
Wireless Sensor Networks in Motion

Clustering Algorithms for Service Discovery and

Provisioning

Raluca Marin-Perianu

Composition of the Graduation Committee:

Prof. Dr. P.H. Hartel (UT, DIES)
Ir. J. Scholten (UT, PS)
Dr. P.J.M. Havinga (UT, PS)
Dr. J.L. Hurink (UT, DWMP)
Prof. Dr. Ir. B.R.H.M. Haverkort (UT, DACS)
Prof. Dr. H. Brinksma (UT, PS)
Prof. Dr. C. Bettstetter (University of Klagenfurt, Austria)
Prof. Dr. H.W. Gellersen (Lancaster University, UK)

The work in this thesis has been supported by PROGRESS, the embedded systems

research programme of the Dutch organisation for Scientific Research NWO, the Dutch

Ministry of Economic Affairs and the Technology Foundation STW. The research has

been carried out within the context of the Center for Telematics and Information

Technology (CTIT) and under the auspices of the research school IPA (Institute for

Programming research and Algorithmics).

Keywords: wireless sensor networks, service discovery protocols,
clustering algorithms, context awareness, movement detection

Cover Design: Newblack, www.newblack.ro.
Printed by Wöhrmann Print Service.

Copyright c© 2008 Raluca Marin-Perianu, Enschede, The Netherlands.
All rights reserved. No part of this book may be reproduced or transmitted, in any

form or by any means, electronic or mechanical, including photocopying, micro-filming,

and recording, or by any information storage or retrieval system, without the prior

written permission of the author.

IPA Dissertation Series No. 2008-29
CTIT PhD Thesis Series No. 08-130
ISBN 978-90-365-2745-3

WIRELESS SENSOR NETWORKS IN MOTION

CLUSTERING ALGORITHMS FOR SERVICE DISCOVERY AND
PROVISIONING

DISSERTATION

to obtain
the degree of doctor at the University of Twente,

on the authority of the rector magnificus,
prof.dr. W.H.M. Zijm,

on account of the decision of the graduation committee,
to be publicly defended

on Thursday the 6th of November 2008 at 13.15

by

Raluca Sandra Marin-Perianu

born on the 3rd of October 1978

in Bucharest, Romania

This dissertation is approved by:

Prof. Dr. P.H. Hartel (promotor)

Abstract

The evolution of computer technology follows a trajectory of miniaturization
and diversification. The technology has developed from mainframes (large com-
puters used by many people) to personal computers (one computer per person)
and recently, embedded computers (many computers per person). One of the
smallest embedded computers is a wireless sensor node, which is a battery-
powered miniaturized device equipped with processing capabilities, memory,
wireless communication and sensors that can sense the physical parameters of
the environment. A collection of sensor nodes that communicate through the
wireless interface form a Wireless Sensor Network (WSN), which is an ad-hoc,
self organizing network that can function unattended for long periods of time.

Although traditionally WSNs have been regarded as static sensor arrays
used mainly for environmental monitoring, recently, WSN applications have
undergone a paradigm shift from static to more dynamic environments, where
nodes are attached to moving objects, people or animals. Applications that
use WSNs in motion are broad, ranging from transport and logistics to animal
monitoring, health care and military, just to mention a few.

These application domains have a number of characteristics that challenge
the algorithmic design of WSNs. Firstly, mobility has a negative effect on
the quality of the wireless communication and the performance of networking
protocols. Nevertheless, it has been shown that mobility can enhance the func-
tionality of the network by exploiting the movement patterns of mobile objects.
Secondly, the heterogeneity of devices in a WSN has to be taken into account
for increasing the network performance and lifetime. Thirdly, the WSN services
should ideally assist the user in an unobtrusive and transparent way. Fourthly,
energy-efficiency and scalability are of primary importance to prevent the net-
work performance degradation.

This thesis focuses on the problems and enhancements brought in by net-
work mobility, while also accounting for heterogeneity, transparency, energy-

v

efficiency and scalability. We propose a set of algorithms that enable WSNs to
self-organize efficiently in the presence of mobility, adapt to and even exploit
dynamics to increase the functionality of the network. Our contributions include
an algorithm for motion detection, a set of clustering algorithms that can be
used to handle mobility efficiently, and a service discovery protocol that enables
dynamic user access to the WSN functionality. In short, the main contributions
of this thesis are the following:

1. Classifications of service discovery protocols and clustering algo-
rithms. We systematically analyse the discovery and clustering mecha-
nisms for WSNs through a thorough review and classification of the state
of the art.

2. A generalized clustering algorithm for wireless sensor networks.
We propose a clustering algorithm for dynamic sensor networks, which rep-
resents a generalization of a set of state-of-the-art clustering algorithms.
This generalized algorithm allows for a better understanding of the special-
ized algorithms and facilitates the definition and demonstration of com-
mon properties.

3. Cluster-based service discovery for wireless sensor networks. We
propose a cluster-based service discovery solution for heterogeneous and
dynamic wireless sensor networks. The service discovery protocol exploits
a cluster overlay for distributing the tasks according to the capabilities
of the nodes while providing an energy-efficient search. The clustering
algorithm is designed to function as a distributed service registry.

4. On-line recognition of joint movement in wireless sensor net-
works. We propose a method through which dynamic sensor nodes de-
termine whether they move together by communicating and correlating
their movement information. The movement information is acquired from
tilt switches and accelerometer sensors.

5. A context-aware method for spontaneous clustering of dynamic
wireless sensor nodes. We propose a clustering algorithm that orga-
nizes wireless sensor nodes spontaneously and transparently into clusters
based on a common context, such as movement information.

Through these contributions, the thesis opens novel perspectives for WSN
applications in the field of distributed situation assessment, where sensor nodes
can collaboratively determine the movement characteristics of the people or
moving objects and organize in structures that correspond to the real world.

Samenvatting

Computertechnologie is door de jaren heen in de richting van miniaturisatie
en diversificatie geëvolueerd. Deze technologie heeft zich ontwikkeld van main-
frames (grote computers gebruikt door vele mensen tegelijk) naar personal com-
puters (slechts één computer per persoon) en recentelijk naar embedded comput-
ers (vele computers per persoon). Een van de kleinste embedded computers is de
wireless sensor node. Dit is een geminiaturiseerd apparaatje dat op een batterij
werkt en voorzien is van een processor, geheugen, draadloze communicatie en
sensoren die fysieke eigenschappen van de omgeving kunnen waarnemen. Een
groep van deze kleine apparaatjes vormt een draadloos sensornetwerk (Wireless
Sensor Network, WSN) door middel van onderlinge draadloze communicatie.
Dit is een ad hoc netwerk dat zichzelf inricht en als zodanig zonder begeleiding
voor langere tijd kan functioneren.

Traditioneel werden WSNs beschouwd als statische sensoropstellingen be-
doeld voor het doen van milieumetingen. Echter zijn er recentelijk ook WSN
toepassingen ontstaan voor meer dynamische omgevingen, waarbij de sensor
nodes zijn bevestigd aan bewegende objecten, mensen of dieren. Een breed spec-
trum aan toepassingen voor dergelijke beweeglijke sensornetwerken is denkbaar,
variërend van transport en logistiek tot bijvoorbeeld het observeren van dieren,
de gezondheidszorg en defensie.

Deze toepassingsgebieden hebben een aantal eigenschappen die het ontwikke-
len van algoritmen voor WSNs bemoeilijken. Ten eerste heeft mobiliteit een
negatief effect op de kwaliteit van de draadloze communicatie en de prestatie
van de gebruikte netwerkprotocollen. Niettemin is aangetoond dat mobiliteit
de functionaliteit van het netwerk kan verbeteren door de bewegingspatro-
nen van de mobiele objecten slim te gebruiken. Ten tweede moet rekening
gehouden worden met de heterogene eigenschappen van de apparaten in het
WSN om de prestaties en de levensduur van het netwerk te verbeteren. Ten
derde zouden de diensten die het WSN aanbiedt de gebruiker op een onopval-

vii

lende en transparante wijze moeten assisteren in zijn bezigheden. Ten vierde zijn
het efficiënt gebruik van energie en de schaalbaarheid van het systeem van het
grootste belang om te voorkomen dat de prestaties van het netwerk gaandeweg
afnemen.

Dit proefschrift behandelt de problemen en verbeteringen die voortvloeien
uit de mobiliteit van het netwerk, terwijl er ook rekening gehouden wordt
met heterogene eigenschappen van de nodes, transparantheid van de diensten,
schaalbaarheid van het netwerk en efficiënt gebruik van energie. Wij presenteren
algoritmen voor WSNs die het netwerk de mogelijkheid geven zichzelf efficiënt
in te richten in mobiele toepassingen. Met deze algoritmen kunnen WSNs zich
aanpassen aan of zelfs gebruik maken van de dynamiek van de omgeving om de
functionaliteit van het netwerk te vergroten. Onze bijdragen omvatten onder
andere een algoritme voor het detecteren van beweging, een verzameling cluster-
algoritmen die gebruikt kunnen worden om mobililiteit efficiënt af te handelen
en een service discovery protocol dat de gebruiker dynamisch toegang verleent
tot de functionaliteit van het WSN. Samenvattend zijn de bijdragen van dit
proefschrift als volgt:

1. Classificatie van service discovery protocollen en clustering algo-
ritmen. We geven een systematische analyse van discovery en clustering
mechanismen voor WSNs door middel van een uitgebreide evaluatie en
classificatie van de huidige technologie.

2. Een gegeneraliseerd clustering algoritme voor draadloze sensor-
netwerken. We presenteren een clustering algoritme voor dynamische
sensor netwerken. Dit algoritme is een generalisatie van bepaalde clus-
tering algoritmen uit de huidige stand van de technologie. Door deze
generalisatie voorziet dit algoritme in de mogelijkheid algoritmen die zijn
ontworpen in mobiele WSN omgevingen beter te doorgronden. Tevens
maakt dit het definiëren en demonstreren van gemeenschappelijke eigen-
schappen van dergelijke algoritmen eenvoudiger.

3. Een service discovery mechanisme voor draadloze sensornetwer-
ken dat gebaseerd is op clustering. We geven een gecombineerde
en op clusters gebaseerde service discovery oplossing voor heterogene en
dynamische sensornetwerken. Het service discovery protocol maakt slim
gebruik van clustering om de taken over het netwerk te verdelen afhankelijk
van de capaciteiten van de individuele nodes. Dit protocol maakt efficiënt
gebruik van energie bij het uitvoeren van zoekopdrachten. Het clustering

algoritme is zodanig van opzet dat het functioneert als een gedistribueerd
register van alle services die in het netwerk aangeboden worden.

4. Het herkennen van gemeenschappelijke bewegingen in draadloze
sensornetwerken terwijl het systeem actief is. We geven een meth-
ode waarmee dynamische sensor nodes kunnen bepalen of zij gezamenlijk
bewegen. Dit wordt gedaan door het communiceren en correleren van be-
wegingsinformatie. Deze informatie wordt binnen de nodes verkregen uit
metingen van hellings- en acceleratiesensoren.

5. Een context-aware methode voor het spontaan vormen van clus-
ters met dynamische wireless sensor nodes. We presenteren een
methode waarmee wireless sensor nodes zichzelf spontaan en transparant
in clusters kunnen organiseren door het herkennen van een gemeenschap-
pelijke context. Dit kan bijvoorbeeld gemeenschappelijke beweging betre-
ffen.

Door middel van deze bijdragen biedt dit proefschrift nieuwe mogelijkheden
voor gedistribueerde situatiebeoordeling, waar samenwerkende sensor nodes de
bewegingseigenschappen van mensen of objecten kunnen bepalen en zich ver-
volgens kunnen organiseren in structuren die overeenstemmen met structuren
in de echte wereld.

ix

x

Acknowledgements

The last four years have been the most beautiful of my life. A job that I liked,
people that I met and so many trips make me feel that I made a wise decision in
the summer of 2004, when I accepted a PhD position at University of Twente.

I would like to thank my promoter, Pieter Hartel, for coordinating my re-
search during these four years. I learned a lot from Pieter about the proper
way of conducting research, how to produce scientific solid results and how to
structure and present the work. We had many discussions, sometimes with
divergence of opinions, when I learned how to use proper argumentation, to
construct precise statements and to have a strong motivation for each decision
step. I believe that without Pieter the thesis would not reach so far.

I thank Hans Scholten for being my daily coach. We had so many interesting
discussions, not only about research, but also about our leisure time. Hans even
lent me his own notebook when mine crashed and I was desperately in need of
one to finish up the thesis writing.

Paul Havinga was the project leader and he had a major influence on my re-
search. All the discussions with him were very inspiring and he is a great source
of novel ideas. He is also a very enthusiastic person, who knows how to moti-
vate people. Paul helped me and Mihai to go for an internship at ETH Zürich,
which was a very useful experience. I thank Gerhard Tröster for welcoming us
at ETH and coordinating our research there. We worked in close collaboration
with Clemens Lombriser, who is a very good co-author and friend. The results
from this collaboration represent an important chapter of my thesis.

I would like to thank Tim Nieberg and Johann Hurink for their help with
mathematical proofs. Mathematicians proved eminently precise in their state-
ments, while being at the same time friendly and open-minded persons.

I also wish to thank Nirvana Meratnia for being next to me at the most
difficult moments during my PhD studentship. Her sound judgement has helped
me a lot to overcome the periods of disappointment and confusion.

xi

I thank Hans Gellersen, Christian Bettstetter, Ed Brinksma, Boudewijn
Haverkort and Johann Hurink for assessing my manuscript as members of my
graduation committee. I would also like to acknowledge Frank Karelse, Arnold
Ardenne, Jo De Boeck, Eelco Dijkstra, Maarten Ditzel, Wim Hendriksen, Harry
Kip, Kees Nieuwenhuis and John de Waal for their interesting comments and
discussions about my research during the Featherlight Project meetings. Many
thanks to our secretaries Marlous, Nicole and Thelma for constantly helping us
with the annoying administrative issues.

Our friends from the university, Oana and Vali, came to the Netherlands one
year earlier than us. They described the life in the Netherlands and research
conditions in such positive terms, that we were finally convinced to apply for
PhD positions. We found out that what they told us was accurate, so I thank
Oana and Vali for being our guides to this foreign country.

Ileana and Stefan are the best friends that we have made during these four
years, and we spent so much time together in Enschede, all over Europe and even
Australia, that now it feels weird that we have to start living in different towns.
Andreea and Eugen made our small Romanian group even more charming and
entertaining. However, nothing is as good as the lively and “gezellig” atmo-
sphere of our large parties and volleyball sessions, where the Turkish Mafia is
always present, accompanied, of course, by Michel, our Dutch friend. Our Turk-
ish friends grew in number as time passed by, namely Özlem, Mustafa, Seçkin,
Cem, Ayşegül, Kamil, Ayşe, Murat. But our list of friends is much larger and
even more international. We had so many nice moments with Sinan, Anka,
Ari, Ha, Roland, Chiara, Supriyo, Anindita, Blas, Kavitha, Kiran, Hugo, Yang,
Malohat, Maria, Mohamed, Lodewijk, Laura, Ricardo, Vasughi, Luminita, Di-
ana, Georgiana. We wrote project proposals with Supriyo and Nirvana, learned
salsa steps from Blas, took Dutch lessons from Lodewijk, Tjerk and Michel,
drove sensor-enabled Ferrari cars together with Stephan (many thanks for an
excellent Samenvatting!), but truly unique was our girl dancing team! Together
with Nirvana, Ileana, Özlem and Kavitha as our teacher, we learned and per-
formed synchronous Bollywood Indian dancing, which was the highlight of many
parties and late office hours.

However, nothing would have been possible without the committed support
of my family - my parents, grandmother, uncles, parents-in-law and godparents
- thank you for being next to us all these years! I also thank Irina and Andrei
for the cover design, as well as for their constant help in designing project logos
and figures with application settings.

For Mihai, my other half, I simply cannot express in words my gratitude for
sharing with me each moment of our lives.

xii

Contents

1 Introduction 1
1.1 Wireless sensor networks . 1

1.1.1 Hardware . 2
1.1.2 Software . 2
1.1.3 Applications . 4
1.1.4 Challenges . 8

1.2 Research question . 10
1.3 Contributions . 11

2 A classification of service discovery protocols 15
2.1 Preliminaries . 15

2.1.1 Service discovery definition 16
2.1.2 Service discovery entities 16
2.1.3 Service discovery primary objective 17
2.1.4 Service discovery secondary objectives 18

2.2 Classification . 19
2.2.1 Network type . 19
2.2.2 Storage of service information 19
2.2.3 Search methods . 21
2.2.4 Service description . 23
2.2.5 Service maintenance . 24
2.2.6 Service selection . 25
2.2.7 Service usage . 25
2.2.8 Network scalability . 26
2.2.9 Resource awareness . 28
2.2.10 Mobility support . 28
2.2.11 Fault tolerance . 29

xiii

2.2.12 Security . 30
2.3 Algorithm description . 32

2.3.1 Centralized . 33
2.3.2 Unstructured distributed 34
2.3.3 Structured distributed . 36

2.4 Comparative table . 40
2.5 Conclusions . 46

3 A classification of clustering algorithms 47
3.1 Preliminaries . 47
3.2 Classification . 48

3.2.1 Purpose . 48
3.2.2 Assumptions . 50
3.2.3 Decision metrics . 51
3.2.4 Decision range . 52
3.2.5 Mobility . 52
3.2.6 Structure type . 52
3.2.7 Disjoint clusters . 54
3.2.8 Number and size of clusters 54
3.2.9 Complexity . 54

3.3 Algorithm description . 55
3.3.1 Decision based on weights 55
3.3.2 Decision based on time . 58
3.3.3 Probabilistic decision . 58
3.3.4 Decision based on semantic information 59

3.4 Comparative table . 60
3.5 Conclusions . 66

4 A generalized clustering algorithm for dynamic wireless sensor
networks 67
4.1 Generalized clustering algorithm 67

4.1.1 Input . 68
4.1.2 Output . 68
4.1.3 Properties . 69
4.1.4 Description . 70
4.1.5 Special cases . 73

4.2 Correctness of the cluster formation 78
4.2.1 General properties . 78
4.2.2 Stabilization property . 79

xiv

4.2.3 Correctness of the generalized algorithm 81
4.3 Proofs of constraints for each algorithm 81

4.3.1 C4SD . 82
4.3.2 DMAC . 82
4.3.3 G-DMAC . 83
4.3.4 Tandem . 83

4.4 Conclusions . 85

5 Cluster-based service discovery for heterogeneous wireless sen-
sor networks 87
5.1 Introduction . 88
5.2 Clustering algorithm . 89

5.2.1 Design considerations . 89
5.2.2 Network model . 90
5.2.3 Construction of clusters 91
5.2.4 Knowledge on adjacent clusters 91
5.2.5 Maintenance in face of topology changes 93
5.2.6 A clustering alternative: DMAC 94

5.3 Service discovery protocol . 95
5.3.1 Service registration . 95
5.3.2 Service discovery . 96

5.4 Performance evaluation . 100
5.4.1 Simulation settings . 100
5.4.2 Properties of the clustering algorithms 102
5.4.3 Service discovery performance 105

5.5 Implementation . 111
5.5.1 Optimizations and extended functionality 111
5.5.2 Hardware . 113
5.5.3 Software . 113
5.5.4 Demonstration setting . 115
5.5.5 Performance measurements 119

5.6 Conclusions . 121

6 On-line recognition of joint movement in wireless sensor net-
works 127
6.1 Introduction . 127
6.2 Application setting . 129
6.3 Related work . 130
6.4 General Method . 131

xv

6.4.1 Computing the Correlation 131
6.4.2 Experimental Setting . 133
6.4.3 Parameters . 135
6.4.4 Synchronization . 135

6.5 Solution I - Tilt Switches . 136
6.5.1 Extracting the Movement Information 136
6.5.2 Experimental Results . 136

6.6 Solution II - Accelerometers . 139
6.6.1 Extracting the Movement Information 139
6.6.2 Experimental Results . 139

6.7 Analysis . 142
6.7.1 Accuracy . 142
6.7.2 Scalability . 143
6.7.3 Discussion . 144

6.8 Demonstration . 147
6.9 Conclusions . 148

7 A context-aware method for spontaneous clustering of wireless
sensor nodes 151
7.1 Introduction . 151
7.2 Application scenarios . 153

7.2.1 Transport and logistics . 153
7.2.2 Body area networks . 154

7.3 Algorithm description . 154
7.3.1 Requirements . 155
7.3.2 Cluster formation algorithm 156

7.4 Cluster stability analysis . 158
7.4.1 Determination of common context 159
7.4.2 Modelling with Markov chains 161

7.5 Results . 164
7.5.1 Comparison to traditional clustering 164
7.5.2 Evaluation . 167

7.6 Discussion and conclusions . 172
7.6.1 Advantages . 174
7.6.2 Limitations . 174

8 Conclusions 177

xvi

Chapter 1

Introduction

The ubiquitous computing vision [164] defined by Marc Weiser in 1991 describes
the computer of the future as an invisible technology completely integrated into
our environment. The user will be surrounded by unnoticeable and omnipresent
computers and will use them unconsciously to accomplish everyday tasks. Wire-
less Sensor Networks (WSNs) represent an enabling technology [71, 31] that
contributes to the realization of this vision. This chapter presents the WSN
technology and introduces the most relevant applications.

1.1 Wireless sensor networks

A wireless sensor node consists of a microcontroller, a radio, several sensors,
storage and a battery. A WSN is composed of sensor nodes that sense several
environmental phenomena and form an ad-hoc network for the purpose of col-
laboratively processing and transmitting the data to the interested parties. A
WSN is a self-organizing network that does not need user intervention for con-
figuration or setting up routing paths. Therefore, WSNs can be used in virtually
any environment, even in inhospitable terrain or where the physical placement
is difficult [144].

The traditional WSN application is environmental monitoring, where static
sensor arrays are deployed to collect sensor readings from large or remote ge-
ographical areas to a central point (or base station, sink) [117]. Therefore,
algorithmic research in WSN has mostly focused on the study and design of
energy-efficient and scalable algorithms for data transmission from the sensor

1

1. Introduction

nodes to the base station. Recently, the WSN applications have undergone
a paradigm shift from static to more dynamic environments, where nodes are
mobile, as they are attached to people, animals and moving objects (see Sec-
tion 1.1.3). Consequently, algorithmic research in WSN has to move from static
data collection to a more dynamic concept, which represents the focus of this
thesis.

In what follows, we present a survey of the current WSN hardware and
software technology, together with the evolution of WSN application scenarios.

1.1.1 Hardware

To have an image of the current WSN technology, we present in Table 1.1 a
survey of the commercially available wireless sensor platforms, ordered by the
type of radio. By analysing Table 1.1, we notice the following characteristics of
sensor nodes:

• Heterogeneity. Today’s WSN market is heterogeneous and offers an entire
spectrum of sensor nodes, ranging from small devices with limited hard-
ware resources, such as the Ambient SmartTag [13], to powerful nodes ap-
proaching the capabilities of an embedded computer, such as IMote2 [101].

• Interoperability. Initially developed with proprietary wireless networking
protocols operating in the 868/915 MHz band, the WSN market converges
towards a uniformly accepted network standard, with IEEE 802.15.4 [17]
and ZigBee [27] being the prominent options. As a consequence of these
standardization efforts, WSN platforms are expected to become interop-
erable.

Heterogeneity and interoperability have the potential to expand the WSN
functionality and to increase the quality of service, by putting together the
flexibility of resource-lean nodes and the enhanced capabilities of more endowed
nodes [54, 120].

1.1.2 Software

In what follows, we review the main directions of research in the software field of
WSNs, covering the algorithms and protocols needed to achieve the application
requirements and functionality:

2

1.1. Wireless sensor networks

Platform Radio Processor RAM Flash Sensors/Actuators

Ambient
µNode [13]

868/915
MHz

8 MHz TI
MSP430

10kB 48kB I/O ports, 3 LEDs,
LCD

Ambient
SmartTag
[13]

868/915
MHz

16 MHz In-
tel 8051

128
bytes

4kB I/O ports, LED

Teco
uPart [25]

868/915
MHz

4 MHz
PIC12F675

64
byte

1.4kB Movement, light
sensor, temperature,
LED

Crossbow
MICA2 [15]

868/915
MHz

8 MHz
Atmel AT-
mega128L

4kB 128kB I/O ports, 3 LEDs

Crossbow
MICAz [15]

2.4 GHz
IEEE
802.15.4

8 MHz
Atmel AT-
mega128L

4kB 128kB I/O ports, 3 LEDs

Crossbow
IMote2 [15]

2.4 GHz
IEEE
802.15.4

13-416 MHz
PXA271
XScale

32MB 32MB I/O ports, camera
interface, LED

Crossbow
Iris [15]

2.4 GHz
IEEE
802.15.4

Atmel AT-
mega1281

8kB 128kB I/O ports, 3 LEDs

Crossbow
TelosB [15]

2.4 GHz
IEEE
802.15.4

8 MHz TI
MSP430

10kB 48kB Light, temperature,
humidity

SensiNode
NanoSensor
N710 [22]

2.4 GHz
IEEE
802.15.4

32 MHz TI
CC2430

8kB 128kB Temperature, light,
2 LEDs

SensiNode
Micro.2420
[22]

2.4 GHz
IEEE
802.15.4

8 MHz TI
MSP430

10kB 256kB Stackable

Sun SPOT
[20]

2.4 GHz
IEEE
802.15.4

180MHz
ARM920T

512kB 4MB 3-axis accelerome-
ter, temperature,
light, I/O ports, 8
LEDs

Sentilla
Tmote Sky
[23]

2.4 GHz
IEEE
802.15.4

8Mhz TI
MSP430

10kB 48kB Light, I/O ports

Sentilla
Tmote Mini
[23]

2.4 GHz
IEEE
802.15.4

8Mhz TI
MSP430

10kB 48kB I/O ports

XYZ [26] 2.4 GHz
IEEE
802.15.4

1-60 MHz
OKI Semi-
conductor
ML67 ARM

32kB 256kB Accelerometer, tem-
perature, light, I/O
ports

Table 1.1: Wireless sensor platforms

3

1. Introduction

• Operating systems. Operating systems for WSNs are designed to manage
the sensor node resources and provide programmers with an interface to
access these resources [111, 88]. Operating systems for WSNs are typically
less complex than general-purpose operating systems, mainly because of
the resource constraints of the hardware platforms. For example, they do
not include support for user interfaces or provide virtual memory tech-
niques.

• Networking protocols. Due to the embedded nature of wireless sensor
nodes, the need for self-organisation, energy efficiency, scalability and
robustness, a new breed of networking protocols has been designed for
WSNs. Medium Access Control (MAC) protocols must be power-aware
and able to use the wireless channel efficiently by avoiding collisions and
minimizing delay [87]. The network layer takes care of routing the data
from source to destination (typically the sink node) in an energy-efficient
manner. The transport layer is responsible for congestion control and
reliable data delivery [118].

• Specific protocols. To be able to improve the performance of networking
protocols and to meet the application requirements, specific protocols have
been designed, such as clustering [83], localization [67], security [106] and
data acquisition, manipulation and storage [116].

• High-level dissemination. The interaction between the WSN and the out-
side world is done via a high-level dissemination layer, where the function-
ality of the WSN is offered in a uniform way to the user [65, 120].

As pointed out by Tanenbaum et al. [154], the WSN software design process
should also consider the system aspects, in order to deliver the expected func-
tionality from the application perspective. Therefore, this research is conducted
such that the designed algorithms are implemented and tested on real sensor
nodes (see Section 1.3). In what follows, we provide an overview of the main ap-
plication domains of WSNs and identify the related system characteristics and
technological challenges, which subsequently lead us to the research questions
and contributions of this thesis.

1.1.3 Applications

The range of WSNs applications has extended considerably, mainly due to the
following reasons: (1) the processing capabilities of the nodes have evolved up

4

1.1. Wireless sensor networks

to a point that enables them to execute complex tasks and to make decisions
autonomously; (2) a group of sensor nodes can combine their resources and
capabilities through collaboration and provide complex services, such as reliable
event detection, localization or tracking; and (3) an interoperable collection of
heterogeneous devices can achieve superior functionality by using the flexibility
of the resource-lean devices in conjunction with the enhanced capabilities of the
more endowed nodes [54]. Therefore, the functionality of WSNs evolves from
the traditional data gathering to more complex applications, as shown by the
following succinct review:

Environmental monitoring. Environmental monitoring is the traditional
WSN application, where a static array of sensors is randomly or uniformly
deployed over an area to gather sensor readings and to transmit them at a
central point for processing. Typical settings include precision agriculture [38],
habitat monitoring [117] or ocean water monitoring [57].

Animal monitoring. Different from the environmental monitoring applica-
tions by introducing mobility within WSNs, this scenario assumes that nodes
are attached to animals for the purpose of studying their behaviour, locating or
confining them within an area. Examples include wild life monitoring [95] and
cattle herding [46].

Health care. Sensor nodes integrated into garments, also known as Body
Area Networks (BANs), can be used to monitor the vital signs of patients [40],
their walking pattern [98], or even to localize the patients or medical personnel
inside a building [37].

Industrial safety. Industrial safety can benefit from the WSN technology by
verifying in real-time the safety regulations at industrial sites. Sensor nodes
can collaboratively determine and prevent potential hazardous situations, and
alert or take action at the point of interest. For example, in the oil and gas
industry, dangerous situations may arise by storing incompatible substances
in close proximity of each other or exceeding the maximum storage volume
threshold for hazardous substances [120].

Smart buildings. Sensor networks can provide monitoring and control of
environmental conditions in buildings (such as temperature, humidity, or light),
electronic door and way signs [113], localization of people [97].

5

1. Introduction

Emergency. Emergency applications have as main objective the rescue of
people in danger. For this purpose, people at risk carry a sensor node that
permits localization in case of disaster. Example applications include rescue of
avalanche victims [126] and fire fighting and rescue [142].

Military. WSN represents a promising technology for military applications
because low-cost, disposable sensor nodes can be deployed in these destructive
environments. Some of the military applications of sensor networks are: bat-
tlefield surveillance, mapping opposing terrain, nuclear, biological and chemical
attack detection and reconnaissance, target tracking [12].

Transport and logistics. Transport and logistics represent an important
market for WSNs. The goal is to monitor the storage conditions of products,
to verify the loads, and to real-time localize the goods at production sites,
distribution centres or stores [1].

As this particular application domain has been a valuable inspiration point
for this thesis (see Chapters 6 and 7), we give in the following a detailed de-
scription of the transport and logistics processes, highlighting the typical errors
involved and the role of the WSN to deal with these errors and to improve
efficiency.

The process starts at a warehouse, where an order picker gets an order list
and assembles a Returnable Transport Item (RTI, rolling container or cart),
picks the requested products from the warehouse shelves and loads them in
the RTI. Once the RTI is full or the order is complete, the order picker puts a
sticker with a barcode or RFID on the RTI, which henceforth uniquely identifies
this RTI. Then, the RTI is moved to the expedition floor, a large area used for
temporary storage. A grid is painted on the expedition floor and each cell of the
grid is associated with a certain shop. Loaded RTIs arrive on the expedition
floor and are placed depending on the shop they are assigned to. The RTIs
belonging to one shop are grouped together and occupy one or more adjacent
grid cells, depending on the order size. At loading time, the loading operators
place the RTIs into trailers, according to a loading list, derived from the delivery
orders. Eventually, a truck pulls the trailer and delivers the goods to the shops.
Upon arrival at a store, some or all the RTIs are unloaded from the trailer. If
available, previously delivered dismantled RTIs are loaded into the trailer, to
be returned to the distribution centre and reused in a future delivery.

Keeping track of the status of a certain order is currently carried out by
means of barcode or RFID scanning. The scanning occurs at several stages:

6

1.1. Wireless sensor networks

Figure 1.1: Transport and logistics process diagram: placement of RTIs on the
expedition floor and loading RTIs into trailers.

when assembling an RTI and associating it with an order, when verifying com-
pleteness and loading sequence of an order, etc. However, due to the large scale
of the process, the transport company personnel (e.g. order pickers, loading
operators) make errors. It often happens that the order pickers make mistakes
when filling the RTIs with goods, or that the RTIs are placed in a wrong cell or
lost on the expedition floor, loaded in the wrong trailer or not returned from re-
tail stores. In addition, the products are sometimes stored in improper climate
conditions, which is a serious problem in the case of perishable goods.

The conclusion is that many of the current problems occur as a result of
incorrect handling and storage of products and RTIs at various stages of the
distribution process. The process efficiency can be improved by using the WSN
technology: attaching sensor nodes to products and RTIs and also deploying
them as a fixed infrastructure. This will ensure the reduction or removal of
the most common causes of errors currently experienced. Figure 1.1 shows the
transport and logistics process diagram, where a fixed infrastructure of sensor
nodes is placed uniformly in the grid on the expedition floor. These nodes
are referred to as beacons and facilitate the localization process of the RTIs
on the expedition floor. Groups of RTIs placed within adjacent cells are then
transported together in the same trailer. Each RTI is equipped with a wireless
sensor node, termed a micronode, while a piconode is attached to each product.
The nodes are equipped with sensors for sampling temperature, humidity, light
and other environmental conditions, and also movement sensors, which can be

7

1. Introduction

used for verifying the loading of products in RTIs and of RTIs into trailers (see
Chapter 6 for a detailed description of the verification process). Sensors can
also be attached to order pickers or loading operators, such that the loading
process can be automatically verified and the transport company personnel can
be localized whenever necessary.

To summarize, WSN technology can bring the following improvements to
the current transport and logistics processes:

• Automatic verification of loads (products loaded into RTIs and RTIs
loaded into trailers).

• Discovery and localization of products and RTIs in the warehouse, expe-
dition floor and shops.

• Discovery and localization of transport company personnel.

• Verification of environmental and storage conditions.

The WSN environment for transport and logistics applications is dynamic,
with both mobile and static nodes, and heterogeneous, with beacons, micronodes
and piconodes wirelessly interacting to improve the efficiency of the process. Dy-
namics and heterogeneity are in fact more general system properties, common
to most of the application domains previously discussed. This observation indi-
cates that WSNs evolve beyond the static sensor array model towards interactive
mobile nodes attached to people, animals, objects, and from the homogeneous
Smart Dust vision [163] to resource-aware, heterogeneous nodes, specialized on
specific tasks according to the application design. Building on these generic
system aspects, we outline in the following the major challenges of WSNs in
achieving the ubiquitous computing vision.

1.1.4 Challenges

The functionality of a WSN is dependent on the application domain. In the
traditional monitoring applications, nodes are generally static after deployment
and their role is limited to data collection and gathering to a central point for
processing [144]. Changes in the network topology are infrequent and thus WSN
protocols generally assume a static data collection pattern [83]. Analysing the
above broad spectrum of applications, we deduce that a growing number of
WSNs are dynamic environments, where nodes change their position in real-
time. Consequently, algorithms and protocols for self-organization in WSNs
have to take into account mobility from the design phase. In this way, they can

8

1.1. Wireless sensor networks

(1) reduce the negative impact of mobility on the performance of networking
protocols, and (2) exploit the potential of using mobility to enhance the WSN
functionality.

To conclude, we summarize in the following the major challenges that WSNs
face in order to contribute to the ubiquitous computing vision [103, 62]:

• Heterogeneity. Collaboration among sensor nodes with different hard-
ware capabilities offers more flexibility and supports elaborate tasks, but
at the same time forces algorithms and protocols to become resource-
aware. Therefore, resources in a WSN have to be discovered and efficiently
managed for an improved network functionality and performance.

• Dynamics. The paradigm shift from static sensor arrays to pervasive
applications involves a major increase in the overall degree of mobility
or dynamics. Mobility thus becomes an intrinsic system property, which
needs to be considered even from the protocol design phase. Although mo-
bility has a negative effect on the quality of wireless communication [130]
and the performance of networking protocols [72, 66], there are still cases
when mobility turns out to be a means of enhancing network performance
(e.g. data mule [145]) or a new way of solving a given problem (e.g. au-
thentication through spontaneous interaction [123]).

• Proactivity and transparency. Proactive WSNs have the potential
of delivering context-aware and just-in-time services. The challenge is to
provide the user with “what I want” information and services in a trans-
parent manner. As remarked by Kumar and Das [103], typical examples
of proactive services currently available, such as the online paper clip and
pop-up messages, are obtrusive and often useless. WSN-based proactive
services should ideally assist the user in an unobtrusive way and at the
same time ensure efficient utilization of resources.

In addition to this list, the traditional WSN challenges remain a contin-
uous concern in the protocol design process. Firstly, since sensor nodes are
battery-powered, energy-efficiency is of primary importance to assure a long
network lifetime. Secondly, scalability with respect to the number and density
of nodes is essential to prevent the degradation of network performance below
the acceptable threshold.

9

1. Introduction

1.2 Research question

In view of the above challenges, this thesis focuses on the dynamics of WSNs,
while also accounting for heterogeneity, transparency and the traditional WSNs
objectives defined in Section 1.1 (i.e. energy-efficiency and scalability). We
formulate the main research question that this thesis addresses:

Research question How can WSNs self-organize efficiently in presence of
mobility, adapt to and even exploit dynamics to increase the functionality of the
network?

Self-organization and adaptation in dynamic WSNs involves multiple mech-
anisms at distinct levels of abstraction. We distinguish the following:

1. Low-level networking. WSNs have to implement the low-level networking
primitives in a distributed fashion. More specifically, sensor nodes nego-
tiate the access to the wireless medium, coordinate data packet routing
and regulate error and congestion control.

2. Clustering. An overlay network topology can be used to handle mobility,
either by selecting the least mobile nodes as part of the overlay, or by
organizing the nodes according to their semantic relationship, such as
moving together. Consequently, clustering can be used for the following
specific purposes:

(a) Reducing the effect of mobility on networking protocols. Mobility
has a negative effect on networking protocols for sensor networks,
inducing delays, message overhead or can even make protocols un-
operational. Clustering can help reduce the effect of mobility on
networking protocols, by making a highly dynamic topology appear
less dynamic [124].

(b) Enhance the network functionality. Spontaneous clustering based on
similar mobility pattern of sensor nodes can be used to enhance the
functionality of the network, by delivering contex-aware services such
as activity recognition.

3. Discovery. To be able to access the WSN functionality within a dynamic
environment, one must be able to discover the nodes, resources and ser-
vices available at each moment in the sensor network. Therefore, providing
a discovery mechanism is essential for pervasive computing applications.

10

1.3. Contributions

4. High-level distributed processing. The goal of this layer is to have self-
organizing WSNs that carry out tasks distributively, by sharing resources
and providing services in a transparent way to the user. Consequently, this
layer deals with problems such as distributed shared memory, dynamic
task allocation and information fusion.

This thesis focuses on the middle tiers, i.e. items 2 and 3, as we describe in
the contributions from the following section.

1.3 Contributions

With regard to the previously mentioned challenges and research question, we
describe in the following the main contributions of the thesis. To clarify the
relations between the research issues and our contributions, the reader is referred
to Table 1.2.

Contribution 1 Classifications of service discovery protocols and clus-

tering algorithms - Chapters 2 and 3

To be able to analyse systematically the discovery and clustering mechanisms
for pervasive environments, we review the state of the art service discovery pro-
tocols and clustering algorithms. In both cases, we follow three methodological
steps: (1) define the problem, general objectives and properties, (2) classify
the existing solutions with respect to the defined objectives and properties and
(3) frame the state of the art in a comparative table according to the proposed
classification.

Contribution 2 A generalized clustering algorithm for wireless sensor

networks - Chapter 4

We propose a generalized clustering algorithm for dynamic sensor networks,
which allows for a better understanding of algorithms designed in mobile WSN
environments, and facilitates the definition and demonstration of common prop-
erties for such algorithms. The description of the generalized algorithm is pre-
sented in the paper [2].

Contribution 3 Cluster-based service discovery for wireless sensor

networks - Chapter 5

We propose a combined, cluster-based service discovery solution for hetero-
geneous and dynamic wireless sensor networks. The service discovery protocol

11

1. Introduction

Research issue Contribution Chapter

2-Clustering
1-Classification of clustering algorithms 3
2-Generalized clustering algorithm 4

2a-Clustering, reduce
3-Cluster-based service discovery 5

the effect of mobility

2b-Clustering, enhance 4-Recognition of joint movement 6
network functionality 5-Context-aware spontaneous clustering 7

3-Discovery
1-Classification of discovery protocols 2
3-Cluster-based service discovery 5

Table 1.2: Research issues and corresponding contributions of this thesis.

exploits a cluster overlay for distributing the tasks according to the capabilities
of the nodes and providing an energy-efficient search. The clustering algorithm
is explicitly designed to function as a distributed service registry and represents
a particular case of the generalization proposed by Contribution 2. We analyse
theoretically and through simulations how the properties of the clustering struc-
ture influence the performance of the service discovery protocol. The design and
analysis of the proposed solution appears in papers [3] and [4]. To validate our
results, we implement the proposed solution on resource-constraint sensor nodes
and we measure the performance of the protocol running on different testbeds.
The implementation details and experimental results are described in the pa-
per [5]. We build a demonstration setting as a proof of concept of our combined
solution, described in [10].

Contribution 4 On-line recognition of joint movement in wireless sen-

sor networks - Chapter 6

We propose a method through which dynamic sensor nodes determine that
they move together by communicating and correlating their movement infor-
mation. The final goal is to provide a clustering criteria based on semantic
properties (joint movement). The movement information is acquired from tilt
switches and accelerometer sensors. We implement a fast, incremental correla-
tion algorithm, which can run on resource constrained devices. As recommended
by Tanenbaum et al. [154] (see Section 1.1.2), we test the solution in real life:
we attach sensors to RTIs and cars, as a direct application of the transport and
logistics processes described in Section 1.1.3. Computations are done online
and the results show that the method distinguishes between joint and separate
movements. The solution using tilt switches proves to be simpler, cheaper and

12

1.3. Contributions

Figure 1.2: Organization of the thesis. Arrows indicate specialization, while
straight lines connect two related contributions.

more energy efficient, while the accelerometer-based solution is more accurate
and more robust to sensor alignment problems. This work appears in the pa-
per [1]. A demonstration shows how the sensor nodes recognize online the joint
movement, using wirelessly controlled toy cars. This demonstration is described
in the paper [11].

Contribution 5 A context-aware method for spontaneous clustering

of dynamic wireless sensor nodes - Chapter 7

We propose a method through which wireless sensor nodes organize spon-
taneously and transparently into clusters based on a common context, such as
movement information. This algorithm is a particular case of the generalization
proposed in Contribution 2. We approximate the behaviour of the algorithm
using a Markov chain model and we analyse theoretically the cluster stability.
We compare the theoretical approximation with simulations, by making use of
experimental results reported from various field tests, including the experiments
from Contribution 4. We show the tradeoff between the time history necessary

13

1. Introduction

to achieve a certain stability and the responsiveness of the clustering algorithm.
This work appears in the paper [6].

Figure 1.2 shows the organization of the thesis. We highlight the main re-
search directions, the contributions and the relationship among different thesis
chapters. The generalized clustering algorithm proposed in Chapter 4 has four
special cases, out of which C4SD and Tandem represent our contributions, de-
scribed in Chapters 5 and 7, while DMAC [43] and G-DMAC [42] are shown
for comparison. C4SD is used as a structural basis for a service discovery pro-
tocol designed for WSNs, while Tandem complements our proposed algorithm
for the recognition of joint movement, with the final goal of clustering based on
semantic properties.

14

Chapter 2

A classification of service
discovery protocols

As described in Chapter 1, service discovery is one of the key mechanisms that
allows the user to access the functionality of a dynamic and heterogeneous WSN.
To be able to determine whether existing discovery solutions are applicable to
the WSN environment, a survey and classification of service discovery protocols
will be given in this chapter. We start with preliminary definitions and expla-
nations of the service discovery objectives. We continue with the classification
categories and sub-categories, giving definitions and examples wherever neces-
sary. We then briefly describe the algorithms and frame them in a comparative
table according to the proposed classification. Finally, we draw the conclusions.

2.1 Preliminaries

The service discovery paradigm arises in the context of self-organization in in-
formation systems, where devices featuring communication and computational
resources are able to configure themselves automatically and be discovered with-
out manual intervention. In what follows, we give the definition of the service
and service discovery notions, present the service discovery entities and pinpoint
the objectives of a service discovery protocol.

15

2. A classification of service discovery protocols

2.1.1 Service discovery definition

A service is defined as the behaviour of a system as it is perceived by its user [35].
Therefore, a service is directly related to its user, such that usability is its
primary characteristic. Services may range from traditional printing, faxing
or displaying images, to WSN specific, such as measuring and monitoring the
environmental conditions or positioning (localization). Service discovery is the
action of finding and locating a service in the network [110]. Given a description
of a requested service, the result of service discovery is the address of one or
more service providers that are able to offer the specified service. When the
address is retrieved, the user may further access and use the service offered by
the provider.

The environment where service discovery is performed may be composed of
a variety of devices, ranging from full-fledged PCs to resource-constrained sen-
sor nodes. Changes of service availability may happen frequently, and therefore
a service discovery protocol has to provide self-configuring capabilities to ac-
commodate these changes. Due to the adaptability and self-organization which
distinguishes service discovery protocols from traditional first and second gen-
eration naming systems (such as DNS name services [129] and LDAP directory
services [90], respectively), service discovery can be referred to as third genera-
tion name discovery [151].

2.1.2 Service discovery entities

A Service Discovery Protocol (SDP) consists of the following two participating
entities:

• The Client (or user, service consumer): the entity that is interested in
finding and using a service.

• The Server (or service provider): the entity that offers the service.

In order to facilitate discovery, it is common to find a third participating entity
within SDPs:

• Directory (or registry, server, broker, central, resolver): a node in the
network that hosts partially or entirely the service description information
in a local database, which is called service directory (or service repository,
service registry).

These three entities cooperatively participate in achieving the service dis-
covery objectives, which are described in the following sections.

