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ABSTRACT  
 
In this position paper, we investigate the use of wireless sensor network (WSN) technology for 
ground surveillance. The goal of our project is to develop a prototype of WSN for outdoor 
deployment. We aim to design a system, which can detect and classify multiple targets (e.g., 
vehicles and troop movements), using inexpensive off-the-shelf wireless sensor devices, 
capable of sensing acoustic and magnetic signals generated by different target objects. In order 
to archive our goals, we intend to design a system, which is capable of automatic self-
organization and calibration. Such a system would need to be capable of performing detection 
and tracking of targets as well as sending the real time enemy mobility information to a 
command centre.  
Real-time tacking with WSN is extremely challenging since it requires high system robustness, 
real time decision making, high frequency sampling, multi-modality of sensing, complex signal 
processing and data fusion, distributed coordination and wide area coverage. We propose a 
Hybrid Sensor Network architecture (HSN), tailored specifically to meet these challenges. We 
investigate data fusion technologies such as particle filters, to handle both environmental and 
sensing noises of inexpensive sensors.  
 

1.Introduction 

Research in Wireless Sensor Networks 
(WSN) is widespread and pervasive in many 
disciplines because of the potential to embed 
tiny, inexpensive, low-power sensors in many 
environments to provide a wide range of 
surveillance and monitoring applications [1-
4]. A key advantage of WSN is that the 
network can be deployed on the fly and can 
operate unattended, without the need for any 
pre-existing infrastructure and with little 
maintenance. Typically, sensor nodes are 
deployed randomly (e.g., via aerial 
deployment), and are expected to self-
organize to form a multi-hop network. A 
sensor node is capable of sensing some 

physical phenomenon (e.g., detect tank 
vibrations or sniper gun noise [1]), processing 
the sensed data and communicating the 
observed measurements to fusion nodes, also 
called micro-servers. The sensor nodes may 
also perform data aggregation/compression to 
reduce the communication overhead in the 
network.  
In this paper, we investigate the design 
tradeoffs for using WSN for implementing a 
system, which is capable of detecting and 
tracking military targets such as tanks and 
vehicles. Such a system has the potential to 
reduce the casualties incurred in surveillance 
of hostile environments. Our goal is to 
develop a distributed tracking and detection 
system based on a Hybrid Sensor Network 
(HSN) architecture [22], which consists of a 
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large number of low-power micro sensor 
nodes with limited capabilities and a few 
powerful cluster-heads called micro-servers. 
Our system will estimate and track the target 
based on the spatial differences of the target 
object signal strength detected by the sensors 
at different locations.  

The proposed system is made up of several 
components for detecting and tracking 
moving objects. Figure 1 shows the logical 
view of these components. The first 
component consists of inexpensive off-the-
shelf wireless sensor devices, such as MicaZ 
motes [5], which are capable of measuring 
acoustic and magnetic signals generated by 
different target objects (e.g., vehicles). The 
second component is responsible for the data 
aggregation and dissemination algorithms. It 
includes local micro-servers, where the 
measurements are transferred. The system 
tracks the target based on the spatial 
differences of signal strength measurements 
produced by the target object and collected 
from sensors at different locations. Therefore, 
the third component of the system is 
responsible for data fusion algorithms. This 
component will also be capable of handling 
noise introduced by the environment as well 
as by the sensors themselves. A data fusion 
algorithm performs various computationally 
and memory intensive tasks. Consequently, 
these tasks are carried out by the micro-
servers, which have significantly more 
resources than the tiny sensors.  

Figure1. Logical view of the architecture 

In order to detect and classify the moving 
object we are planning to investigate the 
possibility of using the Particle Filter (PF) 
approach [6]. PF is a recursive Bayesian 
Track-Before-Detect (TBD) target state 
estimator. It does not require threshold 
values to operate, which make it suitable for 
low Signal to Noise Ratio (SNR) systems 
such as WSN. However, PFs typically 
involve many resource-intensive 
computation tasks. Due to the resource 
limitations of the sensor devices, 
implementing a PF in a WSN system is a 
challenging task. We will investigate how to 
use PFs to improve the tracking accuracy of 
WSN while addressing the resource 
constraints of these devices. 

