nodes.

The SOAP module is composed of a SOAP engine
and a set of handlers. In Sink nodes, such module
includes also a binding with the underlying network
level protocol. The SOAP engine acts as the main entry
point into the SOAP module. It is responsible for
coordinate the SOAP message’s flow through the
various handlers and for ensuring that the SOAP
semantics are followed. Handlers are the basic building
blocks inside the SOAP module and they represent the
messages processing logic, including the
marshalling/unmarshalling of messages, header and
attachments processing, serialization, conversions of
data type, among any other basic functions.
The HTTP module encompasses the HTTP server and
the custom XML parser.

4. Discussion and Work in Progress

In this paper we sketched steps for creating an
ecosystem of sensor generated data by integrating
different WSNs through the use of Web services and
Web Mashup technologies. We argue that our proposal
can promote the easy and fast access to environmental
information by final users with different interests and
expertise, thus exploiting the already deployed physical
infrastructure of WSNs and enabling the building of
physical mashups, i.e. small, ad-hoc composite
applications encompassing real-world embedded
devices.

Existent proposals that share our goal are presented
in [1,9]. The work in [9] applies REST principles to
embedded devices to enable the concept called
“Internet of Things”, which means the seamlessly
integration of physical world (monitored by embedded
devices) with computer networks. Based on the success
of Web 2.0 Mashup applications the authors propose
an approach for integrating real world devices to the
Web, allowing for them to be easily combined to other
virtual and physical resources. An import difference

between such work and ours concerns the decisions on
the communication framework. Instead of using an
approach based on REST, we decided to adopt the
Web services approach. Such decision was motivated
by the following features provided by WS-*
specifications: (i) support of asynchronous
communication, which is often required in WSN
environments; (ii) support for handling complex data
structures; (iii) support for building a message bus
infrastructure instead of only simple RPC
communication model.

In [1] the authors propose the UbiSOA, an editor
that allows creating ubiquitous computing mashups
through simple tasks such as dragging and dropping
graphical representations of the services involved in a
target scenario. The focus of such work is only the
editor and we intend to investigate the integration of
UbiSOA with our proposed architecture, thus
providing a complete framework for building WSN
Mashup applications.

This proposal builds on a previous work developed
by our research team [6]. Our current focus is to
investigate existent mashup tools in order to integrate
them in our solution. Finally, we will implement the
complete architecture in real world sensors based on
Mica motes [2] and SUN Spot sensor platforms [24].

Our service-based architecture provides the
underpinning for building more general purpose
networks instead of strictly task-specific ones, thus
assisting a large range of users, possibly spread over
the world, that share a common interest in an
application domain.

5. Acknowledgements

This work is supported by the Brazilian funding
agency CNPq under grants numbers 477226/2007-8,
477229/2009-3, 311515/2009-6, 480359/2009-1,
557.128/2009-9 and FAPERJ under grant number E-
26/170028/2008.

6. References

1. Avilés-López, E. and García-Macías, J. A., “UbiSOA

Dashboard: Integrating the Physical and Digital Domains
through Mashups”, In Proceedings of the Symposium on
Human Interface 2009 on Conference Universal Access
in Human-Computer Interaction. Part I: Held as Part of
HCI International 2009, San Diego, CA, 2009.

2. Bajaber, F.; Awan, I., “Dynamic/Static Clustering

Protocol for Wireless Sensor Network”, Second UKSIM
European Symposium on Computer Modeling and
Simulation, 2008. EMS apos;08. Volume, Issue, 8-10
Sept. 2008 Page(s):524 – 529.

416

3. Chappell, D. A., Enterprise Service Bus, O'Reilly Media
Publisher, June 2004.

4. Crossbow Technology. Available in

http://www.xbow.com/. Last access: January/2010.

5. Delicato, F. C. et al., “A flexible middleware system for

wireless sensor networks”, In the Proceedings of the
ACM/IFIP/USENIX 2003 International Conference on
Middleware, Rio de Janeiro, Brazil, 2003.

6. Delicato, F.C., “Middleware Baseado em Serviços para

Redes de Sensores sem Fio”, (In Portuguese), PhD
Thesis, Federal University of Rio de Janeiro, Brazil,
June, 2005.