16

2.1. Preliminaries

2.1.3 Service discovery primary objective

Following the service discovery definition from Section 2.1.1, we identify discov-
ery as the primary objective of an SDP. Discovery is the ability to find a service
provider for a requested service. To achieve discovery, protocols implement the
following functions:

• Use a description language. Services are semantically described using a
certain description language. The language is used by the service provider
to describe the characteristics of its services (full service descriptions), and
by the service consumer for specifying the features of the requested service
(possibly only a partial description). A matching mechanism identifies the
correspondence between the requested and the provided service.

• Store the service descriptions. The service descriptions for each available
service in the network have to be stored at particular locations (service
providers and/or directories), in order to be retrieved whenever there is a
request from a user.

• Search for services. Given a description of a requested service, an SDP
has to find out the location of a service provider, by searching for the
directory nodes that store a matching service description, or by directly
searching for service providers.

• Maintain up-to-date service registries. The network must organize and
deliver information about its content without human intervention. This
objective translates into the following functionalities:

– Maintenance against changes in service description. When services
change their characteristics, an update of the service information in
repositories is necessary.

– Maintenance against changes in service availability. Services may
become unavailable or new services may be added to the network.
The result of service discovery has to change accordingly.

A functional SDP meets all of the above mentioned objectives. However,
an SDP specification may be independent of the description language, covering
only the last three objectives. Fusing such an SDP with an existent description
language (including a matching mechanism) leads to the full specification, that
can be directly implemented within the network.

17

2. A classification of service discovery protocols

2.1.4 Service discovery secondary objectives

Depending on the characteristics of each protocol, SDPs may have additional
objectives, such as:

• Functional objectives.

– Service selection. Automatic selection from a set of discovered ser-
vices may be required, based on a set of metrics that is used to define
the best service offer.

– Service usage. Apart from performing service discovery, an SDP may
also offer methods for using the discovered services.

• Performance objectives.

– Network scalability. An SDP designed to manage large networks has
to assure scalability performance.

– Resource-awareness. This issue concerns designing a lightweight pro-
tocol that can be run on PDAs, mobile phones, home appliances or
resource-constrained devices such as sensor nodes.

– Mobility support. This feature applies to highly dynamic environ-
ments, in which nodes arbitrary may join, leave or change their posi-
tion within the network. The information regarding available services
needs to adapt rapidly to these changes.

• Dependability and security objectives

– Fault tolerance. An SDP may be designed to cope with the failure of
servers, being able to run backup algorithms.

– Security. Blocking un-authorized access to service information can
be an important factor for assuring the safe operation of an SDP.

The functional objectives mentioned above are not required for the discov-
ery process, but they enrich the usability of SDPs. The performance objectives
become important in a challenging networking environment, such as large or
mobile networks, or networks composed of resource-constraint nodes. Depend-
ability and security objectives increase the usability of SDPs in harsh and unsafe
environments.

In the following, we describe the categories of our classification, taking into
account the above mentioned objectives.

18

2.2. Classification

2.2 Classification

Firstly, we group the service discovery protocols by the network category they
are designed for, as this has the most significant impact on the SDP design. Sec-
ondly, we address the objectives defined in Sections 2.1.3 and 2.1.4, by classifying
SDPs depending on the type of storage and search, the description language,
the service maintenance, the functional, performance, dependability and secu-
rity objectives. We examine how particular objectives are met and we point out
the various implementation methods.

2.2.1 Network type

The characteristics of the target network type influence the design decisions, as
an SDP is required to achieve a certain performance level. We can identify the
following relevant network features:

• Size. Network size may vary from small (i.e. one-hop wireless ad-hoc),
via medium (enterprise networks) to large (wide area networks) size.

• Throughput. The throughput may vary from tens of kilobits per second
up to terabits per second.

• Dynamics. Networks can be static, such as the traditional wired local area
networks, or dynamic, such as wireless mobile ad-hoc networks.

• Type of devices. Devices participating in the network can vary from pow-
erful servers to resource-constraint devices, such as sensor nodes.

The type of network influences the storage types chosen in the design phase
of each SDP. For example, complex overlay networks are constructed for an
efficient lookup in large and relatively stable networks [86]. Centralized solu-
tions are suitable for small networks composed of powerful devices [127]. Mobile
ad-hoc networks may choose unstructured distributed storage, in order to min-
imize the traffic generated by mobility [74]. More information can be found in
Section 2.2.2, which presents a detailed view of the storage structures used by
SDPs.

2.2.2 Storage of service information

Information retrieval of available services relies on the storage system type. We
argue that given the network type, storage is one of the most important clas-
sification criteria, as it directly influences the performance of SDPs in terms

19

2. A classification of service discovery protocols

of scalability, mobility support and resource awareness. Depending on the net-
work type, various storage systems can be designed. For example, in ad-hoc
networks, storage may be inexistent due to increased mobility, whereas in wide
area networks it is compulsory to have intermediate storage, although this can
increase substantially the design complexity. We identify the following major
storage types:

• Centralized. This approach is optimal for rapid access to data and low
traffic, even though it creates a single point of failure. SDPs usually use the
server only for information retrieval, the actual communication between
the client and the server being done in a peer-to-peer manner [127].

• Unstructured Distributed. In unstructured distributed storage systems,
communication is based on broadcast or multicast mechanisms. This tech-
nique is common for protocols designed to work in local area networks
and ad-hoc networks. Typically, every node has a local service directory
maintained as a limited-time cache. To obtain the service data, service
providers flood the network with service advertisements and clients broad-
cast discovery messages. The cached service information comes from ser-
vice advertisements and replies to discovery messages. The clients and in-
termediary nodes use the local service database for generating replies [158].

• Structured Distributed. Structured distributed storage methods are com-
monly found in the context of large networks, where the storage solutions
mentioned earlier do not scale well. Directory nodes organize themselves
in an overlay structure that allows them to route the discovery messages in
a limited number of hops. We classify the structured distributed systems
into three categories: hierarchical, flat and hybrid.

– Hierarchical. This type of storage follows the DNS [129] model. In-
formation, advertisements and queries are propagated up and down
through the hierarchy. Parents store information of their children
and the search flow is directed to the root node. Therefore, the root
node can become a bottleneck. If the size of network is large, a
compression method for the stored information is necessary [86].

– Flat. Protocols that fall in this category rely heavily on peer-to-peer
overlay networks, constructed by means of distributed hash tables
(DHT), such as CAN [138], Chord [147], Pastry [141] and Tapestry
[169]. DHTs are used to store key-value pairs on designated nodes.

20

2.2. Classification

Messages are input to a hash function and routed in a bounded num-
ber of hops to the nodes responsible for the resulting key. Each node
maintains a routing table with identifiers and network addresses of
other nodes. The major advantage of DHT protocols is the efficient
lookup mechanism, which normally is performed within O(log(N))
hops, where N is the number of nodes in the overlay network.

– Hybrid. Hybrid solutions combine ideas from the above hierarchical
and flat storage mechanisms with additional optimization techniques.
Some of them rely on hierarchical ring models to organize groups of
nodes [100]. Others try to overcome the disadvantages of the DHT
approaches (e.g. the cost of maintaining a consistent distributed in-
dex), while preserving their benefits (e.g. the efficient lookup mecha-
nism) [155]. Clustering algorithms provide a local hierarchical model,
combined with the global unstructured peer-to-peer [4] or spanning-
tree model [102]

Centralized storage solutions are typically found in small to medium size
local area networks, where service registries are usually available. Unstructured
distributed storage is commonly used within infrastructure-less environments,
such as ad-hoc networks, because it distributes the registrations among all the
nodes and it requires minimum overhead. However, unstructured distributed
storage may lead to a high discovery cost. This inconvenient is addressed by
structured distributed storage, where the efficiency of service lookup comes at
the cost of maintenance overhead. Hybrid solutions try to balance the main-
tenance and discovery costs by merging various structured and unstructured
techniques.

2.2.3 Search methods

Depending on what type of storage each protocol chooses, different search mech-
anisms can be identified. The object of discovery can be:

• Directory node. In the centralized and structured distributed storage en-
vironments, clients and servers need to discover the directory nodes for
sending their advertisements and requests.

• Directory nodes in the overlay structure. In the structured distributed
storage systems, directory nodes need to route service discovery messages
to other directory nodes in the overlay structure.

21

2. A classification of service discovery protocols

• Services. In unstructured distributed storage systems, nodes have to find
the appropriate services without the help of directory nodes.

It is important to mention that the extension of the search is conditioned
by the dispersion degree of the information in the network. The threshold
between the initial dissemination of service descriptions and the extension of
the following queries needs to be taken into account. On the one hand, more
organized and distributed information translates into less search effort. On
the other hand, complex storage mechanisms make the information consistency
difficult to maintain. That is why, in highly mobile networks, flooding may be
the only option for service lookup.

The main two types of search methods are:

• Passive Discovery (or Push Model). A server announces the services that
it offers by sending advertisement messages to potential clients. A direc-
tory announces its presence, so that servers can register their services.

• Active Discovery (or Pull Model). A client that needs information about
services or brokers sends discovery messages. A server sends discovery
messages to locate the potential directory nodes.

In general, protocols implement both methods. Advertised service descriptions
can be the local ones [73], or the entire local database, including services offered
by others [131].

Depending on the directory structure, we have the following search-flow
types:

• Flood-based. This search type is present in unstructured distributed stor-
age. To obtain the service data, a service provider sends service adver-
tisements and a client sends discovery messages. The flooding is either
limited (e.g. to a number of hops) or it covers the whole network.

• Directed flow. Complex search is effectuated mainly within structured
distributed SDPs. Search queries flow based on the rules specific to each
protocol. For example, in hierarchical approaches, data flow up and down
the hierarchy [86].

• Hybrid. Hybrid SDPs use both flooding and directed flow. For instance,
SDPs relying on clustering use directed flow for intra-cluster communica-
tion and flood-based search for inter-cluster discovery [4].

22

2.2. Classification

Flood-based search is typically common with SDPs that employ unstruc-
tured distributed storage, whereas directed flow is used with structured dis-
tributed storage. Hybrid distributed storage is usually associated with a hybrid
search flow.

2.2.4 Service description

Service discovery protocols can be independent of any particular type of service
description, or they can provide the complete solution, including the specifica-
tions of a description language. We identify the following description alterna-
tives:

• Textual. A service can be described using a textual description. An SDP
chooses a set of keywords and associates them with key values, such that
the search engines will search for keys using a set of query keywords [53].

• Attribute-value pairs. The most widely used description format is the
attribute-value structure. An attribute is a category in which an service
can be classified, for example the resolution of a photography service. A
value is the classification within that category, for example, 640×480 [29].

• Hierarchy of attribute-value. Some protocols use a hierarchical arrange-
ment of attribute-value pairs, such that an attribute-value pair that is
dependent on another is a descendant of it [29].

• Markup languages. SDPs [34, 55] may use XML schemas for having valid
attribute definitions, such RDF [21] or DAML+OIL [16].

• Object-oriented interface. A service can be described using an object-
oriented programming interface. For example, Jini requires that service
descriptions are expressed in the form of Java interfaces [127].

On the one hand, complex description languages allow for a detailed charac-
terization of services and thus facilitate the service selection (see Section 2.2.6).
On the other hand, communicating, storing and processing thorough descrip-
tions increase resource utilization and may be infeasible for resource-constraint
environments, such as wireless sensor networks. However, if detailed descriptions
are required by applications, compression techniques can be used to minimize
resource utilization [7].

23

2. A classification of service discovery protocols

2.2.5 Service maintenance

Service maintenance is regarded as the permanent adjustment of the service
information stored on directory nodes. We present the existing solutions for the
two types of maintenance mentioned in Section 2.1:

• Maintenance against changes in service description. The storage system
maintains consistency against changes in service characteristics by using
the following methods:

– Service advertisements. A node adjusts the service information ac-
cording to newly advertised descriptions. This technique is mostly
used in unstructured distributed systems, where all the nodes receive
the service advertisements, independently of their interest in the ser-
vice.

– Event notification or publish/subscribe. A server publishes its offer
and interested clients subscribe for events with directory nodes or
directly with the server. Service updates are received only by the
nodes that have subscribed for the service.

• Maintenance against changes in service availability. Services can be added
or deleted from the network or network topology may change, while di-
rectories have to preserve a consistent view of the available services. The
following schemes are used to control service availability:

– Passive maintenance. Passive maintenance assigns the responsibil-
ity for maintaining service registrations to the server. We have the
following types of passive maintenance:

∗ Soft state. Servers have to periodically re-register their services
in order to restate the service availability; if within a certain
amount of time no re-registration is received, directories delete
the old service registrations.

∗ Hard state. Service registrations do not expire in a specific
amount of time; they remain unchanged until they are explic-
itly deleted. Deletion may occur when servers leave the network
and send explicit de-registration messages.

∗ Hybrid state. Some protocols may implement hybrid state man-
agement for combining the management-simplicity of soft state
to the low-bandwidth requirements of hard-state. For example,

24

2.2. Classification

directory nodes at the edge of the network refresh state infor-
mation at a higher frequency than those part of the network
core [39].

– Active maintenance: polling. Active maintenance gives the respon-
sibility of maintaining a consistent service registry to the directory
nodes. A common technique is polling, where directory nodes peri-
odically check service availability.

Soft state techniques and polling induce a high maintenance cost in terms of
traffic, inconvenient which is avoided by hard state methods. However, applying
hard state maintenance may lead to delays in achieving consistency of service
registries. Hard state maintenance that uses networking information for a rapid
identification of server unavailability or hybrid state methods are two options
for minimizing maintenance overhead and achieving fast convergence of service
registries.

2.2.6 Service selection

After submitting a query for a certain service, it is often the case that multiple
servers can offer the specified service. The best service can be chosen in the
following ways:

• Manually. The user manually selects the server out of a list of service
providers. This is the most used method, as it does not require any pro-
tocol implementation.

• Selected by the client. An optimization algorithm implemented on the
client’s side can automatically choose the best server.

• Selected by the directory. The best server can be selected by one of the
directory nodes present in the system.

When considering the last two cases, an important issue is the metric used to
define the best offer. Metrics generally depend on service performance param-
eters or context attributes, such as lowest hop count, smallest response time,
least loaded node, best channel conditions etc.

2.2.7 Service usage

Although the main goal of an SDP is to provide the address of the server that
offers a particular service, some SDPs may offer also a mechanism for service

25

2. A classification of service discovery protocols

usage. Commands can be given using RPC, Java RMI, Authenticated RMI,
SOAP etc. For example, an SDP based on HTTP for communication and on
XML for descriptions may use SOAP for service usage [73]. Java RMI can
be used for communication between services, which allows not only data to be
passed from object to object around the network but also full objects, including
code [127]. Other protocols utilize generic code binding to associate a service
description with the implementation code [53].

2.2.8 Network scalability

Scalability is one issue tightly related to load balancing and query efficiency.
We have the following types of scalability problems:

• Storage. Directories may be burdened with significant storage of service
information.

• Traffic. Directories and servers may be overwhelmed by registration mes-
sages and queries.

• Delay. Searching in large networks may induce high delay in the retrieval
of the desired information.

SDPs try to avoid the circumstances that lead to the above-mentioned scal-
ability problems. We present in the following the methods that have been
proposed for achieving scalability:

• Service grouping - storage and traffic. Protocols may address the scalabil-
ity issue by enabling service grouping and limiting the queries to groups
of nodes [81].

• Caching - traffic and delay. This technique prevents the directory nodes
responsible for storing information associated to a service from being over-
loaded if the popularity of the service increases [53]. Caching also reduces
the delay, since a node closer to the user may retrieve the address of the
service provider from its local cache.

• Load distribution - storage and traffic. If a directory node is overwhelmed
by service registration and queries, it may delegate other nodes to join the
distributed directory and take over a part of its effort [86].

26

2.2. Classification

• Hierarchical structures - traffic and delay. DNS-like hierarchical structures
enable network scaling to a large number of nodes. Parents store informa-
tion about their children and queries pass up through the hierarchy until
a possible match is encountered. After that, requests are routed down to
the child offering the specified service [86]. When a node is overwhelmed
by the amount of information it is supposed to store or is flooded with
queries, it can easily spawn the load on a nearby machine, assigned to
be its child. On the contrary, if a node considers that it is insufficiently
burdened, it can delegate the load to its parent.

• Distributed hash tables (DHT) - traffic and delay. DHT approaches pro-
vide an efficient and scalable index lookup mechanism. Messages are
routed in O(logN) hops, where N is the number of resolvers in the net-
work [140].

• Overlay structure optimization - traffic and delay. To improve efficiency in
overlay networks, some protocols adapt to network changes by optimizing
the network structure [99]. The overlay is adjusted to provide the optimal
number and location of directory nodes, for a fair sharing of query loads
and minimum delay.

• Aggregation of descriptions - storage and traffic. For reducing the stor-
age of service descriptions, an SDP may utilize compression methods [86].
Aggregation of service advertisements and registrations can also be used
to reduce the network traffic: instead of sending a message for each ad-
vertisement, a collection of descriptions can be advertised in one single
packet [108].

• Clustering - traffic. Grouping nodes into clusters leads to restricted com-
munication and data exchange, which improves on network scalability [4].

SDPs may implement more than one of the above techniques to improve scal-
ability. For example, load distribution comes in line with DHT structures, where
an overloaded node invites other nodes to become part of the directory struc-
ture, and delegates part of its tasks to these nodes [39]. Hierarchical structures
facilitate aggregation of descriptions, where summaries of service descriptions
are registered at superior hierarchical levels [86].

27

2. A classification of service discovery protocols

2.2.9 Resource awareness

Only few SDPs are designed to take the available node resources into account.
Protocols that support integration of resource-constraint devices usually follow
one of the strategies mentioned below:

• Workload delegation. Only a part of the network nodes are capable of
running the SDP. The nodes that cannot handle the load, delegate part
of their tasks to the more powerful nodes in the network [152].

• Workload distribution. All the network nodes are capable of running the
SDP, but the workload is distributed among the nodes based on their
capabilities [4].

Delegation of work load is useful when there are powerful nodes that can
handle increased overhead. However, this technique may not be a solution when
the powerful devices are scarce and hard to reach. In this case, the solution is to
implement a lightweight SDP that is able to run on resource-constraint devices,
and that distributes the workload (typically service registrations and queries)
depending on node capabilities.

2.2.10 Mobility support

Weak mobility support is implemented by most protocols along with mainte-
nance (see Section 2.2.5). However, in networks where dynamics is the primary
characteristic, regular maintenance techniques are not sufficient for keeping the
information up-to-date.

The two basic strategies for solving this problem are the following:

1. Reactive. The information changes according to the events in the network
(e.g. the route to server is no longer available).

2. Proactive. Nodes maintain a consistent view by periodically exchanging
update messages.

Using these strategies and depending on the storage type that an SDP is
maintaining, the following methods have been proposed for handling mobility:

• Adjustment of service advertisement rate and zone radius. A small ad-
vertisement time interval can be implemented for highly dynamic envi-
ronments, opposed to a larger value for rather stable networks. The zone

28

2.2. Classification

where proactive information is maintained, or the radius of service ad-
vertisements (e.g. the number of hops) can be regulated depending on
different network dynamics [55, 85].

• Aggregation and filtering. For preventing directories to keep refreshing
the status of services when they move around, aggregation and filtering
is used at service registration and service discovery phases. A service will
register only if there is no other server within the database that offers the
same service [170].

• Using routing information. The routing information is useful to deter-
mine whether certain nodes and their services were added or disappeared
to/from the network [158].

• Late binding. The late binding technique integrates the discovery mes-
sages with routing, such that the address of the service is not returned
to the client, but instead the directory nodes forward the message to the
server. In this way, seamless communication between clients and services
is enabled, even if the location of the service changes during service us-
age [29].

• Overlay network restructuring. Structured distributed systems that build
overlay networks have to follow certain structural conditions and therefore
implement additional algorithms for preserving consistency in the case of
nodes entering or leaving the network, and in the situation of network
partition and reintegration [100].

• Clustering. The clustering technique can be used to partition the network
with the objective of maintaining a relatively stable topology, by choosing
the less mobile nodes as clusterheads. The clusterheads act as directories
for the nodes in their cluster [4].

Mobility is a factor that greatly influences the maintenance overhead. The
more mobile the network is, the more traffic is required to keep the consistency
of service registries. For this reason, loose directory structures (unstructured
distributed or hybrid storage) are preferred in a highly dynamic environment.

2.2.11 Fault tolerance

Fault tolerance is defined as the mechanism to avoid system failures in the
presence of faults [35]. In this section, a fault is referred to as the failure of

29

2. A classification of service discovery protocols

directory nodes. Since SDPs are designed as self-managing systems, failure of
directory nodes should be handled for inconspicuous system recovery.

We describe a number of solutions for fault handling that have been designed
for SDPs, following the taxonomy of Avižienis et al. [35]:

• Compensation. Compensation is an error handling mechanism where the
erroneous state contains enough redundancy to enable the error to be
masked. For example, multiple copies of the service information are main-
tained on several resolver nodes. When one of the resolver nodes fails, the
remaining directories can still respond to the query [29].

• Isolation. Isolation performs physical or logical exclusion of the faulty
components from further participation in service discovery. The faulty di-
rectory nodes will be identified and removed from the SDP operation [152].

• Reconfiguration. Reconfiguration either switches in spare components or
reassigns tasks among non-failed components. For example, in centralized
storage solution, a backup of the central directory node is maintained,
such that when the central fails, the backup takes over the brokering
function [152]. For distributed storage, new nodes will dynamically take
over the directory function from the faulty resolver [4]. Reconfiguration
occurs also in case of multi-modal functioning of SDPs: the protocol has
an optional peer-to-peer operation, which is enabled in case of directory
failure [81].

• Reinitialization. Reinintialization checks, updates and records the new
configuration and updates system tables and records. Within SDPs, reini-
tialization represents the re-election of the directory node and re-registration
of services [152].

With distributed SDPs, the redundancy of service registries facilitates fault
tolerance through compensation and reconfiguration. Centralized SDPs need
explicit backup mechanisms in order to be able to mask and recover from er-
rors [152].

2.2.12 Security

The primary objective of service discovery is to find service providers for a
desired service (see Section 2.1.3). Any intended action that can be performed
by an entity and that can prevent the achievement of this goal is considered a

30

2.2. Classification

security threat. Following the taxonomy of Avižienis et al. [35], we present in
the following the security attributes that represent the objectives of any secure
system. In particular, we show how these attributes are addressed by secure
SDPs.

Primary attributes

• Availability. Availability is the property of a system or a system resource
being accessible and usable upon demand by an authorized system entity,
according to performance specifications for the system [143]. For example,
an attack to availability is the denial of service, where malicious nodes
can flood the network with false discovery messages. The resources of
legitimate nodes may be depleted in an attempt to process such messages,
and thus the entire service discovery process could be damaged [110].

• Confidentiality. Confidentiality is the property that information is not
made available or disclosed to an unauthorized entity [143]. For example,
a malicious node can intercept or eavesdrop on service discovery messages
and obtain the identities of the senders and intended recipients and the
specific services that are being requested or advertised [110]. To prevent
the information disclosure, SDP messages can be encrypted using, for
example, public key and symmetric key encryption [86].

• Integrity. Integrity is the property that data has not been changed, de-
stroyed, or lost in an unauthorized or accidental manner [143]. More
specifically, the messages exchanged during service discovery should not
be modified. SDP message integrity can be achieved through verification
mechanisms, such as hashes [170].

Besides the primary security attributes mentioned above, secondary at-
tributes can be defined, which refine or specialize the primary attributes [35, 51].
In the following, we give a list of secondary attributes that are addressed by
SDPs:

Secondary attributes

• Authenticity. Authenticity is the property of being genuine and able to
be verified and be trusted [143]. For a message, authenticity is equivalent
to integrity of both the message content and of the message origin. A
user is authentic if the declared identity is the real identity of that person.

31

2. A classification of service discovery protocols

Authentication is the process that gives confidence in authenticity [51].
SDPs may implement mutual authentication among servers, clients and
directories. Clients may have to authenticate in order to use a service [61]
or directories have to authenticate to clients [81]. The full procedure is
that all endpoints have to authenticate to each other [86]. Options for
achieving authentication include username and password methods [61],
digital signatures or challenge-response protocols.

• Authorization. Authorization is defined as the right or permission that is
granted to an entity to access a system state [143]. In the context of ser-
vice discovery, authorization establishes the rights of the service discovery
entities to access service information. Options for achieving authoriza-
tion include the usage of capabilities [86], access control lists [127] and
credentials [155].

• Non-repudiability. Non-repudiability is a security attribute that represents
the availability and integrity of the identity of the sender of a message
(non-repudidation of the origin), or of the receiver (non-repudiation of the
reception) [35]. Non-repudiation provides protection against false denial
of involvement in a communication [143]. It can be achieved for example
by hashing the data and signing the hashes before encryption [170].

• Privacy. Privacy is confidentiality with respect to personal data [51]. In
the context of service discovery, privacy assures that service information
is not divulged to external entities that are not participating in the service
discovery process [110]. For instance, the location information of users is
kept private until they want to reveal their position [170].

Security is of primary importance when SDPs function in public environ-
ments. SDPs designed for these environments need to implement a full-fledged
security strategy, which includes most of the above mentioned attributes [170].

2.3 Algorithm description

In this section, we briefly describe the SDPs based on the different strategies
of storing the service information, presented in Section 2.2.2. The storage type
directly influences the search method and the performance of an SDP.

32

2.3. Algorithm description

2.3.1 Centralized

Jini [127] is based on the Java RMI technologies and Java computing platform.
Services are defined by Java proxy objects and are registered in a central lo-
cation called lookup service. When a service registers its proxy object, it is
returned a lease. The service must renew the lease after a certain amount of
time to sustain its presence in the lookup service. Services can be grouped into
logical sets governed by certain lookup services in the network. When a client
needs a service, it first contacts a lookup service and asks to find one or more
services that match a template. The lookup service will return an appropriate
proxy object. The client will then be able to use the service by method invoca-
tion. Small devices are able to run Surrogate Jini [128]. They use host-capable
machines that have the computational resources to execute code written in Java
on their behalf.

Splendor [170] proposes an SDP particularly designed for public environ-
ments. Splendor defines the following entities: clients, services, directories and
proxies. Proxies offer security and privacy services. Other services ask proxies
to handle registration, authentication, authorization and key management for
them. Directories register service descriptions and answer the queries of clients.
Directories cache soft state information of mobile services and hard-state in-
formation about proxies. Splendor addresses the mobility problem by using
aggregation and filtering at the service registration and sevice discovery phases.

SLP [81] allows for two modalities of operation: centralized and unstructured
distributed. SLP uses the terms User Agent (UA) for the client, Service Agent
(SA) for the server and Directory Agent (DA) for directory entity. When a DA
is present, it collects all service information advertised by SAs, and UAs unicast
their requests to the DA. In absence of a DA, UAs repeatedly multicast the
same request they would have unicast to a DA. SAs listen for these multicaset
requests and unicast responses to the UA if they have the requested service.
Service templates (documents registered with Internet Assigned Numbers Au-
thority (IANA) [18]) define the attributes of services, their default values and
interpretation. To handle large network environments, more DAs can share the
service registrations, or logical groups of services can be defined, using scopes.
Discovery and lookup can be performed within the scope administrated by a
designated DA.

Salutation [61] defines an entity called Salutation Manager (SLM), which
functions as a service broker. A device in the network is called Networked
Entity, which can be either a client or a service. The SLM contains a registry to
hold information about services. The SLM can discover other remote SLMs and

33

2. A classification of service discovery protocols

determine the services registered there. The SLM can periodically check the
availability of a service. Also, clients can request event notifications regarding
services, called long-term requests. The description of a service is an Attribute
Record, which consists of an attribute ID, a compare function ID and a value
field.

FRODO [152] is an SDP designed for home environments. FRODO defines
three types of device classes: (1) 3C are simple devices that implement only
the network stack to connect to the system, (2)3D are medium devices that
implement the network stack and SDP, and (3) 300D are powerful devices. The
storage system is a hybrid between centralized and unstructured distributed.
If there is a 300D device in the network, then this device will take the role as
Central, or directory node. Otherwise, the SDP will function in a distributed
way. A leader election algorithm elects the most powerful device as Central,
while the next device on the list is appointed as Backup, which will take over in
case of Central failure.

2.3.2 Unstructured distributed

UPnP [73] is based on a completely distributed peer-to-peer protocol. The
foundation of UPnP networking is IP addressing, such that devices get their IP
addresses via DHCP or AutoIP. Devices advertise their services by multicast-
ing advertisement messages to a standard address and port. Clients (or control
points) can also search for devices and services of interest in the network, by
multicasting discovery messages. Eventing in UPnP consists of services pub-
lishing updates and control points subscribing to receive this information. The
UPnP descriptions are in XML syntax and are following the standard UPnP
Device Template.

Bluetooth SDP [60] defines a client-server interaction between devices. Every
Bluetooth device may function both as a client and as a server, depending on
whether the device is both a service consumer and a service provider. The server
maintains a list of service records that describe the characteristics of services
associated with the server. A client may retrieve information from a service
record maintained by the SDP server by issuing an SDP request. A service
record consists of a list of service attributes.

DEAPspace [131] is an SDP designed for wireless ad-hoc single-hop networks.
Each device maintains a view of all services that are available in the network.
The nodes advertise not only their own services, but they send a full list of
all the known services. Therefore, occasionally missing packets do not cause
significant problems, and also the system converges rapidly to consistence.

34

2.3. Algorithm description

Konark [84] is a completely distributed SDP designed for ad-hoc, peer-to-
peer networks. Each device has a local repository where it maintains the local
services. For sharing this information with other devices, servers send service
advertisements to the network, which contain the time-to-live information for
keeping the system update. Clients cache these advertisements for further usage.
Services are described using XML and the user can interact with services by
invoking the available functions via SOAP.

Other protocols that implement peer to peer caching are Allia [139] and
GSD [55]. Allia [139] defines an Alliance of a particular node as the set of nodes
whose local service information is cached by this node. When a node needs to
discover a certain service, it first looks at its local cache to check the members
of his alliance. If the service is unavailable, the node sends the request to other
alliances in its vicinity. The advertisement frequency and the alliance diameter
depend on the mobility of nodes.

In GSD [55], each server periodically advertises a list of its services to all the
nodes in a particular number of hops, called the diameter of advertisements. The
advertisement frequency, diameter and lifetime are user-controlled parameters,
that can be specified according to the network mobility level. The services
are grouped depending on their functionality. The service group information is
propagated along with the service advertisements. This information is used to
selectively forward the service discovery messages to the nodes that are part of
a specific group.

Varshavsky et al. [158] propose a cross-layer discovery protocol that uses
routing information for making decisions of service availability. The routing
protocols that are considered are DSR [93] and DSDV [136]. The design consists
of two main components: the routing-independent Service Discovery Library
(SDL) and the Routing Layer Driver (RLD). SDL stores information about
known servers in a service table. Clients and servers call on SDL to issue service
discovery requests and propagate service advertisements. SDL calls on RLD
to disseminate service discovery requests and advertisements, and propagate
service discovery replies. RLD forwards service discovery messages it intercepts
from the network to SDL and informs it about changes in network topology.

Using the same cross-layer idea as Varshavsky et al., Frank and Karl [74]
implement the service discovery functionality on top of AODV [137] routing
protocol. When a client issues a request, a routing packet including the descrip-
tion of the service is created. The message propagates through the network like
a normal AODV routing packet. A node that receives it and knows a match-
ing service provider, fills in the destination address. Nodes know about service
providers via service advertisements and caching. Negative service announce-

35

2. A classification of service discovery protocols

ments are used to explicitly remove cache entries and thus achieve a faster
consistency convergence.

The resolver network in INS [29] is comprised of Intentional Name Resolvers
(INRs) organized in a spanning tree, which is only used for disseminating service
descriptions (i.e. is not used for organizing a structured directory). The service
descriptions are called name-specifiers and consist of a hierarchical arrangement
of attribute-value pairs. INS uses the late binding technique for handling mo-
bility, by integrating the discovery messages with routing. Services periodically
advertise their intentional names to the INR network. INRs replicate the name
information among each other using a routing protocol that includes periodic
and triggered updates. To handle excessive lookup loads, INRs spawn instances
on other candidate resolvers. There is a central component in the network,
named Domain Space Resolver (DSR), which maintains a list of active and can-
didate INRs. For scalability reasons, services are grouped into virtual spaces,
such that every INR only needs to route a subset of all the active virtual spaces
in the system.

Lenders et al. [108] propose a service discovery protocol inspired by electro-
static fields from physics. Nodes in the ad-hoc network determine the potential
of a service depending on the distance to service providers. Service instances
periodically advertise the service descriptions they offer. These advertisements
are flooded through the network within a limited scope. Each node stores the
advertisements in a time-limited cache and calculates the potential value for
each service type. A service request packet arriving at a node is forwarded
to the neighbour with the highest potential. For reducing the communication
overhead, nodes aggregate more advertisements and forward them in one single
message.

2.3.3 Structured distributed

Following the classification from Section 2.2.2, a structured distributed storage
can be either flat, hierarchical or hybrid. We describe different methods for
structured distributed storage by giving examples of SDPs for each category in
turn.

2.3.3.1 Flat

In INS/Twine [39] achieves scalability via hash-based partitioning of resource
descriptions among a set of directory nodes, or peer resolvers. The service de-
scriptions are hierarchies of attribute-value pairs. INS/Twine splits service de-

36

2.3. Algorithm description

scriptions into strands and computes hash values from each strand. The result-
ing set of numeric keys are then stored in the network of resolvers. INS/Twine
uses Chord [147] for the underlying DHT process. To maintain consistency
in face of changes, INS/Twine uses a hybrid state policy, where resolvers at
the edge of the network refresh state information at a higher frequency than
resolvers in the network core.

The Superstring service discovery protocol [140] also uses a DHT data struc-
ture [147]. A service sends its description to the nearest resolver, which produces
a key from the top-level component of the description. The key is used to route
the description to the appropriate resolver. In turn, this resolver removes the
original top-level component and hashes each of the top-level components of the
resulting sub-trees. This resolver then sends the descriptions of the sub-trees
further to other resolvers, depending on the hashes it produces. The process is
repeated until the bottom of the description is reached. Thus, the computational
cost for any query is shared among many resolvers.

CDS [75] constructs a DHT overlay network, out of which a small number
of nodes, the Rendezvous Points (RP), are in charge of registering the service
descriptions. A hash function is applied to each attribute-value pair in the
description and the resulting values are registered with the Rendezvous Points.
The problem is that the attribute-value pairs may overlap for different service
descriptions, such that the query load is concentrated to one node. This problem
is addressed by constructing a load balancing matrix of RPs, which grows and
shrinks dynamically, as a result of the registration and query load. Each column
contains a partition of the content and nodes in the same column are replicas of
each other. CDS allows the client to make use of a query optimization algorithm,
which selects the best RP. Two criteria can be taken into account: the RP with
the smallest response time or the RP with the smallest database.

One Ring Rules Them All [53] uses structured peer-to-peer overlays as a
platform for service discovery and chooses Pastry [141] as an example for dis-
tributed search. The infrastructure proposed relies on a universal ring that all
participating nodes are expected to join. The ring stores the keys that provide
access to the information about services, the code needed to run them and con-
tact lists of server nodes. The storage system is persistent, except the contact
lists. Caching is used to avoid overloaded nodes.

2.3.3.2 Hierarchical

SSDS [86] is a protocol designed for wide-area networks. It achieves scalability
by constructing a global hierarchical structure. Summaries of service descrip-

37

2. A classification of service discovery protocols

tions are registered at the superior hierarchical levels using Bloom-filtered cross
terminals [47]. The result of a Bloom filter is a bit vector that summarizes ag-
gregated descriptions. If a query comes up the hierarchy, the receiving directory
checks to see if it hits locally or in any of its children. If so, the query is routed
down to the children. Otherwise, the query is passed upward.

CSP [107] also uses a hierarchical structure of directories and aggregation of
service descriptions, based on the Centroid aggregation method. This approach
exploits the word frequency pattern followed by the Zipf distribution [112]. CSP
specifies that seldom used words need to be discriminated in favour of more fre-
quently used ones. The attributes that are not very spread encounter aggressive
aggregation that forces service information to quickly converge to a small size
set. CSP introduces the concepts of static and dynamic context-attributes for
service selection. Static attributes are the ones that keep fixed values set at the
time of announcements, while the value of a dynamic attribute is determined
at the time of lookups. Examples of context attributes are: distance to server,
server load and channel conditions. The evaluation of context attributes is done
by the directory nodes (Broker Agents).

GloServ [34] is a service discovery protocol for local-area and wide-area per-
vasive computing. Services are defined using Resource Description Framework
(RDF) [21]. GloServ uses a hierarchical structure, where every directory in the
hierarchy has its own RDF schema store which describes all the services of its
children.

2.3.3.3 Hybrid

The Project JXTA [155] establishes a virtual DHT network overlay on top of
existing physical network infrastructure. This approach combines DHT methods
with a random walker that checks for non-synchronized indices. The resolvers
Rendezvous peers are nodes that store service advertisements. Rendezvous peers
are not required to maintain a consistent distributed hash index, in order to
avoid expensive network traffic. Instead, a limited-range walker is used to walk
the rendezvous from the initial DHT target.

Service Rings protocol [100] uses a hierarchical ring structure to achieve
scalability. A ring is a group of devices that are physically close to each other
and offer similar services. Each service ring has a designated Service Access
Point (SAP), which stores information about all the services offered by the ring.
SAPs can be organized in higher-level rings, which also have SAPs that store
summaries of services they provide. Rings permanently monitor the network
traffic and make decisions for optimizing their structure, by running algorithms

38

2.3. Algorithm description

for ring restructuring, splitting and merging.

LANES [99] builds up an overlay network inspired by CAN [138]. The two-
dimensional CAN structure is optimized by constructing loosely coupled lanes
of nodes. An arbitrary node from the lane has full information of the services
offered by that lane. Service announcements are propagated throughout a lane,
whereas service requests are sent to other lanes. On average, this algorithm
distributes the descriptions to

√
N nodes, where N is the total number of nodes

in the network. LANES deals with inefficient inner lane connections and lanes
splitting and merging to achieve the optimal size.

Overlay networks can be built also by making use of backbone selection algo-
rithms. Kozat and Tassiulas [102] tackle the solution of a distributed directory
by creating and maintaining a network backbone. Selected nodes are considered
to form a relatively stable dominating set. They receive and process service re-
quests, acting as service discovery agents. However, due to the high density of
nodes in the dominating set, a lot of loops are generated in the discovery pro-
cess. Therefore, a source-based multicast tree algorithm is proposed to organize
the nodes in the backbone.

Zone-based protocols and cluster-based protocols proactively maintain rout-
ing and service information inside the zone/cluster, while using a reactive search
method at the network level. Helmy [85] proposes a resource discovery proto-
col, where each node keeps track of a number of nodes less than R hops away,
which defines the zone of the node. As part of the zone information each node
maintains resource information and routes to all the nodes in its zone. A node
has also knowledge of a number of contact nodes outside its zone. The search
method implies forwarding the requests to the contact nodes, which is analogous
with flooding between contacts.

SD4WSN (see Chapter 5) proposes a service discovery protocol suitable
for heterogeneous wireless sensor networks, which reduces the workload of the
resource-constraint devices. SD4WSN is based on clustering, where a set of
nodes, selected based on their capabilities, acts as a distributed directory of
service registrations for the nodes in their cluster. In this way, the communica-
tion costs are reduced, since the service discovery messages are exchanged only
among the directory nodes, and the distribution of workload takes into account
the capabilities of the nodes.

39

2. A classification of service discovery protocols

2.4 Comparative table

Table 2.1 gives a comparison among the SDPs described above, following the
proposed classification of Section 2.2. Similarly to the description of algorithms,
we group the SDPs based on the storage type. Dashes correspond to ”not
applicable” features.

A close analysis of Table 2.1 reveals the following characteristics of SDPs:

• Network type vs. storage. Enterprise and ad-hoc networks make use of
centralized and unstructured distributed SDPs, due to the relatively small
network size that does not pose scalability problems. Wide-area networks
use mostly flat or hierarchical structured distributed storage that meet
the scalability requirement through an efficient lookup mechanism. Mo-
bile ad-hoc networks generally use less structured storage types (unstruc-
tured distributed or hybrid structured distributed), in order to reduce the
maintenance effort.

• Search type vs. storage. Unstructured distributed storage is typically
flood-based, while structured distributed storage uses a directed flow search.
Hybrid storage SDPs may use both flooding and directed flow, which rep-
resents a hybrid search (see Section 2.2.3). Active and passive search are
commonly used in a joint manner.

• Description vs. usage. When an SDP specification includes a description
language, it often incorporates a usage mechanism that is in line with the
chosen description. For example, with UPnP, an XML schema defines the
UPnP language, and SOAP is employed for service usage [73]. Services
in Jini are described using Java interfaces, while Java RMI represents the
service usage mechanism [127] (see Section 2.2.4). However, many SDPs
are independent of description languages and usage mechanisms.

• Security vs. network type. Security is addressed mostly by SDPs designed
for enterprise networks, public spaces and wide-area networks.

• Scalability vs. network type. Scalability is a great concern for SDPs de-
signed for ad-hoc, sensor and wide area networks. Wide-area networks
achieve scalability mainly through structured storage, while ad-hoc and
sensor networks use mostly caching and clustering.

• Fault tolerance vs. storage. Compensation is mainly used with distributed
storage, where replicas of service registries facilitate the directory failures
to be masked.

40

2.4. Comparative table

By analysing Table 2.1 following the classification criteria, we observe that
the resource awareness objective is often neglected, most SDPs being designed
to function on resource-rich devices. However, discovery is one of the key mecha-
nisms that allows the user to access the functionality of a dynamic and heteroge-
neous WSN, as described in Chapter 1. A WSN is typically resource-constraint,
which makes existing SDPs less appropriate for this type of environment. In
the following, we explain why existing SDPs are not suitable for WSNs.

As indicated earlier, SDPs which achieve efficient service lookup in large-
scale ad hoc networks exploit either flat or hierarchical overlay structures. These
techniques generate considerable network traffic and high maintenance overhead,
so they are not suitable for running on resource-lean devices.

More appropriate for this environment are the protocols that use unstruc-
tured distributed storage [84, 55]. The service information is obtained using
either the push model, where service providers advertise periodically the ser-
vices they offer, and/or the pull model, where clients flood the network with
discovery messages in search for the desired service. However, flooding is a
method that limits the scalability of protocols, generating substantial traffic
especially for dense networks.

Cluster-based protocols proactively maintain routing and service information
inside the cluster, while using a reactive search method at the network level.
As a consequence, they reduce the network traffic compared to flood-based
protocols, which is important especially in networks with high density. However,
the existing cluster-based SDPs require a high cost for maintaining extensive
topological knowledge or complex structures. For example, with Helmy [85],
nodes need to maintain a complete topological view over a number of hops,
together with the knowledge on available resources. Kozat and Tassiulas [102]
propose an SDP where the clustering structure is composed of two overlays,
i.e. the dominating set and the multicast tree. This approach is expensive for
resource-constraint devices.

Nevertheless, using lightweight clustering algorithms remains a promising so-
lution to achieve resource-awareness in service discovery, because of their ability
to avoid the negative effect of flooding and to achieve workload distribution. We
provide detail on future research directions in the next section.