The rest of this paper is organized as 
follows. In the next section, we discuss 
related work, which has focused on 
developing tracking solutions using WSN. In 

particular, we concentrate on the 
collaborative signal processing algorithms 
and their applications in WSN. In Section 3, 
we describe our hybrid sensor network 
architecture. Finally, Section 4 concludes 
this paper.  
 

2.Related Work 

In this section, we will discuss previous 
work, which has explored the use WSN for 
tracking and detection of objects. We also 
provide an overview of collaborative signal 
processing algorithms that have been 
implemented in WSN.  
 
2.1 Wireless Sensor Networks for 
Tracking and Detection 

Detection and tracking of moving objects 
has been identified as a well-suited 
application, which would benefit from the 
use of WSN. One of the earliest attempts to 
use tiny acoustic sensor devices for tracking 
proposes can be found in [7]. In this work, 
the target is estimated via triangulation, i.e., 
by comparing the differences in the sound 
propagation delays from the sound source to 
different acoustic sensors. The major 
limitation of this work is that sensor 
readings are assumed to be not influenced by 
noise, which is quite unrealistic for real 
world deployments.  

In [8], the authors developed a lightweight 
multi-modal detection algorithm for mote 
level micro sensors. They found out that 
simple fusion algorithms such as moving 
averages with thresholds are useful in object 
detection using WSN. However, this work 
suffers from the same limitation as [7]. In 
order to design a system, which can be 
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readily deployed in real scenarios, it is 
imperative to account for noise and 
interference, especially given that such 
networks are likely to be deployed in hostile 
environments. Apart from the environmental 
noise, sensor readings are inherently noisy 
due to the small form factor and 
unsophisticated nature of the sensors. Hence, 
most of the WSN applications have low 
SNR. The authors in [6] have demonstrated 
that the threshold-setting algorithms do not 
perform well for low SNR data because the 
signal data below the threshold are 
interpreted as noise. Such loss of 
information is potentially dangerous for 
applications where the SNR is low, such as 
our tracking application, where inexpensive 
tiny sensors collect the data. 

In [9], Duarte et al. evaluated different 
machine learning algorithms in the context of 
vehicle detection. They propose a two level 
detection architecture to increase the 
reliability. Different target detection 
algorithms, such as K-nearest neighbor, 
Maximum Likelihood and support vector 
machine classifier, were evaluated at local 
nodes level. Then, the results of local nodes 
level evaluation are passed to group level 
where data fusion is performed. Four data 
fusion algorithms, Maximum A Posterior 
(MAP) decision fusion, Maximum Distance, 
Nearest Neighbor, and Majority Voting, are 
evaluated to show the effectiveness of 
proposed Maximum A Posterior Decision 
Fusion. However, in the proposed scheme, 
resource-intensive tasks such as Fast Fourier 
Transfer (FFT) need to be performed at local 
nodes level; therefore, it is not suited for mote 
level sensors. 

In [10] Ledeczi et al. designed and 
implemented a sniper localization system 
based on acoustic signal processing and 
triangulation. However, special hardware 
(Digital Signal Processing board) has been 
exclusively designed for the resource-
intensive acoustic signal processing tasks. 
Similarly, in [11] He et al. designed and 
implemented a WSN which consists of 
magnetic, acoustic, and motion sensors. This 
system is able to classify a moving target 
such as a walking person or a vehicle. In this 
work, the motion sensor used is an 
expensive high-end micro-power impulse 

radar (MIR). Hence, it is not a suitable 
choice for cost-effective WSN systems, 
where the deployment consists of hundreds 
of sensors. 
 