7. Google Maps API. Available in:

http://code.google.com/apis/maps/. Last access:
January/2010.

8. Graham, S. et al. Building Web Services with Java:

Making Sense of XML, SOAP, WSDL, and UDDI, Sams
Publishing, 2002.

9. Guinard, D. and Trifa, V., “Towards the Web of Things:

Web Mashups for Embedded Devices.”, In Proceedings
of Workshop on Mashups, Enterprise Mashups and
Lightweight Composition on the Web, International
World Wide Web Conferences, Madrid, Spain, 2009.

10. Heidemann, J., et al., “Building Efficient Wireless Sensor

Networks with Low-Level Naming”, In Proceedings of
the 2001 ACM Symposium on Operating Systems
Principles, 2001, Canada.

11. Heinzelman, W., Chandrakasan, A. and Balakrishnan, H,

Energy-Efficient Communication Protocol for Wireless
Microsensor Networks. Proceedings of the 33rd Hawaii
International Conference on System Sciences, 2000.

12. Huang, Mei-Wen; Liu, Hsu-Jung; Hsieh, Wen-Shyong,

“A Hybrid protocol for Cluster-based wireless sensor
networks”, In Proceedings of the 13th Asia-Pacific
Computer Systems Architecture Conference, 2008.

13. IBM White Paper, Web Services Toolkit. Available in:

http://www.alphaworks.ibm.com/tech/.

14. Intanagonwiwat, C., Govindan, R., Estrin, D., “Directed

diffusion: a scalable and robust communication paradigm
for sensor networks”, In proceedings of the ACM/IEEE
International Conference on Mobile Computing and
Networking (MobiCom 2000), pages 56-67, Boston, MA,
USA, Aug 2000.

15. Krishnamachari, B. and Heidemann, J., “Application

specific modeling of information routing in wireless
sensor networks”, In Proceedings of the IEEE

International performance, computing and
communications conference, vol. 23, pp. 717-722, 2004.

16. Kulik, J., Rabiner, W., Balakrishnan, H., “Adaptive

Protocols for Information Dissemination in Wireless
Sensor Networks”, In Proceedings of the 5th ACM/IEEE
Mobicom Conference, USA, Aug. 1999.

17. Levis, P. et al., TinyOS: An Operating System for Sensor

Networks, In Ambient Intelligence, Eds. Werner Weber,
Jan M. Rabaey and Emile Aarts, Springer Berlin
Heidelberg Pubs., 2005.

18. Manjeshwar, A. and Agrawal, D., “APTEEN: A Hybrid

Protocol for Efficient Routing and Comprehensive
Information Retrieval in Wireless Sensor Networks”, In
Proceedings of the 16th International Parallel and
Distributed Processing Symposium, IEEE Computer
Society Pubs, Washington, DC, USA, 2002.

19. Merrill, D., “Mashups: the New Breed of Web App.”,

IBM DeveloperWorks, Aug. 2006. Available in:
http://www.ibm.com/developerworks/xml/library/x-
mashups.html. Last access January, 2010.

20. Priyantha, N., Kansal, A., Goraczko, M., and Zhao, F.,

“Tiny web services: design and implementation of
interoperable and evolvable sensor networks”, In the
Proceedings of the 6th ACM conference on Embedded
network sensor systems, Raleigh, NC, USA, 2008.

21. Smart, P.A, Maddern, H. and Maull, R. S.,

Understanding Business Process Management:
implications for theory and practice, British Journal of
Management, on line 2008.

22. Stojmenović, I. (Editor), Handbook of Sensor Networks:

Algorithms and Architectures, Wiley Pubs, October
2005.

23. SUN Microsystems, “Implementing Services On

Demand and the Sun Open Net Environment (Sun
ONE)”. Available in:
http://www.sun.com/software/sunone/wpimplement/wp-
implement.pdf, 2001.

24. Sun SPOT World, Available in

http://www.sunspotworld.com/. Last access in set/2009.

25. UDDI.org, “UDDI Technical White Paper”. Available in:

http://www.uddi.org/pubs/Iru_UDDI_Technical_White_
Paper.PDF, September 2000.

26. Web Services Description Language (WSDL) 1.1, W3C

Note 15 March 2001. Available in:
http://www.w3.org/TR/wsdl. Last access January, 2010.

417