41

2
.
A

cla
ssifi

ca
tio

n
o
f
serv

ice
d
iscov

ery
p
ro

to
co

ls

Table 2.1: Overview of service discovery protocols

SDPs Network
type

Storage Search Description Maintenance Selection
and
usage

Scalability Resource
aware-
ness

Mobility
and fault
tolerance

Security

Jini
[127]

Enterprise
network

Centralized Active
and pas-
sive

Java inter-
faces

Event noti-
fication
Soft state

Java
RMI

Service
grouping

Workload
delega-
tion
[128]

- Authentication
Authorization
Confidentiality
Integrity

Splendor
[170]

Public
environ-
ments

Centralized Active
and pas-
sive

- Soft-state
and hard-
state

- - - Aggregation
and filtering

Authentication
Authorization
Confidentiality
Integrity
Non-
repudiation

SLP
[81]

Enterprise
network

Centralized
and un-
structured
distributed

Active
and pas-
sive

Attribute-
value
(IANA)

Soft state - More
directories
Service
grouping

- Reconfiguration Optional
authen-
tication

Salutation
[61]

Enterprise
network

Centralized
or un-
structured
distributed

Active Attribute-
value

Event no-
tification,
polling

RPC - - - User au-
thentication

FRODO
[152]

Home
appli-
ances

Centralized
and un-
structured
distributed

Passive - Soft state
and polling
Event noti-
fication

Best
match

- Workload
delega-
tion

Isolation
Reconfiguration
Reinitialization

-

UPnP
[73]

Enterprise
network

Unstructured
distributed

Active
and pas-
sive
Flood-
based

XML
(UPnP
language)

Service
adv.
Event noti-
fication
Soft state

SOAP - - - Integrity
Authentication
Authorization

Bluetooth
SDP
[60]

Small,
max. 8
devices

Unstructured
distributed

Active Attribute-
value

- - - - - Optional
authentication,
authorization,
partial con-
fidentiality

DEAP
space
[131]

Ad-hoc
single-
hop

Unstructured
distributed

Passive
Flood-
based

- Soft-state - - - - -

Continued on next page

42

2
.4

.
C

o
m

p
a
ra

tiv
e

ta
b
le

Table 2.1
Continued from previous page

SDPs Network
type

Storage Search Description Maintenance Selection
and
usage

Scalability Resource
aware-
ness

Mobility
and fault
tolerance

Security

Konark
[84]

Ad-hoc Unstructured
distributed

Active
and pas-
sive
Flood-
based

XML Passive
Service
adv.
Event noti-
fication

SOAP - - - -

Allia
[139]

Ad-hoc Unstructured
distributed

Active
and pas-
sive
Flood-
based

- Soft-state - Caching - Adjustment
of adv. rate
and radius

Authorization

GSD
[55]

Mobile
ad-hoc

Unstructured
distributed

Active
and pas-
sive
Flood-
based

XML
(DAML+OIL)

Soft-state - Caching
Service
grouping

- Adjustment
of adv. rate
and radius

-

Varshavsky
et al.
[158]

Mobile
ad-hoc

Unstructured
distributed

Active
and pas-
sive

- Service
adv., hard
state

Selection
(client):
Lowest
hop
count

Caching - Routing
info. (DSR,
DSDV)

-

Frank
and
Karl
[74]

Mobile
ad-hoc

Unstructured
distributed

Active
Flood
based

- Service
adv., soft
state, hard
state

Selection
(client):
hop
count

Caching - Routing
info.
(AODV)

-

INS [29] Mobile Unstructured
distributed

Passive Hierarchy
of
attribute-
value

Service
adv.
Soft-state

- Load dis-
tribution
Service
grouping

- Compensation
Late bind-
ing

-

Lenders
et al.
[108]

Mobile
ad-hoc

Unstructured
distributed

Active
and pas-
sive
Directed
flow

- Service
adv., soft
state

- Caching
Description
aggrega-
tion

- - -

INS/
Twine
[39]

Large
and
dynamic

Structured
distributed
(Flat)

Directed
flow

Hierarchy
of
attribute-
value

Hybrid
state

- Load dis-
tribution
DHT

- Compensation -

Super
string
[140]

Wide-
area

Structured
distributed
(Flat)

Directed
flow

Hierarchical - - - - Load distri-
bution
DHT

-

Continued on next page

43

2
.
A

cla
ssifi

ca
tio

n
o
f
serv

ice
d
iscov

ery
p
ro

to
co

ls

Table 2.1
Continued from previous page

SDPs Network
type

Storage Search Description Maintenance Selection
and
usage

Scalability Resource
aware-
ness

Mobility
and fault
tolerance

Security

CDS
[75]

Mobile Structured
distributed
(Flat)

Directed
flow

Attribute-
value

Soft-state Selection
(client):
response
time,
database
size

Load dis-
tribution

- Compensation -

One
Ring
[53]

Wide-
area

Structured
distributed
(Flat)

Directed
flow

Textual Hard-state Code
binding

Caching
DHT

- Compensation Authentication

SSDS
[86]

Wide-
area

Structured
distributed
(Hierarchi-
cal)

Directed
flow

XML Soft state - Hierarchical
structure
Load dis-
tribution
Description
aggrega-
tion

- - Authentication
Authorization
Confidentiality

CSP
[107]

Wide-
area

Structured
distributed
(Hierarchi-
cal)

Directed
flow

Attribute-
value

- Selection
(direc-
tory):
dis-
tance,
load,
channel

Hierarchical
structure
Description
aggrega-
tion

- - -

GloServ
[34]

Local
and
wide-
area

Structured
distributed
(Hierarchi-
cal)

Directed
flow

XML (RDF
schema)

Event noti-
fication
Soft state

- Hierarchical
structure

- - Authentication

JXTA
[155]

Wide-
area

Structured
distributed
(Hybrid)

Hybrid XML Service
adv.
Soft state

- Load dis-
tribution
loose DHT

- Compensation Authentication
Authorization
Confidentiality

Service
Rings
[100]

Mobile
ad-hoc

Structured
distributed
(Hybrid)

Directed
flow

- Polling - Structure
optimiza-
tion

- Restructuring -

LANES
[99]

Mobile
ad-hoc

Structured
distributed
(Hybrid)

Directed
flow

- Polling - Structure
optimiza-
tion

- Compensation
Restructuring

-

Continued on next page

44

2
.4

.
C

o
m

p
a
ra

tiv
e

ta
b
le

Table 2.1
Continued from previous page

SDPs Network
type

Storage Search Description Maintenance Selection
and
usage

Scalability Resource
aware-
ness

Mobility
and fault
tolerance

Security

Kozat
& Tas-
siulas
[102]

Mobile
ad-hoc

Structured
distributed
(Hybrid)

Directed
flow

- Soft-state - Clustering
Load dis-
tribution

- Restructuring -

Helmy
[85]

Ad-hoc Structured
distributed
(Hybrid)

Active
and pas-
sive
Hybrid

- - - Clustering - Adjustment
of zone
radius

-

SD4WSN
[4]

Hetero-
geneous,
mobile
sensor
network

Structured
distributed
(Hybrid)

Active
Hybrid

- Hard-state - Clustering Workload
distri-
bution

Clustering
Reconfiguration

-

45

2. A classification of service discovery protocols

2.5 Conclusions

In this chapter, we describe the objectives of service discovery and we classify
the existing SDPs according to the different methods conceived to achieve these
objectives. Our classification takes into account the network type, the primary
objectives of service discovery (storage, search, service description and main-
tenance) and the secondary objectives of SDPs (service selection and usage,
scalability, resource awareness, mobility, dependability and security). Out of
these objectives, we identify the storage type as being the dominant charac-
teristic, since it directly influences the search method and the performance of
SDPs.

Following the observations derived from the analysis of Table 2.1 and detailed
in the previous section, we conclude that resource awareness is one research di-
rection that is not sufficiently addressed by current state of the art. Resource
awareness is especially important in the field of WSNs, where the constraint
capabilities of the nodes rule out the existing discovery solutions. This thesis
makes one step forward, by proposing an SDP particularly tailored to hetero-
geneous and dynamic WSNs. Since cluster-based solutions have the advantage
that the knowledge can be distributed among the members of the clusters, de-
pending on the hierarchical level, we design SD4WSN (described in Chapter 5),
a service discovery protocol based on a simple and lightweight clustering struc-
ture, which allows a low maintenance overhead and a low discovery cost even in
highly dense and dynamic sensor networks. For an informed decision regarding
the clustering features required and the available solutions, we present a survey
and classification of existing clustering algorithms in Chapter 3.

46

Chapter 3

A classification of clustering
algorithms for wireless
ad-hoc and sensor networks

Following the conclusion from Chapter 2 that clustering represents a method
to handle heterogeneity in a resource-constraint environment, we are interested
in a clustering solution that can be used to support service discovery in dy-
namic WSNs. Therefore, we present a survey and classification of clustering
algorithms designed for wireless ad-hoc and sensor networks. Firstly, we intro-
duce the clustering concept and the main reason for using it within this network
environment. Secondly, we define the main classification criteria and describe
each of the categories in turn. Thirdly, we provide an overview of the different
clustering solutions, pointing out their characteristics and explaining the main
construction steps. Fourthly, we give a comparative table that summarizes the
characteristics of the various clustering algorithms according to the classifica-
tion. We end this chapter with conclusions and open issues.

3.1 Preliminaries

Among many challenges faced by ad-hoc and sensor networks designers, scala-
bility is a critical issue. The flat topology of these types of networks contains
a large number of nodes that have to compete for the limited wireless band-

47

3. A classification of clustering algorithms

width, handle sizeable routing tables and manage substantial traffic caused by
network dynamics. One promising approach to solve the scalability problem is
to abstract the network topology by building hierarchies of nodes. This process
is commonly referred to as clustering.

We formally define the clustering problem following the definition given by
Chen et al. [59]. We model the network as an undirected graph G = (V,E),
where V is the set of vertices or nodes and E is the set of edges or links that
directly connect two nodes. The clustering process divides V into a collection of
(not necessarily disjoint) subsets {V1, V2, ..., Vk}, where V =

⋃k
i=1 Vi, such that

each subset Vi induces a connected subgraph of G. Each such subset is a cluster.
Typically, a particular vertex in each cluster, termed the root or clusterhead, is
elected to represent the cluster.

To define a multi-level clustering hierarchy, we consider the abstracted graph
G1 = (V 1, E1), constructed from each clusterhead of {V1, V2, ..., Vk} [59]. The
set of nodes V 1 (representing the elected clusterheads from V) is regarded as
the hierarchical level 1. There is an edge between two nodes ri, rj ∈ V 1 if and
only if there is an edge of E from some node vi ∈ Vi to some node vj ∈ Vj . The
clustering process can be repeated for graph G1, and subsequently for G2, G3

etc. Finally, a hierarchical level k of clusterheads can be obtained.

3.2 Classification

The classification that we propose provides a general overview of clustering
design choices and attained performance. The classification criteria include
the clustering purpose, assumptions, decision range, decision metrics, degree
of mobility, resulting structure type, number of clusters and complexity. We
analyse each criterion in turn and describe the associated categories.

3.2.1 Purpose

Clustering algorithms for ad-hoc and sensor networks improve network scala-
bility by handling two important problems regarding the size and mobility of
the network: they make a large network appear smaller, and a highly dynamic
topology appear less dynamic [124]. Delay and message overhead represent the
cost for clustering; these are further described in Section 3.2.9. In this section,
we focus on the above described scalability improvements and show their direct
benefits.

48

3.2. Classification

A large network appears smaller Grouping nodes into clusters leads to
having restricted communication and data exchange, which improves on the
following network operations:

• Medium access control (MAC). The access to the medium can be controlled
and bandwidth can be allocated separately in each cluster, thus reducing
the scope of inter-cluster interactions and avoiding redundant exchange of
messages [114].

• Routing. The size of the routing tables is reduced by maintaining routes
only to the clusterheads, and not to every node in the network [156].

• Flooding. The cost of flooding is reduced by decreasing the number
of nodes that broadcast the message to only clusterheads and border
nodes [148].

• Data collection. The data collected within a cluster is aggregated at the
clusterhead and transmitted as a whole to the base station, thus avoiding
excessive message exchange [83].

• Service discovery. The clusterheads maintain a service directory for nodes
in their cluster. Thus, service discovery messages are transmitted only to
the clusterhead nodes, and not in the whole network [4] (see Chapter 5).

A highly dynamic topology appears less dynamic Clustering can be
used to partition the network with the objective of maintaining a relatively
stable topology. This improves on the following network functionalities:

• Routing. Complete routing information is maintained only for intra-cluster
routing. Intercluster routing is achieved by hiding the topology details
within a cluster from external nodes, thus limiting far-reaching reactions
to topology dynamics [124].

• Collaborative processing. Identifying nodes moving together and creat-
ing clusters based on joint movement allows for long-term intra-cluster
collaborative processing (see Chapter 7).

Abstracting from the above specific purposes, several clustering algorithms
are generic algorithms, meaning that they do not follow any particular objective,
but rather propose a general solution that can be applied to various networking
operations [148].

49

3. A classification of clustering algorithms

3.2.2 Assumptions

The general assumptions of clustering algorithms, unless otherwise stated in Sec-
tion 3.3, are that the wireless communication is reliable (that can be achieved
by using a reliable transport protocol [160]), and that the communication links
are symmetrical. In addition, each clustering algorithm has a list of specific
assumptions, based on the functionality that the lower layers of the commu-
nication stack (MAC, routing, transport) or other algorithms running on the
nodes provide. Additional assumptions include the following:

• Synchronization. Clustering algorithms that require a series of coordi-
nated phases among the network nodes assume the availability of a net-
work synchronization mechanism [83].

• Unique node IDs. Weight-based clustering algorithms require unique IDs
assigned to nodes, which can be used to break ties [43].

• Localization. Localization information represents the coordinates of the
node location. This information is useful for grouping nodes based on
their location [148].

• Level of dynamics. The level of dynamics, such as a generic station-
ary/mobile attribute or the concrete node speed is useful for reasoned
cluster membership selection [58].

• Global information. The number of nodes within the network or the total
remaining energy represent global information, which can be useful for
achieving the desired clustering structure [83].

• Routing information. Routing tables may be needed to ease the commu-
nication among nodes during cluster organization [124].

• Additional hardware capabilities. Hardware capabilities can help achieve
a better clustering structure by providing additional information about
neighbouring nodes or improved communication abilities. Examples in-
clude the capability to measure the Received Signal Strength (RSSI) and
the availability of multiple transmission power levels [83, 167].

• Additional structures. Additional structures such as spanning trees may
facilitate the clustering process, but may also induce more overhead for
maintenance [159].

50

3.2. Classification

• Additional algorithms. Additional algorithms include localized event de-
tection, context-sharing, availability paths or distance between pairs of
nodes. The output of these algorithms is semantic information used for
clustering decisions [58].

Some of the above mentioned assumptions are in line with the decision met-
rics used to form clusters, such as unique node IDs or additional algorithms
(see Section 3.2.3). Other assumptions are used to improve the clustering result
by exploiting the availability of specialized hardware, or taking advantage of
additional information, such as location or routing tables.

3.2.3 Decision metrics

The decision to become clusterhead or to join an existing cluster is typically
based on the following metrics:

• Time. A node may become clusterhead on a time-dependant basis, i.e. if it
is the first one in its neighbourhood that declares itself as clusterhead [76].

• Probability. A node may become clusterhead depending on a probabilis-
tic measure. The probability is defined such that the desired number of
clusterheads is reached without the need of global message exchange. The
probability may depend on the number of nodes in the network, global
aggregate energy, local residual energy, number of times the nodes has
been clusterhead, cluster size, etc [83].

• Weight. A weight is an application-specific number assigned to every
node in the network. The weight may depend on multiple measures, such
as the node degree, distance to neighbours, movement speed, energy left,
capability. The node ID is usually used to break ties. A node may become
clusterhead if it has the highest weight among a group of nodes, depending
on the decision range. Similarly, a node may choose to join the clusterhead
with the highest weight [4]. Contrary to the probability metrics, weight
metrics are deterministic.

• Semantics. Semantic properties refer to the relationship between pairs of
nodes or among nodes in a group. Semantic properties include distance
between nodes, availability paths between nodes, similar or relative mo-
bility, location attribute or type of event detected. Clusters can be formed
based on similar semantic properties of nodes [124].

51

3. A classification of clustering algorithms

The decision process may depend on more than one of the above metrics.
For example, the clusterhead may be probabilistically selected, but the ordinary
nodes choose a clusterhead based on a semantic property (e.g. the minimum
distance to the neighbouring clusterheads) [83]. Similarly, nodes are grouped
based on semantic information, but the clusterhead is chosen depending on the
weight (see Chapter 7).

3.2.4 Decision range

The decision that each node takes is either autonomous, such that it does not
depend on any other node in the network, or non-autonomous, where there are
also other nodes that determine or influence the cluster membership. We denote
this set of nodes with the decision range. The decision range can vary from as
little as only 1-hop neighbours [4], to as large as the whole network [58].

3.2.5 Mobility

The design of a clustering algorithm depends on the degree of dynamics expected
to be present in the wireless network. The network can be:

• Mobile. The clustering algorithm is designed to handle network mobility
during any of its phases [43],[4].

• Quasi-static. The network is assumed to be static during the initial cluster
setup phase. Strategies for cluster maintenance are given for the subse-
quent phases [44].

• Static. The network is static. Changes of topology rarely occur and do
not represent the focus of the clustering algorithm [83].

A clustering algorithm designed for quasi-static or static networks has as
main purpose to increase the scalability of the network with respect to the
number of nodes. Algorithms that take mobility into account focus on reducing
both the size and dynamics of the network (see Section 3.2.1).

3.2.6 Structure type

Given a graph G = (V,E), we use the following notation:

• Γ(v) is the open neighbourhood of v, Γ(v) = {u ∈ V | (u, v) ∈ E};

52

3.2. Classification

• Γ+(v) is the closed neighbourhood of v, Γ+(v) = Γ(v) ∪ {v};

• Γ+(S), where S ⊆ V is a subset of V , is the set containing the closed
neighbourhood of each v ∈ S, Γ+(S) =

⋃

v∈S Γ+(v);

Depending on its purpose, a clustering algorithm may: (1) partition the
network into clusters, (2) select a set of nodes for the clusterhead role, or (3)
achieve both partitioning and clusterhead selection. For the algorithms that
achieve clusterhead selection, we summarize a number of definitions from graph
theory [48, 59] that characterize the structure of clusterheads:

• Dominating Set : is a subset S ⊂ V such that every vertex in V \ S is
adjacent to at least one node in S (see WCA [58]);

• Independent Set : is a subset S ⊂ V such that no two vertices within the
set S are adjacent in V (see Chapter 5);

• Independent Dominating Set : is a subset S ⊂ V , which is both a domi-
nating set and an independent set (see DMAC [43]).

• Connected Dominating Set : is a subset S ⊂ V , which is a dominating set
and induces a connected subgraph of G (see Wu and Li [165]).

• Weakly Connected Dominating Set : is a subset S ⊂ V , which is a dominat-
ing set such that Γ+(S) induces a connected subgraph of G (see Area [82]).

• k-Dominating Set : is a subset S ⊂ V with the property that every node
in G is at most k edges away from at least one of the nodes in S (see
k-CONID [133]).

• k-level hierarchy : is a collection of subsets {V 1, V 2, ..., V k} of vertices
corresponding to several levels of abstracted networks (see Section 3.1
and the algorithm proposed by Bandyopadhyay and Coyle [41]).

The dominating set structure types are mainly used to construct a backbone
of clusterheads for restricted network flooding. The independent set is used for
achieving a sparse set of clusterheads with the goal of lowering the overhead of
intra-cluster communication. The k-level hierarchical structures are used for an
organized, energy-efficient data collection.

53

3. A classification of clustering algorithms

3.2.7 Disjoint clusters

Depending whether a node may be part of one or more clusters, the output of
the clustering algorithm falls in one of the following categories:

• Disjoint clusters. A node may belong to only one cluster [43].

• Overlapping clusters. A node may belong to more than one cluster [165].

Algorithms that partition the network into clusters and construct connected
dominating sets of clusterheads have as result overlapping clusters. The reason
is that the nodes that connect a set of clusters (gateway nodes) belong to all the
adjacent connected clusters. Disjoint clusters are generally constructed when a
node has to share a piece of information (such as id, sensed data, service offer)
with the clusterhead. The clusterhead is thus responsible to make use of this
information on behalf of the node.

3.2.8 Number and size of clusters

Since clustering improves the scalability of higher layer protocols by making a
large network appear smaller (see Section 3.2.1), the number and size of clusters
is an important metric in characterizing the performance of a given algorithm.
However, when speaking about performance, it is important to relate to the
application objectives. In some cases, it is desirable to have a small number of
clusters (for example to route packets quickly between clusters), but in other
cases it is important to keep the cluster size small and consequently form more
clusters (for example to manage the structure in the presence of mobility).

Algorithms generate different cluster sizes, depending for example on the
number of nodes in the network n, the average node degree D [43] or the
probability p of becoming a clusterhead [83]. The number and size of clus-
ters generated by semantic algorithms depend on the number of distinct se-
mantic properties that represent clustering criteria. Algorithms that construct
(weakly-)connected dominating sets usually use the approximation factor (the
ratio between approximate and optimal solution) as a metric to characterize the
performance of the algorithm [165].

3.2.9 Complexity

The complexity of a clustering algorithm is essential for estimating the latency
and message overhead involved in building and maintaining the clusters.

54

3.3. Algorithm description

To evaluate the time complexity, the algorithm is considered to start from a
stable state. An event of a single, isolated change in this network (e.g. a link
added or deleted) triggers a series of steps for restructuring the structure [45].
The time it takes the algorithm after this event to achieve a valid cluster struc-
ture is denoted as convergence time.

The message complexity defines the communication effort for creating and
maintaining clusters [45]. For achieving minimum energy expenditure and pro-
cessing load on the nodes, the overhead induced by clustering messages should
be as low as possible.

3.3 Algorithm description

In what follows, we briefly describe the state of the art in clustering algorithms
for wireless ad-hoc and sensor networks. We give a logical structure to this
section by grouping the algorithms based on the decision metrics, as this criteria
highlights the main methods used for clustering in this networking environment.

3.3.1 Decision based on weights

Weight-based clustering algorithms assign each node in the network an appli-
cation specific measure, which usually includes a number of parameters related
to how suitable the node is for the clusterhead role [133]. The election of clus-
terheads involves (1) the dissemination of every node’s weight to a group of
nodes in the network that represent the decision range, and (2) the comparison
of these weights and the selection of the best node as clusterhead in a greedy
manner.

The LCA clustering algorithm [69] was one of the first weight-based algo-
rithms designed for ad-hoc networks. LCA functions together with a TDMA
MAC protocol for discovering the one-hop and two-hop connectivity informa-
tion and to determine the bidirectional links. Each node selects as its own
clusterhead the neighbouring clusterhead with the lowest ID to which it is bidi-
rectionally connected. A node that can hear two or more clusterheads is a
gateway, otherwise, a node is an ordinary node.

With the DCA clustering algorithm [114, 44], the decision is based only
on the IDs of the 1-hop neighbours. The algorithm is divided in two phases:
the cluster formation phase and the maintenance phase. During the cluster
formation phase, nodes with the higher IDs in their neighbourhood are selected
as clusterheads. The rest of the nodes in the network are assigned to the existing

55

3. A classification of clustering algorithms

clusterhead nodes, forming thus disjoint clusters. The network topology should
not change during this phase. After the cluster formation phase, the clusterhead
nodes constitute an independent dominating set. During the maintenance phase,
the clustering structure is reconfigured as a result of node mobility or failure.

DMAC [43] is a clustering algorithm particularly designed for mobile net-
works. Similar to DCA, nodes decide their role depending on the one-hop
neighbourhood information. The difference is that DMAC does not perform
in separate phases. Each node reacts locally to any variation in the surround-
ing topology, changing its role accordingly. The variation of the topology is
represented by addition and deletion of links to neighbouring nodes. The node
with the highest weight among its unassigned neighbours declares itself as clus-
terhead. The rest of the nodes choose as clusterhead the neighbour with the
highest weight. When a link breaks down between a node and its clusterhead,
the node has to elect a different clusterhead from its neighbourhood. A new
link between two nodes is handled as follows: if a node notices the presence of a
new neighbour clusterhead with larger weight, it will join the new clusterhead.
Similarly, if a clusterhead sees a new neighbouring clusterhead with a higher
weight, it will give up its role and affiliate with the new neighbour.

A generalization of DMAC is G-DMAC [42], where a newly initialized node
joins the clusterhead with the highest weight in its one-hop neighbourhood (sim-
ilar to DMAC). While the topology changes, however, the node remains member
of this clusterhead v as long as there is no other neighbouring clusterhead u with
weight w(u) > w(h) + h, given the parameter h ≥ 0. Another parameter k is
introduced that defines the maximum number of clusterhead neighbours that a
clusterhead is allowed to have.

Other protocols base their election decisions on complete information over
a number of hops or even from the whole network. The Max-Min D-Cluster
algorithm [32] uses the d-hop information for clusterhead election. Each node
initiates two rounds of flooding over d hops for building the cluster membership.
During the first round of flooding, the largest node ID is propagated in each
node’s d-neighbourhood. At the end of this phase, the surviving node IDs
are elected clusterheads. The second round of flooding propagates the smaller
surviving node IDs over d hops. The smallest node ID appearing in both flooding
stages is chosen as clusterhead by the other nodes. When the election algorithm
finishes, nodes are at most d hops away from the clusterhead.

The k-CONID algorithm (k-hop connectivity ID) [133] constructs a k-domi-
nating set of clusterhead nodes, by assigning each node a weight computed
from the connectivity degree and the ID of the node. The algorithm is initiated
by a flooding request for clustering to all the nodes in the network. All the

56

3.3. Algorithm description

nodes whose weights are the largest among all their k-hop neighbours become
clusterheads. The other nodes choose a k-hop neighbouring clusterhead with
the largest weight as clusterhead. Each node broadcasts its decisions after all
its k-hop neighbours with larger weights have already done so. This algorithm
constructs overlapping clusters, where the nodes that belong to more than one
cluster are gateway nodes.

The WCA algorithm proposed by Chatterjee et al. [58] takes into account the
node degree, transmission power, battery power and the speed of the nodes, for
achieving the optimal operation of the MAC protocol. Each node calculates a
combined weight from these parameters, which is then disseminated in the whole
network. The node with the global minimum weight is chosen as clusterhead.
This node and its neighbours are excluded from subsequent clustering decisions.
The process is repeated until all the nodes are clustered.

Algorithms that construct connected dominating sets focus mainly on clus-
terhead selection. In the algorithm proposed by Wu and Li [165], every node
exchanges its neighbour set with all its neighbours. If a node has two uncon-
nected neighbours, it declares itself as clusterhead. To reduce the size of the
connected dominating set, additional rules are introduced, where certain clus-
terhead nodes give up their roles. The decision is based on a greedy selection
of the lowest node ID.

Stojmenovic et al. [148] improve the algorithm proposed by Wu and Li by
having each node assigned a weight, computed based on the node degree and the
x and y absolute coordinates. The rules for reducing the connected dominating
set are now based on the node degree and location.

Wan et al. [159] propose an algorithm for the construction of a connected
dominating set, by assuming the existence of a rooted spanning tree structure
already in place. The weight of a node is given by the ordered pair of the tree
level and the node ID. The algorithm consists of two phases: the construction
of a maximal independent set and the construction of a dominating tree, whose
internal nodes become a connected dominating set.

The Area clustering algorithm [82] constructs a weakly connected dominat-
ing set by using as weights the ordered pairs of node degree and node ID. A
node becomes clusterhead if it has the highest weight among its neighbours that
are not yet members of other clusters. The weakly connected dominating set is
composed of the clusterhead nodes and a selected set of border nodes.

The C4SD clustering algorithm (see Chapter 5) is specifically designed for
mobile networks, where the weight is represented by the node capability and
degree of dynamics. Every node in the network chooses as parent the neighbour
with the highest capability grade. If such a node does not exist, the node itself

57

3. A classification of clustering algorithms

is a clusterhead. The output of the algorithm is represented by disjoint clusters,
whose clusterheads form an independent set. A detailed description of C4SD is
found in the next chapters.

3.3.2 Decision based on time

Time-based algorithms enable the election of clusterhead nodes based on the
order in time when the candidate nodes announce their candidacy. For example,
the order in occupying the shared wireless medium can determine how suitable
are nodes for the clusterhead role. Following this idea, the Passive Clustering
algorithm [76] uses the first declaration wins rule. This rule specifies that the
node that sends a packet first becomes the clusterhead for the rest of the nodes
in its one-hop neighbourhood.

The ACE clustering algorithm [56] makes its decisions on a combination of
time and weight methods. The weight represents the number of loyal followers,
e.g. the number of unclustered neighbours. An unclustered node spawns a new
cluster by declaring itself as clusterhead whenever it finds that it can gain at
least a number of minimum loyal followers, which is a function that depends on
the time that passed since the protocol was initiated for that node.

3.3.3 Probabilistic decision

Probabilistic protocols are designed mainly for static networks (e.g. static Wire-
less Sensor Networks), as they run in synchronized rounds for balancing the
energy consumption. Each round is composed of a number of phases, which are
typically the cluster formation phase and the steady phase. During the cluster
formation phase, a different set of clusterheads is elected based on a certain
probability. This probability depends on the desired characteristics of the re-
sulting clustering structure. The probabilistic decisions are usually combined
with weight-based decisions: the clusterheads are elected probabilistically, but
the rest of the nodes choose their clusterhead based on weights or semantic in-
formation (e.g. minimum distance to the clusterhead, link quality, etc). During
the steady phase, sensor data is transmitted to the clusterheads, which in turn
send it to the base station.

The source of inspiration for many protocols using probabilistic decisions is
LEACH [83]. With LEACH, the probability of a node to become clusterhead is
a function of the desired number of clusterheads in the network and the number
of times a node has already been a clusterhead. When deciding to which cluster
they belong, nodes choose the clusterheads which are physically closer.

58

3.3. Algorithm description

The HEED clustering algorithm [167] computes the probability based on the
estimated residual energy of the node, the reference maximum energy and the
desired percentage of clusterheads in the network. A node chooses as clusterhead
the one with the lowest intracluster communication cost.

The MOCA algorithm [168] constructs a k-dominating set of clusterhead
nodes. A node becomes clusterhead based on a probability determined a priori
depending on the network size. A clusterhead advertisement is forwarded k
hops away. A node that receives such an advertisement joins the cluster even if
it already belongs to another cluster, becoming thus a boundary node.

Bandyopadhyay and Coyle [41] propose an algorithm that constructs a h-
level hierarchical clustering structure. The algorithm consecutively elects the
clusterheads starting from level 1 and ending with level h, using probabilities
p1,..., ph. The structure on each level l is a kl-dominating set. The parameters
pl and kl are computed such that the total energy consumption is minimized.

The EEMC algorithm [91] constructs a similar k-level hierarchical structure.
Each node is assumed to know its location coordinates. At the beginning of the
cluster formation phase, the sink node collects the location information from
the nodes and sends back the total remaining energy of the network and the
total distance between the nodes and the sink. The probability for the first
hierarchical level of clusterheads is computed using these two values. For the
next level, the clusterheads broadcast the total remaining energy and the total
inter-node distance in their cluster, which are used to compute the next level
probability.

3.3.4 Decision based on semantic information

McDonald and Znati [124] describe an (α, t) clustering algorithm designed to
support routing in large ad-hoc networks, taking the node mobility as the criteria
for cluster organization. The cluster internal paths are expected to be available
for a period of time t with a probability of at least α. A node can join a cluster
if all the destinations within the cluster are reachable via (α, t) paths. If a node
is unable to join a cluster, it will create its own orphan cluster. Within a cluster,
nodes maintain topology information and routes to every cluster destination.

Bouhafs et al. [49] propose a clustering algorithm based on semantic infor-
mation. A user query is disseminated through the network looking for a specific
group of sensor nodes. When the query reaches a node that satisfies it, this
node becomes a clusterhead and starts forming a cluster that contains all nodes
in its region that satisfy the same query.

Wang et al. [162] proposes an algorithm that combines semantic and weight

59

3. A classification of clustering algorithms

decision metrics. The main clustering criterion is the semantic information
represented by the location attribute. The clustering process is started by a
node that sends a flooding message to the whole network. Nodes that hear
this message wait for an amount of time proportional to their energy level.
After the waiting period, nodes announce the intention of becoming clusterhead
candidates at their particular location through a broadcast, which contains the
energy level information. Other candidates that are present on the same location
and hear such a broadcast cancel their timers and rebroadcast the higher energy.
Ties are broken through the node IDs.

In the Smart Clustering algorithm [150], nodes are clustered according to
their physical relationships, such as objects on a table. A master node (the
table) senses the objects placed on it and automatically integrates them in its
cluster.

Tandem (see Chapter 7) is an algorithm for spontaneous clustering of mobile
wireless sensor nodes facing similar context (such as moving together). Tandem
assumes that each node runs a shared-context recognition algorithm, which
provides a number on a scale, representing the confidence value that two nodes
are together. Each node periodically computes the confidence of sharing the
same context with its neighbours. The selection of clusterheads is weight-based:
the node with the highest weight among its neighbours with which it shares a
common context declares itself as clusterhead. A regular node subscribes to the
clusterhead with which it shares a common context and has the highest weight.

3.4 Comparative table

Table 3.1 shows a comparison among the various clustering algorithms presented
above. Similarly to Section 3.3, we group the algorithms based on the decision
metrics. Dashes present in the ”Purpose” or ”Assumptions” fields correspond
to algorithms that are generic or which do not have any additional assumptions.
Dashes within the ”Number of clusters” or ”Complexity” fields correspond to
lack of information or systematic analysis of the algorithms. The remaining
dashes correspond to ”not applicable” features.

A close analysis of Table 3.1 exposes the following interconnections among
various classification criteria:

• Purpose vs. decision metrics. Probabilistic algorithms are generally used
for data collection in wireless sensor networks, due to the need of a rota-
tion scheme among clusterhead nodes that facilitates load balancing. Net-
working operations, such as MAC or routing, can be improved by using

60

3.4. Comparative table

weight-based clustering algorithms, where the clusterhead node is chosen
in a greedy manner, being the best among a set of candidates. Seman-
tic information can be used for a more informed decision regarding the
appropriate clustering structure, and thus relates to different objectives,
from routing to collaborative processing.

• Assumptions vs. decision metrics. Weight-based algorithms require a
strict order among nodes, determined by the assigned weights. The node
ID is generally used to break ties between nodes with the same weights.
Therefore, unique node IDs is a common assumption for weight-based
clustering algorithms. Probabilistic decisions are typically used when ro-
tation of clusterhead role is necessary for balancing energy consumption
among nodes in the network. Rotation of clusterheads can be done when
all the nodes are participating at the same time in the election process.
Hence, the election of clusterheads takes place at the beginning of each
synchronous round. A common assumption of probabilistic algorithms is
therefore the existence of a synchronization mechanism among the net-
work nodes. Decisions based on semantic information require additional
algorithms or information (such as location or routing tables), from which
the semantic knowledge used for clustering is derived.

• Mobility vs. assumptions and decision metrics. Within static networks,
the assumption of synchronous rounds is easier to be achieved than in mo-
bile networks. Therefore, synchronization is typically found as assumption
for probabilistic algorithms designed for static networks. Algorithms for
mobile networks use weights and semantic information, since these are
flexible metrics that can incorporate knowledge about node speed or level
of dynamics.

• Number of clusters vs. decision metrics. Probabilistic algorithms control
the number of clusters by setting the probability of becoming a cluster-
head according to the application requirements. The number of clusters
resulting from semantic algorithms depend on the number of semantic
properties existing in the network, or on the number of nodes that have
similar or distinct characteristics (i.e. moving together or separately).

• Complexity vs. decision metrics. The time complexity of the algorithms
based on probabilistic decisions can be as low as O(1). The reason is
that the decision of a node is independent of the decisions of other nodes.
Algorithms based on weights or semantic information have higher time
complexities, typically at least O(n).

61

3. A classification of clustering algorithms

By analysing Table 3.1 following the classification criteria, we observe that
only few algorithms are designed to handle mobility. In the following, we de-
scribe the reasons why existing algorithms are less suitable for mobile environ-
ments. Firstly, electing the clusterheads based on information from nodes which
are multiple hops away leads to high overhead and slow reaction to topology
changes. Secondly, maintaining complete intra-cluster information is an expen-
sive task which results in a high traffic. Thirdly, the complexity of the multi-
layer clustering algorithms leads to a lot of effort in building and maintaining
the desired structure.

We conclude that the majority of algorithms focus on improving the scal-
ability of large static networks, rather than addressing mobility within these
networks. In the following section, we analyse future research directions derived
from this observation.

62

3
.4

.
C

o
m

p
a
ra

tiv
e

ta
b
le

Table 3.1: Overview of clustering algorithms

Algorithm Purpose Assumptions Decision
metrics

Decision
neigh.
range

Mobility Clustering
structure
type

Disjoint
clus-
ters

Number of
clusters

Complexity

LCA [69] MAC,
routing,
flooding

Unique node ID Weight (node
ID)

2-hops Quasi-
static

Independent
dominating
set

No - Time: O(n)
[28]

DCA [114,
44]

MAC,
routing

Unique node ID Weight (node
ID)

1-hop Quasi-
static

Independent
dominating
set

Yes n/(1+ D/2)
[45, 44]

Time,
msg.: O(n)
[114, 44]

DMAC [43] Routing Unique node ID Weight (node
ID)

1-hop Mobile Independent
dominating
set

Yes n/(1+ D/2)
[45]

Time,
msg.: O(n)
[92, 43]

G-
DMAC [42]

MAC,
routing

Unique node ID Weight (node
ID)

1-hop Mobile Dominating
set

Yes - Time:
O(2n/(k +
2)) [92]

Max-Min D-
Cluster [32]

Routing Synchronous
rounds
Unique node ID

Weight (node
ID)

d-hops Static d-
dominating
set

Yes - Time: O(d)
[32]

k-
CONID [133]

Routing Unique node ID,
algorithm initi-
ated by flooding

Weight (node
degree and
ID)

k hops Quasi-
static

k-
dominating
set

No - -

WCA [58] MAC Distance to
neigh., node
speed

Weight (node
degree, dis-
tance to
neigh., speed,
cumulative
time as a
clusterhead)

Network
wide

Mobile Dominating
set

Yes - Time, msg.:

O(n2) [166]

Wu and
Li [165]

Routing Unique node ID Weight (con-
nectivity,
node ID)

2 hops Mobile Connected
dominating
set

No Approx.
factor: n/2
[159]

Time:
O(n3) Msg.:

O(n2) [159]

Stojmenovic
et al. [148]

- Node location Weight (node
degree, x and
y coordinates)

2 hops Static Connected
dominating
set

No Approx.
factor:
n/2, n[159]

Time:
Ω(n) Msg.:

O(n2) [159]

Continued on next page

63

3
.
A

cla
ssifi

ca
tio

n
o
f
clu

sterin
g

a
lg

o
rith

m
s

Table 3.1
Continued from previous page

Algorithm Purpose Assumptions Decision
metrics

Decision
neigh.
range

Mobility Clustering
structure
type

Disjoint
clus-
ters

Number of
clusters

Complexity

Wan et
al. [159]

Routing Spanning tree
constructed,
synchronous
rounds

Weight (tree
level, node
ID)

1 hop Static Connected
dominating
set

No Approx.
factor: ≤ 8
[159]

Time: O(n)
Msg.:
O(nlog
n) [159]

Area [82] Routing Unique node ID Weight (node
degree, node
ID)

3 hops Static Weakly-
connected
dominating
set

Yes Approx.
factor:
≤ 110[82]

Time, msg.:
O(n) [82]

C4SD [4] Service
discovery

Unique node
ID, degree of
dynamics

Weight (node
capability and
dynamics,
node ID)

1-hop Mobile Independent
set

Yes n
D

(1 −

e−D)

Time, msg.:
O(n)

ACE [56] - - Time, weight
(number of
loyal follow-
ers)

2-hops Static 2-
dominating
set

No - Time: O(d)
[56]

Passive
Clustering [76]

Routing - Time 1-hop Quasi-
static

Independent
dominating
set

No - -

LEACH [83] Data col-
lection

Aggregate
network en-
ergy, RSSI,
synchronous
rounds

Probabilistic Autonomous
and 1-
hop

Static Dominating
set

Yes k [83] Time: O(1)
[28]

HEED [167] - Multiple power
levels, syn-
chronous rounds

Probabilistic Autonomous
and 1-
hop

Static Dominating
set

Yes - Time: O(1)
Msg.: O(n)
[167]

MOCA [168] Data col-
lection

Unique node ID Probabilistic k-hops Static k-
dominating
set

No - Time: O(k)
[168]

Bandyopadhyay
and
Coyle [41]

- Synchronous
rounds

Probabilistic max(k1, k2,
..., kh)

Static h-level hi-
erarchical
clustering

Yes Level i: (1−

pi)/pi [41]
Time:
O(k1 + k2 +
... + kh)
[41]

Continued on next page

64

3
.4

.
C

o
m

p
a
ra

tiv
e

ta
b
le

Table 3.1
Continued from previous page

Algorithm Purpose Assumptions Decision
metrics

Decision
neigh.
range

Mobility Clustering
structure
type

Disjoint
clus-
ters

Number of
clusters

Complexity

EEMC [91] Data col-
lection

Node location,
synchronous
rounds

Probabilistic Node-
sink and
1 hop

Static k-level hi-
erarchical
clustering

Yes Level i:

O(n

1
2
+..+ 1

2i)
[91]

Time:
O(log log n)
Msg.:O(n)
[91]

(α, t) [124] Routing Intra-cluster
and inter-
cluster routing
tables

Semantic
((α, t) avail-
ability paths)

Neigh.
clusters

Mobile - Yes Num. of
mobile
groups

-

Bouhafs et
al. [49]

Data col-
lection

- Semantic:
satisfy query

Network
wide

Static - No Num. query
types

-

Wang et
al. [162]

Information
dissemi-
nation

Location at-
tribute

Semantic
(location
attribute)
and weight
(energy, node
ID)

Network
wide

Quasi-
static

2-
dominating
set

Yes ≥ num.
location
attributes

Time, msg.:
O(n) [162]

Smart
Clustering [150]

- Event detection
algorithm

Semantic (lo-
cation)

1-hop Quasi-
static

Dominating
set

Yes Num. loca-
tions

-

Tandem [6] Collaborative
processing

Context-sharing
algorithm,
unique weight

Semantic
(joint move-
ment), weight

1-hop Mobile Dominating
set

Yes Num.
context-
sharing
groups

Time: O(n)

65

3. A classification of clustering algorithms

3.5 Conclusions

Clustering algorithms for wireless ad-hoc and sensor networks aim to improve
the scalability of such networks, by creating virtual overlays that make net-
works appear smaller and less dynamic [124]. We have defined a classification
that tries to capture the essential characteristics of clustering algorithms, which
differentiates them in terms of design decision and performance. The design
depends on the specific purpose, assumptions, decision range and metrics, de-
gree of dynamics and desired structure type. In particular, the decision metrics
is a classification criterion that identifies the basic clustering mechanism used.
The performance is governed by the time and message complexity to build and
maintain the clusters, and by metrics such as the number of clusters.

As pointed out in Section 3.4, mobility needs to be explored further, possibly
by using movement sensors integrated with each wireless node. This would
facilitate the extraction of mobility patterns and identification of clusters based
on joint movement, and thus adapt the clustering procedure by including context
relevant information.

In the next chapter, we make a step forward by proposing a generalized
framework for weight-based algorithms designed for mobile networks that make
localized decisions (1-hop neighbourhood) and produce disjoint clusters. From
Table 3.1 we derive that DMAC, G-DMAC, C4SD and Tandem algorithms fall
in this category. C4SD and Tandem represent our contribution to clustering in
dynamic environments, and are detailed in Chapters 5 and 7. These algorithms
are designed to support energy-efficient service discovery and collaborative pro-
cessing respectively, for the wireless sensor network environment.

66

Chapter 4

A generalized clustering
algorithm for dynamic
wireless sensor networks

Based on the classification presented in Chapter 3, we propose a general cluster-
ing algorithm for dynamic sensor networks, that makes localized decisions (1-hop
neighbourhood) and produces disjoint clusters. The purpose is to extract and
emphasise the essential clustering mechanisms common for a set of particular
algorithms, which allows for a better understanding of these algorithms and
facilitates the definition and demonstration of common properties.

4.1 Generalized clustering algorithm

The definition of the clustering problem from Chapter 3 describes clustering as
the division of the set of vertices or nodes V into a collection of not necessarily
disjoint subsets. In this chapter, we refer to a particular case of the clustering
problem, where clusters are disjoint subsets of V .

We assume that each node is assigned a unique weight, which is an application-
specific number that can be calculated based on different metrics, such as the
degree of dynamics, the resource availability, the battery level etc. The node
hardware identifier may be used to break ties. In this way, we abstract from
the physical characteristics of nodes by only using the weight measure in the

67

4. A generalized clustering algorithm for dynamic wireless sensor networks

algorithm description.
In what follows, we present the input and the output of the generalized clus-

tering algorithm and then we proceed with the algorithm description. Table 4.1
from the Appendix presents a summary of notation used in this chapter, which
is introduced and explained within the next sections.

4.1.1 Input

The clustering structure is constructed based on the decision of each node to se-
lect a certain parent. The decision of each node v depends on the neighbourhood
information, which includes the set neighbours (the nodes connected through
links with v), the weights of the neighbours, the semantic relationship between v
and its neighbours, and the current state of the neighbours (their clusterheads),
which becomes known to v during the algorithm operation.

The input of the algorithm for each node v is the following:

• Γ(v), the open neighbourhood of v, Γ(v) = {u ∈ V | (u, v) ∈ E};

• Γ+(v), the closed neighbourhood of v, Γ+(v) = Γ(v) ∪ {v};

• w(u), ∀u ∈ Γ+(v), the weight of v and the weights of all the neighbours
of v.

• s(v, u), ∀u ∈ Γ(v), the semantic relationship between node v and all its
neighbours; s(v, u) equals 1 if v and u have similar semantic properties
and 0 otherwise.

We remark that the clustering algorithm runs on a dynamic network, where
the position and the semantic relationships among pairs of nodes change in time,
and therefore, the input of the algorithm varies accordingly.

4.1.2 Output

The output of the generalized clustering algorithm is a set of disjoint clusters,
where for each cluster there is a root or clusterhead node, selected to represent
the cluster. To achieve this, each node selects a parent from its set of neighbours.
The parent of the clusterhead node is the node itself. The weights of the nodes
are used in the parent selection: the higher the weight of a neighbour, the more
chances to be selected as parent. However, the parent does not always have a
higher weight than the node: the weight is used in the decision process, but also
other factors contribute to the parent selection (e.g. whether the neighbour is

68

4.1. Generalized clustering algorithm

already a clusterhead). The parent of node v is used for communication between
v and its clusterhead. A node v may be unassigned, if it cannot cluster with
any of its neighbours. In this case, the node does not have any parent or root.

For each node v in the network, the output of the algorithm is the following:

• p(v), the parent of v; p(v) ∈ V ∪ {⊥}.
We make the following observations:

– If p(v) ∈ V , then v is called assigned. Otherwise, if p(v) = ⊥, then v
is called unassigned.

– If p(v) = v, then v is called root or clusterhead.

• r(v), the root or clusterhead of v; r(v) ∈ V ∪ {⊥}.
We make the observation that p(v) = ⊥ =⇒ r(v) = ⊥.

This output describes a feasible clustering structure if the directed graph
Gp = (Vp, Ep), defined by Vp = {v ∈ V | p(v) 6= ⊥} and Ep = {(v, u) | u =
p(v) ∧ u 6= v}, is a forest of routed trees where the root of each node v is a
node equal to the root of its parent (i.e. ∀v ∈ Vp, we have r(v) ∈ Vp and
r(v) = r(p(v))). In this way, each tree in Gp forms a cluster with the root of
the tree as clusterhead. The nodes in G that are not part of Gp are unassigned.

4.1.3 Properties

Due to the network dynamics, the output of the clustering algorithm actively
has to adapt to the input changes. This adaptation is described in detail in Sec-
tion 4.1.4. For static networks (i.e. networks with stable topology and semantic
relationships), we require the following properties that a clustering algorithm
has to fulfil:

Property 1 The algorithm produces disjoint clusters.