2.2 Collaborative Signal Processing 
in Sensor Networks 
 

In [12], the authors built a framework to 
study the trade-offs between energy 
consumption and the quality of tracking for 
different tracking strategies. In [13], Coates 
compared the performance of two 
methodologies, the distributed parametric 
approximation and the more advanced 
distributed particle filter using adaptive 
encoding, which implements particle 
filtering in WSN. It was shown that the 
second algorithm can reduce wireless data 
communications significantly but requires 
substantially more computations. Under 
some simplifying assumptions, e.g., zero-
mean Gaussian distributed noise model and 
linear sensor measurement model; it was 
shown that the performance of particle filter 
using 4-bit adaptive encoding was 
comparable to the particle filter using 16-bit 
fixed encoding. In their later work [14], 
parallel particle filters were run in multiple 
nodes to further reduce wireless 
transmissions. These parallel particle filters 
were used to quantize vectors of 
measurements. As a result, thousands of 
motes are needed to achieve reasonable 
tracking performance as shown in 
simulations. Further, the authors assumed 
that the motes have a fix sensing range of 8 
meters, a fixed detection probability of 0.7 
within this sensing range, and did not 
consider communication errors. The lack of 
realistic assumptions renders it difficult to 
apply the proposed algorithm in a real-world 
system.  

Ihler et al. purposed a Nonparametric 
Belief Propagation (NBP) algorithm, whish 
is a generalization of particle filtering, to 
localize the positions of sensors based on the 
time delay or received signal strength 
between sensors [15]. Simulations have 
shown that NBP algorithm converged 
significantly faster than other non-linear 
optimization algorithms, while still 
providing comparable performance. Further, 
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Figure 2. HSN architecture (The arrows 
indicate the data flow between different 
enteties) 

NBP is a distributed algorithm, which 
inherently leads to the reduction of wireless 
transmissions. However, in this work, the 
sensors are static, which makes the 
estimation tasks simpler compare to the task 
of tracking moving targets. 

In [16], Sheng et al. proposed a maximum 
likelihood (ML) algorithm with expectation 
maximization for the purpose of tracking 
object based on acoustic energy source 
localization method. Evaluations by 
simulations have shown that the 
performance of ML algorithms is 
comparable to non-linear least square 
algorithms, with significant reduction in the 
number of wireless transmissions. In their 
later work [17], the authors proposed two 
distributed PFs with Gaussian Mixer Model 
(GMM) approximation to track moving 
objects. It was shown that by approximating 
the local sufficient statistic with GMM, the 
communication burden could be 
dramatically reduced, while it is possible to 
maintain comparable tracking performance. 
Both of these works [16-17] used a 
simplified acoustic energy based source 
localization measurement model where path-
loss-factor is 2, which is not always true in 
realistic environments. Distributed 
implementation of PFs and re-sampling 
algorithms has also been explored in [18]. 
However, the focus was on distributing 
computation, and the communication 
overhead of the proposed approach. 

In summary, previous experimental work 
on tracking, using WSN either used simple 
threshold-setting algorithms or required 
extra hardware on each tiny sensor device to 
perform resource intensive signal processing 
tasks. Threshold-setting algorithms have the 
potential of disregarding useful sensor data 
and thus not suitable for low SNR WSN 
systems. Additional special-purpose 
hardware is typically financially and energy 
expensive, which is not suitable for low-cost 
and self-powered WSN systems. Most of the 
performance analysis in previous work on 
collaborative signal processing was 
conducted using theoretical analysis and 
simulations, with the focus on exploring the 
design space and trade-offs under specific 
constraints and assumptions. The constraints 
and assumptions used in this analysis are 

simplified, which makes it difficult to apply 
these proposed algorithms in real world 
WSN systems. 

Our goal is to design and implement a 
hybrid sensor network based system for the 
detection, classification and tracking of 
moving targets. Our system will use a large 
number of inexpensive tiny sensors to 
increase network coverage and a limited 
number of micro-servers, which will 
perform the resource-intensive tasks. The 
system will be implemented using off-the-
shelf sensor and micro-server nodes.  
 

3. Hybrid Sensor Network 
Architecture 
 

In this section, we provide a detailed 
overview of our proposed HSN architecture. 
As was outlined in the introduction, our 
architecture consists of several logical 
components (Figure 1). Figure 2, shows the 
physical architecture of the three major 
components. Each component consists of 
different types of hardware and is 
responsible for executing different tasks.  

The first level components consist of the 
tiny sensor devices. We intend on using 
inexpensive off-the-shelf wireless sensor 
devices (e.g. Crossbow MicaZ motes [5]), 
which are capable of measuring acoustic and 
magnetic signals generated by the target 
objects (e.g. tanks).  
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Figure 3A. Average synchronization error in 
a single hop environment 

 
We have carried out some initial 

experiments to evaluate the suitability of 
these motes in measuring the required 
signals. In these experiments, several off-
the-shelf MTS 310 sensors were placed 
along the roadside and used to detect signals 
from vehicles that drove along the road. Our 
initial experience with these sensors 
indicates that they can clearly identify the 
signature of a vehicle. Figure 4 plots the 
acoustic and magnetic measurements (X and 
Y axis) of one sensor over a period of 160 
seconds during, which three vehicles passed 
by the sensor. The graph depicts that the 
sensor can correctly detect the presence of 
these three vehicles as evidenced by the 
larger amplitude of the senor readings, 
which corresponds to the presence of a 
vehicle. Although the figure shows the 
signature of three vehicles very clearly, we 
can also observe significant level of noise. 
This confirms our initial hypothesis that 
simple threshold based detection algorithms 
can potentially cause the WSN to generate 
false alarms. Moreover, the noise makes it 
difficult for the system to locate the target 
using ranging algorithms based on the signal 
strength.  

Apart from the environmental noise, noise 
in the sensor readings can also be present due 
to the calibration errors in the sensors. The 
IEEE has recently drafted a standard, IEEE 
1451.4 [19], to deal with the calibration 
errors. This standard incorporates 
mechanisms for plug and play capabilities of  
 

 
Figure 3B. Average synchronization error in 
a mutihop environment. 
 
 
analog transducers based on Transducer 
Electronic Data Sheet (TEDS). One of the 
main advantages in using TEDS is that it 
contains the information needed by an 
instrument or measurement system to identify 
and properly use the signal from an analog 
sensor. TEDS information can be stored in 
EEPROM of a sensor and it contains all the 
necessary information for sensors calibration. 
Future sensors will adhere to this new 
standard, reducing the effect of calibration 
errors on our system. 

In order to achieve reliable target tracking, 
sensor nodes need to be time-synchronize, 
localize and forward sensor data to the higher 
level components (Level 2). For the purpose 
of time-synchronization, the Flooding Time 
Synchronization Protocol (FTSP) proposed in 
[20] will be used. The FTSP achieves time 
synchronization between a sender and 
multiple receivers by means of a single radio 
message, time-stamped at the both ends (the 
sender and the receiver sides). It estimates 
the clock drift using linear regression. In 
order to support a multi-hop synchronization 
a dynamically elected node, called the root of 
the network, maintains the global time and all 
other nodes synchronize their clocks to the 
local clock of the root. We implemented the 
FTSP component in TinyOS environment, 
specifically targeted for MicaZ and Mica2 
motes. Figures 3A and 3B show the average 
synchronization error after the FTPS is 
applied for single hop (Figure 3A) and 
multihop (Figure 3B) environments. As can 
be seen from these figures, the average error 
in both cases is small (order of 
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microseconds). However, the average error in 
multihop environment is larger. 