Property 2 Each cluster is organized as a tree, following the parent-children
relationship.

Property 3 The structure stabilizes to a feasible clustering structure after a
finite number of rounds.

Note that Properties 1 and 2 also hold for dynamic networks. For the defi-
nition of a round, see Section 4.1.4.

69

4. A generalized clustering algorithm for dynamic wireless sensor networks

4.1.4 Description

The generalized clustering algorithm follows the LOCALmessage passing model,
where global structures are constructed based on local information and using
local message exchange [132]. Following this model, each node in the network
performs some computations and communicates only to its direct neighbours
by exchanging messages based on rounds.

The algorithm is based on the following assumptions:

Assumption 1 Each weight is unique (the node hardware ID can be used to
break ties).

Assumption 2 The wireless communication is reliable (this can be achieved by
using a reliable transport protocol [160]).

Assumption 3 The communication links are symmetrical, i.e. ∀v ∈ V, ∀u ∈
Γ(v), v ∈ Γ(u) (asymmetric links can be hidden by the MAC protocol).

Assumption 4 The semantic relationship is symmetrical, i.e. ∀v, u ∈ V ,
s(v, u) = s(u, v) (if two neighbours have different views on the semantic re-
lationship between them, thay can reach an agreement, e.g. s(v, u) is given by
the node with the highest weight).

Assumption 5 Each node is aware of its neighbours, the weights of the neigh-
bours and the semantic relationship with the neighbours, representing the input
of the algorithm (see Section 4.1.1).

To decide on the clustering structure, each node selects one of its neighbours
as parent. A node is a clusterhead if it is its own parent. A node that is not
a parent is called a leaf node. The height of the cluster is the longest path
from the root node to a leaf. The identity of the clusterhead is transmitted
from parents to children. Therefore, the parent selection is enough to uniquely
determine the cluster membership: each node learns from its parent the root of
the cluster.

The parent may be selected either periodically or on demand, as a result
of a change in the network topology, a reception of update information from
neighbours or a change in the semantic relationship with the neighbours. For
the sake of simplicity, we consider that the parent is selected periodically. We
define a round as the time between two consecutive parent selections. One
round is long enough in order for all the messages sent by a node during a
parent selection to be received by its neighbours (by Assumption 2). We make

70

4.1. Generalized clustering algorithm

the observation that nodes are not required to be synchronized: rounds are a
tool for the proofs only.

The decision of parent selection is based on the local neighbourhood infor-
mation: the input of the algorithm (the weight of the node, the set of neighbours
and their weights and the semantic relationship with the neighbours) and the
current state of the neighbours (represented by the root node of each neighbour).

For each vertex, two subsets of neighbours are given:

• N1(v) ⊆ Γ+(v) is the subset of neighbours with which node v may be
in a common cluster (the decision may be dependent on the semantic
relationships among neighbours or other parameters);

• N2(v) ⊆ N1(v) is the subset of N1(v), representing the nodes that are
eligible to become parents of v; if the algorithm assigns a parent to v, it
either chooses it from the set N2(v) or it assigns the node itself as parent
(in this case, v becomes clusterhead).

Furthermore, three different conditions are given, to be used in the decision
process of vertex v:

• P1(v) is the condition on which node v chooses a different parent (i.e. if
the algorithm reaches condition P1(v) (line 8 of Algorithm 1) and P1(v) =
true, then node v changes the parent to the best candidate from the set
N2(v)).

• P2(v) is the condition on which node v becomes root (i.e. if the algorithm
reaches condition P2(v) (line 13 of Algorithm 1) and P2(v) = true, then
node v becomes root by assigning p(v) = v).

• P3(v) is the condition on which node v informs the neighbours that one
of them has to resign from the clusterhead role (i.e. if P3(v) = true, then
v sends a Resign message to the neighbours).

In the following, we pin down two particular neighbours of v that have
specific roles in the algorithm execution:

• y(v) is the best candidate for the parent role: y(v) is the neighbour of v
with the highest weight in N2(v), i.e. w(y(v)) = max{w(u) | u ∈ N2(v)};
based on Assumption 1, y(v) is uniquely determined; y(v) is chosen as
parent if the algorithm reaches condition P1(v) and P1(v) = true;

71

4. A generalized clustering algorithm for dynamic wireless sensor networks

• z(v) is the neighbour of v with the highest weight that has to resign from
the clusterhead role, based on condition P3(v); when node v sends a Resign
message to the neighbours with parameter w(z(v)), all the neighbours with
smaller or equal weights than z(v) have to resign from the clusterhead role
and search for a new parent.

Algorithm 1 formally describes the generalized algorithm. Each node, when
it powers up, enter an Initialization phase, where the local variables are ini-
tialized and the node becomes unassigned (i.e. p(v) = r(v) = ⊥). Then, the
selection of a parent is done on a periodic basis, as described earlier, by calling
the SelectParent function. The structure of the SelectParent function is the
following:

1. Update the local information from the input given by the lower layers of
the communication stack, such as the MAC (line 2). From this informa-
tion, each node v selects the subset of neighbours N1(v) which are eligible
to be part of the same cluster as v. Then v builds the set N2(v) from the
neighbours in N1(v) which can become parents.

2. Decide the parent, and consequently the root node, based on N1(v), N2(v),
P1(v) and P2(v) (lines 3-21). The decision process can be described as
follows:

(a) In case the set N1(v) is empty, node v becomes unassigned (lines 3-5).

(b) Otherwise, if N2(v) is not empty and P1(v) = true, the node with
the highest weight from N2(v) (i.e. y(v)) becomes the parent of v
(lines 7-11).

(c) If N2(v) is empty, v is not root and P2(v) = true, node v becomes
clusterhead (lines 12-15).

(d) If N2(v) is empty, v is not root and P2(v) = false, node v becomes
unassigned (lines 16-19).

3. If the root has changed or there is a new node in the neighbourhood, inform
the neighbours about the current root, by sending a SetRoot message
(lines 22-24).

4. Based on condition P3, inform the neighbours that one of them has to
resign from the clusterhead role, by sending the message Resign (lines 25-
27).

72

4.1. Generalized clustering algorithm

The algorithm uses two types of messages, SetRoot and Resign. When v
receives a SetRoot message from its parent, it learns the root of its cluster and
resends the message, so that the children of v also get informed about their root.
Upon receiving a Resign message with parameter w, if v is a root node with a
lower or equal weight to w, then it has to give up its role and search for a new
parent. The neighbour from N2(v) with the highest weight, y(v), becomes the
new parent.

In the following, we describe four special cases of Algorithm 1, by giving
concrete definitions to the sets N1(v) and N2(v) and to conditions P1(v), P2(v)
and P3(v).

4.1.5 Special cases

The weight-based algorithms C4SD (see Chapter 5), Tandem (see Chapter 7),
DMAC [43] and G-DMAC [42] are considered special cases of Algorithm 1. The
definitions of the sets N1(v) and N2(v) and conditions P1(v), P2(v) and P3(v)
for each of these algorithms are the following:

• C4SD:

– N1(v) = Γ+(v)

– N2(v) = {u ∈ N1(v) | w(u) > w(v)}
– P1(v), P2(v) : true

– P3(v) : false

• DMAC:

– N1(v) = Γ+(v)

– N2(v) = {u ∈ N1(v) | w(u) > w(v) ∧ r(u) = u}
– P1(v), P2(v) : true

– P3(v) : false

By restricting the set N2(v) to include only root nodes, DMAC generates
one-hop clusters (i.e. each assigned node is either a clusterhead or its
parent is a clusterhead).

• Tandem:

– N1(v) = {u ∈ Γ(v) | s(v, u) = 1}

73

4. A generalized clustering algorithm for dynamic wireless sensor networks

Algorithm 1: Generalized clustering algorithm - node v
Initialization:

1. r(v)← ⊥; p(v)← ⊥; r(u)← ⊥, ∀u ∈ Γ(v)

SelectParent: // Build the clustering structure by selecting the parent

1. r0 ← r(v), Γ0(v)← Γ(v)

2. Update Γ(v), Γ+(v), N1(v), N2(v), y(v).
3. if N1(v) = ∅ then
4. p(v)← ⊥
5. r(v)← ⊥
6. else
7. if N2(v) 6= ∅ then
8. if P1(v) then
9. p(v)← y(v)

10. r(v)← r(p(v))
11. end if
12. else if (p(v) 6= v) then
13. if P2(v) then
14. p(v)← v
15. r(v)← v
16. else
17. p(v)← ⊥
18. r(v)← ⊥
19. end if
20. end if
21. end if
22. if (r(v) 6= r0) ∨ (Γ(v) \ Γ0(v) 6= ∅) then
23. Send SetRoot(v,r(v)) to neighbours.
24. end if
25. if P3(v) then
26. Send Resign(w(z(v))) to neighbours.
27. end if

SetRoot(u,r): // Update the information from neighbour u

1. r(u)← r
2. if (p(v) = u) ∧ (r(v) 6= r) then
3. r(v)← r
4. Send SetRoot(v,r(v)) to neighbours.
5. end if

Resign(w): // Resign from the clusterhead role

1. if (p(v) = v) ∧ (w(v) ≤ w) then
2. Update N2(v), y(v).
3. if N2(v) 6= ∅ then
4. p(v)← y(v)
5. if (p(v) = v) then
6. r(v)← p(v)
7. else
8. r(v)← r(p(v))
9. end if

10. Send SetRoot(v,r(v)) to neighbours.
11. end if
12. end if

74

4.1. Generalized clustering algorithm

– N2(v) = {u ∈ N1(v) | r(u) = u}
– P1(v) : ((r(v) = ⊥) ∨ (r(v) 6= v ∧ r(v) /∈ N2(v)) ∨ (r(v) = v ∧ w(v) <

w(y(v)))

– P2(v) : ({u ∈ N1(v) | r(u) 6= ⊥} = ∅)
– P3(v) : false

Tandem is an algorithm that considers semantic relationships among pairs
of nodes as the main clustering criteria. Therefore, the set N1(v) is re-
stricted to comprise only the nodes which are semantically similar, indi-
cated by s(v, u).

Similar to DMAC, by limiting the set N2(v) to include only root nodes,
Tandem generates one-hop clusters.

Changing the parent (condition P1(v)) is triggered only if the node is
unassigned (r(v) = ⊥), the root is no longer in set N2(v) (r(v) 6= v∧r(v) /∈
N2(v)) or node v is clusterhead and it has not the highest weight in N2(v)
(r(v) = v ∧ w(v) < w(y(v))).

The condition on which a node can become clusterhead (P2(v)) depends
on the set of nodes that are already in N1(v) and are assigned. If this set is
not empty, Tandem prevents node v from becoming clusterhead, in order
to minimize the effect of the erroneously perceived semantic similarity be-
tween neighbouring nodes. Otherwise, node v elects itself as clusterhead.

• G-DMAC: G-DMAC differs from the other algorithms by defining the
following set of constraints for the clustering structure:

– h: an assigned node v can change its current parent p(v) only if the
new parent p1 has a significant higher weight, i.e. w(p1)−w(p(v)) >
h, where h represents the minimum difference between the weights
of p1 and p(v).

– k: if v is a root node, the number of root nodes that are allowed to
be present in the neighbourhood of v is at most k; formally, |{v ∈
Γ+(v) | p(v) = v}| ≤ k; parameter k is used by condition P3(v) to
determine whether any of the neighbours of v has to resign.

To control the number of clusterheads that are allowed to be neighbours,
G-DMAC uses a Resign message with parameter w(z(v)), which is the
weight of the first clusterhead that violates the k-neighbourhood condition.

75

4. A generalized clustering algorithm for dynamic wireless sensor networks

Neighbour z(v) is defined such that z(v) ∈ {u ∈ N1(v) | r(u) = u} and
|{u ∈ N1(v) | r(u) = u ∧ w(u) > w(z(v))}| = k.

Using the additional input h and k, G-DMAC is defined by the following
instantiations of N1(v), N2(v), P1(v), P2(v), P3(v):

– N1(v) = Γ+(v)

– N2(v) = {u ∈ N1(v) | w(u) > w(v) ∧ r(u) = u}
– P1(v) : ((r(v) = ⊥)∨ (w(r(v)) + h < w(y(v)))∨ ((r(v) 6= v)∧ (r(v) /∈

N2(v))) ∨ ((r(v) = v) ∧ (|{u ∈ N1(v) | r(u) = u}| > k) ∧ (w(v) ≤
min{w(z) | z ∈ {u ∈ N1(v) | r(u) = u}})))

– P2(v) : true

– P3(v) : ((r(v) = v) ∧ (|{u ∈ N1(v) | r(u) = u}| > k) ∧ (w(v) >
w(z(v))))

Similar to DMAC and Tandem, by limiting the set N2(v) to include only
root nodes, G-DMAC constructs only one-hop clusters.

Changing the parent (condition P1(v)) occurs if the node is unassigned
(r(v) = ⊥), the root is no longer in v’s neighbourhood ((r(v) 6= v)∧(r(v) /∈
N2(v))) the weight of the new clusterhead exceeds the current weight of
the root with a certain threshold h (w(r(v))+h < w(y(v))) or the number
of roots exceeds k, v is root and has the lowest weight among the roots in
its neighbourhood ((r(v) = v) ∧ (|{u ∈ N1(v) | r(u) = u}| > k) ∧ (w(v) ≤
min{w(z) | z ∈ {u ∈ N1(v) | r(u) = u}})).
If the number of allowed root nodes exceeds the threshold k (condition
P3(v)), a Resign message will be sent to the neighbours to correct this
situation.

In the following, we comment on a particular aspect that differentiates C4SD
from DMAC and G-DMAC. As explained earlier, C4SD does not impose a limit
on the maximum cluster height. Therefore, in principle, the algorithm can
yield clusters with arbitrary height. In the worst case, a cluster can have a
height of |V |. The advantage is that each node in C4SD chooses a parent
independently of the decisions of its neighbours. On the contrary, DMAC and
G-DMAC impose a maximum cluster height of one. This feature is useful to
minimize the communication overhead with the clusterhead and to prevent the
construction of large, unmanageable clusters. However, to achieve a maximum
cluster height of one, each node v chooses as parent a neighbour which is already

76

4.1. Generalized clustering algorithm

Figure 4.1: C4SD worst case, cluster height=|V |.

a root, and therefore its decision is dependent on the decisions of its neighbours.
At the moment the chosen parent is no longer a root, v has to find another parent
or to become itself a root. This phenomenon can lead to a chain reaction that
may trigger reclustering in the whole network [45]. Note that although Tandem
also imposes a maximum cluster height of one, it does not suffer from the chain
reaction problem because (1) groups of nodes that are semantically separated
do not influence each other in the decision process, and (2) a node with the
highest weight in its neighbourhood does not become root (and thus does not
attract other assigned nodes in its cluster) unless all its neighbours from N1 are
unassigned.

Figures 4.1 and 4.2 exemplify the worst case scenario for C4SD and the
chain reaction for DMAC. The root nodes are indicated with gray filled circles,
the dotted lines connect two neighbours and the arrows denote the parent-
child relationship. The numbers represent the weights associated with nodes.
Figure 4.1 shows the worst case for C4SD: linear topology and cluster height
equal to |V |. When node 5 enters the network, each node keeps its current
parent, except node 4, which chooses node 5 as parent. The clusterhead thus
changes to node 5, but for the rest, the original structure remains. As an
observation, we show in Chapter 5 that although theoretically C4SD allows
clusters of arbitrary height, in practice the average cluster height is lower than
2, and in 95% of the cases it is below or equal to 3. This result shows that in
practice, C4SD leads to acceptable clustering solutions for dynamic WSNs.

Figure 4.2 shows the same topology, but DMAC is used for clustering. The
network is initially disconnected, with node 5 being isolated and forming a
cluster with one member. Two other clusters are created with clusterheads 2
and 4, having height equal to one. When node 5 joins the network, a chain
reaction is triggered: node 4 gives up its role as a clusterhead and joins node
5. Node 3 becomes a clusterhead and attracts node 2 as a member. Node 1
becomes the root of a cluster with only one node.

77

4. A generalized clustering algorithm for dynamic wireless sensor networks

Figure 4.2: DMAC chain reaction.

Figures 4.1 and 4.2 illustrate that small differences in the definition of the
sets N1(v) and N2(v) and conditions P1(v), P2(v), P3(v) may lead to completely
different clustering structures, making thus Algorithm 1 a general framework for
the class of weight-based clustering algorithms designed for mobile networks.

4.2 Correctness of the cluster formation

In the following, we prove formally that the considered algorithms fulfil the
properties described in Section 4.1.2. Properties 1 and 2 are general properties,
while Property 3 is applicable only if the network stabilizes. We prove that if
certain constraints regarding the algorithm operation are satisfied, Algorithm 1
fulfils Properties 1-3. Thus, any algorithm that follows Algorithm 1 and satisfies
the constraints is correct, in the sense that it fulfils Properties 1-3. Section 4.3
shows that each of the four algorithms, C4SD, DMAC, G-DMAC and Tandem
does satisfy the constraints, and thus each algorithm fulfils Properties 1-3.

4.2.1 General properties

In this section, we prove Properties 1 and 2, which hold also for dynamic net-
works. First, we prove that Property 1 is always achieved by Algorithm 1. Next,
we present a constraint (Constraint 1), which ensures that Property 2 is fulfilled.

4.2.1.1 Disjoint clusters

Lemma 1 If a clustering algorithm follows the generalized algorithm, the net-
work contains only disjoint clusters.

Proof From the description of Algorithm 1, we deduce that every assigned
node has only one parent, corresponding to the variable p(v). Since a node
belongs to the cluster of its parent, no node can be part of different clusters. �

78

4.2. Correctness of the cluster formation

4.2.1.2 No cycles

Constraint 1 For every node v, at least one of the following propositions is
true:

1. Node v may select as parent only itself or another node with a higher
weight. Formally, N2(v) ⊆ {x ∈ N1(v) | w(x) > w(v)}.

2. Node v may select as parent only itself or a root node. If v is a root node
that chooses another parent, it is allowed to select as parent only a root
with higher weight. Formally, (r(v) = v ∧ P1(v) = true ∧N2(v) 6= ∅) =⇒
(r(y(v)) = y(v) ∧ w(v) < w(y(v)))

We denote with pk(v) the parent of order k, i.e. p1(v) = p(v), pk(v) =
p(pk−1(v)) for k > 1.

Lemma 2 If a clustering algorithm follows the generalized algorithm and sat-
isfies Constraint 1, the clustering structure does not contain cycles. Formally,
∀v ∈ V , if p(v) 6= v then pk(v) 6= v,∀k > 1.

Proof If the first proposition of Constraint 1 is satisfied, then each node picks
exactly one parent, either itself or a neighbour of higher weight. Therefore, the
network does not contain cycles.

If the second proposition of Constraint 1 is satisfied, then we have only one-
hop clusters. If a node that is not root selects as parent another node that is
a root, then v is added to the cluster of that root with a 1-hop distance. The
root node cannot choose node v as parent, since node v is not a root. If two
roots r1 and r2 become connected and both might choose the other as parent
(i.e. r1 ∈ N2(r2) and r2 ∈ N2(r1)), then at least the one with the highest weight
remains root. Therefore, the network does not contain cycles. Note that if the
two nodes get connected (i.e. the root with smaller weight selects the other root
as parent), transitory two-hop clusters may occur. However, this situation is
corrected in the next round, since now the 2-hop nodes do not have a root as
parent and thus they must select a new parent. �

4.2.2 Stabilization property

In this section, we present two more constraints and show that these constraints
imply Property 3.

79

4. A generalized clustering algorithm for dynamic wireless sensor networks

We assume that starting from an arbitrary global state, the topological struc-
ture and the semantic similarities among nodes remain constant (i.e. N1(v)
remains constant, ∀v ∈ V). We denote this moment with round 0.

We refer to round k, k ≥ 1, as the series of consecutive rounds following 0.
We denote with Sk the set of stabilized nodes corresponding to round k, i.e.
Sk = {v ∈ V | ∀j ≥ k, pj(v) = pk(v), rj(v) = rk(v)}, where pi(v) and ri(v) are
the parent and root of v at round i.

We say that the clustering structure is stable if for any subsequent round,
every node keeps the same parent and root. Formally, the structure is stable or
reaches stability at round k if Sk = V .

4.2.2.1 Constraints

After round 0, we assume that the generalized algorithm satisfies the following
constraints (see Section 4.3, where the constraints are proven for each special
case of Algorithm 1) :

Constraint 2 There exists d ≤ |V | such that after round 0 every d rounds
either there exists at least one additional node that remains with the same parent
and root in any subsequent round, or the network gets stable. Formally, ∃d ≤
|V |, such that we have either (∃x ∈ Sk+d with x /∈ Sk) or (Sk+d = V), ∀k ≥ 0.

Constraint 3 Let v ∈ V . After the first round, all the nodes that are eligible
to become parents of v are assigned. Formally, ∀x ∈ N2(v), p1(x) 6= ⊥.

4.2.2.2 Correctness proofs

Lemma 3 Given Constraint 2, after at most O(d|V |) rounds, the network sta-
bilizes (∃k, 0 ≤ k ≤ d|V |, such that Sk = V).

Proof Constraint 2 implies that |Sk+d| ≥ |Sk| + 1 if |Sk| < V and k ≥ 0.
Therefore, we have that |Sd|V || = |V |, i.e. after at most O(d|V |) rounds the
network stabilizes. �

Lemma 4 Given Constraint 3, a stabilized network does not have any unas-
signed parent node. Formally, let x ∈ V be a node in the network. If ∃v ∈ V
such that p(v) = x, then p(x) 6= ⊥.

80

4.3. Proofs of constraints for each algorithm

Proof From Constraint 3 we have that after one round, for any node v ∈ V ,
all the nodes in the set N2(v) from where v can choose a parent are assigned
(∀x ∈ N2(v), p(x) 6= ⊥). �

4.2.3 Correctness of the generalized algorithm

Theorem 1 Any algorithm which follows Algorithm 1 and satisfies Constraints 1-
3 stabilizes after a finite number of rounds to a feasible state.

Proof If Constraint 2 holds, then from Lemma 3 we have that after at most
O(d|V |), the network stabilizes.

From the definition of feasibility from Section 4.1.2, we deduce that the
clustering structure is in a feasible state if: (1) the structure does not contain
cycles, (2) the root of node v is also the root of p(v), (3) there are no unassigned
parents. We prove each of these properties in turn:

1. If Constraint 1 holds, then from Lemma 2 we have that the structure does
not contain cycles.

2. The SetRoot message is propagated to all the nodes in the cluster whenever
there is a topological or root change. Therefore, each node v learns the
root of its cluster from p(v), such that the root of v becomes equal to the
root of its parent (see line 3 from the SetRoot(u,r) event, Algorithm 1).

3. If Constraints 3 holds, then from Lemma 4 we have that a stabilized
network does not have any unassigned parent node.

Therefore, we have that after a finite number of rounds the network stabilises
to a feasible state. �

4.3 Proofs of constraints for each algorithm

From Section 4.2.3, we have that any algorithm which follows Algorithm 1 and
satisfies Constraints 1-3 is correct. Therefore, we prove these constraints for
the four special cases of Algorithm 1 presented in Section 4.1.5, from where it
follows that these algorithms are correct.

81

4. A generalized clustering algorithm for dynamic wireless sensor networks

4.3.1 C4SD

Constraint 1 Since N2(v) = {u ∈ N1(v) | w(u) > w(v)}, the first proposition
is always true. �

Constraint 2 We may take d = 1. We first prove the constraint for the first
round, and then we generalize for round k > 1.

First, note that ∀v ∈ V , N2(v), P1(v) and P2(v) do not change after round
1. Therefore, after the first round, each node has a stable parent. Let v1 be
the node with the maximum weight, w(v1) = max {w(v) | v ∈ V }. Because
N2(v

1) = ∅ and P1(v
1) =true, after the first round, v1 becomes root. Any

subsequent round does not change N2(v
1) and P1(v

1), and thus v1 remains
root.

At round k, k > 1, let vk be the node with the highest weight that is not
already stabilized (does not know its root r(v)), i.e. w(vk) = max{w(v) | v ∈
V \ Sk−1}. Since the parent of vk has a higher weight than vk, we have that
p(vk) ∈ Sk−1, and therefore, it knows its root. Thus, in round k, also node vk

gets to know its root and stabilizes.
�

Constraint 3 After the first round, all the nodes are assigned (P1(v) = true,
P2(v) = true, ∀v ∈ V). Therefore, after the first round, there is no unassigned
parent. �

4.3.2 DMAC

Constraint 1 Since N2(v) = {u ∈ N1(v) | w(u) > w(v) ∧ r(u) = u}, the first
proposition is always true. �

Constraint 2 We may take d = 1. We first prove the constraint for the first
round, and then we generalize for round k > 1.

Let v1 be the node with the maximum weight, w(v1) = max {w(v) | v ∈ V }.
Because N2(v

1) = ∅ and P1(v
1) =true, after the first round, v1 becomes root.

Any subsequent round does not change N2(v
1) and P1(v

1), and thus v1 remains
root.

At round k, k > 1, let vk be the node with the highest weight that is not
already stabilized, w(vk) = max{w(v) | v ∈ V \Sk−1}. The decision of node vk

depends only on the decisions of the neighbours with higher weights, which are
already stabilized. Therefore, the set N2(v

k) does not change in any subsequent

82

4.3. Proofs of constraints for each algorithm

round, as well as P1(v
k) and P2(v

k), so that at round k node vk stabilizes, by
selecting a parent that is also a root. �

Constraint 3 The set N2(v) contains only assigned nodes, ∀v ∈ V (N2(v) =
{u ∈ N1(v) | w(u) > w(v) ∧ r(u) = u}). �

4.3.3 G-DMAC

Constraint 1 Since N2(v) = {u ∈ N1(v) | w(u) > w(v) ∧ r(u) = u}, the first
proposition is always true. �

Constraint 2 We may take d = 1. We first prove the constraint for the first
round, and then we generalize for round k > 1.

Let v1 be the node with the maximum weight, w(v1) = max {w(v) | v ∈ V }.
Node (v1) is either unassigned, or is root. If v1 is unassigned, since N2(v

1) =
∅ and P2(v) = true, v1 becomes root. Otherwise, v1 remains root in any
subsequent round.

At round k, k > 1, let vk be the node with the highest weight that is not
already stabilized, i.e. w(vk) = max{w(v) | v ∈ V \ Sk−1}. The decision of
node vk depends only on the decisions of the neighbours with higher weights,
which are already stabilized. Therefore, the set N2(v

k) does not change in any
subsequent round, as well as P1(v

k) and P2(v
k).

A Resign message received by vk, which can trigger the resignation of vk

from being a root, can be sent only by a node with a higher weight than vk.
Therefore, if the k-neighbourhood condition is violated for any of the stabilized
neighbouring nodes of v that are also roots, v may receive a Resign message and
act accordingly (i.e. if v is a root, it gives up its role and selects a new parent)
only in a round preceding round k. Therefore, node v selects a parent that is
also a root at round k and stabilizes. �

Constraint 3 The set N2(v) contains only assigned nodes, ∀v ∈ V (N2(v) =
{u ∈ N1(v) | w(u) > w(v) ∧ r(u) = u}). �

4.3.4 Tandem

Constraint 1 We prove the second proposition. A node can choose as par-
ent only itself or a root node, because the set N2(v) contains only root nodes
(Nv(v) = {u ∈ N1(v) | r(u) = u}). Since y(v) ∈ N2(v), we have that

83

4. A generalized clustering algorithm for dynamic wireless sensor networks

r(y(v)) = y(v). If node v is a root, it can give up its role by selecting as
parent only a root node of higher weight. From the definition of P1(v) (P1(v) :
((r(v) = ⊥) ∨ (r(v) 6= v ∧ r(v) /∈ N2(v)) ∨ (r(v) = v ∧ w(v) < w(y(v))))), we
have that (r(v) 6= v) ∨ (r(v) = v ∧ w(v) < w(y(v))). �

Constraint 2 All the nodes that have N1(v) = ∅ become and remain unas-
signed after the first round. In the following, we discuss the nodes that have
N1(v) 6= ∅.

We may take d = 2. We first prove the constraint for the first 2 rounds, and
then we generalize for round k > 2.

Suppose that after round 0, none of the nodes is a root. If condition P2 is
satisfied by at least one node v (∃v ∈ V such that {u ∈ N1(v) | r(u) 6= ⊥} = ∅),
then after the first round v becomes a root. Otherwise, all the nodes in V
become unassigned after the first round (p(v) = ⊥, ∀v ∈ V). In this case,
after the second round, the condition P2 becomes satisfied by least one node,
who becomes root. Let v1 be the root node with the highest weight after the
second round, r(v1) = v1 and w(v1) = max{w(v) | r(v) = v}. Node v1 remains
root in any subsequent round because none of its neighbours can become root
(N2(v) 6= ∅, ∀v ∈ N1(v

1), by Assumptions 3 and 4), so it stabilizes at round 2.

Starting from the stabilized set at round k, we prove that after at most 2
rounds, the stabilized set contains at least one additional node.

At round k + 1, k ≥ 2, if exists a node x that has as parent a node from the
already stabilized set (x /∈ Sk, p(x) ∈ Sk), we take vk+1 = x. Due to condition
P1(v

k+1), node vk+1 does not change the root in any subsequent round and thus
vk+1 stabilizes at round k + 1.

If none of the nodes x /∈ Sk has as parent a node from the already stabilized
set, we take vk+1 the root node with the maximum weight which is not part of
the stabilized set (r(vk+1) = vk+1 and w(vk+1) = max{w(v) | r(v) = v, v ∈
V \ Sk}). Node vk+1 does not change the role of root in any subsequent round
because none of its neighbours can become root (N2(v) 6= ∅, ∀v ∈ N1(v

k+1)),
so it stabilizes at round k + 1.

The last case is when all the nodes which are not yet stabilized are unas-
signed, i.e. ∀x /∈ Sk, r(x) = ⊥. If all these nodes have assigned neighbours,
then from condition P2(x) it follows that all these nodes remain unassigned in
any subsequent round, so the network stabilizes. Otherwise, there exists at least
one node that has all neighbours unassigned, i.e. ∃x /∈ Sk such that P2(x) is
true (({u ∈ N1(x) | r(u) 6= ⊥} = ∅). Therefore, node x becomes root at round
k + 2. At round k + 2, we take vk+2 the root node with the maximum weight

84

4.4. Conclusions

which is not part of the stabilized set. Node vk+2 does not change the role of
root in any subsequent round because none of its neighbours can become root
(N2(v) 6= ∅, ∀v ∈ N1(v

k+2)), so it stabilizes at round k + 2. �

Constraint 3 The set N2(v) contains only assigned nodes, ∀v ∈ V (N2(v) =
{u ∈ N1(v) | r(u) = u}). �

4.4 Conclusions

This chapter presents a generalized clustering algorithm that makes localized
decisions based on 1-hop neighbourhood information and produces disjoint clus-
ters. The algorithm represents a generalization of weight-based clustering al-
gorithms designed for mobile ad-hoc and sensor networks, by using a set of
general variables and conditions. Concrete algorithms, leading to different clus-
tering structures, can be defined by giving specific meaning to these variables
and conditions. As examples, we present four specialized algorithms, namely
C4SD (see Chapter 5), Tandem (see Chapter 7), DMAC [43] and G-DMAC [42].
Assuming as valid a set of given constraints, this generalization allows us to de-
fine and prove common properties for these algorithms. Any new algorithm that
follows the generalized clustering algorithm can be proven correct, with respect
to the properties given in Section 4.1.3, by proving that it satisfies this set of
constraints.

85

4. A generalized clustering algorithm for dynamic wireless sensor networks

Appendix

Summary of notation:

Notation Explanation

Γ(v) The open neighbourhood of v, i.e. Γ(v) = {u ∈ V | (u, v) ∈ E}

Γ+(v) The closed neighbourhood of v, i.e. Γ+(v) = Γ(v) ∪ {v}

w(v) The weight of v

s(v, u) The semantic relationship between v and u

⊥ The symbol for unassigned nodes

p(v) The parent of v, p(v) ∈ V ∪ {⊥}

r(v) The root or clusterhead of v, r(v) ∈ V ∪ {⊥}

N1(v) The subset of neighbours with which node v may cluster,
N1(v) ⊆ Γ+(v)

N2(v) The subset of neighbours with which node v may cluster,
which can become parents of v, N2(v) ⊆ N1(v)

P1(v) The condition on which v chooses a different parent

P2(v) The condition on which v becomes root

P3(v) The condition on which v informs the neighbours
that one of them has to resign from the clusterhead role

y(v) The neighbour of v from N2(v) with the highest weight, i.e.
y(v) ∈ N2(v), w(y(v)) = max{w(u) | u ∈ N2(v)}

z(v) The neighbour of v from N1(v) with the highest weight that
has to resign from the clusterhead role, based on condition P3(v)

Table 4.1: Summary of notation.

86

Chapter 5

Cluster-based service
discovery for heterogeneous
wireless sensor networks

We propose an energy-efficient service discovery protocol for heterogeneous wire-
less sensor networks. Our solution exploits a cluster overlay, where the clus-
terhead nodes form a distributed service registry. A service lookup results in
visiting only the clusterhead nodes. We aim for minimizing the communication
costs during discovery of services and maintenance of a functional distributed
service registry. To achieve these objectives, we propose a clustering algorithm
which (1) makes decisions based on one-hop neighbourhood information, (2)
avoids chain reactions, and (3) constructs a set of sparsely distributed cluster-
heads. We analyse how the properties of the clustering structure influence the
performance of the service discovery protocol, by comparing theoretically and
through simulations our proposed clustering algorithm with DMAC. To validate
our simulations we implement the proposed solution on resource-constraint sen-
sor nodes, and we measure the performance of the protocol running on different
testbeds.

87

5. Cluster-based service discovery for heterogeneous wireless sensor networks

5.1 Introduction

The problem that we address in this chapter is the design of a service discovery
protocol suitable for heterogeneous wireless sensor networks that reduces the
workload of the resource-constraint devices and avoids the significant traffic
induced by the traditional flood-based solutions in dense networks. We propose
a solution based on clustering, where a set of nodes, selected based on their
capabilities, acts as a distributed directory of service registrations for the nodes
in their cluster. In this way, (1) the communication costs are reduced, since the
service discovery messages are exchanged only among the directory nodes, and
(2) the distribution of workload takes into account the capabilities of the nodes.

The main contributions of this chapter are therefore:

• C4SD (Clustering for Service Discovery), a lightweight clustering algo-
rithm that builds a distributed directory of service registrations. By mak-
ing decisions based only on the 1-hop neighbourhood information, the
clustering algorithm reacts rapidly to topological changes.

• SD4WSN (Service Discovery for Wireless Sensor Networks), an energy-
efficient service discovery protocol that exploits the underlying clustering
structure.

Additionally, we compare C4SD with DMAC (Distributed Mobility-Adaptive
Clustering) [43], a state of the art counterpart. DMAC constructs and maintains
an independent dominating set, being designed for mobile networks. Nodes de-
cide based on their one-hop neighbourhood information, which assures rapid
reaction to topology changes. However, DMAC suffers from the chain reaction
phenomenon, where a single topology change in the network may trigger signif-
icant changes in the dominating set. For a distributed directory composed of
nodes from the dominating set, the chain reaction causes additional overhead
for maintaining consistent service registries. We compare the performance of
our proposed clustering algorithm with DMAC, when using them as structural
basis for our service discovery protocol.

The remaining part of the chapter is organized as follows: we present in
detail the clustering algorithm and the service discovery protocol for hetero-
geneous WSNs in Sections 5.2 and 5.3. We evaluate the performance of the
proposed algorithms in Section 5.4. The implementation results are presented
in Section 5.5. Section 5.6 presents the conclusions.

88

5.2. Clustering algorithm

5.2 Clustering algorithm

In this section we present the design considerations, the network model and the
detailed description of our clustering algorithm.

5.2.1 Design considerations

C4SD constructs an overlay network, which facilitates the discovery of services
in an energy-efficient fashion. We discuss from the design perspective several
techniques for reducing the communication cost during (1) discovery of services
and (2) maintenance of the distributed directory.

During the discovery process, messages are exchanged among the cluster-
head nodes. To minimize the discovery cost, the root nodes have to be sparsely
distributed on the deployment area, as a high density of root nodes (or clusters)
would lead to a high communication cost during discovery. Therefore, the clus-
tering algorithm should construct an independent set of clusterheads, i.e. two
root nodes are not allowed to be neighbours.

In the following, we give the design considerations for minimizing the com-
munication cost during the maintenance of the distributed directory:

• Make decisions based on 1-hop neighbourhood information. Clustering
algorithms that require each node to have complete topology knowledge
over a number of hops are expensive with regard to the maintenance cost.
These algorithms generally require that nodes are static during the initial
cluster setup. We aim to build a lightweight clustering structure that
requires only the 1-hop neighbourhood topology information, and does
not impose an initial stationary topology.

• Avoid chain reactions. A chain reaction occurs when a single network
topology change leads to reclustering throughout the network. For a dis-
tributed directory composed of clusterhead nodes, a chain reaction leads
to high overhead for maintaining consistent service registries. Therefore,
an energy-efficient solution should avoid chain reactions, such that lo-
cal topology changes determine only local modifications of the directory
structure.

• Distribute the overhead depending on the capabilities of the nodes. To min-
imize the maintenance effort and to relieve the resource-lean devices, the
knowledge on adjacent clusters and the intra-cluster information should
be distributed depending on the capabilities of the nodes.

89

5. Cluster-based service discovery for heterogeneous wireless sensor networks

In theory, building an independent set of root nodes and avoiding a chain
reaction comes at the expense of constructing clusters with an arbitrary height
(see Chapter 4). However, in practice, we can achieve small-height clusters
without imposing a maximal height limit (see Section 5.4.2.2).

5.2.2 Network model

We use the network model defined in Chapter 4. Each node is assigned (1) a
unique hardware identifier, termed the address of the node, and (2) a weight,
termed the capability grade, representing an estimate of the node’s dynamics
and available resources. The higher the capability grade, the more suitable
is the node for the clusterhead role. We introduce the term capability grade
as a synonym for the weight measure from Chapter 4 to emphasise the fact
that it is an estimation of the available resources present on the node. The
capability grade can be calculated in accordance with the unified framework for
clustering proposed by Nocetti et al. [133], as a weighted sum of the memory
available on the node, the energy left, the processing power and the degree
of dynamics (speed or just an indication of the typical state of the node, e.g.
moving/stationary). We say that two trees are adjacent if there are two nodes,
one from each tree, which are connected through a link.

Given a node v, we use the following notation, in addition to the general
notation defined in Section 4.1:

• c(v) is the capability grade of v, corresponding to the weight w(v).

• ∆(v) is the set of children of node v, ∆(v) = {u ∈ V | p(u) = v}

• pk(v) is the parent of order k, defined as p0(v) = v, pk+1(v) = p(pk(v))

• C(v) is the set of nodes that are part of the same cluster as v, C(v) =
{u ∈ V | r(u) = r(v)}

• T (v) is the set of nodes from the sub-tree rooted at v, T (v) = {u ∈ V | ∃k
such that pk(u) = v}

• Ru(v) is the set of adjacent clusters of node v, represented by their roots,
which can be reached through node u, where u ∈ Γ(v), i.e. Ru(v) is either
the root of u, if u is in a different cluster, or the roots of adjacent clusters
reached through the children of u; Ru(v) is described according to the
following cases:

90

5.2. Clustering algorithm

– if u ∈ ∆(v), then Ru(v) is the set of root nodes of clusters adjacent
to the sub-tree rooted at v. Formally, Ru(v) = {r ∈ V \{r(v)} | ∃x ∈
T (u),∃y ∈ Γ(x) such that r = r(y)};

– if u ∈ C(v) \∆(v), then Ru(v) = ∅;
– if u /∈ C(v), then Ru(v) = {r(u)}.

• S(v) is the set of services provided by node v

• Su(v) is the set of services registered to v by u ∈ ∆(v). Formally, ∀u ∈
∆(v), Su(v) = {S(x) | x ∈ T (u)}.

5.2.3 Construction of clusters

The construction of clusters follows the generalized algorithm described in Chap-
ter 4, where nodes choose a neighbour with higher capability grade as parent,
while other nodes that do not have such a neighbour are roots. Algorithm 2 is a
special case of Algorithm 1, where for each node v, the generic sets N1(v), N2(v)
and conditions P1(v), P2(v), P3(v) are replaced with the specific instances of
C4SD. Algorithm 2 is also an extended version of Algorithm 1, by defining a
new message UpdateInfo and maintaining the knowledge on adjacent clusters
(see Section 5.2.4).

Briefly, the protocol works as follows:

• Nodes that have the highest capability grades among their neighbours de-
clare themselves clusterheads and broadcast a SetRoot message announc-
ing their roles.

• The remaining nodes choose as parent the neighbour with the highest
capability grade.

• When a node receives a SetRoot message from its parent, it learns the
cluster membership and rebroadcasts the SetRoot message.

5.2.4 Knowledge on adjacent clusters

The knowledge on adjacent clusters is constructed and held in the Ru(v) sets
using the UpdateInfo message. The SelectParent and SetRoot events from Al-
gorithm 1 are extended to accommodate the construction and maintenance of

91

5. Cluster-based service discovery for heterogeneous wireless sensor networks

Algorithm 2: Clustering algorithm - node v (events/actions)

Initialization: // Parent is chosen

1: r(v)← ⊥; p(v)← ⊥; Rm(v)← ∅, ∀m ∈ Γ(v)

SelectParent : // Build the clustering structure by selecting the parent

1: r0 ← r(v); p0 ← p(v); Γ0(v)← Γ(v); R0 = ∪m∈Γ(v)Rm(v)

2: Update Γ(v), Γ+(v), N2(v), y(v) // N2(v)← {u ∈ Γ(v) | w(u) > w(v)}
3: if N2(v) 6= ∅ then

4: p(v)← y(v) // y(v) ∈ N2(v), c(y(v)) = max{c(u) | u ∈ N2(v)}
5: r(v)← r(p(v))
6: else if (p(v) 6= v) then

7: p(v)← v
8: r(v)← v
9: end if

10: if (r(v) 6= r0) ∨ (Γ(v) \ Γ0(v) 6= ∅) then

11: Send SetRoot(v,r(v)) to neighbours.
12: end if

13. ∀m ∈ Γ(v), Rm(v)← Rm(v) \ {r(v)}
14. if (p0 6= p(v)) ∧ (p0 ∈ Γ(v)) then

15. Send UpdateInfo (v, ∅) to p(v)
16. end if

17. if (v 6= p(v)) ∧ ((p0 6= p(v)) ∨ (R0 6= ∪m∈Γ(v)Rm(v))) then

18. Send UpdateInfo (v,∪m∈Γ(v)Rm(v)) to p(v)
19. end if

SetRoot (u, r): // Receive root r from neighbour u

1. if (p(v) = u) ∧ (r(v) 6= r) then

2. r(v)← r
3. Send SetRoot(v, r(v)) to neighbours
4. end if

5. R0 = ∪m∈Γ(v)Rm(v)
6. if r(v) = r then

7. ∀m ∈ Γ(v), Rm(v)← Rm(v) \ {r}
8. else

9. Ru(v)← {r}
10. end if

11. if (v 6= p(v)) ∧ (R0 6= ∪m∈Γ(v)Rm(v)) then

12. Send UpdateInfo (v,∪m∈Γ(v)Rm(v)) to p(v)
13. end if

UpdateInfo (u, R): // Receive adjacent clusters R from u

1. R0 = ∪m∈Γ(v)Rm(v);
2. Ru(v)← R \ {r(v)}
3. if (v 6= p(v))) ∧ (R0 6= ∪m∈Γ(v)Rm(v)) then

4. Send UpdateInfo(v,∪m∈Γ(v)Rm(v)) to p(v)
5. end if

92

5.2. Clustering algorithm

Figure 5.1: Nodes learn from neighbours which are the adjacent clusters (indi-
cated by dashed lines) and propagate the knowledge to the parents (following
the direction of arrows).

this knowledge. The extension starts at line 13 for the SelectParent event and
at line 5 for the SetRoot event.

The extension works as follows: the root nodes learn about the adjacent
clusters from the nodes present at the cluster borders. During the propagation
of the broadcast message SetRoot down to the leaf nodes, the message is also
received by nodes from adjacent clusters. These nodes store the adjacent root
identity in their Ru(v) sets and report it to their parents. The information is
propagated up in the tree with a message which we term UpdateInfo. Through
this message, nodes learn the next hops for the paths leading to the clusters
adjacent to their sub-trees. In particular, the root nodes learn the adjacent
clusters and the next hops on the paths to reach their clusterheads. Figure 5.1
gives an intuitive example of learning the adjacent clusters.

The events of receiving messages SetRoot and UpdateInfo from Algorithm 2
describe how the knowledge and the paths to adjacent clusters are updated for
a given node v. Duplicate UpdateInfo messages are discarded: a node v sends
the message UpdateInfo to its parent if and only if the set of known root nodes
changes.

5.2.5 Maintenance in face of topology changes

We model the network dynamics by considering two events to which every node
has to react: link addition and link deletion. These events are triggered by

93

5. Cluster-based service discovery for heterogeneous wireless sensor networks

the lower layers of the communication stack. When a link is added or deleted
to/from a node v, the SelectParent function is called, which adjusts the cluster
membership accordingly (see Algorithm 2). The cluster membership changes in
one of the following situations:

• A node discovers a new neighbour with a higher capability grade than its
current parent. The node then selects that neighbour as its new parent.

• A node detects the failure of the link to its parent. The node then chooses
as new parent the node with the highest capability grade in its neighbour-
hood.

Besides reclustering, topology changes may also require modifications in the
knowledge on adjacent clusters. The SetRoot message informs nodes about the
cluster membership of their neighbours, while the UpdateInfo message is used
for transmitting updates from children to parents. We distinguish the following
situations:

• A node v detects a new neighbour from a different cluster. Consequently,
v adds the root of that cluster to its knowledge.