Localization of sensor nodes is a well 
studied area of research and algorithms such 
as the one proposed by Bulusu et al. [21], can 
be leverage in our work. It is also important 
that a sensor can construct and maintain a 
path to the closest micro-server. To enable 
this, we are planning to use the Anycast 
protocol, proposed by Hu et al. [22].  

The second level component consists of the 
more capable hardware, such as the Stargate 
type devices [5]. These components are 
responsible for the aggregation of data from 
the sensor nodes located in the lower level 
component. Once the data is aggregated, it is 
a responsibility of the micro-server to 
perform computationally and memory 
intensive tasks, such as data fusion algorithm. 
In this work, we intend to investigate the 
feasibility of using the PF based on the 
Bayesian TBD estimator [6] algorithm. The 
basic idea is based on the work introduced in 
[6, 23]. There are several advantages of using 
the PF, namely: 
• The possibility of a target to be present is 

modeled by the probability function and 
explicitly available from the filter. 

• The method can track targets moving 
randomly in the field of the deployment. It 
is not limited to tracking targets that only 
move in a straight line. 

• Non-Gaussian noise in sensor readings 
can be incorporated into the filter. We will 
need to estimate the distribution function 
of this noise. 

• It permits us to detect targets with 
variable levels of intensity. 

In order to use the PF, we begin by 
assuming that the sensors deployed in a 
plane, which corresponds to a square region 
of dimension NxM . Next, we randomly 
generate N number of particles in the format 
of: 
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Where  is a discrete time-step, k
),( iik yxx =  and  denote the 

position and velocity of a target,  
corresponds to the intensity of the target 
and  is an indicator whether the target is 
present or not. The variable, can take on 
two values, namely  indicating the 
absence of the target and denoting its 
presence. The target can appear at any place 
and at any time-step. Following its 
appearance the target proceeds on a trajectory 
until it disappears, i.e., the intensity of the 
target signal strength falls below the sensor’s 
sensitivity level. Hence, we can model the 
transitional probability of the target birth 
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In previous work, it was assumed that these 
probabilities are known a priori. However, if 
they are not known they are usually assigned 
a very low value (e.g., 0.1). Each sensor 
provides a measurement at a discrete instance 
of time k , and each of these measurements 
can be modeled as follows: 
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Where, is the amount of noise in a 

measurement and is the contribution of 
the target intensity to the measurement. In 
general, the background noise function is 
assumed to follow the Gaussian model, 
which is not necessary true in real world 
deployments. In this work, we are planning to 
derive the characteristics of the background 
noise function by making use of some 
training data.  
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The contribution of the target intensity to 
the measurement can be estimated as follow: 
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Here, is the position of the sensor, 

is the position of the target and 

),( ii yx
),( jj yx ε is 

the path loss exponent of the signal strength. 
Note that the initial values of and  
are unknown. They are recursively estimated 
over time using equation (4) and the matrix 

of complete measurements recorder at a 
time : 
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The goal of the PF is to compute 
recursively the posterior density of target 
presence/absence  and the target state 
(position, velocity, intensity) using all 
previous measurements: 
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4. Conclusion 

In this position paper, we outlined hybrid 
sensor network based architecture for the 
tracking of moving targets. We provided a 
detailed overview of the related work in this 
area emphasizing their limitations. Previous 
experimental work on tracking with WSN 
either uses simple threshold setting, which 
has the potential of disregarding useful 
sensor data and is hence not suitable of low 
SNR systems, or requires costly specialised 
hardware in each tiny sensor to perform 
resource intensive signal processing tasks. 
Our goal is to design and implement a hybrid 
sensor network system, which consists of 
several tiny inexpensive sensors and a limited 
number of powerful micro-servers. The 
sensor nodes, which are deployed over a 
wide area use acoustic and magnetic sensors 
for detecting the presence of the moving 
objects, while the resource-intensive tasks, 
such as the data fusion algorithms are 
offloaded to the micro-servers.  
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