• A node v switches from parent p0 to p1. Then v notifies p0 to remove the
information associated with v and sends the list of adjacent clusters to p1.

• A node v detects the failure of the link to one of its neighbours u. As a
result, v erases the knowledge associated with u.

• Any change of global knowledge at node v results in transmitting the
message UpdateInfo from v to its parent.

5.2.6 A clustering alternative: DMAC

We choose DMAC as a viable clustering alternative for our service discovery
protocol. Its simplicity and good performance results [45] make it suitable for
sensor environments. DMAC achieves fast convergence, as nodes decide their
roles using only 1-hop neighbourhood information. The clusters are constructed
based on unique weights assigned to nodes. The higher the weight, the more
suitable the node is for the clusterhead role. The difference with our clustering
algorithm is that DMAC imposes a maximum cluster height of one, whereas our
protocol in principle may lead to an arbitrary cluster height (see Chapter 4).
For the construction of clusters, DMAC uses two types of broadcast messages,

94

5.3. Service discovery protocol

Clusterhead and Join, announcing the roles of the nodes to their neighbours.
The role decision of a node is dependent on the decisions of the neighbours with
higher weights. Therefore, a single topology change may trigger reclustering
of a whole chain of dependent nodes. This phenomenon is called a chain re-
action. For a distributed directory composed of clusterhead nodes, the chain
reaction leads to high overhead for maintaining consistent service registries. In
Section 5.4.3 we study the impact of the cluster height and the chain reaction on
the performance of the service discovery protocol, in comparison to our proposed
clustering solution.

5.3 Service discovery protocol

During service discovery, service request messages look for a service match in
the set of nodes which are part of the distributed directory. We first describe
how the services are registered to the directory nodes and then we present the
service discovery process.

5.3.1 Service registration

During service registration, each node sends the local service descriptions and
the descriptions received from its children to the parent node. In this way, a
node learns the service descriptions of the nodes placed lower in hierarchy in
its cluster. In particular, a root node is informed of all the service descriptions
offered by the nodes in its cluster. Since the registration process requires unicast
messages to be transmitted from children to parents, it can be integrated with
the transfer of knowledge on adjacent clusters. Thus, the communication cost
is improved by using the same message UpdateInfo for both service registra-
tions and transferring the knowledge on adjacent clusters. Algorithm 3 shows
the integrated version of the UpdateInfo message, where a node updates the
information on both the adjacent clusters and the known services.

In the following we describe how the distributed service registry is kept
consistent when the topology changes. In the case of a parent reselection, a
child node v registers the services from its sub-tree with the new parent p1,
and notifies the old parent p0 (if it is still reachable) to purge the outdated
service information. The process is transparent to the other nodes in the sub-
tree rooted at v. If the overall service information at p0 and p1 changes due to
the parent reselection, the modifications are propagated up in the hierarchy.

95

5. Cluster-based service discovery for heterogeneous wireless sensor networks

Algorithm 3: SD4WSN service registration - node v

UpdateInfo (u, R, S):
// receive adjacent clusters R and services S from u

1. R0 = ∪m∈Γ(v)Rm(v)
2. S0 = ∪m∈∆(v)Sm(v) ∪ S(v)
3. if R = ∅ then

4. ∆(v)← ∆(v) \ {u}
5. Su(v)← ∅
6. else

7. ∆(v)← ∆(v) ∪ {u}
8. Su(v)← S
9. end if

10. Ru(v)← R \ {r(v)}
11. if (v 6= p(v)) ∧ ((R0 6= ∪m∈Γ(v)Rm(v)) ∨ (S0 6= ∪m∈∆(v)Sm(v) ∪ S(v))) then

12. Send UpdateInfo(v,∪m∈Γ(v)Rm(v),∪m∈∆(v)Sm(v) ∪ S(v)) to p(v)
13. end if

5.3.2 Service discovery

SD4WSN uses a distributed directory of service registrations. Suppose a node
in the network generates a service discovery request ServDisc. The request
is first checked against the local registrations. In the case where no match is
found, the message is forwarded to the parent. This process is repeated until the
ServDisc message reaches the root of the cluster. When a root node receives a
ServDisc message and it does not find a match in the local registry, the message
is forwarded to the roots of the adjacent clusters. The next hop on the path
leading to the adjacent cluster is decided by every node that acts as forwarder
of the ServDisc message. Each node v along the path checks its Ru(v) sets and
picks a neighbour that has a path to the root of the adjacent cluster. In the case
where a link is deleted and v cannot forward the ServDisc message, it chooses
another neighbour that provides a path to destination. If such a neighbour does
not exist, v informs its parent that it no longer has a route to the next cluster.
The same procedure is repeated until all the paths to destination are tested.
If the next cluster is not reachable, the root node erases the cluster from its
knowledge.

The result of a service search is typically the address of one or more service
providers. This response can be returned by the first node that finds a match in
its registry for the requested service. However, in certain situations it may be
preferable that the service provider itself issues a reply for the service request.
Examples include applications where service descriptions change frequently, or
cases where the reply incorporates more information than the address of the

96

5.3. Service discovery protocol

Algorithm 4: SD4WSN service discovery - node v

ServDisc (u, s, d, f):
// receive message ServDisc from node u, requesting service s, destination d, flag f

1. if f = TRUE then

2. if s ∈ ∪m∈∆(v)Sm(v) ∪ S(v) then

3. Service found; generate reply
4. else if p(v) = v then

5. for all r ∈ ∪m∈Γ(v)Rm(v) do

6. Pick m ∈ Γ(v) such that r ∈ Rm(v)
7. Send ServDisc(v, s, r, TRUE) to m
8. end for

9. else if d = r(v) then

10. Send ServDisc(v, s, d, TRUE) to p(v)
11. else if d ∈ ∪m∈Γ(v)Rm(v) then

12. Pick m ∈ Γ(v) such that d ∈ Rm(v)
13. Send ServDisc(v, s, d, TRUE) to m
14. else

15. Send ServDisc(v, s, d, FALSE) to p(v)
16. end if

17. else

18. Ru(v)← Ru(v) \ {d}
19. if d ∈ ∪m∈Γ(v)Rm(v) then

20. Pick m ∈ Γ(v) such that r ∈ Rm(v)
21. Send ServDisc(v, s, d, TRUE) to m
22. else if p(v) 6= v then

23. Send ServDisc(v, s, d, FALSE) to p(v)
24. end if

25. end if

node. In these situations, the ServDisc message is forwarded down the cluster
until it reaches the service provider. In the case where the link to the service
provider is deleted or the service description is no longer valid, the service
request is sent back to the root node which forwards it to the adjacent clusters.

The service discovery reply may follow the reverse cluster-path to the client,
or any other path if a routing protocol is available. For the first case, if there is a
cluster partition, the path can be reconstructed using the same search strategy
as for the ServDisc message, where this time the service is the address of the
client.

Algorithm 4 describes SD4WSN, where replies are generated by nodes in the
distributed directory. The message ServDisc has four parameters: the neighbour
u that sends the request, the service description s, the final destination d of the
message (typically a root node) and a flag f . The flag indicates whether the
message is a fresh service discovery request, or it is a failure notification of a

97

5. Cluster-based service discovery for heterogeneous wireless sensor networks

previous attempt to reach an adjacent cluster. In the latter case, the failed
route is erased from the knowledge on adjacent clusters and another message
is sent using an alternate path. To summarize, Algorithm 4 has the following
properties:

Property 4 If G is a connected graph representing a static network, all the
root nodes are visited and thus the service is eventually found.

Property 5 If the network is dynamic, such that links are deleted or new links
appear, alternate paths are built up and used during service discovery to com-
pensate for topological changes.

In the following, we argue that the above properties hold for the SD4WSN
protocol. We describe the actions taken by a node v receiving a ServDisc mes-
sage, depending on its role in the clustering structure and its acquired knowledge
on adjacent clusters. If node v receives a ServDisc message with flag f = TRUE
and does not have a service registration for s, we have the following cases:

• v is root: for every adjacent cluster of v with root r, v picks a neighbour
that has a path to r, and sends the ServDisc to this neighbour with the
final destination r.

• The final destination of the ServDisc message is the root of v: v sends the
message to its parent.

• The final destination of the ServDisc message is the root r of an adjacent
cluster: v picks a neighbour that has a path to r, and sends the ServDisc
to this neighbour.

• v is neither root, nor has a path to the destination: this is the case where
a link was broken and thus v is not connected anymore to the destination
cluster; v informs its parent of the loss, by sending the ServDisc message
with flag f ← FALSE.

The first three cases ensure that Property 4 holds, because in a static con-
nected network, if the service is not found in the local cluster, the ServDisc
message visits all the root nodes in the network.

The last case applies to a dynamic network, where alternate paths are built
up and used if the link to the destination brakes, directly referring to Property 5.
When a node v receives a ServDisc message from one of its children, with flag
f = FALSE and destination r, v deletes the link to r through this child and

98

5.3. Service discovery protocol

Figure 5.2: Example of a clustered network and the propagation of service
discovery messages.

searches for another path to r. If v does not have another path to r, it transmits
the message to its parent. In this way, the message may reach the root if there
is no alternate path. If an alternate path is found, the ServDisc message is
transmitted on this path with flag f = TRUE.

Let us take a look at the example from Figure 5.2. A network with nine
nodes is partitioned in three clusters, following the C4SD algorithm. The root
nodes are indicated with gray filled circles. The lines show the links between
adjacent clusters, while the straight arrows indicate a parent-child relationship.
The local knowledge on adjacent clusters is displayed next to each node. For
example, node 2 has knowledge about the adjacent root 8. This information is
aggregated at the higher levels in the hierarchy, such that the root nodes inherit
the information acquired by all the nodes in their cluster. Root node 7 has
therefore information about adjacent clusters 8 and 9. The dotted arrows show
an example of how service discovery messages travel from root node 7 to the
adjacent clusters 8 and 9, by using Algorithm 4.

For an improved behaviour in face of mobility, SD4WSN can be extended
with caching techniques. This extension works as follows: a root node caches
for a limited period of time the ServDisc messages for which the root node did
not reply. If a newly arrived node registers a service for which there is a match
in the cache, the root node can respond to the old service request. When a
root node is notified on a new adjacent cluster, it sends the valid service request
entries from its cache to the new clusterhead. As a result, the overall hit ratio
is improved.

99

5. Cluster-based service discovery for heterogeneous wireless sensor networks

Figure 5.3: The clustered network from Figure 5.2, where node 5 has joined
cluster 7.

Let us consider the example from Figure 5.2. Suppose that node 7 receives
from node 6 a service discovery message, for a service provided by node 5. Node
7 does not have the service, so it forwards the message to the adjacent clusters
8 and 9. In the meantime, node 5 moves towards node 7 and it becomes the
new child of node 7, as shown in Figure 5.3. Therefore, the service from node 5
is not provided any more by cluster 8, so the discovery fails. However, if node 7
caches the service discovery message for a limited amount of time, when node 5
joins the new cluster, node 7 can check whether the services provided by node
5 match any of the cached ServDisc messages. In this case, the matching is
successful and the service is found.

5.4 Performance evaluation

We evaluate the performance of the combined solution through both a theoreti-
cal and a simulation-based analysis. By comparing the properties and simulating
both C4SD and DMAC, we show the impact of the chosen clustering algorithm
on the performance of SD4WSN.

5.4.1 Simulation settings

For our experiments we use the OMNeT++ [157] simulation environment. We
generate a random network, by placing N nodes uniformly randomly distributed
on a square area of size a× a, as suggested by the motivating scenario of Chap-
ter 1. We consider links to be bidirectional, so all nodes have the same transmis-

100

5.4. Performance evaluation

sion range, r. There is a link between two nodes if the distance between them
is less or equal to r. We analyse the performance of our proposed algorithms
under different network densities, by varying the transmission range and/or the
number of nodes .

In a heterogeneous network, the capabilities of the nodes can be assumed
uniformly randomly distributed. For example, the infrastructure of beacons
used for localization in a WSN, which have the same level of capabilities, is
modelled with either a uniform grid placement [50], or using a stochastic uniform
distribution [77]. Applications that require sensing and control over a large area
employ resource-rich nodes capable of acting, which are uniformly distributed
on the entire region [30]. Both resource-constrained and powerful nodes in a
heterogeneous sensor network are uniformly distributed over the implementation
area for the purpose of surveillance [125]. Following this remark, the nodes in
our simulations choose their capability grades from a uniform distribution. We
also assure that static nodes have higher capability grades than mobile nodes.

We compare the performance of C4SD and DMAC under the same topo-
logical conditions. We extend DMAC with the method for maintaining the
knowledge on adjacent clusters and for updating the service registry using the
UpdateInfo message, described by Algorithms 2 and 3. We use a heartbeat
broadcast message periodically sent by every node to maintain the neighbour-
hood information and to trigger the events LinkAdd and LinkDelete. The heart-
beat is also used for the cluster setup and maintenance, replacing the SetRoot
message for C4SD and the Clusterhead and Join messages for DMAC. The focus
of our comparative simulations is the overhead induced by the UpdateInfo and
ServDisc messages in dynamic environments.

During a simulation, border effects [45] may appear, where nodes at the area
borders establish fewer links than nodes placed in the centre of the simulation
area. These effects can be avoided by using the cyclic distance model for link
formation. In this model, nodes at the border of the system area establish
links via the borderline to the nodes located at the opposite side of the area.
This setup approximates an area where nodes are distributed according to a
homogeneous Poisson point process [64]. Similar to the DMAC performance
analysis of Bettstetter [45], run static simulations for measuring the properties
of the clustering structure using the cyclic distance model, where we provide
results for three transmission ranges: r = 0.1a, r = 0.2a and r = 0.3a.

For the analysis of SD4WSN we run dynamic experiments, where we vary
both the density and the mobility of the network. For changing the network
density, we take the average of the three transmission ranges considered above
(r = 0.2a), and we vary the number of nodes. Topological changes are triggered

101

5. Cluster-based service discovery for heterogeneous wireless sensor networks

as a result of node mobility, which determine links to be added or deleted. For
changing the network mobility, we vary the percentage of mobile nodes in the
network. Following a simplistic scenario of people walking and stopping, we
use the random waypoint mobility model [94], where the mobile nodes move
with a speed of 1m/s and, upon arrival at an intermediate point, pause for
30 seconds before restarting. Due to the initialization problems of the random
waypoint mobility model, which causes a high variability of the average number
of neighbours in the first part of the simulation, we follow the recommendation
of Camp et al. [52] and we discard the initial 1000 seconds of simulation time
in each simulation trial. We count the number of messages for the next 1000
seconds.

We study the impact of the chosen clustering algorithm on the performance
of the service discovery protocol. For our analysis, we compare C4SD with
DMAC. First, we study the properties of the algorithms in terms of cluster
density and cluster height. Second, we measure the performance of the ser-
vice discovery protocol running on both structures under the same topological
conditions.

5.4.2 Properties of the clustering algorithms

In this section, we analyse two fundamental properties of clustering algorithms
(i.e. the cluster density and cluster height), which have an important influence
on the performance of the service discovery protocol, as shown in Section 5.4.3.

5.4.2.1 Cluster density

We define the cluster density as the expected percentage of clusterheads to the
total number of nodes in the network. The cluster density is an important
measure for the performance of a clustering algorithm that is intended to be
used as a basis for a search mechanism. A high density of clusters leads to a
large number of messages exchanged in the discovery phase.

In order to analyse the expected node degree when the border effects are
not present (see Section 5.4.1 for an explanation of border effects), we consider
the limiting case of a uniform distribution, denoted as a homogeneous Poisson
point process with density ρ = N/a2. The expected node degree D, which we
term the network density, is [45]:

E{D} = ρπr2 = N
r2π

a2
(5.1)

102

5.4. Performance evaluation

The spatial distribution of the root nodes for both clustering algorithms
belongs to the family of hard-core point processes [149], in which the constituent
points are forbidden to lie closer together than a certain minimum distance.
For our clustering algorithm, we approximate the cluster density by using the
Matérn hard-core process, where a point from a homogeneous Poisson point
process is only retained if it has the highest weight of all Poisson points located
within a circle around is position. The retaining probability PC4SD of nodes
that become roots, i.e. the cluster density, is the following:

PC4SD =
1

E{D} (1− e−E{D}) (5.2)

This equation shows that when the network density approaches 0, the prob-
ability to become clusterhead tends to 1, since the node becomes isolated. If the
expected degree grows to infinity, the probability of becoming a clusterhead goes
to 0. Eq. 5.2 enables us to compute the expected number of clusters EC4SD:

EC4SD = PC4SDN =
a2

πr2
(1− e−

Nπr2

a2) (5.3)

For the DMAC clustering algorithm, the probability of a randomly chosen
node to become clusterhead is given by Bettstetter [45]:

PDMAC =
1

1 + E{D}
2

(5.4)

The probability of becoming clusterhead for DMAC evolves similarly with PC4SD:
if the expected degree grows to infinity, the probability of becoming a cluster-
head goes to 0. For an expected degree 0, the PDMAC is 1.

From Eq 5.4 we can deduce the expected number of clusters in DMAC:

EDMAC = PDMACN =
1

1
N + πr2

2a2

(5.5)

From Eq. 5.3 and 5.5 it can be shown that:

• PC4SD < PDMAC

• for r and a fixed, the function f(N) = EDMAC − EC4SD is strictly in-
creasing

• limN→∞EDMAC = 2 limN→∞EC4SD

103

5. Cluster-based service discovery for heterogeneous wireless sensor networks

We can conclude that: (1) C4SD has a lower cluster density, (2) the difference
in the number of clusters built by the two protocols increases with the network
density and (3) C4SD almost halves the total number of clusters for saturated
areas.

For validating the theoretical estimation of C4SD we run simulations with
three transmission ranges 0.1a, 0.2a and 0.3a, and we count the number of clus-
ters formed in each experiment. The mean of the samples are shown in Figure
5.4, with 5th and 95th percentiles. We also plot the theoretical estimations for
the three values of the transmission range. The figure shows that the estimated
values match exactly the simulation results.

In the first part of the plot, the nodes are sparsely distributed on the simula-
tion area and form clusters with only one member. When the network becomes
dense, the new nodes added either join the already existing clusters or they form
their own cluster and force the root nodes in the neighbourhood to join. From
a certain number of nodes in the area, adding new nodes does not change the
number of clusters.

 0

 10

 20

 30

 40

 50

 0 50 100 150 200

N
u

m
b

e
r

o
f

c
lu

s
te

rs

Number of nodes

Simulation r=0.1a
Simulation r=0.2a
Simulation r=0.3a
Estimation r=0.1a
Estimation r=0.2a
Estimation r=0.3a

Figure 5.4: C4SD - average number of clusters on a×a area, with 5th and 95th
percentiles.

5.4.2.2 Cluster height

The design of DMAC imposes a maximum cluster height of one, so in this
section we are only interested to evaluate the cluster height for C4SD, which

104

5.4. Performance evaluation

does not have a theoretical limit. We run simulations with three transmission
ranges, and for each of them we vary the number of nodes. Figure 5.5 shows
the results as a function of the expected node degree, with the 5th and 95th
percentile values as error bars.

We can notice that for all the three transmission ranges, the points follow
the same curve. We conclude that, similarly to the cluster density, the aver-
age cluster height is only a function of the expected node degree (or network
density). This shows that the clustering algorithm has a good scalability perfor-
mance. The second conclusion is that the average cluster height is lower than 2,
and at least 95% of the clusters have the height lower or equal to 3. This result
indicates that we can achieve relatively small-height clusters without imposing
a maximal hop diameter limit, which would increase the maintenance effort and
generate the chain reaction effects.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 5 10 15 20 25 30

A
v
e

ra
g

e
 c

lu
s
te

r
h

e
ig

h
t

Expected node degree

r=0.1a
r=0.2a
r=0.3a

Figure 5.5: C4SD - average cluster height with 5th and 95th percentiles.

5.4.3 Service discovery performance

We compare the performance of the service discovery protocol using both DMAC
and C4SD, under the same topological and mobility conditions. Due to the men-
tioned dissimilarities between the two protocols, we expect different behaviours
when using them for discovery purposes.

We analyse the communication cost during the maintenance of the clus-
tering structure and the discovery of services. The energy consumption for

105

5. Cluster-based service discovery for heterogeneous wireless sensor networks

transmitting and receiving packets depends both on the hardware platform and
the MAC protocol. For this reason, instead of showing the results in terms of
energy consumption, we use the more general measure of counting the number
of packets sent and received for maintenance and discovery. The energy con-
sumption increases linearly with the time a node spends in transmission and
reception modes, which is proportional to the number of messages sent and
received [134, 63].

5.4.3.1 Maintenance overhead

In the first experiment we study the impact of the network density on the
maintenance overhead (number of UpdateInfo messages), in an average mobile
scenario, where 50% of the nodes are moving acording to the mobility model
described in Section 5.4.1.

When a node moves from one cluster to another, the old service registration
is deleted and a new registration is sent to the new clusterhead. However, the
knowledge on adjacent clusters needs more overhead: when a node v moves
from one cluster to another, all former neighbours of v must delete the infor-
mation related to v and report the change to their parents, which can belong
to different clusters. Similarly, all the new neighbours of v must add the infor-
mation provided by v and send it to their parents. On the one hand, due to
lower cluster density, C4SD has a lower overhead of maintaining the knowledge
on adjacent clusters. On the other hand, the service registration is cheaper for
DMAC due to the smaller cluster height. We are interested to examine the
cumulative maintenance overhead with different network densities.

Figure 5.6 shows the average number of messages sent and received by a node
in the network in one second of simulation time (as explained earlier, the start-
up phase of dynamic simulations is ignored). For sparse networks, where there
are few neighbouring clusters, the DMAC protocol behaves better. For dense
networks, the effort for maintaining the knowledge of adjacent clusters domi-
nates the overhead of service registrations, and thus C4SD overtakes DMAC.
We notice that for both protocols, the number of messages remains approxi-
mately constant after a certain network density. This is due to the fact that for
dense networks, it is likely that the information received from a new neighbour
does not change the already acquired knowledge of adjacent clusters, so it is not
propagated further in the tree.

We analyse the behaviour further when increasing the network mobility.
Figure 5.7 shows the experimental results with 100 nodes and percentage of
mobile nodes between 10% and 90%. We count the average number of messages

106

5.4. Performance evaluation

per second sent and received by a node. Compared to DMAC, C4SD behaves
progressively better when increasing the network mobility. The reason is that
the chain reaction inherent to DMAC triggers additional maintenance overhead
of the directory structure, where the service information and the knowledge
on adjacent clusters have to be updated at the new clusterheads. The more
dynamic the network, the more probable is this reaction to occur.

The numerical mean values of the simulation results, as well as the 5th and
95th percentiles, are given in the Appendix.

 0.045

 0.05

 0.055

 0.06

 0.065

 0.07

 0.075

 0.08

 0.085

 0.09

 40 60 80 100 120 140 160 180 200

A
v
e

ra
g

e
 n

u
m

b
e

r
o

f
m

e
s
s
a

g
e

s
 p

e
r

s
e

c
o

n
d

Number of nodes

C4SD
DMAC

Figure 5.6: The average number of UpdateInfo messages sent and received per
node in one second depending on the number of nodes.

5.4.3.2 Hit ratio

We analyse the hit ratio of both C4SD and DMAC, where the ServDisc messages
are forwarded to the service provider (see Section 5.3.2). A hit is present if the
service request reaches the matching service provider. The hit ratio is defined
as the number of hits over the total number of service requests.

Since C4SD has on average a higher cluster height than DMAC, the conver-
gence of service registrations is slower. As a consequence, we expect DMAC to
have a better hit ratio.

In our first experiments, no caching mechanism is involved. Figure 5.8 shows
the results depending on the percentage of moving nodes. As expected, DMAC
performs better than C4SD due to faster convergence. However, DMAC hit

107

5. Cluster-based service discovery for heterogeneous wireless sensor networks

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0 10 20 30 40 50 60 70 80 90 100

A
v
e

ra
g

e
 n

u
m

b
e

r
o

f
m

e
s
s
a

g
e

s
 p

e
r

s
e

c
o

n
d

Percentage of moving nodes

C4SD
DMAC

Figure 5.7: The average number of UpdateInfo messages sent and received per
node in one second depending on the percentage of moving nodes.

ratio drops similarly when increasing the network mobility. In our second set
of experiments we implement a limited-time caching of service requests (see
Section 5.3.2). By implementing caching we obtain a high hit ratio for both
protocols, which is above 0.98 for all mobility cases that we consider (see Fig-
ure 5.8).

5.4.3.3 The cost of service discovery

We are interested in the number of ServDisc messages exchanged during one
service discovery phase. Since C4SD has a lower cluster degree, we expect
that it also experiences a lower discovery cost. Figure 5.9 shows the average
number of service discovery messages sent and received per node for a network
of 100 nodes, depending on the percentage of moving nodes. We represent the
cost of service discovery with and without caching. We notice that caching
implies more messages spent in the service discovery phase. The discovery
cost is significantly smaller for C4SD (up to 50%), due to the lower cluster
density. DMAC experiences a rapid growth in the discovery cost when caching
is implemented.

Figure 5.10 shows the number of service discovery messages sent and received
per node, for a network with 50% of moving nodes, depending on the number

108

5.4. Performance evaluation

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 10 20 30 40 50 60 70 80 90 100

H
it
 r

a
ti
o

Percentage of moving nodes

C4SD no cache
DMAC no cache

C4SD cache
DMAC cache

Figure 5.8: Ratio of successful service requests depending on the percentage of
moving nodes.

 0

 1

 2

 3

 4

 5

 6

 0 10 20 30 40 50 60 70 80 90 100

A
v
e

ra
g

e
 n

u
m

b
e

r
o

f
m

e
s
s
a

g
e

s

Percentage of moving nodes

C4SD no cache
C4SD cache

DMAC no cache
DMAC cache

Figure 5.9: The average number of ServDisc messages sent and received per
node depending on the percentage of moving nodes.

109

5. Cluster-based service discovery for heterogeneous wireless sensor networks

of nodes. For dense networks, the number of messages per node decreases when
increasing the network density. This is an inherent property of our cluster-
based service discovery protocol, where the discovery messages are exchanged
among the root nodes. The reason is that the number of clusters converges to
a finite value when the network density increases, for both C4SD and DMAC
(see Section 5.4.2.1).

 1

 1.5

 2

 2.5

 3

 3.5

 4

 40 60 80 100 120 140 160 180 200

A
v
e

ra
g

e
 n

u
m

b
e

r
o

f
m

e
s
s
a

g
e

s

Number of nodes

C4SD cache
DMAC cache

Figure 5.10: The average number of ServDisc messages sent and received per
node depending on the number of nodes.

The numerical values of the results, as well as the 5th and 95th percentiles,
are given in the Appendix. We observe that the 5th percentile is close to 0 for
both C4SD and DMAC. The reason is that when a node searches for a service
present in its own cluster, the discovery process takes place locally, and thus
only a few messages are exchanged until the service is found.

To conclude this section, we make the following comments:

• The lower the cluster density, the lower the maintenance, discovery and
service reply costs.

• Smaller-height clusters achieve faster convergence and higher hit ratio.

• Caching of service requests can be used to improve the hit ratio.

• The chain reaction leads to higher maintenance costs.

110

5.5. Implementation

It follows that C4SD overtakes DMAC in dense and dynamic networks, when
caching is implemented for improving the hit ratio.

5.5 Implementation

In this section, we focus on practical issues when implementing the service dis-
covery mechanism on resource-lean sensor nodes. The resulting service-oriented
WSN has to fulfil the following three objectives:

1. To self-organize in a clustered structure and to detect and react to topology
changes due to mobility or communication errors.

2. To offer the users the possibility to discover and use the services available
in the network. The discovery protocol should exploit the underlying
clustered topology for a scalable and energy-efficient search.

3. To discover and use the available gateways to the outside world (mobile
phones, PDAs, laptops) that can be used for signalling relevant events, for
example alarms in the case of safety-critical situations.

From a practical point of view, we show that the solution is lightweight (both
code and data memory footprint), the interaction user-WSN is straightforward
and intuitive and the alarming from WSN to the world is simplified by using the
same discovery and communication protocol. The performance measurements
validate the theoretical and simulation results and show that the clustering
algorithm has low communication overhead and the service discovery protocol
scales with the network density.

5.5.1 Optimizations and extended functionality

In addition to the clustering and service discovery modules, our solution inte-
grates a series of optimizations for further reducing the energy consumption.
Moreover, the functionality is extended by allowing mobile gateway nodes to
join the WSN in an ad-hoc manner.

5.5.1.1 Cross-layer integration with MAC

When nodes change their role in the clustering structure, the SetRoot message
is broadcast from each node experiencing the change to its neighbours. Via
this message, the root identity is disseminated to the whole cluster and to the

111

5. Cluster-based service discovery for heterogeneous wireless sensor networks

borderline nodes belonging to adjacent clusters. A cross-layer approach with a
TDMA-based MAC protocol allows for an integration of the SetRoot message
with the control message exchanged periodically by neighbours at the MAC
layer. This method reduces the communication overhead and thus increases the
network lifetime (see Section 5.5.3 for a description of the cross-layer integration
with LMAC).

5.5.1.2 Integration of discovery and usage

After service discovery, the consumer is interested to make use of the desired
service, by selecting and establishing a connection with the appropriate service
provider. In the case where providing a service is equivalent to sending a short
piece of information to the consumer, extensive message exchange can be avoided
by integrating the service usage in the service discovery process. We identify
the following cases:

1. Service discovery and usage integration during the reply phase. The ser-
vice reply may incorporate partially or totally the information exchanged
during service usage. For example, suppose a service consumer issues a
discovery message which searches for the location of the nodes that are
sensing a particular measure or detecting an event. Upon receiving this
message, the nodes that match the service description issue a reply mes-
sage that already includes the location coordinates. In this way, subse-
quent service usage dialogue is avoided.

2. Service discovery and usage integration during the discovery phase. In a
similar manner, the discovery message may include an event, such as an
alarm about an undesired situation detected in the network (for example
a temperature exceeding a threshold value). In this case, the service dis-
covery message tries to discover gateway nodes capable of announcing the
event outside the network. The discovery message contains the service us-
age information (e.g. the sensor readings), so the service reply and usage
phases may be no longer be required.

5.5.1.3 Integration with mobile platforms

The traditional model of a WSN requires one sink node that collects the sensor
data and acts as a gateway to other networks such as Internet [31]. Our environ-
ment is composed of a multitude of sensor platforms and mobile devices, which
form a heterogeneous network. Some sensor nodes have gateway capabilities,

112

5.5. Implementation

being connected via wireless links (Bluetooth) to Smartphones or PDAs, which
in turn are connected to the GSM network or to the Internet (through WLAN).
In this way, the traditional model of WSN is extended to multiple, mobile gate-
way nodes. Using the gateway nodes, a two-way communication is possible: (1)
users can interact with the WSN by discovering and using the available services,
and (2) the WSN can discover and use the gateway nodes to announce relevant
events, for example alarms in the case of safety-critical situations.

We implement our service-oriented solution on sensor nodes, taking into
account the optimizations mentioned in Section 5.5.1 and the multiple gateway
integration. In what follows, we describe the hardware and the software details
of our implementation.

5.5.2 Hardware

We implement SD4WSN on the Ambient µNode 2.0 platform [13], equipped
with a low-power MSP430 micro-controller produced by Texas Instruments.
The sensor node offers 48kB of Flash memory and 10kB of RAM. The radio
operates in the 868/915MHz band and has a maximum data rate of 100kbps.

The connection of sensor nodes to mobile devices is done by using the Parani-
ESD200 Bluetooth module [19]. This module can communicate through its
on-board antenna with other Bluetooth devices in the range of 30m. It can be
connected to the Ambient µNodes via standard UART interface, and configured
and controlled by the typical AT command set. Figure 5.11 shows the Ambient
sensor node platform and the Parani Bluetooth module.

The node provided with a Bluetooth interface can connect to any other
Bluetooth-enabled device that supports the Serial Port Profile. We use Smart-
phones and PDAs carried by people as mobile gateways that can connect to the
GSM network and the Internet.

5.5.3 Software

Figure 5.12 shows the main functional modules of our prototype implementation.
For regulating the access of the sensor nodes to the wireless medium, we use
LMAC [87], an energy-efficient TDMA-based MAC protocol designed for WSNs.
LMAC divides time into slots, each node being assigned one slot when it can
transmit the data in a collision-free wireless medium. During its time slot, a
node transmits a control packet (as a heartbeat), followed by the actual data
(if any). The higher-layer protocols can use the control packet to piggyback a
small piece of information for an energy-efficient cross-layer integration. We use

113

5. Cluster-based service discovery for heterogeneous wireless sensor networks

Figure 5.11: The hardware: Parani-ESD200 Bluetooth module and Ambient
µNode 2.0 platform

this facility to disseminate and locally update the root identity, thus replacing
the SetRoot message of our clustering algorithm (see Section 5.5.1).

By analysing the control messages received from the neighbours, LMAC
constructs a neighbour table which is constantly maintained up-to-date. In this
way, LMAC can inform the higher layer protocols of the changes in the network
topology (links added or deleted). The Clustering Topology Control module
analyses the neighbourhood information provided by LMAC and constructs the
clustering structure, by choosing the appropriate parent node. Using the cross-
layer optimization, this module is informed about the root identity from the
control message exchanged periodically by LMAC. Through LMAC, the Clus-
tering Topology Control module receives from the children nodes and transmits
to the parent node the knowledge on adjacent clusters and the service registra-
tions.

The Service Discovery and Usage module receives either from the neigh-
bours, through LMAC, or from the mobile gateway, through Bluetooth, the
service discovery and usage unicast messages. In order to decide the next hop
for the service discovery messages, this module uses the clustering structure, the
information on adjacent clusters and the service registrations provided by the
Clustering Topology Control module. The received message is then forwarded
either to a neighbour from the WSN through LMAC, or to the gateway, through
Bluetooth. The Service Discovery and Usage module also receives the sampled
values from the attached sensors, so that it can include the sensor readings in

114

5.5. Implementation

Figure 5.12: Implementation overview.

the service usage message exchange.

The SD4WSN modules, (e.g. Clustering Topology Control Service Discovery
and Usage) have a total code memory footprint of 3KB and require 342B of
RAM, considering an average network density of 32 neighbours per node.

5.5.4 Demonstration setting

We present a demonstration setting as a proof of concept for our service-oriented
solution [10]. Figure 5.13 shows a set of sensor nodes organized into three clus-
ters and connected to gateway devices via Bluetooth interfaces. The capability
grades of the nodes determine the formation of clusters. The gateway nodes
have the two highest capability grades (14 and 15), as they are connected to
the Smartphones and PDAs. Consequently, they are chosen as clusterheads of
clusters 3 and 1. The clustering structure dynamically reorganizes in case of
mobility or node addition/removal.

The sensor nodes are equipped with light, temperature and movement (tilt
switch) sensors (see Table 5.5.4).

The following services are available in this setting:

115

5. Cluster-based service discovery for heterogeneous wireless sensor networks

Figure 5.13: Demonstration setting.

1. Sensor reading service - provides a simple sensor reading at the moment
of invocation (e.g. temperature reading).

2. Monitoring service - provides the history of a specified measure (e.g. light
monitoring over the last 20 minutes). This service necessitates the estab-
lishment of a communication session between the provider and the con-
sumer. First, the service parameters (e.g. time history) are established
between the two parties. Then, the service provider delivers the desired
history measurements to the user.

3. Alert service - enables the sending of SMS or Email through the mobile
devices when an an abnormal situation occurs in the network. The WSN
searches for these services provided by gateway nodes in order to announce
the event to the GSM network or Internet.

Figure 5.14 shows the service discovery and usage console which runs on the
mobile devices. The user can select the desired service from a list and launch
the search command which initiates a service discovery message. The message is
transmitted via the Bluetooth interface to the gateway node and then forwarded
according to the SD4WSN protocol. When the service is found, a service reply
message will announce the consumer about the result of the search.

116

5.5. Implementation

Sensor Manufacturer Model

Light Texas Advanced TSL2550
Optoelectronic Solutions

Temperature National Semiconductor LM92
Tilt switch Assemtech Europe CW1300-1

Table 5.1: Sensor types

The result of discovering a simple temperature reading service is shown in
Figure 5.14(a). Besides the address of the service provider, the service reply
message also incorporates the temperature value (see Section 5.5.1 for the inte-
gration of service discovery and usage). The user can browse the list of sensor
nodes that offer the temperature service, having also access to the sensor read-
ings.

In contrast to the sensor reading service, the monitoring services require a
more complex dialogue between provider and consumer. First, the user launches
a discovery message to find out the providers of the monitoring service. Upon
receiving the list of providers, the user selects one of them, establishes the
service parameters and invokes the service. Figure 5.14(b) shows an example of
a light monitoring service. The user selects node 11 from the list of providers
and specifies the time history (20 minutes) over which to retrieve the sampled
data (the maximum time history is embedded in the service reply messages:
25 minutes for node 11). The result of the service invocation is illustrated in
Figure 5.14(c), where the history of the sampled data is plotted on the mobile
device.

In the case where a sensor node registers an abnormal sensor value (tem-
perature or light level exceeded, vibrations), the node issues a service discovery
message which incorporates the sensor reading. The discovery message travels
the clustered WSN in search for an SMS or an Email service. Upon receiving
the message, the mobile device displays an alarm and announces the event (see
Figure 5.14(d)).

Figure 5.15 shows a detail of the demonstration setting, namely two sensor
nodes, a mobile phone and a Smartphone. The first sensor node is equipped
with a tilt switch sensor and is thus capable of detecting vibrations. The second
node is provided with a Bluetooth interface and can connect to the Smartphone
to send events. The situation depicted in the figure is the following: the node
with a tilt switch sensor detects a high level of vibrations and issues a discovery
message for an SMS service. The message travels the clustered WSN and reaches

117

5. Cluster-based service discovery for heterogeneous wireless sensor networks

(a) Sensor reading service
usage

(b) Monitoring service -
message exchange

(c) Result of monitoring
service usage

(d) Gateway discovery for
announcing events

Figure 5.14: Service discovery and usage console.

118

5.5. Implementation

Figure 5.15: Announcing events.

the node with the Bluetooth module, which provides the desired service and
transmits the message to the Smartphone. The Smartphone in turn, displays
an alarm and sends an SMS to the mobile phone.

5.5.5 Performance measurements

We implement SD4WSN on the Ambient µNodes and we measure the perfor-
mance by deploying a series of testbeds of up to 25 nodes. We analyse the
number of messages exchanged until network convergence, the number of re-
sulting clusters and the cost of service discovery, on an average case scenario.
In order to estimate the average case, we generate a series of random topologies
offline (up to 5 hops), which we disseminate to the WSN at the beginning of
each test. Similar to the simulations, the nodes are considered to be placed on
a square area of size a×a, using the cyclic distance model. We make the obser-
vation that the cyclic distance model is not valid in a real-life setting. However,
for measuring the performance of SD4WSN in a small-scale test bed, this model
has the advantage that it increases the connectivity of the network.

To be able to measure the performance of the proposed algorithms under

119

5. Cluster-based service discovery for heterogeneous wireless sensor networks

different network densities, we choose r = 0.3a as the highest transmission range
considered in Section 5.4. We vary the number of nodes from 5 to 25 and thus
the network density (e.g. average node degree) increases from 1.4 to 7. For each
network density in turn we run 20 experiments, each consisting of the following
steps:

1. Disseminate the network topology.

2. Compute the number of messages exchanged until network convergence.

3. Count the number of resulting clusters.

4. Issue a service discovery message from a random node in the network.

5. Calculate the number of service discovery messages exchanged.

A gateway node connected through the serial port to a computer is used
for disseminating the network topology. Each node thus receives a set of valid
neighbours, while the rest of the neighbours become ignored by the MAC layer.
The gateway node is also used for gathering the experimental results, by acting
as a network sniffer. In this way, we can establish when nodes do not exchange
messages any longer, which means that the network reached convergence or the
experiment is finished.

In the following, we compare the experimental results with the simulations.
To provide a fair comparison, the simulation results in this section are obtained
under similar conditions as the experiments, following the steps (1)-(5).

In our experiments, the average number of resulted clusters lies between 3
and 3.5, which is in accordance with the theoretical and simulation results from
Figure 5.4.

Figure 5.16 shows the average number of UpdateInfo messages sent and
received per node for updating the knowledge on adjacent clusters and the ser-
vice registrations. The messages are counted starting from a newly initialized
network until the network convergence. We notice that the results of the im-
plementation are close to the simulation results. In the first part of the plot,
the number of messages per node grows linearly with the network density, while
in the last part of the plot, the increase in the number of messages per node
starts attenuating. The same result is obtained for our dynamic simulations
(see Figure 5.6).

We represent in Figure 5.17 the number of service discovery messages sent
and received per node during one service discovery phase. We notice the simi-
larity between the implementation and the simulation results: once the network

120

5.6. Conclusions

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 5 10 15 20 25 30

A
v
e

ra
g

e
 n

u
m

b
e

r
o

f
m

e
s
s
a

g
e

s

Number of nodes

Implementation
Simulation

Figure 5.16: The average number of UpdateInfo messages sent and received per
node until network convergence.

is connected, increasing the density does not increase total discovery cost, be-
cause the service discovery messages travel only among the clusterhead nodes,
which remain constant in number. Therefore, in the second part of the plot, the
total number of discovery messages remains on average approximately constant,
which means that the average number of discovery messages sent and received
per node decreases. A similar evolution is found for the dynamic simulations
(see Figure 5.10).

The numerical values of the implementation results with 5th and 95th per-
centiles are given in the Appendix. Similar to the results from Section 5.4.3.3,
the 5th percentile of the discovery cost is close to 0, due to the low overhead
induced by a local search (i.e. within the same cluster).

5.6 Conclusions

This chapter proposes SD4WSN, a service discovery protocol for heterogeneous
WSNs. The protocol relies on C4SD, a clustering algorithm that offers dis-
tributed storage of service descriptions. The clusterhead nodes act as directo-
ries for the services in their clusters. The structure ensures low construction
and maintenance overhead, reacts quickly to topology changes and avoids the
chain-reaction problems. The topology is not required to be static during the

121

5. Cluster-based service discovery for heterogeneous wireless sensor networks

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 5 10 15 20 25 30

A
v
e

ra
g

e
 n

u
m

b
e

r
o

f
m

e
s
s
a

g
e

s

Number of nodes

Implementation
Simulation

Figure 5.17: Average number of ServDisc messages sent and received per node
during one service discovery phase.

cluster initiation phase. A service lookup results in visiting only the clusterhead
nodes, which ensures a low discovery cost.

We analyse theoretically and through simulations the properties of the clus-
tering structure in comparison with DMAC and we investigate how the service
discovery performance depends on the underlying clustering structure. Our re-
sults show that the chain reaction of DMAC determines reclustering and rereg-
istration of services with new clusterheads, implying higher maintenance over-
head. The smaller-height clusters of DMAC leads to higher hit ratio. The
hit ratio is improved to more than 98% for both protocols if a mechanism of
limited-time caching of service discovery messages is used. Due to the lower
cluster density, C4SD has a lower discovery cost in both implementation alter-
natives.

We implement the proposed algorithms on resource-constraint sensor nodes
and we show that the solution is lightweight (both code and data memory foot-
print). We evaluate the performance by running the protocol on a series of
testbeds. The experimental results confirm the simulations and show that the
protocol scales with the network density.

122

5.6. Conclusions

Appendix

We present the numerical average values from simulations and experiments,
along with 5th and 95th percentiles, in order to complement the point estimations
with confidence intervals.

Number of nodes 40 60 80 100 150 200

C4SD - average value 0.057 0.066 0.067 0.066 0.066 0.065

C4SD - 5th percentile 0.049 0.058 0.058 0.057 0.059 0.058

C4SD - 95th percentile 0.066 0.077 0.077 0.072 0.073 0.072

DMAC - average value 0.05 0.062 0.072 0.076 0.085 0.086

DMAC - 5th percentile 0.043 0.054 0.062 0.06 0.07 0.068

DMAC - 95th percentile 0.057 0.069 0.084 0.09 0.105 0.108

Table 5.2: Average number of UpdateInfo messages sent and received per node
in one second, depending on the number of nodes, with 5th and 95th percentiles
(see Figure 5.6)

Percentage of moving nodes 10 30 50 70 90

C4SD - average value 0.015 0.042 0.068 0.096 0.13

C4SD - 5th percentile 0.012 0.035 0.059 0.086 0.122

C4SD - 95th percentile 0.017 0.047 0.078 0.109 0.138

DMAC - average value 0.014 0.043 0.076 0.118 0.161

DMAC - 5th percentile 0.012 0.036 0.06 0.099 0.15

DMAC - 95th percentile 0.016 0.054 0.09 0.137 0.172

Table 5.3: Average number of UpdateInfo messages sent and received per node
in one second, depending on the percentage of moving nodes, with 5th and 95th

percentiles (see Figure 5.7)

123

5. Cluster-based service discovery for heterogeneous wireless sensor networks

Percentage of moving nodes 10 30 50 70 90

C4SD no cache - average value 1.37 1.41 1.44 1.42 1.87

C4SD no cache - 5th percentile 0.04 0.04 0.04 0.04 0.04

C4SD no cache - 95th percentile 2.14 2.22 2.36 2.5 3.94

C4SD cache - average value 1.42 1.55 1.69 1.86 2.48

C4SD cache - 5th percentile 0.04 0.04 0.04 0.04 0.04

C4SD cache - 95th percentile 2.2 2.46 2.7 3.18 4.7

DMAC no cache - average value 2.22 2.47 2.63 2.86 3.27

DMAC no cache - 5th percentile 0.04 0.04 0.04 0.04 0.04

DMAC no cache - 95th percentile 3.28 3.88 4.52 5.08 5.66

DMAC cache - average value 2.29 2.7 3.11 3.84 5.33

DMAC cache - 5th percentile 0.04 0.04 0.04 0.04 0.04

DMAC cache - 95th percentile 3.31 4.1 5.18 6.69 9.46

Table 5.4: Average number of ServDisc messages sent and received per node,
depending on the percentage of moving nodes, with 5th and 95th percentiles (see
Figure 5.9)

Number of nodes 40 60 80 100 150 200

C4SD cache - average value 1.4 1.98 1.88 1.68 1.31 1.13

C4SD cache - 5th percentile 0 0.02 0.04 0.04 0.02 0.02

C4SD cache - 95th percentile 2.71 3.2 2.98 2.86 2.73 2.16

DMAC cache - average value 1.93 2.86 3.06 3.11 2.79 2.23

DMAC cache - 5th percentile 0 0.03 0.05 0.04 0.03 0.02

DMAC cache - 95th percentile 3.95 4.85 4.93 5.18 4.7 3.45

Table 5.5: Average number of ServDisc messages sent and received per node, de-
pending on the number of nodes, with 5th and 95th percentiles (see Figure 5.10)

124

5.6. Conclusions

Number of nodes 5 10 15 20 25

Implementation - average value 0.94 2.41 4.15 6.09 6.35

Implementation - 5th percentile 0.4 1.2 2.27 4.29 4.93

Implementation - 95th percentile 2 3.92 6.58 7.54 8.18

Simulation - average value 1.14 2.73 4.07 5.52 6.11

Simulation - 5th percentile 0.4 1.6 2.67 3.6 4.11

Simulation - 95th percentile 2.8 4.2 6.64 7.9 8.29

Table 5.6: Average number of UpdateInfo messages sent and received per node
until network convergence, with 5th and 95th percentiles (see Figure 5.16)

Number of nodes 5 10 15 20 25

Implementation - average value 0.4 0.55 0.87 0.73 0.52

Implementation - 5th percentile 0 0 0.06 0.05 0.07

Implementation - 95th percentile 0.5 0.8 1.4 1.01 0.77

Simulation - average value 0.41 0.56 0.83 0.79 0.6

Simulation - 5th percentile 0 0 0 0.05 0.01

Simulation - 95th percentile 0.53 0.86 1.11 0.93 0.8

Table 5.7: Average number of ServDisc messages sent and received per node dur-
ing one service discovery phase, with 5th and 95th percentiles (see Figure 5.17)

125

5. Cluster-based service discovery for heterogeneous wireless sensor networks

126

Chapter 6

On-line recognition of joint
movement in wireless
sensor networks

We propose a method through which dynamic sensor nodes determine that they
move together or separately by communicating and correlating their movement
information. This method provides the necessary information to construct clus-
ters based on semantic similarity among sensor nodes. We describe two possible
solutions, one using inexpensive tilt switches, and another one using low-cost
MEMS accelerometers. We implement a fast, incremental correlation algorithm,
which can run on resource constrained devices. The tests with the implemen-
tation on real sensor nodes show that the method distinguishes between joint
and separate movements. In addition, we analyse the scalability from four dif-
ferent perspectives: communication, energy, memory and execution speed. The
solution using tilt switches proves to be simpler, cheaper and more energy effi-
cient, while the accelerometer-based solution is more accurate and more robust
to sensor alignment problems.

6.1 Introduction

Emerging applications of wireless sensor networks (WSNs) demand an increas-
ing degree of dynamics. The sensor nodes are expected to take decisions au-

127

6. On-line recognition of joint movement in wireless sensor networks

tonomously, by using context-aware reasoning, and to provide an overall solution
that is more reliable, accurate and responsive than traditional approaches. Ex-
amples of recent application domains include industrial processes, transport and
logistics, user guidance in emergency situations [121]. In all these scenarios, we
notice a growing interest in having many small, cheap devices that self-organize
and cooperate, in order to supervise and actively support the actual processes.
The challenges shift, accordingly, from small-scale user-to-device interaction to-
wards large-scale device-with-device collaboration. In parallel, the design choices
migrate from centralized approaches towards scalable, distributed techniques,
that can be implemented on resource constrained devices.

Our goal is to develop a method for constructing dynamic clusters based
on nodes sharing a common context. We argue that such a method opens
perspectives for a large variety of applications, ranging from user entertainment
(people hiking or skiing together) and healthcare (body area networks), to smart
vehicles carrying smart goods (in the field of transport and logistics, as we
describe in Section 6.2). In this chapter, the common context is the movement
information. More specifically, we consider a set of nodes being together if their
movement correlates for a certain amount of time. Nevertheless, correlating the
movement information raises a number of questions:

1. How to extract and communicate the movement information?

2. How to compute the correlation, taking into account the resource limita-
tions of the sensor nodes?

3. How does the method scale with the number of nodes?

4. How accurate is the solution and which are the benefits and limitations?

The contribution of this chapter is a lightweight, fast and cheap method for
correlating the movement data among sensor nodes, for the purpose of clustering
nodes moving together. Each node correlates the movement data generated by
the local movement sensor with the movement data broadcast periodically by
its neighbours. The result of the correlation is a measure of the confidence that
one node shares the same context with its neighbours, for example that they
are placed in the same car. We focus in this chapter on correlating sensor nodes
carried by vehicles on wheels.

We describe two possible practical solutions, one using tilt switches, and an-
other one using MEMS accelerometers. In order to answer the aforementioned
questions in detail, we analyse the scalability from several different perspectives

128

6.2. Application setting

Figure 6.1: Movement sensors (left) and sensor node platform (right).

(communication, energy, memory and execution speed), and discuss the most
relevant advantages and limitations. The analysis is based on the experimen-
tal results obtained from testing with real sensor nodes. We use the Ambient
µNode 2.0 platform [13] with the low-power MSP430 micro-controller produced
by Texas Instruments, which offers 48kB of Flash memory and 10kB of RAM.
The radio transceiver has a maximum data rate of 100kbps. Figure 6.1 shows
the sensors used for extracting the movement information and the sensor node
platform.

In the following section we describe a concrete application setting in the
field of transport and logistics, which best illustrates the idea of movement-
based group awareness. Section 6.3 overviews the relevant related work. The
general correlation method is described in Section 6.4. In Sections 6.5 and 6.6
we present the two practical solutions for determining the movement charac-
teristics. Section 6.7 covers the analysis, advantages and limitations of both
solutions, giving also comparative details whenever relevant. Finally, Section
6.9 formulates the conclusions.

6.2 Application setting

The motivating application is in the field of transport and logistics, which is
described in detail in Chapter 1. Referring back to this application, the solution
that we propose targets two specific problems regarding loading errors (products
loaded into RTIs and RTIs loaded into trailers). First, the goods from an RTI
correlate their movement as the RTI is pushed, and report as a group to the
device carried by the order picker. In this way, a missing or wrong item can
be detected before arriving on the expedition floor. Second, any RTI placed in

129

6. On-line recognition of joint movement in wireless sensor networks

the wrong trailer should be signalled as the truck approaches the exit gate (see
Figure 1.1). Since the distance between two RTIs or two trucks is quite short, the
localization of the goods inside the RTI, or of the RTIs inside the truck cannot
be done reliably with radio signal strength proximity techniques. However,
we consider it highly probable that two different vehicles move differently in a
certain time interval. Therefore, our goal is to group the nodes based on the
similarities and differences in the data generated by the movement sensors.

6.3 Related work

In the project Smart-Its, Gellersen et al. [89] formulate the notion of context
sharing. The idea is to associate two smart objects by shaking them together.
As a result, the user can establish an application-level connection between two
devices by imposing a brief, similar movement. For example, the two devices
can authenticate using secret keys that are generated based on the movement
data [123]. In our work, we are interested in extending the idea of “moving
together” at the group level, within large-scale transport and logistics scenar-
ios. Therefore, we propose a fast algorithm that correlates the movement over
a larger time history, and analyse the accuracy, scalability, performance and
limitation factors.

Lester et al. [109] use accelerometer data to determine if two devices are
carried by the same person. Human locomotion represents a repeated activity
that makes an analysis in the frequency domain possible. The authors use a co-
herence function to derive whether the two signals are correlated at a particular
frequency. Our application domain poses, however, quite different challenges.
There is no regularity in the movement of the RTIs that can facilitate an analysis
in the frequency domain. Moreover, the computations involved in the frequency
analysis can easily overcome the resources available on sensor nodes.

The Sensemble system [36] is meant to capture the expressive motion of
a dance ensemble. Sensor nodes equipped with 6-axis inertial measurement
units are worn at the wrists and ankles of dancers. The movement data is
transferred at high speeds (1Mbps) towards a central computer, where a cross-
covariance analysis is performed, in order to express the similarity of gestures
and generate a musical feedback. Our solution is different, in the sense that
sensor nodes compute the correlation online, autonomously. In addition, due to
price limitations, we utilize low data rate radios and just one movement sensor
per node.

Lam et al. [105] propose an algorithm for dynamic grouping based on the

130

6.4. General Method

position and speed of mobile devices equipped with GPS sensors. Nodes within
a certain area that move together (similar speed and direction) form a group.
However, equipping each node with a GPS sensor is not a viable solution for
WSNs, because of price and power consumption considerations.

6.4 General Method

We propose a method that distinguishes between joint and separate movements
of sensor nodes based on the correlation coefficient computed on two sets of
data generated by movement sensors. The correlation coefficient measures the
similarity between two signals by giving a number on a scale from -1 and 1.
In the following, we describe in detail the practical method for computing the
correlation coefficient on sensor nodes.

6.4.1 Computing the Correlation

Let x be one of the sensor nodes, which receives the sampled movement data
from another sensor node y. Node x stores the latest sample values pro-
duced by the local movement sensor in a circular buffer XC of size k. The
buffer XC is periodically transmitted to the neighbours at intervals k∆t, where
∆t is the sampling interval. At step i ≥ 1, x receives from y the buffer
Yi = {y(i−1)k+1, y(i−1)k+2, ..., yik}. Node x then copies the buffer XC into
a working copy Xi = {x(i−1)k+1, x(i−1)k+2, ..., xik} and calculates the corre-
lation coefficient over the last n sequences of data Xi and Yi. More pre-
cisely, at each step i, the correlation coefficient is calculated over a sliding
window of size N = nk, with the data X = (x(i−n)k+1, x(i−n)k+2, ..., xik) and
Y = (y(i−n)k+1, y(i−n)k+2, ..., yik). Note that for j ≤ 0, xj = yj = 0. If we de-
note the means of X and Y as X̄ and Ȳ , respectively, the correlation coefficient
is computed as follows:

ρ(X,Y) = cov(X,Y)√
var(X) var(Y)

=
∑ ik

j=(i−n)k+1 (xj−X̄)(yj−Ȳ)
√

∑ ik
j=(i−n)k+1 (xj−X̄)2

∑ ik
j=(i−n)k+1 (yj−Ȳ)2

(6.1)

Table 6.1 shows the execution time for computing the correlation coefficient
on one sensor node, with two sets of samples of size N = 128. We conclude that
using the direct computation from Eq. 6.1 generates slow execution times, so it
is not feasible for implementation on resource-constraint devices. Therefore, we
propose a fast algorithm that updates the correlation coefficient at each step.
For large data sequences (large k), the memory consumption is also reduced

131

6. On-line recognition of joint movement in wireless sensor networks

Method Complexity Impl. Operation Time [ms]

Direct O(N) float Average 68.91

computation Variance, covariance, 275.65
correlation coefficient
Total 344.56

Incremental O(k) int16, Auxiliary sums 0.81
algorithm int32 Average, variance, 5.47

covariance,
correlation coefficient
Total 6.28

Table 6.1: Execution times on MSP430 microcontroller, for N=128, k=16.

by storing only intermediate values (see Section 6.7.2 for an evaluation of the
memory consumption).

The algorithm is the following. At step i, node x receives the buffer Yi from
node y. Node x then calculates the following sums:

Sx
i =

ik
∑

j=(i−1)k+1

xj and Sy
i =

ik
∑

j=(i−1)k+1

yj (6.2)

σx
i =

ik
∑

j=(i−1)k+1

x2
j and σy

i =

ik
∑

j=(i−1)k+1

y2
j (6.3)

Sxy
i =

ik
∑

j=(i−1)k+1

xjyj (6.4)

Afterward, node x computes the following values:

X̄i = X̄i−1 +
Sx

i − Sx
i−n

N
(6.5)

Ȳi = Ȳi−1 +
Sy

i − Sy
i−n

N

vari(X) = vari−1(X) +
σx

i − σx
i−n

N
− (X̄2

i − X̄2
i−1) (6.6)

vari(Y) = vari−1(Y) +
σy

i − σy
i−n

N
− (Ȳ 2

i − Ȳ 2
i−1)

132

6.4. General Method

covi(X,Y) = covi−1(X,Y) +
Sxy

i − Sxy
i−n

N
− (X̄iȲi − X̄i−1Ȳi−1) (6.7)

Finally, node x computes the new value of the correlation coefficient:

ρi(X,Y) =
covi(X,Y)

√

vari(X) vari(Y)
(6.8)

We make the following observations:

• For all j ≤ 0, Sx
j , Sy

j , σx
j , σy

j , Sxy
j , varj(X), varj(Y) and covj(X,Y) are

0.

• If vari(X) = 0 and vari(Y) = 0, we take ρi(X,Y) = ρi−1(X,Y).
If vari(X) = 0 and vari(Y) 6= 0 or the other way around, we decrease
ρi(X,Y) with a value proportional to the positive variance.

Our implementation of the incremental algorithm is done on integers, be-
cause (1) it has a faster execution, and (2) the accumulation of rounding errors,
which can affect the algorithm accuracy, is avoided. For integer computation,
we have the following formulae:

N2vari(X) = N2vari−1(X) + N(σx
i − σx

i−n)− ((NX̄i)
2 − (NX̄i−1)

2)

N2covi(X,Y) = N2covi−1(X,Y) + N(Sxy
i − Sxy

i−n)−N2(X̄iȲi − X̄i−1Ȳi−1)

Further details on the binary representation of data are given in the Ap-
pendix. Only the final computation of the correlation coefficient is done on
floats, which does not affect the precision of the coefficient at the next step.

The algorithm proves to be much faster than the direct computation of
Eq. 6.1, as shown in Table 6.1. This result makes the implementation of the
online correlation on sensor nodes possible.

6.4.2 Experimental Setting

We perform two types of experiments, in which we test the proposed method:

1. The first type of experiment is intended to reproduce the movement pat-
tern of the smart goods, in which items equipped with sensor nodes are
placed in RTIs maneuvered by people. Throughout the tests, we use two
RTIs on wheels, which we push on a flat surface in a sequence of start-stop
movements (see Figure 6.2(a)). The characteristics of the movement are
the following:

133

6. On-line recognition of joint movement in wireless sensor networks

(a) Node with tilt switch attached
to an RTI.

(b) Node with tilt switch placed
inside the car.

Figure 6.2: Sensor nodes attached to vehicles on wheels.

• Walking speed

• Mostly straight lines

• Start-stop intervals of variable size

• Sometimes reverse movements

For detecting joint movement, two sensor nodes are placed on the same
RTI, while for separate movement, each sensor node is placed on a different
RTI, each pushed by a different person.

2. The second type of experiment maps to the setting where RTIs are loaded
into and carried by trucks. We use instead two regular cars which we drive
in the university campus (see Figure 6.2(b)). Our experiments include the
following types of movements:

• Normal driving

• Accelerating and breaking

• Forward and backward maneuvers, curves

• Driving on even and uneven surfaces

134

6.4. General Method

Parameter Explanation Value

k Size of current data sequence 16 (2s)

n No. of data sequences in data queue 8
N = nk Size of queue 128
∆t Time unit (sampling interval) 125ms
T = N∆t Time history 16s

Table 6.2: Experimental parameters for correlating the movement data.

Two sensor nodes are placed in the same car for joint movement, while
for separate movement nodes are placed inside different cars.

Each experiment lasts approximately 10 minutes. The sensor nodes broad-
cast the movement data together with the correlation coefficient calculated lo-
cally. A gateway node logs the coefficients and the samples from both sensor
nodes to a computer through a serial interface.

6.4.3 Parameters

Table 6.2 lists the values of the parameters used in the experiments, which are
chosen considering the platform constraints (sampling interval ∆t and data size
k) and the scenario particularities (time history T).

6.4.4 Synchronization

The synchronization between two sets of data to be correlated is important
for accurately calculating the correlation coefficient. The usual synchronization
mechanism requires periodic beaconing among nodes. The synchronization er-
ror is typically in the order of microseconds, depending on the sent time, access
time, propagation time and receive time [68, 87]. Without implementing an ex-
plicit synchronization mechanism, our method achieves implicit synchronization
between pairs of nodes through periodic broadcast of movement data. We use
cross-layer optimization for minimizing the sent time, access time and receive
time: at the moment the sender is allowed to transmit in its slot, it copies the
last k samples and broadcasts them to the neighbours. When receiving the
data, the last k samples of the local node are copied in a working buffer for
processing. If a transmission error occurs, the next message contains again the
latest k samples, such that the neighbours receive the most up-to-date sampled
data.

135

6. On-line recognition of joint movement in wireless sensor networks

6.5 Solution I - Tilt Switches

A ball-contact tilt switch (also referred to as ball switch or tilt switch) is a simple
and cheap sensor, used in a large range of applications for coarse movement
detection. Usually, the sensor is expected to provide binary information on the
status of the device it is attached to (e.g. stationary/moving).

6.5.1 Extracting the Movement Information

In our experiments, we are using the ASSEMTECH CW1300-1 tilt switch [14].
The price is below 2 EUR and the power consumption is approximately 2µW.
Our solution is based on counting the number of contacts made by the switch
ball per time unit (i.e. 125ms), as the object is moved. We make the following
observations:

1. It is possible to distinguish the starting and stopping states (acceleration
and deceleration) from the constant movement.

2. The tilt switch has a sensitive axis. Therefore, the sensitivity depends on
the orientation of the tilt switch (see Figure 6.2 for the actual placement).

3. The results are reproducible with other switches of the same type. Al-
though the actual values vary due to the inherent sensitivity differences
and imperfect alignment of the sensitive axis, the movement pattern re-
mains similar.

6.5.2 Experimental Results

Figure 6.3 shows the typical behaviour of the algorithm for joint and separate
movements, over a period of 20 seconds. The plots at the top of the figures show
the correlation coefficients calculated by the sensor nodes over the time history
T , while the two bottom plots show the sampled data from the tilt switches.
We make the following observations:

• The sampled data from Figure 6.3(a) show a pattern, corresponding to
the alternate stationary and movement periods.

• There is a clear distinction between the moving and stationary cases: when
the sensor nodes are static, the number of ball contacts is 0. Therefore, in
a static situation, nodes may not need to send the whole movement buffer,
but just a short indication of their state, saving thus energy.

136

6.5. Solution I - Tilt Switches

0 2 4 6 8 10 12 14 16 18 20
0

0.2
0.4
0.6
0.8

1

Time [s]

C
o

rr
e

la
ti
o

n
c
o

e
ff

ic
ie

n
t

1
st

 sensor

2
nd

 sensor

0 2 4 6 8 10 12 14 16 18 20
0

20
40
60
80

100

Time [s]

B
a

ll
c
o

n
ta

c
ts

1
s
t s

e
n

s
o

r

0 2 4 6 8 10 12 14 16 18 20
0

20
40
60
80

100

B
a

ll
c
o

n
ta

c
ts

2
n
d
 s

e
n

s
o

r

Time [s]

(a) Two nodes with tilt switches moving together.

0 2 4 6 8 10 12 14 16 18 20
−1

−0.75
−0.5

−0.25
0

0.25
0.5

0.75
1

Time [s]

C
o

rr
e

la
ti
o

n
c
o

e
ff

ic
ie

n
t

1
st

 sensor

2
nd

 sensor

0 2 4 6 8 10 12 14 16 18 20
0

20
40
60
80

100

Time [s]

B
a

ll
c
o

n
ta

c
ts

1
s
t s

e
n

s
o

r

0 2 4 6 8 10 12 14 16 18 20
0

20
40
60
80

100

B
a

ll
c
o

n
ta

c
ts

2
n
d
 s

e
n

s
o

r

Time [s]

(b) Two nodes with tilt switches moving separately.

Figure 6.3: A typical behaviour of the algorithm for joint and separate move-
ments, using tilt switches.

137

6. On-line recognition of joint movement in wireless sensor networks

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

Correlation coefficient

F
re

q
u
e
n
c
y

(a) Tilt switches on RTIs, moving
together.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

Correlation coefficient

F
re

q
u
e
n
c
y

(b) Tilt switches in cars, moving
together.

−1 −0.8−0.6−0.4−0.2 0 0.2 0.4 0.6 0.8 1
0

5

10

15

Correlation coefficient

F
re

q
u
e
n
c
y

(c) Tilt switches on RTIs, moving
separately.

−1 −0.8−0.6−0.4−0.2 0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

Correlation coefficient

F
re

q
u
e
n
c
y

(d) Tilt switches in cars, moving
separately.

Figure 6.4: Histograms of correlation coefficients for tilt switches.

• For the type of movement described in Section 6.4.2, the method is suc-
cessful in distinguishing between correlated and uncorrelated movements.
Our experiments indicate that a high correlation coefficient corresponds
to joint movement, (Figure 6.3(a)), while a low correlation coefficient is
recorded during separate movements (Figure 6.3(b)).

We represent the histograms of the correlation coefficients obtained on the
entire duration of the experiments (≈10 minutes) in Figure 6.4, normalized to
a percentage scale. We notice the difference between the correlation coefficients
computed when sensors move together (Figures 6.4(a) and 6.4(b)) and sepa-
rately (Figures 6.4(c) and 6.4(d)). A more detailed analysis of the results is
given in Section 6.7.1.

138

6.6. Solution II - Accelerometers

6.6 Solution II - Accelerometers

MEMS accelerometers have become increasingly popular recently, due to their
relatively low price compared with the performance offered. The range of appli-
cations is quite broad, from movement or free-fall detection to gaming or virtual
reality, and inertial navigation systems (INS) [153]. The operating principle is
based on measuring the displacement of a proof mass when an acceleration
is applied. The accelerometer measures, therefore, the applied acceleration (in-
cluding gravitation), and outputs the values of the projections along its sensitive
axis.

6.6.1 Extracting the Movement Information

By using accelerometers, it is possible to extract elaborate information about
the movement, such as the speed and distance. However, to calculate the speed
and position accurately, information provided by gyroscopes has to be used for
maintaining an absolute positional reference. In this way, the overall complexity
and price of the system increase significantly. Moreover, the accumulation of
errors require elaborated filtering and prediction techniques [135].

From these considerations, it appears that the resource-constraint sensor
nodes are not yet capable of extracting and correlating speed or distance in-
formation. Therefore, we propose a simplified solution, which considers the

magnitude of the acceleration vector ‖ a ‖=
√

a2
x + a2

y + a2
z. The reason is

that the magnitude of the sensed acceleration is the same in any frame of refer-
ence. Consequently, the alignment and orientation of the sensors are no longer
important.

In our experiments, we are using the LIS3LV02DQ three-axis accelerometer
from STMicroelectronics [24]. The price is around 15 USD and the typical power
consumption is 2mW. The list of features include user selectable full scale of
±2g, ±6g, I2C/SPI digital interface, programmable threshold for wake-up/free-
fall and various sample rates up to 2.56kHz.

6.6.2 Experimental Results

Figure 6.5 shows the typical behaviour of the algorithm for joint and separate
movements, over a period of 20 seconds. The plots at the top of the figures
show the correlation coefficients calculated by the sensor nodes over the time
history T , while the two bottom plots show the magnitude of the acceleration

139

6. On-line recognition of joint movement in wireless sensor networks

0 2 4 6 8 10 12 14 16 18 20
0

0.2
0.4
0.6
0.8

1

Time [s]

C
o

rr
e

la
ti
o

n
c
o

e
ff

ic
ie

n
t

1
st

 sensor

2
nd

 sensor

0 2 4 6 8 10 12 14 16 18 20
−2
−1

0
1
2
3
4

Time [s]

A
c
c
e

le
ra

ti
o

n
 [

m
/s

2
]

1
s
t s

e
n

s
o

r

0 2 4 6 8 10 12 14 16 18 20
−2
−1

0
1
2
3
4

A
c
c
e

le
ra

ti
o

n
 [

m
/s

2
]

2
n
d
 s

e
n

s
o

r

Time [s]

(a) Two nodes with accelerometers moving together.

0 2 4 6 8 10 12 14 16 18 20
−1

−0.75
−0.5

−0.25
0

0.25
0.5

0.75
1

Time [s]

C
o

rr
e

la
ti
o

n
c
o

e
ff

ic
ie

n
t

1
st

 sensor

2
nd

 sensor

0 2 4 6 8 10 12 14 16 18 20
−2
−1

0
1
2
3
4

Time [s]

A
c
c
e

le
ra

ti
o

n
 [

m
/s

2
]

1
s
t s

e
n

s
o

r

0 2 4 6 8 10 12 14 16 18 20
−2
−1

0
1
2
3
4

A
c
c
e

le
ra

ti
o

n
 [

m
/s

2
]

2
n
d
 s

e
n

s
o

r

Time [s]

(b) Two nodes with accelerometers moving separately.

Figure 6.5: A typical behaviour of the algorithm for joint and separate move-
ments, using accelerometers.

140

6.6. Solution II - Accelerometers

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

Correlation coefficient

F
re

q
u
e
n
c
y

(a) Accelerometers on RTIs,
moving together.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

Correlation coefficient

F
re

q
u
e
n
c
y

(b) Accelerometers in cars, moving
together.

−1 −0.8−0.6−0.4−0.2 0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

Correlation coefficient

F
re

q
u
e
n
c
y

(c) Accelerometers on RTIs,
moving separately.

−1 −0.8−0.6−0.4−0.2 0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

Correlation coefficient

F
re

q
u
e
n
c
y

(d) Accelerometers in cars, moving
separately.

Figure 6.6: Histograms of correlation coefficients for accelerometers.

calculated by the sensors, relative to 1g (the constant gravitational component).
We make the following observations:

• A node can deduce that it is static by calculating the standard deviation
over the current data sequence k: a stationary situation can be assumed in
case a relatively small standard deviation is recorded. The reason is that
constant acceleration or speed cannot be achieved due to the vibrations
registered by sensitive accelerometers. Therefore, similar to the tilt switch
case, in static situations nodes may just send a short indication of their
state.

• The method is successful in distinguishing between correlated and uncor-
related movements, for both types of experiments. A high correlation coef-
ficient indicates that the sensor nodes move together (Figure 6.5(a)), while
a low correlation coefficient shows a separate movement (Figure 6.5(b)).

141

6. On-line recognition of joint movement in wireless sensor networks

We represent the histograms of the correlation coefficients in Figure 6.6, nor-
malized to a percentage scale. We notice the difference between the correlation
coefficients computed when sensors move together (Figures 6.6(a) and 6.6(b))
and separately (Figures 6.6(c) and 6.6(d)). A more detailed analysis of the
results is given in Section 6.7.1.

6.7 Analysis

In this section, we discuss the two proposed solutions, and analyse the accuracy
and scalability problems, pointing out the advantages and limitations.

6.7.1 Accuracy

One of the major questions is how accurate are the proposed methods. In Ta-
ble 6.3, we present a brief statistical analysis of the results obtained from our
experiments with RTIs and cars. The mean values of the correlation coefficient
indicate a constant difference of more than 0.6 between joint and separate move-
ment, in any of the listed settings. The standard deviation values suggest that
the accelerometers provide more precise results. This fact is confirmed by the
histograms from Figures 6.4 and 6.6. Knowing the correct output of the algo-
rithm (joint or separate movement), the accuracy is computed as the percentage
of correct decisions out of the total number of algorithm iterations. The deci-
sions are based on a threshold ThC = 0.5, which is the middle point between the
value 0 for no correlation and 1, which corresponds to perfect correlation (for
the computing a threshold which minimizes the sum of probabilities of an in-
correct determination, see Chapter 7). The accelerometer-based solution proves
more accurate, with 3.4% on average and a maximum of 5.2%. In addition, due
to their better sensitivity, the accelerometers can identify reliably the separate
movement situation.

A clustering algorithm that intends to reproduce the physical reality by
grouping the nodes which are moving together can use this method for the
detection of joint movement. The accuracy of the method has a great influence
on the correctness of the clustering algorithm. To improve accuracy, (1) sensor
fusion techniques can be used [96] and/or (2) decisions can be made over a larger
time history, as shown within the next chapter.

142

6.7. Analysis

Sensor Setting Movement Mean Stdev Accuracy
type [%]

Tilt switch RTI joint 0.641 0.087 95.89
Tilt switch RTI separate -0.017 0.249 99.45
Tilt switch car joint 0.700 0.121 93.77
Tilt switch car separate 0.086 0.208 95.50
Accelerometer RTI joint 0.817 0.106 99.31
Accelerometer RTI separate 0.009 0.124 100
Accelerometer car joint 0.796 0.102 98.93
Accelerometer car separate -0.003 0.127 100

Table 6.3: Statistical values.

6.7.2 Scalability

We present the factors that influence the maximum number of nodes supported
by our proposed correlation methods. We denote the maximum number of neigh-
bouring nodes as M . It follows that a node has maximum M − 1 neighbours,
for which it computes the correlation coefficients.

Communication (Medium Access). We estimate the maximum number
of neighbouring nodes M as follows. Each node transmits a data sequence every
k∆t. If a TDMA-based MAC protocol is used, then the frame length Tf has to
be at most k∆t, so that each node has a chance to transmit the data. The slot
time Ts of a node is therefore bounded by MTs = Tf ≤ k∆t. Depending on the
radio chip used, the slot time for sending a data packet can be computed. In
our experiments, Ts = 20ms, which leads to M = 100.

Memory. The available memory (RAM and FLASH) is usually a critical
resource on sensor nodes. The FLASH usage is not a problem, since the code
memory footprint of our implementation on the sensor node platform amounts
to 2.1kB out of 48kB available. Considering the recent low-power controllers
equipped with 10kB RAM and computing the memory requirements for auxil-
iary sums and correlation data from Eq.6.6-6.8, we obtain a maximum number
of nodes M = 106.

Execution Time. Since the correlation algorithm runs online, the nodes
must have enough time within one slot to receive and process the incoming
data. It follows that the execution time Te must be smaller than the slot time:
Te < Ts = Tf/M ⇒M < Tf/Te. For the values used in our experiments, we get
M < 318. This shows that the speed of the algorithm is not a limiting factor
from the scalability point of view.

143

6. On-line recognition of joint movement in wireless sensor networks

0 20 40 60 80 100
10

1

10
2

10
3

10
4

T
im

e
 [

h
o

u
rs

]

M

Tilt switch

Accelerometer

Figure 6.7: The running time for continuous movement.

Energy. Estimating the energy consumption is always important for the
battery powered sensor nodes. We consider the radio communication and sensor
operation as the most costly functions in terms of energy. For communicating
the sampled data, a node performs M−1 receptions and one transmission every
frame Tf . Typical radio current consumption on Ambient µNodes is 12.8mA for
reception and 11mA for transmission. In addition, the current consumed with
operating the sensors is 0.64µA for tilt switches and 0.65mA for accelerometers.
Figure 6.7 shows the operating time for a node with a typical 1000mAh battery.
The running time is represented depending on the number of neighbouring nodes
M . The maximum values for M are deduced from the previous analysis, as
being M = 100. As an example, for M = 50, the system can operate for
approximatively 156 hours of continuous movement when using tilt switches
and 142 hours when using accelerometers. However, the overall lifetime of a
node increases if the movement intervals are short: during stationary periods,
a node needs to send only an indication of its status, not the whole movement
buffer.

6.7.3 Discussion

In what follows, we comment on the most important advantages and limitations
of both solutions, giving also comparative details whenever relevant.

144

6.7. Analysis

6.7.3.1 Advantages

1. Autonomous joint movement recognition. The proposed methods recog-
nize the joint movement of vehicles on wheels, with the final aim at estab-
lishing groups autonomously. No infrastructure support is needed.

2. Simplicity. The overall system (hardware and software) is kept simple.
This implies both a low price range and the feasibility of the implementa-
tion on resource constrained devices.

3. Robustness to constructive differences of sensors. The correlation coef-
ficient gives an indication on the degree of similitude of two signals. It
is known that the result is neither affected by scaling the signals with a
certain factor, nor by adding/subtracting a constant value. This makes
our method inherently robust to constructive differences of sensors, such
as: calibration factors, zero-offset values, differences in sensitivity.

4. Distinction between ensemble and separate movements. Figures 6.4 and
6.6 indicate a good behaviour, with separable thresholds for distinguishing
between ensemble and disjoint movement. However, the solution employ-
ing accelerometers proves more accurate in all tested situations.

5. Implicit synchronization. There is one important factor that can adversely
affect the correctness of the correlation result, and that is time synchro-
nization. It is therefore essential that the data sequences Xi, Yi are syn-
chronized when computing the correlation coefficient. For this reason,
the incoming data from neighbours is correlated with the latest values
sampled on the current node. Moreover, it is preferable not to use any
retransmission mechanisms, since occasional packet losses do not affect
the synchronization.

6. Saving power while stationary. In static situations, nodes can save energy
by transmitting just a short indication of their status.

7. Extended features. More accurate results may be obtained by correlating
extended movement features, such as direction or heading, speed, dis-
tance. In this sense, the accelerometer-based solution is much richer in
possibilities.

145

6. On-line recognition of joint movement in wireless sensor networks

Figure 6.8: Two sensor nodes with accelerometers attached to a toy car.

6.7.3.2 Limitations

1. Alignment and orientation. Because movement is always relative to a
frame of reference, different alignment or orientation of the sensors may
produce misleading results. In the case of tilt switches, a similar alignment
is necessary for obtaining a correct behaviour, such as in Figure 6.3(a).
In contrast, for the accelerometer-based solution, no alignment is needed,
since we are correlating the magnitude of the acceleration vector. This
approach might also yield better results in the case of tilt switches, if a
system such as Porcupine [104] is used, where each node is equipped with
several switches oriented along different axis.

2. Unpredictable delays. Networking stack and sensor sampling delays can
adversely affect the time synchronization of data sequences Xi, Yi, even-
tually leading to errors in the correlation estimation. Timestamping the
incoming Yi at the receiver node x, and choosing the corresponding Xi to
correlate with, can alleviate the problem of networking stack delays.

3. Placement on loose frames. Throughout our tests, the sensor nodes are
placed on the same rigid frame. We expect that the movement data be-
comes less correlated if the sensors are attached to loosely-coupled frames,
such as the wagons of a train.

146

6.8. Demonstration

4. Multihop networks. Our solution is valid only for one-hop networks. A
multihop network would impose a transitive correlation relation among
sensor nodes. While the joint movement is a transitive relation, a low
accuracy of the correlation algorithm can adversely affect the results for
a multihop network. However, the algorithm could be improved in this
case for example by computing the correlation coefficient using multiple
connection paths.

6.8 Demonstration

The demonstration [11] shows how the sensor nodes recognize online the joint
movement. We use four sensor nodes with accelerometers, placed on two wire-
lessly controlled toy cars, as shown in Figure 6.8. The nodes convey their cor-
relation decision by using different LED colours. In addition, a gateway node
collects the correlation coefficients periodically broadcast by each moving node,
together with the movement data, and logs them to the base station through a
standard RS-232 interface. The base station provides a graphical user interface
(see Figure 6.9), which shows the movement signals over a recent time history,
the latest sampled data, the correlation coefficients between each two nodes and
which nodes are considered together. Figure 6.9 displays a situation where the
nodes 1 and 2 are together, being attached to the same car, while the nodes 3
and 4 are together on the other car controlled by a different remote controller.

Setting Correlation Correlation
joint movement separate movement

RTIs High Low

Real cars High Low

Toy cars, different controllers High Low

Toy cars, same controller High High

Table 6.4: Behaviour of the algorithm for different experimental settings.

During the demonstration, we test the behaviour of the algorithm when the
toy cars are also controlled by the same remote controller. The results show that
when the cars move exactly in the same way, receiving the same commands from
the controller, the nodes experience a high correlation coefficient, leading to the
wrong conclusion that they are attached to the same car. In practice, however,
we consider highly improbable that two vehicles move identically, fact shown

147

6. On-line recognition of joint movement in wireless sensor networks

Figure 6.9: Demonstration interface.

by the experiments with RTIs and cars. Table 6.4 summarizes the behaviour of
the algorithm under various experimental settings.

6.9 Conclusions

This chapter proposes a method for recognizing joint and separate movement of
wireless sensor nodes. Nodes are moving together if their movements correlate
for a certain amount of time. For extracting the movement information, we
investigate two solutions, one using tilt switches, the other one using accelerom-
eters. On the one hand, the solution using tilt switches proves to be cheaper,
simpler and less energy consuming. On the other hand, the solution using ac-
celerometers is more reliable in distinguishing between ensemble and separate
movements and it does not need any sensor alignment. Nevertheless, the solu-
tion is more complex, as the magnitude of the acceleration has to be calculated
from the three samples corresponding to the three axes. The scalability analysis
shows a maximal network density of 100 nodes for both solutions.

148

6.9. Conclusions

Extracting semantic information about sensor nodes is essential to achieve
context-aware clustering. In the next chapter, we propose a clustering mech-
anism that uses the semantic information in the decision process, such that
nodes with similar semantic properties are grouped together with the final goal
of providing a service.

Appendix

The proofs of Eq. 6.6 and 6.7 are the following:

vari(X) =

ik
∑

j=(i−n)k+1

(xj − X̄i)
2

N
=

ik
∑

j=(i−n)k+1

x2
j

N
− X̄2

i =

= (

(i−1)k
∑

j=(i−n−1)k+1

x2
j

N
− X̄2

i−1) +
ik

∑

j=(i−1)k+1

x2
j

N
−

−
(i−n)k
∑

j=(i−n+1)k+1

x2
j

N
− X̄2

i + X̄2
i−1 =

= vari−1(X) +
σx

i − σx
i−n

N
− (X̄2

i − X̄2
i−1)

covi(X,Y) =
ik

∑

j=(i−n)k+1

(xj − X̄i)(yj − Ȳi)

N
=

ik
∑

j=(i−n)k+1

xjyj

N
− X̄iȲi =

= (

(i−1)k
∑

j=(i−n−1)k+1

xjyj

N
− X̄i−1Ȳi−1) +

ik
∑

j=(i−1)k+1

xjyj

N
−

−
(i−n)k
∑

j=(i−n−1)k+1

xjyj

N
− X̄iȲi + X̄i−1Ȳi−1 =

= covi−1(X,Y) +
Sxy

i − Sxy
i−n

N
− (X̄iȲi − X̄i−1Ȳi−1)

149

6. On-line recognition of joint movement in wireless sensor networks

The size of binary data for integer computation is the following:

Variable Size Representation

k 23 int8

N 27 int8

xi, yi 28 int8

Sx
i , S

y
i 211 int16

σx
i , σ

y
i , S

xy
i 220 int32

NX̄i, NȲi 215 int16

N2X̄2
i , N2Ȳ 2

i , N2X̄iȲi 230 int32

N(σx
i), N(σy

i), NS
xy
i 226 int32

N2vari(X), N2vari(Y), N2covi(X, Y) 232 int32

Table 6.5: Binary data size.

150

Chapter 7

A context-aware method for
spontaneous clustering of
wireless sensor nodes

Wireless sensor nodes attached to everyday objects and worn by people are able
to collaborate and assist users in their activities. We propose a method through
which wireless sensor nodes organize spontaneously into clusters based on a
common context. Given that the confidence of sharing a common context varies
in time, the algorithm takes into account a window-based history of contextual
information. We approximate the behaviour of the algorithm using a Markov
chain model and we analyse theoretically the cluster stability. We compare
the theoretical approximation with simulations, by making use of experimental
results from field tests. We show the tradeoff between the length of the time
history necessary to achieve a certain stability and the responsiveness of the
clustering algorithm.

7.1 Introduction

Wireless sensor networks, smart everyday objects and cooperative artefacts rep-
resent all different facets of the ubiquitous computing vision, where sensor-
enabled devices are integrated in the environment and provide context-aware
services to the users. Various systems have already shown how to retrieve the

151

7. A context-aware method for spontaneous clustering of wireless sensor nodes

context, such as the physical context (e.g. position, movement [80]), the situ-
ation (e.g. meeting [161]) and even the emotional context (e.g. mood detec-
tion [78]). One step further is to have sensor nodes that interact and use com-
mon contextual information for reasoning and taking decisions locally. Such a
“networked world” opens perspectives for novel applications in numerous fields,
including transport and logistics (see Chapter 1), industrial manufacturing [119],
healthcare [115], civil security and disaster management [122].

The Smart-Its project [89] introduces the notion of context sharing: two
smart objects are associated by shaking them together. Using this explicit
interaction between the two devices, an application-level connection can be es-
tablished. For example, the two devices can authenticate using secret keys that
are generated based on the movement data [123].

In this chapter, we explore a non-traditional networking paradigm based
on context sharing. Previous work shows that sensor nodes can recognize a
common context and build associations of the type ”moving together”. Firstly,
Lester et al. [109] use accelerometer data to determine if two devices are carried
by the same person. The authors use a coherence function to derive whether
the two signals are correlated at a particular frequency. Secondly, in Chapter 6,
we propose a correlation algorithm which determines whether dynamic sensor
nodes attached to vehicles on wheels move together. Starting from this results,
we address the problem of organizing the nodes sharing a common context into
stable clusters, given the dynamics of the network and the accuracy of the
context-recognition algorithm.

The contributions of this chapter are as follows. Firstly, we propose Tandem,
an algorithm for spontaneous clustering of mobile wireless sensor nodes. The
algorithm allows reclustering in case of topological or contextual changes, and
achieves stable clusters if there are no changes in the network, by analysing
the similarity of the context over a time history. Secondly, we approximate the
behaviour of the algorithm using a Markov chain model, which allows us to
estimate the percentage of time the clustering structure is correct given that
the topology is stable. Thus, we are able to analyse the cluster stability both
theoretically and through simulations, using experimental results from real field
tests. Thirdly, we study the tradeoff between the time history necessary to
achieve a certain stability and the responsiveness of the clustering algorihm.
As a result, we estimate the delay induced by the time history, given a desired
cluster stability.

152

7.2. Application scenarios

7.2 Application scenarios

We describe two applications where wireless sensor nodes are able to extract and
communicate the general contextual information for creating a dynamic cluster.
The clusters then provide services such as reporting the group membership,
analysing the cluster activity, recognizing fine-grained events and actions.

7.2.1 Transport and logistics

Using wireless sensor networks technology in transport and logistics is particu-
larly interesting for dynamically locating the goods, generating automatic pack-
ing lists, as well as for monitoring the storage condition of a product (e.g.
temperature, light) or its surroundings (see Chapter 1). Figure 7.1 shows the
general idea of context-aware grouping in the transport and logistics scenario,
where products loaded into rolling containers correlate their movement infor-
mation and report as a group to the transport company personnel.

The list generator for automatic packing described by Antifakos et al. works
in a similar manner [33]. Various order items are packed in a box and an invoice
is generated. In order to find out where a certain item is, nodes with movement
sensors can be attached to each good. When the box is moved around, the items
inside can correlate their movement and decide that they form a group. When
the objects are grouped, checking on the goods and packing lists can be done
automatically.

Figure 7.1: Transport and logistics scenario.

153

7. A context-aware method for spontaneous clustering of wireless sensor nodes

7.2.2 Body area networks

Wearable computing aims at supporting workers or people in everyday life by
delivering context-aware services. One important aspect is the recognition of hu-
man activities, which can be inferred from sensors integrated into garments and
objects people are interacting with, denoted by Body Area Networks (BANs).
The usage of context information enables a more natural interaction between hu-
mans and computers, and can assist workers with complex tasks with just now
relevant information. Examples include training unskilled workers for assem-
bly tasks [146], monitoring the health and activity of patients [115], assisting
firefighters engaged in rescue operations in unknown environments with poor
visibility [70].

Clustering of nodes based on the movement of persons simplifies the selec-
tion of relevant sensors from the environment (i.e. only the nodes attached to or
handled by the person) which can contribute to the recognition of the currently
performed activity. The advantage of clustering is that the recognition process-
ing can be kept within the cluster, which is important for environments where
multiple people are present. Therefore, clustering can be used to provide: (1)
identification of the body wearing the sensors, (2) a better recognition stability
when selecting sensors moving with a person for the recognition task, and (3)
potentially a trusted network where private data can be communicated only to
nodes within the cluster.

7.3 Algorithm description

The goal of Tandem is to organize the nodes that share the same context, so
that they can subsequently collaborate to provide a service. Tandem makes the
following assumptions:

Assumption 6 Each node periodically runs a shared-context recognition algo-
rithm with its neighbours. This algorithm provides a number on a scale, repre-
senting the confidence value that two nodes are together.

The confidence value can be for example the output of a coherence function,
which measures the extent to which two signals are linearly related at each
frequency, on the scale from 0 to 1 [109], or the correlation coefficient, which
indicates the strength and direction of a linear relationship, on the scale from
-1 to 1 (see Chapter 6). The shared-context recognition algorithm permanently
evaluates the context, so that at each time step every node has an updated

154

7.3. Algorithm description

image of the current situation, reflected in a new set of confidence values (one
for every neighbour). Since the context recognition algorithm has a certain
accuracy, the perceived context determined by the confidence values may vary
in time.

7.3.1 Requirements

Following the Transport and logistics and Body area networks scenarios from
Section 7.2, the nodes sharing the same context are within each-others transmis-
sion range, so we consider only one-hop clusters. The environment is dynamic,
where the topology and context can change at any time. The requirements for
the clustering algorithm are the following:

1. Incorporate dynamics. The clusters can merge or split, depending on the
context changes. Nodes can join and leave the cluster if the topology
or context changes. For example, in the BAN scenario, people can pick
up and use different tools, and then return or exchange them with other
people. In this case, the nodes attached to the tools have to join and
leave the BAN clusters. Contextual and topological changes cannot be
predicted, so the algorithm cannot assume a stable situation during cluster
formation.

2. Stability. If there are no contextual or topological changes, the clustering
structure has to be stable. Following the remark that every node periodi-
cally re-evaluates the shared context with its neighbours, the fluctuations
of the confidence values may lead to unwanted changes in the cluster struc-
ture. Therefore, the cluster has to cope with these fluctuations in order
to keep the structure as stable as possible. A solution to increase the
stability is to analyse the similarity of the context over a larger time in-
terval. In this sense, a tradeoff has to be found between the spontaneity
in accommodating changes and the desired cluster stability.

3. Energy-efficiency. The communication overhead should be kept to a min-
imum, for prolonging the lifetime of the wireless network.

4. Facilitate service provisioning. The clusters have to interact with the
higher-layer applications and provide context-aware services to the user.

155

7. A context-aware method for spontaneous clustering of wireless sensor nodes

Algorithm 5: Tandem - node v (events/actions)

Initialization:

1. r(v)← ⊥, r(u)← ⊥, ∀u ∈ Γ(v)

SelectParent :

1. r0(v)← r(v), Γ0(v)← Γ(v)
2. Update Γ(v), N1(v), N2(v), y(v) // N1 ← {m ∈ Γ(v) | h(v, m) > hmin}
3. if N1 = ∅ then

4. r(v)← ⊥ // Become unassigned
5. else

6. if N2(v) 6= ∅ then

7. if (r(v) = ⊥) ∨ (r(v) 6= v ∧ r(v) /∈ N2(v)) ∨ (r(v) = v ∧ pn(v) < pn(y(v))) then

8. r(v)← y(v) // Choose y(v) as the root of v
9. end if

10. else if r(v) 6= v then

11. if { u ∈ N1 | r(u) 6= ⊥} = ∅ then

12. r(v)← v // Become root
13. else

14. r(v)← ⊥
15. end if

16. end if

17. end if

18. if (r(v) 6= r0) ∨ (Γ(v) \ Γ0(v) 6= ∅) then

19. Send SetRoot (v, r(v)) to neighbours // Announce root change
20. end if

SetRoot(u,r): // Update the information from neighbour u

1. r(u)← r

7.3.2 Cluster formation algorithm

Tandem represents a simplification of the generalized clustering algorithm de-
scribed in Chapter 4, where for every node v, the generic sets N1(v), N2(v) and
conditions P1(v), P2(v), P3(v) are replaced with the specific instances of Tan-
dem. Each node v periodically evaluates the confidence of sharing the same
context with its neighbours. If the confidence with a neighbour u exceeds a
certain threshold, then v considers that it shares the same context with u for
the given time step. The final decision for sharing the same context with u is
founded on the confidence values from a number of previous time steps, called
the time history (see Section 7.4.1).

To provide a consistent management of the membership list and cluster orga-
nization, a clusterhead or root node is dynamically elected among the nodes that

156

7.3. Algorithm description

share the same context. This also assists the service provisioning, by having a
single point of interaction with the higher-layer applications (see Requirement 4
from Section 7.3.1). In order to allow merging of clusters and to facilitate the
election process, each node is assigned a unique priority number, either based on
the node’s hardware address, the resources available or as a context-dependant
measure. A regular node subscribes to the clusterhead with which it shares a
common context and which has the highest priority number.

We use the following notation, in addition to the notation defined in Chap-
ter 4:

• pn(v) is the priority number of node v, corresponding to the weight w(v).

• h(v, u) represents the number of times v and u share a common context
over a total time history of H steps.

• hmin is the minimum number of times when two nodes are sharing a
common context, such that they can safely be considered part of the same
cluster; we redefine the notation from Chapter 4: if h(v, u) > hmin then
s(v, u) = 1, else s(v, u) = 0.

Tandem constructs a set of one-hop clusters, based on the context informa-
tion shared by the nodes. A node v can be: (1) unassigned, where v is not
part of any cluster, (2) root, where v is clusterhead, or (3) assigned, where v is
assigned to a cluster where the root node is one of its neighbours.

Algorithm 5 gives the detailed description of the cluster formation and up-
date of knowledge among neighbouring nodes. Every node has the following
information about its neighbours: the root, the priority number and whether
it shares a common context for a specified time history. Let v be an arbitrary
node in the network. At each time step, node v changes or chooses its root
node in the following cases: (1) v is unassigned, (2) v does not share a com-
mon context with its root, (3) the root of v is no longer a root or (4) v is root
and there is another neighbour root, sharing the same context with v, that has
a higher priority number. In any of these cases, v chooses as root node the
neighbour root u with which it shares a common context and which has the
highest priority number. If such a neighbour does not exist, v competes for
clusterhead or becomes unassigned. The decision is based on the current status
of the neighbours and tries to minimize the effect of the following erroneous
situation: due to context fluctuations, an assigned node v may loose its root
node and cannot join another cluster because none of its neighbours is a root.
Therefore, v may become root, form a new cluster and attract other nodes in

157

7. A context-aware method for spontaneous clustering of wireless sensor nodes

that cluster. To avoid this undesirable outcome, a node declares itself root only
if all its neighbours with which it shares a common context are unassigned. If
there exists at least one neighbour u with which v shares a common context and
u has a valid root node, then v becomes unassigned.

Node v announces the changes in choosing the root node by sending a local
broadcast message SetRoot to its neighbours. In case of topological changes, this
message is also used to announce the new neighbours of the current structure.
Tandem thus allows cluster merging or splitting, which meets the Requirement 1
from Section 7.3.1. We make the observation that there is no additional strain
in terms of communication overhead on the clusterheads compared to the other
nodes (see Algorithm 5).

Let us consider the example from Figure 7.2. A BAN is associated with
each person, consisting of five nodes placed in various locations: backpack,
belt, pocket and wrist. The clustering structure is seen from the perspective
of node 4, which is attached to the wrist of the left person. The clusterheads
are represented with big circles (nodes 1 and 8). The dark-coloured arrows
indicate the assignment of the other nodes to the current clusterheads. Node
7 is unassigned, as the shared-context recognition algorithm did not associate
this node with any of the neighbouring clusterheads at the previous time step.
The light-coloured arrows show the confidence values of node 4 at the current
time step, using the coherence function. The confidence values for the nodes on
the same body with node 4 range between 0.66 and 0.88, while for the other
body they lie between 0.39 and 0.57. Because the confidence of sharing the same
context with the root node 1 is 0.66 and above the threshold of 0.6, node 4 keeps
the current root (see Section 7.4.1 for the computation of the threshold value).
Otherwise, it would have become unassigned (node 4 has some neighbours with
the same context, having a valid root node), or assigned to the other cluster,
if the confidence value for the neighbouring root node 8 was higher than the
threshold.

7.4 Cluster stability analysis

Several algorithms for context sharing have been proposed in the literature,
using various sensors and providing different accuracies (see Section 7.1). How-
ever, none of them gives a measure of the overall accuracy of the system (i.e.
how well does it mimic the reality), when multiple nodes sharing different con-
texts come together. We would like to analyse the cluster stability from both
the theoretical point of view, by giving the average, upper and lower bounds,

158

7.4. Cluster stability analysis

Figure 7.2: Graphical simulation of the clustering algorithm on BANs.

and through simulations. In addition, we are interested in the tradeoff between
the time history necessary to achieve a certain stability and the responsiveness
of the clustering algorithm. First, we compute the probabilities of correctly
assessing the context, given the distribution of the confidence values. Second,
we model the output of the algorithm using Markov chains and we derive an
approximation for the proportion of time the clustering structure is in a correct
state.

7.4.1 Determination of common context

In this section, we give an example of how the probabilities of correct detection
of the shared context can be computed.

Let v be a node in the network and u a neighbour of v. If v does not share
the same context with u (e.g. they represent sensor nodes attached to different
persons), we model the confidence value computed by the shared-context recog-
nition algorithm with the random variable X1(v, u). If v shares the same context
with u (e.g. they are attached to the same person), we model the confidence
value as a random variable X2(v, u). We take the distribution encountered dur-
ing the experiments as the reference Probability Density Function (PDF): we
associate the random variables X1(v, u) with the PDF ϕ1 and the corresponding

159

7. A context-aware method for spontaneous clustering of wireless sensor nodes

µ2µ1
T

1−p
1−q

ϕ1

ϕ2

Figure 7.3: The calculation of the threshold value T and the probabilities p
(correct detection of a common context) and q (correct detection of different
contexts).

Cumulative Distribution Function (CDF) Φ1. Similarly, we associate the ran-
dom variables X2(v, u) with the PDF ϕ2 and CDF Φ2. We make the following
assumptions:

Assumption 7 X1(v, u) and X2(v, u) are normally distributed.

Assumption 8 ϕ1 and ϕ2 are the same for every pair of nodes (v, u).

Node v selects the subset of its neighbours with which it shares a common
context based on a threshold value T . We choose T as the intersection point
of the two PDFs ϕ1 and ϕ2, since this minimizes the sum of probabilities of an
incorrect determination. We denote p as the probability of a correct detection
of a common context and q as the probability of a correct detection of different
contexts. The probabilities p and q are computed in the following way (see
Figure 7.3):

p = 1− Φ2(T), q = Φ1(T) (7.1)

We compute the threshold value for the case where the distributions are
normal, which is valid for the applications described in Section 7.2 (see the
experimental data from Chapter 6 and [109]). Let us consider two normal
distributions, ϕ1(µ1, σ1) and ϕ2(µ2, σ2), where µ1 6= µ2. The intersection point
of ϕ1 and ϕ2 which lies between µ1 and µ2 is the following:

160

7.4. Cluster stability analysis

{

T = µ1+µ2

2 for σ1 = σ2

T =
µ1σ2

2−µ2σ2
1+σ1σ2

√
(µ1−µ2)2+2(σ2

2−σ2
1)ln(σ2/σ1)

σ2
2−σ2

1
for σ1 6= σ2

(7.2)

Using Eq. 7.1 and 7.2, it is straightforward to compute p and q, knowing the
characteristics of ϕ1 and ϕ2. We are now interested in how these probabilities
change if we involve the time history in the decision process. The probability ph

of the correct detection that two nodes share a common context for a minimum
time history hmin out of a total of H time steps is given by the CDF of the
binomial distribution:

ph(hmin,H) =

H
∑

k=hmin

(

H
k

)

pk(1− p)H−k (7.3)

Similarly, the probability qh of the correct detection of different contexts for
a minimum time history hmin out of a total of H time steps is:

qh(hmin,H) =

H
∑

k=hmin

(

H
k

)

qk(1− q)H−k (7.4)

We have therefore p = ph(1, 1) and q = qh(1, 1).
Using these probabilities, we model the output of the algorithm using Markov

chains, as described within the next section.

7.4.2 Modelling with Markov chains

We approximate the behaviour of the algorithm with a Markov chain, which
allows us to estimate the global probability of having a correct cluster. We
stress on the difference between a time step and a Markov chain step. A time
step is related to the periodic update of the context information by the shared-
context recognition algorithm which runs on every node. For improving the
probabilities of a correct detection of a shared context, the algorithm looks over
a time history H, composed of a number of time steps (see Section 7.4.1). A
Markov chain step is the “memoryless” transition from one state to another,
which happens on intervals equal to the total time history H.

We define a group G as the collection of nodes that share the same context
in reality. We define a cluster C as the collection of nodes which have the same
root node (as a result of Agorithm 1). The goal of the clustering algorithm

161

7. A context-aware method for spontaneous clustering of wireless sensor nodes

is that for any group of nodes G, there exists a cluster with the root r0 ∈ G
such that ∀v ∈ V, r(v) = r0 ⇔ v ∈ G. Taking the example from Figure 7.2,
we have two groups: G1 = {0, 1, 2, 3, 4}, G2 = {5, 6, 7, 8, 9} and two clusters:
C1 = {0, 1, 2, 3, 4} with root node 1, C2 = {5, 6, 8, 9} with root node 8. Node 7
is unassigned, and thus it is not part of any cluster.

We define the following states for a cluster C:

1. Correct: The cluster has a root node from the group and all the members
of the group are part of the cluster (we intentionally take G ⊆ C; the
nodes from C \G are part of other groups, which have the corresponding
clusters in an incorrect state).

2. Has root: The cluster has a root, but not all the members of the group
are part of the cluster.

3. No root: None of the cluster members is root.

4. Election: After reaching state 3, members of the cluster start an election
process for choosing the root node.

For example, cluster C1 from Figure 7.2 is Correct, while C2 is in the state
Has root, since node 7 is unassigned.

The Markov chain determined by the transition matrix P :

P =

p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34

p41 p42 p43 p44

Let m ≥ 0 be the number of root nodes with higher priority than the current
root and k ≥ 1 the number of nodes in the cluster. If the cluster has a root, let
r0 be the root node. The probabilities pij are evaluated in a worst case scenario,
by minimizing the chance to get in the Correct state.

The conditions which determine the probabilities pij are the following:

• p11: (a) r0 remains root in the next step, as r0 does not share the same
context with other root nodes with higher priority (i.e. qm), and (b) all
other nodes in the group share the same context with r0 (i.e. pk−1).

• p12: (a) r0 remains root in the next step (i.e. qm), and (b) there exists at
least one node in the group that does not share the same context with r0

(i.e. 1− pk−1).

162

7.4. Cluster stability analysis

Probability Value Probability Value

p11 qmpk−1 p21 qmpk−1qm(k−1)

p12 qm(1 − pk−1) p22 qm(1 − pk−1qm(k−1))
p13 1 − qm p23 1 − qm

p14 0 p24 0

p31 0 p41 0

p32 0 p42 qmk(1 − (1 − p)k(k−1))
p33 0 p43 0

p34 1 p44 1 − qmk(1 − (1 − p)k(k−1))

Table 7.1: Transition probabilities pij , where p is the probability of a correct
detection of a common context, q is the probability of a correct detection of
different contexts, m is number of root nodes with higher priority than the
current root and k is the number of nodes in the cluster.

• p13: r0 shares the same context with a root node with higher priority, so
that it gives up its role and joins another cluster (i.e. 1− qm).

• p21: (a) r0 remains root in the next step (i.e. qm), (b) all other the nodes
in the group do not share the same context with other root nodes with
higher priority (i.e. qm(k−1)) and (c) all other nodes in the group share
the same context with r0 (i.e. pk−1).

• p23: r0 shares the same context with a root node with higher priority, so
that it gives up its role and joins another cluster (i.e. 1− qm).

• p34: from state No root the system goes at the next step to state Election.

• p42: (a) all the nodes in the group do not share the same context with any
root node with higher priority (i.e. qmk), and (b) there are at least two
nodes in the group that share the same context (i.e. 1− (1− p)k(k−1)).

Table 7.4.2 gives the computed probabilities for each transition of the Markov
chain. We notice that the Correct state can be reached only from the Has root
state. If the number of root nodes with higher priority than the current root
is greater than 0 (i.e. m > 0), the probability p21 is minimized, so that in the
stationary distribution of the Markov chain, the probability to be in the Correct
state is lower than the real probability. Calculating the stationary distribution
of the Markov chain yields the following result [79]:

163

7. A context-aware method for spontaneous clustering of wireless sensor nodes

p1(m, k, q, p) =
p21p42

(1 + p21 − p11)(p42 + p42p13 + p13)
(7.5)

We define the cluster stability PS as the probability of a cluster to be in
the Correct state. The most stable cluster is the one having the root with the
highest priority number. The least stable cluster is the one having the root with
the lowest priority number. Given that there are c clusters in the network, we
have therefore the following lower and upper bounds for the cluster stability:

p1(c− 1, k, q, p) ≤ PS ≤ p1(0, k, q, p) (7.6)

PS can be approximated with the stability of the cluster with a lower priority
than other c−1

2 clusters:

PS ≈ p1(
c− 1

2
, k, q, p) (7.7)

Using these theoretical estimations, we can determine the time history nec-
essary to achieve a certain cluster stability, as shown within the next section.

7.5 Results

We analyse the performance of Tandem by running a series of simulations in
the OMNeT++ [157] simulation environment. As the cluster formation and
stability is affected only by the nodes in the one-hop neighbourhood, we simulate
a network where the nodes are attached to different mobile objects or people,
and where there is a wireless link between any two nodes. We focus on a mobile
scenario with clustered nodes moving around and passing each other, and we
analyse how the cluster stability changes when we vary the number of groups.
First, we compare Tandem with a traditional clustering method and point out
the factors that determine the improved behaviour of our algorithm. Second,
based on the experimental results from Lester et al. [109] and Chapter 6, we
evaluate Tandem with respect to cluster stability and communication overhead.

7.5.1 Comparison to traditional clustering

Tandem groups the nodes with similar semantic properties, namely the shared
context. The uncertainty in determining the shared context and the resulting
variation in time may lead to instability of the clustering structure. There-
fore, an algorithm that generates stable clusters distinguishes itself from generic

164

7.5. Results

algorithms designed for ad-hoc networks by paying attention especially to min-
imizing the effect of the variation of confidence values.

To illustrate this difference, we present an alternative clustering algorithm
following the idea of DMAC [43], denoted by DMAC*. In DMAC*, each node
v takes into account every change in the confidence value. DMAC* can be seen
as a particular case of Algorithm 1 from Chapter 4, where the definitions of the
sets N1(v), N2(v) and conditions P1(v), P2(v), P3(v) are the following:

• DMAC*:

– N1 = {m ∈ Γ(v) | h(v,m) > hmin}
– N2(v) = {u ∈ N1(v) | w(u) > w(v) ∧ r(u) = u}
– P1(v), P2(v) : true

– P3(v) : false

We stress on the following two main differences of DMAC* compared to
Tandem:

1. From the definitions of N1 and P1, it follows that if v detects in its neigh-
bourhood a clusterhead r1 with a higher priority value than the current
clusterhead r0, and v shares a common context with r1, then v directly
chooses r1 as clusterhead.

2. From the definition of P2, we have that if none of its neighbours sharing
a common context is clusterhead, then v declares itself a clusterhead.

The first condition may lead to unwanted effects, where a single error in the
detection of different contexts between v and r1 changes the cluster membership
of v. Likewise, an error in the detection of the common context between v and
r0 results through the second condition into the erroneous situation of having
two clusterheads for the same group.

For evaluating the performance of Tandem compared to DMAC*, we run a
series of simulations with groups of 10 nodes. We vary the number of groups
between 2 and 10, and the probabilities p and q between 0.9 and 0.99. We
measure the cluster stability in percentage (see Section 7.4.2) and the energy
efficiency as a function of the number of SetRoot messages sent by every node in
one time step. Due to the two conditions mentioned above, Tandem outperforms
DMAC* in all situations considered. As an example, we show in Figure 7.4 the
average simulation results for p = q = 0.99 and various number of groups. The
5th and 95th percentiles are presented in the Appendix. We notice that Tandem

165

7. A context-aware method for spontaneous clustering of wireless sensor nodes

improves the stability up to 18% on an absolute scale and the energy efficiency
up to 32% on a relative scale, when compared with DMAC*. Therefore, Tandem
is more stable and energy-efficient than DMAC*, and the difference grows when
increasing the number of groups. In this way, Requirements 2 and 3 from
Section 7.3.1 are satisfied.

 50

 60

 70

 80

 90

 100

 2 3 4 5 6 7 8 9 10

C
lu

s
te

r
s
ta

b
ili

ty
 [
%

]

Number of groups

Tandem
DMAC*

(a) Comparison of cluster stability.

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 2 4 6 8 10

N
u

m
b

e
r

o
f

m
e

s
s
a

g
e

s
 p

e
r

n
o

d
e

Number of groups

Tandem
DMAC*

(b) Comparison of energy efficiency.

Figure 7.4: Comparison between Tandem and DMAC*.

166

7.5. Results

7.5.2 Evaluation

A typical example of context sharing is the similarity of movement, which we
analyse in this section using experimental results corresponding to the Transport
and logistics and Body area networks scenarios described in Section 7.2. In
general, the movement information is extracted from accelerometers. Simpler
sensors such as tilt switches can be also used, but with less accurate results. We
have the following two concrete examples of wireless objects moving together:

1. RTI - wireless sensor nodes used in the Transport and logistics scenario,
which correlate their movement pattern; the shared-context recognition
algorithm computes a correlation coefficient between the movement data
of two neighbouring nodes, which is extracted using both tilt switches and
accelerometers (see Chapter 6).

2. BAN - smart devices in the Body area networks scenario, which decide
whether they are carried by the same person; the shared-context recogni-
tion algorithm uses a coherence function of the movement data provided
by accelerometers [109].

Table 7.2 shows the characteristics of the normal distributions derived from
the concrete experiments conducted in both application examples, together with
the computed threshold from Eq. 7.2 and the probabilities p and q. Contrary
to the RTI scenario, where the nodes moving together experience exactly the
same movement pattern, in the BAN scenario different parts of the body are en-
gaged in different types of movements during walking. For a realistic evaluation,
we choose the worse case experimental results from the BAN scenario, where
the nodes are attached to the pocket and wrist of the subjects (Pocket/Wrist
trial [109]). As mentioned earlier, the RTI scenario uses the correlation coef-
ficient for recognizing the common context, which takes values in the interval

Application µ1 σ1 µ2 σ2 T p q

RTI - tilt switch -0.017 0.249 0.641 0.087 0.438 0.9902 0.9662
RTI - accelerometer 0.009 0.124 0.817 0.106 0.442 0.9998 0.9998

BAN - Pocket/Wrist 0.519 0.069 0.757 0.065 0.640 0.9636 0.9607

Table 7.2: Statistics from the experiments (mean and standard deviation of con-
fidence values for separate (µ1, σ1) and joint (µ2, σ2) movements), the threshold
value and computed probabilities of correct detection of common (p) and dif-
ferent (q) contexts.

167

7. A context-aware method for spontaneous clustering of wireless sensor nodes

[−1, 1], while the BAN scenario uses the output of a coherence function in the
range of [0, 1]. Therefore, the threshold for the BAN scenario is higher than the
thresholds for the RTI scenario (see Table 7.2).

The scalability analysis of the movement correlation method proposed for the
RTI scenario indicates a maximum network density of 100 nodes (see Chapter 6),
imposed by the shared wireless medium. Because the same periodic transmission
of the movement data is needed for the BAN scenario [109], we use in our
simulations the same maximum network density for both applications. We have
10 nodes in each group moving together and interacting with other groups, and
we vary the number of groups between 2 and 10 and also the time history. We
recall from Section 7.4.2 that the cluster stability is the probability that the
cluster is in the Correct state. We represent the cluster stability in percentage,
namely (1) the average simulation results, (2) the estimation of the worst case,
derived from Eq. 7.6, (3) the estimation of the average case, derived from Eq. 7.7,
and (4) the estimation of the best case, derived from Eq. 7.6.

For each point on the simulation plots we run up to 10 simulations of 104−105

time steps. In order to study the influence of the history size, we take as the
output of the algorithm the majority over the time history. For that, we have
H = 2hmin − 1 and we vary hmin from 1 to 4.

7.5.2.1 RTI with tilt switches scenario.

Figure 7.5(a) shows the cluster stability depending on the number of groups
present in the network, given that the time history is hmin = 1. The error
bars represent the absolute minimum and maximum stability recorded during
the simulations. We notice that the results respect the upper and lower bounds
calculated theoretically. The estimation of the average case is close to the simu-
lations for a small number of groups. However, increasing the number of groups
decreases the precision of the approximation, due to the minimization of the
transition probabilities to get in the Correct state (see Section 7.4.2).

Figure 7.5(b) shows the cluster stability depending on the time history, for
a network composed of 10 groups. We notice that increasing the time history
considerably improves the cluster stability and the theoretical approximation.
For a time history hmin = 4 (H = 7), a stability of 99.92 is achieved, while
the lower bound is 99.89. Therefore, for achieving a stability close to 100%,
the necessary delay is H × 16 = 112 seconds (H = 7 and the size of the data
sequence is 16 seconds, see Chapter 6).

168

7.5. Results

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 2 4 6 8 10

C
lu

s
te

r
s
ta

b
ili

ty
 [

%
]

Number of groups

Sim.
Est.- w
Est.- avg
Est.- best

(a) hmin = H = 1

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 1 2 3 4

C
lu

st
er

 s
ta

bi
lit

y
[%

]

History

Simulation
Estimation - worst case

Estimation - average case
Estimation - best case

(b) hmin = 1..4, 10 groups

Figure 7.5: Cluster stability in the RTI with tilt switches scenario.

169

7. A context-aware method for spontaneous clustering of wireless sensor nodes

7.5.2.2 RTI with accelerometers scenario.

The solution using accelerometers is more reliable than the method with tilt
switches, resulting in higher probabilities for a correct detection of the context
(see Table 7.2) and consequently, higher cluster stability. Figure 7.6 shows the
cluster stability depending on the number of groups present in the network,
given that the time history is hmin = 1. We also represent the error bars for the
absolute minimum and maximum values. We notice the high stability obtained
even for large number of groups (99.5 for 10 groups). Due to the fact that the
clusters stay in the Correct state for most of the time, the approximations are
close to the simulation results. For this scenario, a high cluster stability can
be achieved even considering the time history 1, reaching a delay of only 16
seconds.

 99
 99.1
 99.2
 99.3
 99.4
 99.5
 99.6
 99.7
 99.8
 99.9

 2 4 6 8 10

C
lu

st
er

 s
ta

bi
lit

y
[%

]

Number of groups

Simulation
Estimation - worst
Estimation - average
Estimation - best

Figure 7.6: Cluster stability in the RTI with accelerometers scenario (hmin =
H = 1).

7.5.2.3 BAN scenario.

Figure 7.7(a) shows the cluster stability in the BAN scenario, depending on the
number of groups, given that the time history is hmin = 1. Similarly with the
two scenarios presented above, we notice that the results respect the upper and
lower bounds calculated theoretically. The average stability is lower than in
the previous cases, with a maximum of 67% and less than 50% for a network
composed of more than 6 groups.

170

7.5. Results

Figure 7.7(b) shows the cluster stability depending on the time history, for
a network composed of 10 groups. The time history significantly improves the
cluster stability: for the time history hmin = 4 (H = 7), the stability is 99.84
and the lower bound is 99.74. For achieving this, the delay is H×8 = 56 seconds
(H = 7 and the window size is 8 seconds [109]).

 0

 20

 40

 60

 80

 100

 2 4 6 8 10

C
lu

st
er

 s
ta

bi
lit

y
[%

]

Number of groups

Simulation
Estimation - worst case

Estimation - average case
Estimation - best case

(a) hmin = H = 1

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 1 2 3 4

C
lu

st
er

 s
ta

bi
lit

y
[%

]

History

Simulation
Estimation - worst case

Estimation - average case
Estimation - best case

(b) hmin = 1..4, 10 groups

Figure 7.7: Cluster stability in the BAN scenario.

171

7. A context-aware method for spontaneous clustering of wireless sensor nodes

7.5.2.4 Communication overhead.

The communication overhead is induced by the SetRoot message, sent by every
node when the current root node changes. In case the lower networking layers
use a periodic message in order to maintain for example the synchronization
(e.g. in case of a TDMA MAC protocol), Tandem can use this heartbeat to
piggyback the small piece of information present in the SetRoot message (root
address and priority number). Assuming that there is no such periodic message,
we count the average number of SetRoot messages sent by each node in one step
of simulation on average.

Figure 7.8(a) shows the number of messages on a logarithmic scale, depend-
ing on the number of groups. The results correspond to each of the three sce-
narios, where the time history is 1. We notice that the more stable the structure
is, the less communication overhead is needed. For the RTI with accelerometers
scenario, less than 1 message is sent per node in 100 time steps, even for a large
number of groups. The overhead is increasing as the number of groups increases,
due to the diminishing cluster stability.

Figure 7.8(b) shows the number of messages depending on the time history,
for the RTI with tilt switches and BAN scenarios. Increasing the time history
improves the stability and thus reduces the communication overhead. For the
time history 4, the overhead is less than 10−3 messages per node.

7.6 Discussion and conclusions

Tandem is a context-aware method for spontaneous clustering of wireless sensor
nodes. The algorithm allows reclustering in case of topological or contextual
changes. By analysing the similarity of the context over a time history, Tandem
tries to achieve stable clusters. We approximate the behaviour of the algorithm
using a Markov chain model and we analyse the cluster stability theoretically
and through simulations, using experimental results from real field tests. The
analysis gives the possibility to estimate theoretically the stability of the struc-
ture and the responsiveness of the algorithm. Computing the worse case stability
via the Markov chain approximation, we can deduce the time history necessary
to achieve stable clusters. In what follows, we discuss the main advantages and
limitations of the proposed clustering method.

172

7.6. Discussion and conclusions

 0.0001

 0.001

 0.01

 0.1

 1

 10

 2 4 6 8 10

N
um

be
r

of
 m

es
sa

ge
s

pe
r

no
de

Number of groups

RTI - tilt switches
RTI - accelerometers
BAN

(a) Number of groups.

 0.0001

 0.001

 0.01

 0.1

 1

 0 1 2 3 4 5

N
um

be
r

of
 m

es
sa

ge
s

pe
r

no
de

History

RTI - tilt switches
BAN

(b) History.

Figure 7.8: Average number of SetRoot messages sent per node in 100 steps.

173

7. A context-aware method for spontaneous clustering of wireless sensor nodes

7.6.1 Advantages

• Responsiveness. The clustering structure reacts quickly to topological
and contextual changes: nodes decide based only on the current situation
of their neighbourhood, without the need of any negotiation with other
parties.

• Learning system. Since the probabilities p and q are assumed to be the
same for each pair of nodes, only a small-scale reproducible experiment is
required for computing these probabilities, which can be used to estimate
the cluster stability. For example, two nodes moving together and another
two moving separately are enough to generate the initial statistical distri-
butions of the confidence values. The accuracy of the estimation can be
further improved by performing experiments on a larger scale.

• Delay estimation. By deducing the time history required to achieve a
certain stability, the delay in accommodating the topological or contextual
changes can be easily estimated.

7.6.2 Limitations

• Equality assumption. Our solution for estimating the cluster stability
depends on Assumption 8, which implies that probabilities p and q are
the same for each pair of nodes. In case nodes do not experience the
same movements (for example, in the RTI scenario, if they are placed
on loose frames), these probabilities differ depending on the placement of
nodes. The cluster stability can still be computed in this case, using the
distribution of the confidence value in the worse case scenario (as we show
in Section 7.5.2 for the BAN scenario). However, since we consider the
worse case scenario, the stability estimated theoretically is lower than the
real stability.

• Rough approximation for many groups. As we notice from Figures 7.5(a)
and 7.7(a), the difference between the approximation that we derive us-
ing Markov chains and the real situation is increasing with the number
of groups. However, the model offers a good approximation in case of
highly accurate context detection methods (see Figure 7.6). Therefore,
the approximation can be successfully used for deducing the minimum
time history for a cluster stability close to 100%.

174

7.6. Discussion and conclusions

• Multihop clusters. The method that we propose is valid only for one-hop
clusters, which is justified taking into account the scenarios from Sec-
tion 7.2. Nevertheless, other applications may require multihop clusters,
even several layers of clustering. For example, groups of people skiing
together, forming multihop clusters, where each person is wearing a BAN
that is a one-hop cluster. The algorithm can be extended to accommodate
multihop clusters: instead of choosing directly the clusterhead node, every
node selects a parent and thus joins the cluster associated with the parent
node.

Tandem represents a means to achieve context-aware clusters that reproduce
the physical reality, for example to actual configuration of the BAN (i.e. the
sensor attached to the garments or handeled by the person). Subsequent to
clustering, a task allocation mechanism is required to distribute various tasks
to the nodes which are part of the cluster, depending on their capabilities. The
final goal is to have a distributed activity recognition algorithm running on a
dynamic, context-aware BAN.

175

7. A context-aware method for spontaneous clustering of wireless sensor nodes

Appendix

We present the numerical average values for the comparison between Tandem
and DMAC* from Section 7.5.1, along with 5th and 95th percentiles.

Number of groups 2 4 6 8 10

Tandem - average value 90.07 87.05 83.54 80.99 77.6

Tandem - 5th percentile 89.28 85.79 80.77 78.25 74.92

Tandem - 95th percentile 90.86 88.97 88.64 85.36 80.78

DMAC* - average value 86.5 78.06 70.47 64.12 58.97

DMAC* - 5th percentile 84.53 73.1 65.54 58.33 53.43

DMAC* - 95th percentile 88.48 82.58 82.75 79.7 76.36

Table 7.3: Average cluster stability, with 5th and 95th percentiles (see Fig-
ure 7.4(a))

Number of groups 2 4 6 8 10

Tandem - average value 0.03 0.054 0.078 0.093 0.111

Tandem - 5th percentile 0.018 0.035 0.026 0.059 0.086

Tandem - 95th percentile 0.042 0.066 0.098 0.114 0.129

DMAC* - average value 0.038 0.075 0.106 0.137 0.164

DMAC* - 5th percentile 0.023 0.049 0.039 0.028 0.029

DMAC* - 95th percentile 0.051 0.101 0.13 0.169 0.195

Table 7.4: Average number of messages per node, with 5th and 95th percentiles
(see Figure 7.4(b))

176

Chapter 8

Conclusions

From the environmental monitoring applications studied initially, WSN technol-
ogy has advanced at a fast pace. Today’s market offers mature platforms, in-
cluding development tools and complete system support. New releases of sensor
nodes show a clear trend of converging towards a uniformly accepted network
standard, with IEEE 802.15.4 and ZigBee being the prominent options. The
foreseen evolution of WSNs leads to interoperability, dynamics, further minia-
turization, heterogeneity and pervasive usage, in other words to the realization
of Marc Weiser’s ubiquitous computing vision. Out of these characteristics, dy-
namics is an important system property, which needs to be considered from the
protocol design phase.

This thesis focuses on a class of protocols and algorithms that are able to
cluster efficiently in the presence of mobility, and even exploit it to increase the
functionality of the network. The contributions of this thesis are the following:

1. Classifications of service discovery protocols and clustering al-
gorithms. We review the state of the art service discovery protocols and
clustering algorithms. In both cases, we follow three methodological steps:
(1) define the problem, general objectives and properties, (2) classify the
existing solutions with respect to the defined objectives and properties
and (3) frame the state of the art in a comparative table according to the
proposed classification.

2. A generalized clustering algorithm for wireless sensor networks.
We propose a generalized clustering algorithm for dynamic sensor net-
works. Our generalization allows for a better understanding and com-

177

8. Conclusions

parison of algorithms designed in mobile WSN environments, and facil-
itates the definition and demonstration of common properties for such
algorithms.

3. Cluster-based service discovery for wireless sensor networks. We
propose a combined, cluster-based service discovery solution for hetero-
geneous and dynamic wireless sensor networks. The service discovery
protocol exploits a cluster overlay for distributing the tasks according
to the capabilities of the nodes and providing an energy-efficient search.
The clustering algorithm is explicitly designed to function as a distributed
service registry and represents a particular case of the general algorithm
proposed by Contribution 2.

4. On-line recognition of joint movement in wireless sensor net-
works. We propose a method through which dynamic sensor nodes de-
termine that they move together by communicating and correlating their
movement information. The movement information is acquired from tilt
switches and accelerometer sensors. We implement a fast, incremental
correlation algorithm, which can run on resource constrained devices.

5. A context-aware method for spontaneous clustering of dynamic
wireless sensor nodes. We propose a method through which wireless
sensor nodes organize spontaneously into clusters based on a common
context, such as movement information. This algorithm is a particular
case of the general algorithm proposed in Contribution 2.

These contributions address the research question from Chapter 1 from two
perspectives. Firstly, our lightweight service discovery protocol can assist a
multitude of dynamic applications where clients can configure, discover and use
a variety of services. Secondly, our two clustering algorithms are tailored to
dynamic WSN. C4SD is integrated with the service discovery protocol for the
purpose of minimizing the communication overhead and reducing the negative
effect of mobility on the consistency of the service registries. Tandem is an
algorithm that allows service provisioning in a mobile group-based environment,
by spontaneously clustering nodes based on similar mobility patterns.

Future work may generalize the idea of spontaneous clustering based on a
common context, by providing a multi-level hierarchy of self-organizing wireless
sensor nodes. At each hierarchical level, nodes group themselves into clusters
based on similar semantic properties. For example, at the lowest level, each
cluster may reflect the physical arrangement of the associated BAN. Further

178

on, the clusterhead nodes from this level may form a second hierarchical level,
for instance, representing a group of people walking together or a working team.
The more hierarchical levels, the larger the coverage of the structure. The major
benefit of this clustering solution is that it mimics the structures present in
the real world. Semantic, multi-level clustering allows context-aware, dynamic
service provisioning and facilitates the aggregation of the functionality through
successive levels of exploitation. To achieve this structure, we highlight two
major research directions: (1) providing accurate shared-context recognition
algorithms at each semantical level in the hierarchy, and (2) developing efficient
resource management mechanisms, as the heterogeneity of resources and the
dynamics of the environment require novel techniques of distributed processing
and dynamic task allocation.

179

8. Conclusions

Author References

[1] R. S. Marin-Perianu, M. Marin-Perianu, P. J. M. Havinga, and J. Scholten.
Movement-based group awareness with wireless sensor networks. In Proceedings
of the 5th International Conference on Pervasive Computing (Pervasive), pages
298–315. Springer Verlag, 2007.

[2] R. S. Marin-Perianu, J. L. Hurink, and P. H. Hartel. A generalized clustering
algorithm for dynamic wireless sensor networks. In Proceedings of the International
Workshop on Modeling, Analysis and Simulation of Sensor Networks (MASSN).
IEEE Computer Society, December 2008. To appear.

[3] R. S. Marin-Perianu, J. Scholten, P. J. M. Havinga, and P. H. Hartel. Energy-
efficient cluster-based service discovery in wireless sensor networks. In Proceedings
of the 31st IEEE Conference on Local Computer Networks, pages 931–938. IEEE
Computer Society, November 2006.

[4] R. S. Marin-Perianu, J. Scholten, P. J. M. Havinga, and P. H. Hartel. Cluster-based
service discovery for heterogeneous wireless sensor networks. International Journal
of Parallel, Emergent and Distributed Systems, 23(4):325–346, August 2008.

[5] R. S. Marin-Perianu, J. Scholten, and P. J. M. Havinga. Prototyping service
discovery and usage in wireless sensor networks. In Proceedings of the 32nd IEEE
Conference on Local Computer Networks, pages 841–850. IEEE Computer Society,
October 2007.

[6] R. S. Marin-Perianu, C. Lombriser, P. J. M. Havinga, J. Scholten, and G. Troster.
Tandem: A context-aware method for spontaneous clustering of dynamic wireless
sensor nodes. In Proceedings of Internet of Things, the International Conference
for Industry and Academia, pages 342–360. Springer, 2008.

[7] R. S. Marin-Perianu, J. Scholten, and P. J. M. Havinga. CODE: Description
language for wireless collaborating objects. In Proceedings of the 2nd International
Conference on Intelligent Sensors, Sensor Networks and Information Processing
(ISSNIP), pages 169–174. IEEE Computer Society, December 2005.

[8] C. Lombriser, M. Marin-Perianu, R. S. Marin-Perianu, D. Roggen, P. J. M.
Havinga, and G. Tröster. Organizing context information processing in dynamic
wireless sensor networks. In Proceedings of the 3rd International Conference on
Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), pages
67–72. IEEE Computer Society, December 2007.

[9] C. Lombriser, R. S. Marin-Perianu, D. Roggen, P. J. M. Havinga, and G. Tröster.
Modeling service-oriented context processing in dynamic body area networks.
IEEE Journal on Selected Areas in Communications, Special Issue on Body Area
Networking: Technology and Applications. To appear.

180

DEMONSTRATION PAPERS

Demonstration Papers

[10] R. S. Marin-Perianu, J. Scholten, and P. J. M. Havinga. Demo abstract: Service
oriented wireless sensor networks - a cluster-based approach. In 4th Annual IEEE
Communications Society Conference on Sensor, Mesh and Ad Hoc Communica-
tions and Networks, SECON ’07, San Diego, California, pages 698–699. IEEE
Computer Society Press, June 2007.

[11] M. Marin-Perianu, R. S. Marin-Perianu, P. J. M. Havinga, and J. Scholten. Online
movement correlation of wireless sensor nodes. In Advances in Pervasive Com-
puting - Adjunct Proceedings of Pervasive 2007, Toronto, Canada, pages 79–82.
Austrian Computer Society, May 2007.

Web References (Last accessed: June 2008)

[12] 29 Palms Fixed/Mobile Experiment: Tracking vehicles with a UAV-delivered
sensor network. http://robotics.eecs.berkeley.edu/ pister/29Palms0103/.

[13] Ambient Systems. Enschede, The Netherlands. http://www.ambient-systems.net.

[14] ASSEMTECH CW1300-1 ball-contact tilt switch.
http://www.farnell.com/datasheets/67723.pdf.

[15] Crossbow Wireless Sensor Networks, Product Reference Guide 2007. San Jose,
CA, USA. http://www.xbow.com/.

[16] Darpa agent markup language (daml+oil). http://www.daml.org/.

[17] IEEE standard 802.15.4. http://standards.ieee.org.

[18] Internet assigned numbers authority (iana). http://www.iana.org/.

[19] Parani-ESD200 Bluetooth module.
http://www.sena.com/download/datasheet/ds parani esd.pdf.

[20] Project Sun SPOT. Santa Clara, CA, USA. http://www.sunspotworld.com/.

[21] Resource description framework (rdf). http://www.w3.org/RDF/.

[22] Sensinode product catalog. Oulu, Finland. http://www.sensinode.com/.

[23] Sentilla. Redwood City, CA, USA. http://www.sentilla.com/.

[24] STMicroelectronics LIS3LV02DQ 3-axis linear accelerometer.
http://www.st.com/stonline/products/literature/ds/11115.pdf.

181

8. Conclusions

[25] TECO Particle. Karlsruhe, Germany. http://particle.teco.edu/.

[26] XYZ Sensor Node. Yale University. http://www.eng.yale.edu/enalab/xyz/.

[27] ZigBee Alliance. http://www.zigbee.org.

References

[28] A. A. Abbasi and M. Younis. A survey on clustering algorithms for wireless
sensor networks. Comput. Commun., 30(14-15):2826–2841, 2007.

[29] W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, and J. Lilley. The design and
implementation of an intentional naming system. In Symposium on Operating
Systems Principles, pages 186–201, Charleston, SC, December 1999.

[30] I. Akyildiz and I. Kasimoglu. Wireless sensor and actor networks: research
challenges. Ad Hoc Networks, 2(4):351–367, October 2004.

[31] I. F. Akyildiz, Su Weilian, Y. Sankarasubramaniam, and E. E. Cayirci. A survey
on sensor networks. IEEE Communications Magazine, 40(8):102–114, 2002.

[32] A. D. Amis, R. Prakash, D. H., and T. Vuong. Max-min d-cluster formation in
wireless ad hoc networks. In INFOCOM, pages 32–41. IEEE Computer Society
Press, 2000.

[33] S. Antifakos, B. Schiele, and L. E. Holmquist. Grouping mechanisms for smart
objects based on implicit interaction and context proximity. In UBICOMP 2003
Interactive Posters, pages 207 – 208, 2003.

[34] K. Arabshian and H. Schulzrinne. GloServ: Global service discovery architec-
ture. In MobiQuitous, pages 319–325. IEEE Computer Society, June 2004.

[35] A. Avizienis, J.C. Laprie, B. Randell, and C. Landwehr. Basic concepts and tax-
onomy of dependable and secure computing. IEEE Transactions on Dependable
and Secure Computing, 01(1):11–33, 2004.

[36] R. Aylward and J. A. Paradiso. Sensemble: a wireless, compact, multi-user
sensor system for interactive dance. In Proceedings of the 6th Conference on
New interfaces for Musical Expression (NIME ’06), pages 134–139, 2006.

[37] R. Bader, M. Pinto, F. Spenrath, P. Wollmann, and F. Kargl. BigNurse: A
Wireless Ad Hoc Network for Patient Monitoring. In Pervasive Health Confer-
ence and Workshops, pages 1–4. IEEE Computer Society, December 2006.

182

REFERENCES

[38] A. Baggio. Wireless sensor networks in precision agriculture. In Workshop on
Real-World Wireless Sensor Networks (REALWSN 2005), Stockholm, Sweden,
June 2005.

[39] M. Balazinska, H. Balakrishnan, and D. Karger. INS/Twine: A scalable peer-to-
peer architecture for intentional resource discovery. In International Conference
on Pervasive Computing (Pervasive), pages 195–210, London, UK, August 2002.
Springer-Verlag.

[40] H. Baldus, K. Klabunde, and G. Müsch. Reliable set-up of medical body-sensor
networks. In EWSN, pages 353–363. Springer Verlag, 2004.

[41] S. Bandyopadhyay and E. Coyle. An energy efficient hierarchical clustering
algorithm for wireless sensor networks. In Proceedings of the 22nd Annual Joint
Conference of the IEEE Computer and Communications Societies (INFOCOM),
pages 1713– 1723. IEEE Computer Society, 2003.

[42] S. Basagni. Distributed and mobility-adaptive clustering for multimedia sup-
port in multi-hop wireless networks. In Proceedings of Vehicular Technology
Conference (VTC), pages 889–893. IEEE Computer Society, 1999.

[43] S. Basagni. Distributed clustering for ad hoc networks. In Proceedings of the
International Symposium on Parallel Architectures, Algorithms and Networks
(ISPAN), pages 310–315, Washington, DC, USA, 1999. IEEE Computer Society.

[44] S. Basagni. Distributed clustering for ad hoc networks. In Proceedings of the
International Symposium on Parallel Architectures, Algorithms and Networks
(ISPAN), pages 310–315, Washington, DC, USA, 1999. IEEE Computer Society.

[45] C. Bettstetter. Mobility Modeling, Connectivity, and Adaptive Clustering in Ad
Hoc Networks. PhD thesis, Technische Universität München, Germany, October
2003.

[46] G. J. Bishop-Hurley, D. L. Swain, D. M. Anderson, P. Sikka, C. Crossman, and
P. Corke. Virtual fencing applications: Implementing and testing an automated
cattle control system. Comput. Electron. Agric., 56(1):14–22, 2007.

[47] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors. Com-
mun. ACM, 13(7):422–426, 1970.

[48] J. Blum, M. Ding, A. Thaeler, and X. Cheng. Handbook of Combinatorial Opti-
mization, chapter Connected Dominating Set in Sensor Networks and MANETs,
pages 329–369. Springer, 2005.

183

8. Conclusions

[49] F. Bouhafs, M. Merabti, and H. Mokhtar. A semantic clustering routing protocol
for wireless sensor networks. In Consumer Communications and Networking
Conference, pages 351– 355. IEEE Computer Society, 2006.

[50] N. Bulusu, J. Heidemann, and D. Estrin. Gps-less low cost outdoor localization
for very small devices. IEEE Personal Communications Magazine, 7(5):28–34,
October 2000.

[51] C. Cachin, J. Camenisch, M. Dacier, Y. Deswarte, J. Dobson, D. Horne, K. Kur-
sawe, J.C. Laprie, J.C. Lebraud, D. Long, T. McCutcheon, J. Muller, F. Pet-
zold, B. Pfitzmann, D. Powell, B. Randell, M. Schunter, V. Shoup, P. Verissimo,
G. Trouessin, R.J. Stroud, M. Waidner, and I. Welch. Malicious and accidental
fault tolerance in internet applications: Reference model and use cases. Technical
Report LAAS report no. 00280, MAFTIA, Project IST-1999-11583, 2000.

[52] T. Camp, J. Boleng, and V. Davies. A survey of mobility models for ad hoc
network research. Wireless Communications and Mobile Computing (WCMC):
Special issue on Mobile Ad Hoc Networking: Research, Trends and Applications,
2(5):483–502, 2002.

[53] M. Castro, P. Druschel, A. Kermarrec, and A. Rowstron. One ring to rule them
all: Service discovery and binding in structured peer-to-peer overlay networks.
In Proceedings of the 10th SIGOPS European Workshop, pages 140–145, Saint-
Emilion, France, September 2002. ACM.

[54] A. Cerpa, J. Elson, D. Estrin, L. Girod, M. Hamilton, and J. Zhao. Habitat mon-
itoring: application driver for wireless communications technology. SIGCOMM
Computer Communication Review, 31(2 supplement):20–41, 2001.

[55] D. Chakraborty, A. Joshi, Y. Yesha, and T. Finin. Toward Distributed Service
Discovery in Pervasive Computing Environments. IEEE Transactions on Mobile
Computing, 5(2):97–112, February 2006.

[56] H. Chan and A. Perrig. Ace: An emergent algorithm for highly uniform cluster
formation. In Proceedings of the First European Workshop on Sensor Networks
(EWSN), pages 154–171. Springer, January 2004.

[57] S. Chatterjea, T. Nieberg, N. Meratnia, and P. J. M. Havinga. A distributed
and self-organizing scheduling algorithm for energy-efficient data aggregation in
wireless sensor networks. Technical Report TR-CTIT-07-10, Enschede, February
2007.

[58] M. Chatterjee, S. K. Das, and D. Turgut. Wca: A weighted clustering algorithm
for mobile ad hoc networks. Cluster Computing, 5(2):193–204, 2002.

184

REFERENCES

[59] Y. P. Chen, A. L. Liestman, and J. Liu. Ad Hoc and Sensor Networks, Wireless
Networks and Mobile Computing, Volume 2, volume 75, chapter Clustering Algo-
rithms for Ad Hoc Wireless Networks, pages 145–164. Nova Science Publishers,
2005.

[60] Bluetooth Consortium. Specification of the bluetooth system core version 1.0 b:
Part e, service discovery protocol (SDP), November 1999.

[61] The Salutation Consortium. Salutation architecture specification version 2.0c,
June 1999. available online at http://www.salutation.org/.

[62] D. J. Cook and S. K. Das. How smart are our environments? an updated look
at the state of the art. Pervasive Mob. Comput., 3(2):53–73, 2007.

[63] S. Croce, F. Marcelloni, and M. Vecchio. Reducing power consumption in wire-
less sensor networks using a novel approach to data aggregation. The Computer
Journal, 51(2):227–239, 2008.

[64] D.J. Daley and D. Vere-Jones. An Introduction to the Theory of Point Processes.
Springer, 1988.

[65] F. C. Delicato, P. F. Pires, L. Pirmez, and L. F. Carmo. A service approach for
architecting application independent wireless sensor networks. Cluster Comput-
ing, 8(2-3):211–221, 2005.

[66] B. Divecha, A. Abraham, C. Grosan, and S.Sanyal. Impact of Node Mobility
on MANET Routing Protocols Models. Journal of Digital Information Manage-
ment, 5(1):19–24, 2007.

[67] S. O. Dulman. Data-centric architecture for wireless sensor networks. PhD
thesis, Enschede, The Netherlands, October 2005.

[68] J. Elson, L. Girod, and D. Estrin. Fine-grained network time synchronization
using reference broadcasts. In Proceedings of the 5th symposium on Operating
systems design and implementation (OSDI), pages 147–163, New York, NY,
USA, 2002. ACM.

[69] A. Ephremides, J. Wieselthier, and D. Baker. A design concept for reliable
mobile radio networks with frequency hopping signaling. Proceedings of the
IEEE, 75(1):56–73, 1987.

[70] A. Erman-Tüysüz, L. F. W. van Hoesel, J. Wu, and P. J. M. Havinga. En-
abling mobility in heterogeneous wireless sensor networks cooperating with uavs
for mission-critical management. Technical Report TR-CTIT-08-14, Enschede,
February 2008.

185

8. Conclusions

[71] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar. Next century challenges:
scalable coordination in sensor networks. In MobiCom ’99: Proceedings of the
5th annual ACM/IEEE international conference on Mobile computing and net-
working, pages 263–270, New York, NY, USA, 1999. ACM.

[72] G. Ferrari and O. K. Tonguz. Impact of Mobility on the BER Performance
of Ad Hoc Wireless Networks. IEEE Transactions on Vehicular Technology,
56(1):271–286, 2007.

[73] UPnP Forum. UPnP device architecture version 1.0, June 2000. available online
at http://www.upnp.org/.

[74] C. Frank and H. Karl. Consistency challenges of service discovery in mobile ad
hoc networks. In International Symposium on Modeling, Analysis and Simulation
of Wireless and Mobile Systems (MSWiM), pages 105–114, New York, USA,
2004. ACM Press.

[75] J. Gao and P. Steenkiste. Rendezvous points-based scalable content discovery
with load balancing. In Networked Group Communication, pages 71–78. ACM
Press, 2002.

[76] M. Gerla, T. J.Kwon, and G. Pei. On-demand routing in large ad hoc wireless
networks with passive clustering. In Wireless Communications and Networking
Conference (WCNC), pages 100–105. IEEE Computer Society, 2000.

[77] L. Girod, V. Bychkovskiy, J. Elson, and D. Estrin. Locating tiny sensors in
time and space: A case study. In International Conference on Computer Design
(ICCD), pages 214–219, Washington, DC, USA, 2002. IEEE Computer Society.

[78] A. Gluhak, M. Presser, L. Zhu, S. Esfandiyari, and S. Kupschick. Towards mood
based mobile services and applications. In 2nd European Conference on Smart
Sensing and Context (EuroSSC), pages 159–174. Springer Verlag, 2007.

[79] C. M. Grinstead and J. L. Snell. Introduction to Probability: Second Revised Edi-
tion, chapter Markov Chains, pages 405–470. American Mathematical Society,
1997.

[80] L. Gu, D. Jia, P. Vicaire, T. Yan, L. Luo, A. Tirumala, Q. Cao, T. He, J. A.
Stankovic, T. Abdelzaher, and B. H. Krogh. Lightweight detection and classifi-
cation for wireless sensor networks in realistic environments. In SenSys, pages
205–217, New York, NY, USA, 2005. ACM Press.

[81] E. Guttman and C. Perkins. Service location protocol, version, June 1999.

186

REFERENCES

[82] B. Han and W. Jia. Clustering wireless ad hoc networks with weakly connected
dominating set. Journal of Parallel and Distributed Computing, 67(6):727–737,
2007.

[83] W. B. Heinzelman, A. P. Chandrakasan, and H. Balakrishnan. An application-
specific protocol architecture for wireless microsensor networks. Wireless Com-
munications, IEEE Transactions on, 1(4):660–670, 2002.

[84] S. Helal, N. Desai, V. Verma, and C. Lee. Konark – A Service Discovery and
Delivery Protocol for Ad-Hoc Networks. In Proceedings of the Third IEEE Con-
ference on Wireless Communication Networks (WCNC), pages 2107–2113. IEEE
Computer Society, March 2003.

[85] A. Helmy. Resource Management in Wireless Networking, volume 16, chapter
Efficient Resource Discovery in Wireless AdHoc Networks: Contacts Do Help,
pages 419–471. Springer, 2005.

[86] T. D. Hodes, S. E. Czerwinski, B. Y. Zhao, A. D. Joseph, and R. H. Katz. An ar-
chitecture for secure wide-area service discovery. Wireless Networks, 8(2/3):213–
230, 2002.

[87] L. Van Hoesel. Schedule-Based Medium Access Control Protocols for Wireless
Sensor Networks. PhD thesis, University of Twente, 2007.

[88] T. Hofmeijer, S. Dulman, P. G. Jansen, and P. J. M. Havinga. AmbientRT -
real time system software support for data centric sensor networks. In Intelligent
Sensors, Sensor Networks and Information Processing (ISSNIP), pages 61–66.
IEEE Computer Society Press, 2004.

[89] L. E. Holmquist, F. Mattern, B. Schiele, P. Alahuhta, M. Beigl, and H. Gellersen.
Smart-its friends: A technique for users to easily establish connections between
smart artefacts. In UbiComp’01, pages 116–122, London, UK, 2001. Springer-
Verlag.

[90] T. A. Howes, M. C. Smith, and G. S. Good. Understanding and Deploying LDAP
Directory Services. Macmillan Network Architecture and Development Series.
Macmillan Technical Publishing, second edition, 2003.

[91] Y. J., L. W., Y. Kim, and X. Yang. Eemc: An energy-efficient multi-level clus-
tering algorithm for large-scale wireless sensor networks. Computer Networks,
52(3):542–562, 2008.

[92] C. Johnen and L. H. Nguyen. Self-stabilizing weight-based clustering algorithm
for ad hoc sensor networks. In Proceedings of the Second International Workshop
on Algorithmic Aspects of Wireless Sensor Networks (ALGOSENSORS), pages
83–94. Springer, 2006.

187

8. Conclusions

[93] D. Johnson, D. Maltz, and J. Broch. Ad Hoc Networking, chapter 5, pages
139–172. Addison-Wesley, 2001.

[94] D. B Johnson and D. A Maltz. Dynamic source routing in ad hoc wireless
networks. In Imielinski and Korth, editors, Mobile Computing, volume 353,
pages 153–181. Kluwer Academic Publishers, 1996.

[95] P. Juang, H. Oki, Y. Wang, M. Martonosi, L. S. Peh, and D. Rubenstein. Energy-
efficient computing for wildlife tracking: design tradeoffs and early experiences
with zebranet. SIGPLAN Not., 37(10):96–107, 2002.

[96] M. Kam, Z. Xiaoxun, and P. Kalata. Sensor fusion for mobile robot navigation.
Proceedings of the IEEE, 85(1):108–119, January 1997.

[97] J. Kang, D. Kim, and S. Ahn. Mosaic localization for wireless sensor networks.
In Wireless Communications and Networking Conference(WCNC), pages 3924–
3928. IEEE Computer Society, 2007.

[98] R. Kauw-A-Tjoe, J. Thalen, M. Marin-Perianu, and P. J. M. Havinga. Sensor-
shoe: Mobile gait analysis for parkinson’s disease patients. In UbiComp 2007
Workshop Proceedings, Innsbruck, Austria, pages 187–191. University of Inns-
bruck, September 2007.

[99] M. Klein, B. König-Ries, and P. Obreiter. Lanes - a lightweight overlay for
service discovery in mobile ad hoc networks. Technical Report 2003-6, University
of Karlsruhe, 2003.

[100] M. Klein, B. König-Ries, and P. Obreiter. Service rings - a semantic overlay for
service discovery in ad hoc networks. In Proceedings of the 14th International
Workshop on Database and Expert Systems Applications (DEXA), pages 180–
185, Washington, DC, USA, 2003. IEEE Computer Society.

[101] R.M. Kling. Intel motes: advanced sensor network platforms and applications.
Microwave Symposium Digest, 2005 IEEE MTT-S International, page 4, 12-17
June 2005.

[102] U. C. Kozat and L. Tassiulas. Service discovery in mobile ad hoc networks: An
overall perspective on architectural choices and network layer support issues. Ad
Hoc Networks, 2(1):23–44, June 2003.

[103] M. Kumar and S. K. Das. Handbook of Nature-Inspired and Innovative Com-
puting, chapter Pervasive Computing: Enabling Technologies and Challenges,
pages 613–631. Springer, 2006.

188

REFERENCES

[104] K. Van Laerhoven and H. Gellersen. Spine versus porcupine: A study in dis-
tributed wearable activity recognition. In Proceedings of the Eighth International
Symposium on Wearable Computers (ISWC’04), pages 142–149, 2004.

[105] G. H. K. Lam, H. V. Leong, and S. C. Chan. Gbl: Group-based location updating
in mobile environment. In 9th International Conference on Database Systems
for Advanced Applications (DASFAA), pages 762–774, 2004.

[106] Y. W. Law. Key management and link-layer security of wireless sensor networks :
Energy-efficient attack and defense. PhD thesis, University of Twente, December
2005.

[107] C. Lee and S. Helal. A multi-tier ubiquitous service discovery protocol for mobile
clients. In Proceedings of the International Symposium on Performance Evalu-
ation of Computer and Telecommunication Systems (SPECTS), pages 701–711,
Montréal, Canada, 2003.

[108] V. Lenders, M. May, and B. Plattner. Service discovery in mobile ad hoc net-
works: A field theoretic approach. Pervasive and Mobile Computing, 1:343–370,
2005.

[109] J. Lester, B. Hannaford, and G. Borriello. ”Are You with Me?” - using ac-
celerometers to determine if two devices are carried by the same person. In
Pervasive, pages 33–50. Springer Verlag, 2004.

[110] A. Leung and C. Mitchell. A service discovery threat model for ad hoc networks.
In Manu Malek, Eduardo Fernndez-Medina, and Javier Hernando, editors, SE-
CRYPT, pages 167–174. INSTICC Press, 2006.

[111] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo, D. Gay,
J. Hill, M. Welsh, E. Brewer, and D. Culler. Ambient Intelligence, chapter
TinyOS: An Operating System for Sensor Networks, pages 115–148. Springer
Berlin Heidelberg, 2005.

[112] W. Li. Random texts exhibit Zipf’s law-like word frequency distribution.
IEEETIT: IEEE Transactions on Information Theory, 38(6), 1992.

[113] M. E. M. Lijding, N. Meratnia, H. P. Benz, and A. Matysiak Szóstek. Smart
signs show you the way. I/O Vivat, 22(4):35–38, August 2007.

[114] C. R. Lin and M. Gerla. Adaptive clustering for mobile wireless networks. Se-
lected Areas in Communications, IEEE Journal on, 15(7):1265–1275, 1997.

[115] K. Lorincz, D. J. Malan, T. R.F. Fulford-Jones, A. Nawoj, A. Clavel, V. Shnay-
der, G. Mainland, M. Welsh, and S. Moulton. Sensor networks for emergency
response: Challenges and opportunities. IEEE Pervasive Computing, 03(4):16–
23, 2004.

189

8. Conclusions

[116] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. The design of an
acquisitional query processor for sensor networks. In SIGMOD ’03: Proceedings
of the 2003 ACM SIGMOD international conference on Management of data,
pages 491–502, New York, NY, USA, 2003. ACM.

[117] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. Anderson. Wire-
less sensor networks for habitat monitoring. In WSNA ’02: Proceedings of the
1st ACM international workshop on Wireless sensor networks and applications,
pages 88–97, New York, NY, USA, 2002. ACM.

[118] M. Marin-Perianu and P. Havinga. RMD: Reliable multicast data dissemination
within groups of collaborating objects. In Local Computer Networks (LCN),
pages 656–663, 2006.

[119] M. Marin-Perianu, C. Lombriser, O. Amft, P. J. M. Havinga, and G. Troster.
Distributed activity recognition with fuzzy-enabled wireless sensor networks. In
Distributed Computing in Sensor Systems, Santorini, Greece, pages 296–313.
Springer Verlag, June 2008.

[120] M. Marin-Perianu, N. Meratnia, P. J. M. Havinga, L. Moreira Sá de Souza,
J. Müller, P. Spiess, S. Haller, T. Riedel, C. Decker, and G. Stromberg. Decen-
tralized enterprise systems: A multi-platform wireless sensor networks approach.
IEEE Wireless Communications, 14(6):57–66, 2007.

[121] M. Marin-Perianu, N. Meratnia, M. Lijding, and P. Havinga. Being aware in
wireless sensor networks. In 15th IST Mobile and Wireless Communication Sum-
mit, Capturing Context and Context Aware Systems and Platforms Workshop,
2006.

[122] M. Marin-Perianu and P. J. M.Havinga. D-FLER: A distributed fuzzy logic
engine for rule-based wireless sensor networks. In 4th International Symposium
on Ubiquitous Computing Systems (UCS), pages 86–101. Springer Verlag, 2007.

[123] R. Mayrhofer and H. Gellersen. Shake well before use: Authentication based on
accelerometer data. In Pervasive, pages 144–161. Springer-Verlag, 2007.

[124] A. McDonald and T. Znati. A mobility-based framework for adaptive clustering
in wireless ad hoc networks. IEEE Journal on Selected Areas in Communications
(JSAC), 17(8):1466–1486, August 1999.

[125] V. P. Mhatre, C. Rosenberg, D. Kofman, R. Mazumdar, and N. Shroff. A
minimum cost heterogeneous sensor network with a lifetime constraint. IEEE
Transactions on Mobile Computing, 4(1):4–15, 2005.

[126] F. Michahelles, P. Matter, A. Schmidt, and B. Schiele. Applying wearable sensors
to avalanche rescue. Computers and Graphics, 27(6):839–847, 2003.

190

REFERENCES

[127] Sun Microsystems. Jini architecture specification version 2.0, June 2003.

[128] Sun Microsystems. Jini technology surrogate architecture specification, October
2003.

[129] P. Mockapetris and K. J. Dunlap. Development of the domain name system.
SIGCOMM Comput. Commun. Rev., 18(4):123–133, 1988.

[130] A. Molisch. Wireless Communications. John Wiley and Sons, 2005.

[131] M. Nidd. Service discovery in DEAPspace. ieee-pcm, 8(4):39–45, August 2001.

[132] T. Nieberg. Independent and Dominating Sets in Wireless Communication
Graphs. PhD thesis, University of Twente, April 2006.

[133] F. G. Nocetti, J. S. Gonzalez, and I. Stojmenovic. Connectivity based k-hop
clustering in wireless networks. Telecommunication Systems, 22(1–4):205–220,
2003.

[134] J. P., J. Hill, and D. Culler. Versatile low power media access for wireless
sensor networks. In Proceedings of the 2nd international conference on Embedded
networked sensor systems (SenSys), pages 95–107, New York, NY, USA, 2004.
ACM.

[135] G. Pang and H. Liu. Evaluation of a low-cost mems accelerometer for distance
measurement. Journal of Intelligent and Robotic Systems, 30(3):249–265, 2001.

[136] C. Perkins and P. Bhagwat. Highly dynamic destination-sequenced distance-
vector routing (DSDV) for mobile computers. In SIGCOMM, pages 234–244.
ACM press, 1994.

[137] C. Perkins and E. Royer. Ad-hoc on-demand distance vector routing. In Work-
shop on Mobile Computing Systems and Applications (WMCSA), pages 90–100,
Los Alamitos, CA, USA, 1999. IEEE Computer Society.

[138] S. Ratnasamy, P. Francis, M. Handley, R. M. Karp, and S. Schenker. A scal-
able content-addressable network. Technical Report TR-00-010, Berkeley, CA,
August 2001.

[139] O. V. Ratsimor, D. Chakraborty, S. Tolia, D. Khushraj, A. Kunjithapatham,
A. Joshi, T. Finin, and Y. Yesha. Allia: Alliance-based service discovery for ad-
hoc environments. In ACM Mobile Commerce Workshop, pages 1–9, September
2002.

191

8. Conclusions

[140] R. Robinson and J. Indulska. Superstring: A scalable service discovery protocol
for the wide area pervasive environment. In Proc. Of the 11th IEEE International
Conference on Networks, Sydney, pages 699–704, Sydney, September 2003. Proc.
of the 11th IEEE International Conference on Networks.

[141] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object location,
and routing for large-scale peer-to-peer systems. Lecture Notes in Computer
Science, 2218:329–350, November 2001.

[142] K. Sha, W. Shi, and O. Watkins. Using wireless sensor networks for fire rescue
applications: Requirements and challenges. In IEEE International Conference
on Electro/Information Technology, pages 239–244. IEEE Computer Society,
May 2006.

[143] R. Shirey. Request for comments: 2828, May 2000. Internet Security Glossary.

[144] K. Sohrabi, J. Gao, V. Ailawadhi, and G.J. Pottie. Protocols for self-organization
of a wireless sensor network. IEEE Personal Communications, 7(5):16–27, Oct
2000.

[145] A. Somasundara, A. Kansal, D. Jea, D. Estrin, and M. Srivastava. Controllably
mobile infrastructure for low energy embedded networks. IEEE Transactions on
Mobile Computing, 5(8):16, 2006.

[146] T. Stiefmeier, C. Lombriser, D. Roggen, H. Junker, G. Ogris, and G. Tröster.
Event-based activity tracking in work environments. In Proceedings of the 3rd
International Forum on Applied Wearable Computing (IFAWC), March 2006.

[147] I. Stoica, R. Morris, D. R. Karger, M. Frans Kaashoek, and H. Balakrishnan.
Chord: A scalable peer-to-peer lookup service for internet applications. In Pro-
ceedings of the 2001 ACM SIGCOMM Conference, pages 149–160, August 2001.

[148] I. Stojmenovic, M. Seddigh, and J. Zunic. Dominating sets and neighbor
elimination-based broadcasting algorithms in wireless networks. IEEE Trans-
actions on Parallel and Distributed Systems, 13(1):14–25, 2002.

[149] D. Stoyan, W. S. Kendall, and J. Mecke. Stochastic Geometry and its Applica-
tions. John Wiley and Sons, 1995.

[150] M. Strohbach and H. Gellersen. Smart clustering - networking smart objects
based on their physical relationships. In Proceedings of the 5th IEEE Inter-
national Workshop on Networked Appliances, pages 151– 155. IEEE Computer
Society, 2002.

192

REFERENCES

[151] V. Sundramoorthy. At Home in Service Discovery. PhD thesis, Faculty of Elec-
trical Engineering, Mathematics and Computer Science, University of Twente,
Enschede, Netherlands, September 2006.

[152] V. Sundramoorthy, J. Scholten, P. G. Jansen, and P. H. Hartel. Service discovery
at home. In 4th Int. Conf. On Information, Communications & Signal Processing
and 4th IEEE Pacific-Rim Conf. On Multimedia (ICICS/PCM), pages 1929–
1933. IEEE Computer Society, December 2003.

[153] C.W. Tan, S. Park, K. Mostov, and P. Varaiya. Design of gyroscope-free nav-
igation systems. In Intelligent Transportation Systems, Oakland, USA, pages
286–291, 2001.

[154] A. S. Tanenbaum, C. Gamage, and B. Crispo. Taking sensor networks from the
lab to the jungle. IEEE Computer, 39(8):98–100, Aug 2006.

[155] B. Traversat, M. Abdelaziz, and E. Pouyoul. Project JXTA: A loosely-consistent
DHT rendezvous walker, May 2003. Sun Microsystems, Inc.

[156] W. T. Tsai, C. V. Ramamoorthy, W. K. Tsai, and O. Nishiguchi. An adaptive
hierarchical routing protocol. IEEE Transactions on Computers, 38(8):1059–
1075, 1989.

[157] A. Varga. The OMNeT++ discrete event simulation system. In European Sim-
ulation Multiconference (ESM), Prague, Czech Republic, June 2001.

[158] A. Varshavsky, B. Reid, and E. de Lara. A cross-layer approach to service dis-
covery and selection in manets. In Mobile Adhoc and Sensor Systems Conference
(MASS), pages 8 pp.–. IEEE Computer Society, November 2005.

[159] P. Wan, K. M. Alzoubi, and O. Frieder. Distributed construction of connected
dominating set in wireless ad hoc networks. Mobile Networks and Applications,
9(2):141–149, 2004.

[160] C. Wang, K. Sohraby, B. Li, M. Daneshmand, and Y. Hu. A survey of transport
protocols for wireless sensor networks. IEEE Network, 20(3):34–40, 2006.

[161] J. Wang, G. Chen, and D. Kotz. A sensor fusion approach for meeting detection.
In MobiSys 2004 Workshop on Context Awareness, June 2004.

[162] K. Wang, S. A. Ayyash, T. Little, and P. Basu. Attribute-based clustering
for information dissemination in wireless sensor networks. In Proceedings of
the Second Conference on Sensor and Ad Hoc Communications and Networks
(SECON), pages 498–509. IEEE Computer Society, 2005.

193

8. Conclusions

[163] B. Warneke, M. Last, B. Liebowitz, and K. S. J. Pister. Smart dust: communi-
cating with a cubic-millimeter computer. Computer, 34(1):44–51, 2001.

[164] M. Weiser. The computer for the 21st century. Scientific American, 265(3):66–
75, September 1991.

[165] J. Wu and H. Li. On calculating connected dominating set for efficient routing
in ad hoc wireless networks. In Proceedings of the 3rd international workshop
on Discrete algorithms and methods for mobile computing and communications
(DIALM), pages 7–14, New York, NY, USA, 1999. ACM.

[166] K. Xu, Y. Wang, and Y. Liu. A clustering algorithm based on power for wsns. In
Proceedings of the International Conference on Computational Science (ICCS),
pages 153–156. Springer, 2007.

[167] O. Younis and S. Fahmy. Heed: A hybrid, energy-efficient, distributed clustering
approach for ad hoc sensor networks. IEEE Transactions on Mobile Computing,
3(4):366–379, 2004.

[168] A. M. Youssef, M. F. Younis, M. Youssef, and A. K. Agrawala. Distributed
formation of overlapping multi-hop clusters in wireless sensor networks. In Pro-
ceedings of the Global Telecommunications Conference (GLOBECOM), pages
1–6, 2006.

[169] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry: An infrastructure
for fault-tolerant wide-area location and routing. Technical Report UCB/CSD-
01-1141, UC Berkeley, April 2001.

[170] F. Zhu, M. W. Mutka, and L. M. Ni. Splendor: A secure, private, and location-
aware service discovery protocol supporting mobile services. In PerCom, pages
235–242, New York, NY, USA, 2003. ACM Press.

194

Titles in the IPA Dissertation Series since 2002

M.C. van Wezel. Neural Networks for
Intelligent Data Analysis: theoretical and
experimental aspects. Faculty of Mathe-
matics and Natural Sciences, UL. 2002-
01

V. Bos and J.J.T. Kleijn. Formal
Specification and Analysis of Industrial
Systems. Faculty of Mathematics and
Computer Science and Faculty of Me-
chanical Engineering, TU/e. 2002-02

T. Kuipers. Techniques for Under-
standing Legacy Software Systems. Fac-
ulty of Natural Sciences, Mathematics
and Computer Science, UvA. 2002-03

S.P. Luttik. Choice Quantification in
Process Algebra. Faculty of Natural Sci-
ences, Mathematics, and Computer Sci-
ence, UvA. 2002-04

R.J. Willemen. School Timetable Con-
struction: Algorithms and Complexity.
Faculty of Mathematics and Computer
Science, TU/e. 2002-05

M.I.A. Stoelinga. Alea Jacta Est:
Verification of Probabilistic, Real-time
and Parametric Systems. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, KUN. 2002-06

N. van Vugt. Models of Molecular
Computing. Faculty of Mathematics and
Natural Sciences, UL. 2002-07

A. Fehnker. Citius, Vilius, Melius:
Guiding and Cost-Optimality in Model
Checking of Timed and Hybrid Systems.
Faculty of Science, Mathematics and
Computer Science, KUN. 2002-08

R. van Stee. On-line Scheduling and
Bin Packing. Faculty of Mathematics
and Natural Sciences, UL. 2002-09

D. Tauritz. Adaptive Information Fil-
tering: Concepts and Algorithms. Fac-
ulty of Mathematics and Natural Sci-
ences, UL. 2002-10

M.B. van der Zwaag. Models and Log-
ics for Process Algebra. Faculty of Nat-
ural Sciences, Mathematics, and Com-
puter Science, UvA. 2002-11

J.I. den Hartog. Probabilistic Exten-
sions of Semantical Models. Faculty of
Sciences, Division of Mathematics and
Computer Science, VUA. 2002-12

L. Moonen. Exploring Software Sys-
tems. Faculty of Natural Sciences, Math-
ematics, and Computer Science, UvA.
2002-13

J.I. van Hemert. Applying Evolution-
ary Computation to Constraint Satisfac-
tion and Data Mining. Faculty of Math-
ematics and Natural Sciences, UL. 2002-
14

S. Andova. Probabilistic Process Alge-
bra. Faculty of Mathematics and Com-
puter Science, TU/e. 2002-15

Y.S. Usenko. Linearization in µCRL.
Faculty of Mathematics and Computer
Science, TU/e. 2002-16

J.J.D. Aerts. Random Redundant Stor-
age for Video on Demand. Faculty
of Mathematics and Computer Science,
TU/e. 2003-01

M. de Jonge. To Reuse or To
Be Reused: Techniques for component

composition and construction. Faculty
of Natural Sciences, Mathematics, and
Computer Science, UvA. 2003-02

J.M.W. Visser. Generic Traversal
over Typed Source Code Representations.
Faculty of Natural Sciences, Mathemat-
ics, and Computer Science, UvA. 2003-03

S.M. Bohte. Spiking Neural Networks.
Faculty of Mathematics and Natural Sci-
ences, UL. 2003-04

T.A.C. Willemse. Semantics and Ver-
ification in Process Algebras with Data
and Timing. Faculty of Mathematics
and Computer Science, TU/e. 2003-05

S.V. Nedea. Analysis and Simulations
of Catalytic Reactions. Faculty of Math-
ematics and Computer Science, TU/e.
2003-06

M.E.M. Lijding. Real-time Scheduling
of Tertiary Storage. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2003-07

H.P. Benz. Casual Multimedia Process
Annotation – CoMPAs. Faculty of Elec-
trical Engineering, Mathematics & Com-
puter Science, UT. 2003-08

D. Distefano. On Modelchecking the
Dynamics of Object-based Software: a
Foundational Approach. Faculty of Elec-
trical Engineering, Mathematics & Com-
puter Science, UT. 2003-09

M.H. ter Beek. Team Automata – A
Formal Approach to the Modeling of Col-
laboration Between System Components.
Faculty of Mathematics and Natural Sci-
ences, UL. 2003-10

D.J.P. Leijen. The λ Abroad – A
Functional Approach to Software Compo-
nents. Faculty of Mathematics and Com-
puter Science, UU. 2003-11

W.P.A.J. Michiels. Performance Ra-
tios for the Differencing Method. Faculty
of Mathematics and Computer Science,
TU/e. 2004-01

G.I. Jojgov. Incomplete Proofs and
Terms and Their Use in Interactive The-
orem Proving. Faculty of Mathematics
and Computer Science, TU/e. 2004-02

P. Frisco. Theory of Molecular Com-
puting – Splicing and Membrane systems.
Faculty of Mathematics and Natural Sci-
ences, UL. 2004-03

S. Maneth. Models of Tree Translation.
Faculty of Mathematics and Natural Sci-
ences, UL. 2004-04

Y. Qian. Data Synchronization and
Browsing for Home Environments. Fac-
ulty of Mathematics and Computer Sci-
ence and Faculty of Industrial Design,
TU/e. 2004-05

F. Bartels. On Generalised Coinduc-
tion and Probabilistic Specification For-
mats. Faculty of Sciences, Division
of Mathematics and Computer Science,
VUA. 2004-06

L. Cruz-Filipe. Constructive Real
Analysis: a Type-Theoretical Formaliza-
tion and Applications. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, KUN. 2004-07

E.H. Gerding. Autonomous Agents in
Bargaining Games: An Evolutionary In-
vestigation of Fundamentals, Strategies,
and Business Applications. Faculty of

Technology Management, TU/e. 2004-
08

N. Goga. Control and Selection Tech-
niques for the Automated Testing of Re-
active Systems. Faculty of Mathematics
and Computer Science, TU/e. 2004-09

M. Niqui. Formalising Exact Arith-
metic: Representations, Algorithms and
Proofs. Faculty of Science, Mathematics
and Computer Science, RU. 2004-10

A. Löh. Exploring Generic Haskell.
Faculty of Mathematics and Computer
Science, UU. 2004-11

I.C.M. Flinsenberg. Route Planning
Algorithms for Car Navigation. Faculty
of Mathematics and Computer Science,
TU/e. 2004-12

R.J. Bril. Real-time Scheduling for
Media Processing Using Conditionally
Guaranteed Budgets. Faculty of Math-
ematics and Computer Science, TU/e.
2004-13

J. Pang. Formal Verification of Dis-
tributed Systems. Faculty of Sciences,
Division of Mathematics and Computer
Science, VUA. 2004-14

F. Alkemade. Evolutionary Agent-
Based Economics. Faculty of Technology
Management, TU/e. 2004-15

E.O. Dijk. Indoor Ultrasonic Position
Estimation Using a Single Base Station.
Faculty of Mathematics and Computer
Science, TU/e. 2004-16

S.M. Orzan. On Distributed Verifica-
tion and Verified Distribution. Faculty
of Sciences, Division of Mathematics and
Computer Science, VUA. 2004-17

M.M. Schrage. Proxima - A
Presentation-oriented Editor for Struc-
tured Documents. Faculty of Mathemat-
ics and Computer Science, UU. 2004-18

E. Eskenazi and A. Fyukov. Quan-
titative Prediction of Quality Attributes
for Component-Based Software Architec-
tures. Faculty of Mathematics and Com-
puter Science, TU/e. 2004-19

P.J.L. Cuijpers. Hybrid Process Alge-
bra. Faculty of Mathematics and Com-
puter Science, TU/e. 2004-20

N.J.M. van den Nieuwelaar. Su-
pervisory Machine Control by Predictive-
Reactive Scheduling. Faculty of Mechan-
ical Engineering, TU/e. 2004-21

E. Ábrahám. An Assertional Proof
System for Multithreaded Java -Theory
and Tool Support- . Faculty of Mathe-
matics and Natural Sciences, UL. 2005-
01

R. Ruimerman. Modeling and Remod-
eling in Bone Tissue. Faculty of Biomed-
ical Engineering, TU/e. 2005-02

C.N. Chong. Experiments in Rights
Control - Expression and Enforcement.
Faculty of Electrical Engineering, Math-
ematics & Computer Science, UT. 2005-
03

H. Gao. Design and Verification of
Lock-free Parallel Algorithms. Faculty of
Mathematics and Computing Sciences,
RUG. 2005-04

H.M.A. van Beek. Specification and
Analysis of Internet Applications. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2005-05

M.T. Ionita. Scenario-Based System
Architecting - A Systematic Approach to

Developing Future-Proof System Archi-
tectures. Faculty of Mathematics and
Computing Sciences, TU/e. 2005-06

G. Lenzini. Integration of Analy-
sis Techniques in Security and Fault-
Tolerance. Faculty of Electrical Engi-
neering, Mathematics & Computer Sci-
ence, UT. 2005-07

I. Kurtev. Adaptability of Model Trans-
formations. Faculty of Electrical Engi-
neering, Mathematics & Computer Sci-
ence, UT. 2005-08

T. Wolle. Computational Aspects of
Treewidth - Lower Bounds and Network
Reliability. Faculty of Science, UU. 2005-
09

O. Tveretina. Decision Procedures for
Equality Logic with Uninterpreted Func-
tions. Faculty of Mathematics and Com-
puter Science, TU/e. 2005-10

A.M.L. Liekens. Evolution of Fi-
nite Populations in Dynamic Environ-
ments. Faculty of Biomedical Engineer-
ing, TU/e. 2005-11

J. Eggermont. Data Mining using Ge-
netic Programming: Classification and
Symbolic Regression. Faculty of Math-
ematics and Natural Sciences, UL. 2005-
12

B.J. Heeren. Top Quality Type Error
Messages. Faculty of Science, UU. 2005-
13

G.F. Frehse. Compositional Verifica-
tion of Hybrid Systems using Simulation
Relations. Faculty of Science, Mathe-
matics and Computer Science, RU. 2005-
14

M.R. Mousavi. Structuring Structural
Operational Semantics. Faculty of Math-
ematics and Computer Science, TU/e.
2005-15

A. Sokolova. Coalgebraic Analysis of
Probabilistic Systems. Faculty of Math-
ematics and Computer Science, TU/e.
2005-16

T. Gelsema. Effective Models for the
Structure of pi-Calculus Processes with
Replication. Faculty of Mathematics and
Natural Sciences, UL. 2005-17

P. Zoeteweij. Composing Constraint
Solvers. Faculty of Natural Sciences,
Mathematics, and Computer Science,
UvA. 2005-18

J.J. Vinju. Analysis and Transfor-
mation of Source Code by Parsing and
Rewriting. Faculty of Natural Sciences,
Mathematics, and Computer Science,
UvA. 2005-19

M.Valero Espada. Modal Abstraction
and Replication of Processes with Data.
Faculty of Sciences, Division of Math-
ematics and Computer Science, VUA.
2005-20

A. Dijkstra. Stepping through Haskell.
Faculty of Science, UU. 2005-21

Y.W. Law. Key management and link-
layer security of wireless sensor net-
works: energy-efficient attack and de-
fense. Faculty of Electrical Engineering,
Mathematics & Computer Science, UT.
2005-22

E. Dolstra. The Purely Functional Soft-
ware Deployment Model. Faculty of Sci-
ence, UU. 2006-01

R.J. Corin. Analysis Models for Secu-
rity Protocols. Faculty of Electrical En-
gineering, Mathematics & Computer Sci-
ence, UT. 2006-02

P.R.A. Verbaan. The Computational
Complexity of Evolving Systems. Faculty
of Science, UU. 2006-03

K.L. Man and R.R.H. Schiffelers.
Formal Specification and Analysis of Hy-
brid Systems. Faculty of Mathematics
and Computer Science and Faculty of
Mechanical Engineering, TU/e. 2006-04

M. Kyas. Verifying OCL Specifications
of UML Models: Tool Support and Com-
positionality. Faculty of Mathematics
and Natural Sciences, UL. 2006-05

M. Hendriks. Model Checking Timed
Automata - Techniques and Applications.
Faculty of Science, Mathematics and
Computer Science, RU. 2006-06

J. Ketema. Böhm-Like Trees for
Rewriting. Faculty of Sciences, VUA.
2006-07

C.-B. Breunesse. On JML: topics
in tool-assisted verification of JML pro-
grams. Faculty of Science, Mathematics
and Computer Science, RU. 2006-08

B. Markvoort. Towards Hybrid Molec-
ular Simulations. Faculty of Biomedical
Engineering, TU/e. 2006-09

S.G.R. Nijssen. Mining Structured
Data. Faculty of Mathematics and Nat-
ural Sciences, UL. 2006-10

G. Russello. Separation and Adapta-
tion of Concerns in a Shared Data Space.
Faculty of Mathematics and Computer
Science, TU/e. 2006-11

L. Cheung. Reconciling Nondetermin-
istic and Probabilistic Choices. Faculty
of Science, Mathematics and Computer
Science, RU. 2006-12

B. Badban. Verification techniques for
Extensions of Equality Logic. Faculty of
Sciences, Division of Mathematics and
Computer Science, VUA. 2006-13

A.J. Mooij. Constructive formal meth-
ods and protocol standardization. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2006-14

T. Krilavicius. Hybrid Techniques for
Hybrid Systems. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2006-15

M.E. Warnier. Language Based Secu-
rity for Java and JML. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2006-16

V. Sundramoorthy. At Home In Ser-
vice Discovery. Faculty of Electrical En-
gineering, Mathematics & Computer Sci-
ence, UT. 2006-17

B. Gebremichael. Expressivity of
Timed Automata Models. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2006-18

L.C.M. van Gool. Formalising In-
terface Specifications. Faculty of Math-
ematics and Computer Science, TU/e.
2006-19

C.J.F. Cremers. Scyther - Seman-
tics and Verification of Security Proto-
cols. Faculty of Mathematics and Com-
puter Science, TU/e. 2006-20

J.V. Guillen Scholten. Mobile Chan-
nels for Exogenous Coordination of Dis-
tributed Systems: Semantics, Implemen-
tation and Composition. Faculty of
Mathematics and Natural Sciences, UL.
2006-21

H.A. de Jong. Flexible Heterogeneous
Software Systems. Faculty of Natural
Sciences, Mathematics, and Computer
Science, UvA. 2007-01

N.K. Kavaldjiev. A run-time recon-
figurable Network-on-Chip for streaming
DSP applications. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2007-02

M. van Veelen. Considerations on
Modeling for Early Detection of Ab-
normalities in Locally Autonomous Dis-
tributed Systems. Faculty of Mathemat-
ics and Computing Sciences, RUG. 2007-
03

T.D. Vu. Semantics and Applications
of Process and Program Algebra. Fac-
ulty of Natural Sciences, Mathematics,
and Computer Science, UvA. 2007-04

L. Brandán Briones. Theories for
Model-based Testing: Real-time and Cov-
erage. Faculty of Electrical Engineering,
Mathematics & Computer Science, UT.
2007-05

I. Loeb. Natural Deduction: Sharing by
Presentation. Faculty of Science, Mathe-
matics and Computer Science, RU. 2007-
06

M.W.A. Streppel. Multifunctional
Geometric Data Structures. Faculty
of Mathematics and Computer Science,
TU/e. 2007-07

N. Trčka. Silent Steps in Transition
Systems and Markov Chains. Faculty
of Mathematics and Computer Science,
TU/e. 2007-08

R. Brinkman. Searching in encrypted
data. Faculty of Electrical Engineering,
Mathematics & Computer Science, UT.
2007-09

A. van Weelden. Putting types to good
use. Faculty of Science, Mathematics
and Computer Science, RU. 2007-10

J.A.R. Noppen. Imperfect Informa-
tion in Software Development Processes.
Faculty of Electrical Engineering, Math-
ematics & Computer Science, UT. 2007-
11

R. Boumen. Integration and Test
plans for Complex Manufacturing Sys-
tems. Faculty of Mechanical Engineer-
ing, TU/e. 2007-12

A.J. Wijs. What to do Next?:
Analysing and Optimising System Be-
haviour in Time. Faculty of Sciences,
Division of Mathematics and Computer
Science, VUA. 2007-13

C.F.J. Lange. Assessing and Improv-
ing the Quality of Modeling: A Series of
Empirical Studies about the UML. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2007-14

T. van der Storm. Component-based
Configuration, Integration and Delivery.
Faculty of Natural Sciences, Mathemat-
ics, and Computer Science,UvA. 2007-15

B.S. Graaf. Model-Driven Evolution of
Software Architectures. Faculty of Elec-
trical Engineering, Mathematics, and
Computer Science, TUD. 2007-16

A.H.J. Mathijssen. Logical Calculi
for Reasoning with Binding. Faculty
of Mathematics and Computer Science,
TU/e. 2007-17

D. Jarnikov. QoS framework for Video
Streaming in Home Networks. Faculty
of Mathematics and Computer Science,
TU/e. 2007-18

M. A. Abam. New Data Structures
and Algorithms for Mobile Data. Faculty
of Mathematics and Computer Science,
TU/e. 2007-19

W. Pieters. La Volonté Machi-
nale: Understanding the Electronic Vot-
ing Controversy. Faculty of Science,
Mathematics and Computer Science,
RU. 2008-01

A.L. de Groot. Practical Automaton
Proofs in PVS. Faculty of Science, Math-
ematics and Computer Science, RU.
2008-02

M. Bruntink. Renovation of Idiomatic
Crosscutting Concerns in Embedded Sys-
tems. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Sci-
ence, TUD. 2008-03

A.M. Marin. An Integrated System to
Manage Crosscutting Concerns in Source
Code. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Sci-
ence, TUD. 2008-04

N.C.W.M. Braspenning. Model-
based Integration and Testing of High-
tech Multi-disciplinary Systems. Faculty
of Mechanical Engineering, TU/e. 2008-
05

M. Bravenboer. Exercises in Free Syn-
tax: Syntax Definition, Parsing, and As-

similation of Language Conglomerates.
Faculty of Science, UU. 2008-06

M. Torabi Dashti. Keeping Fairness
Alive: Design and Formal Verification
of Optimistic Fair Exchange Protocols.
Faculty of Sciences, Division of Math-
ematics and Computer Science, VUA.
2008-07

I.S.M. de Jong. Integration and Test
Strategies for Complex Manufacturing
Machines. Faculty of Mechanical Engi-
neering, TU/e. 2008-08

I. Hasuo. Tracing Anonymity with
Coalgebras. Faculty of Science, Mathe-
matics and Computer Science, RU. 2008-
09

L.G.W.A. Cleophas. Tree Algorithms:
Two Taxonomies and a Toolkit. Faculty
of Mathematics and Computer Science,
TU/e. 2008-10

I.S. Zapreev. Model Checking Markov
Chains: Techniques and Tools. Faculty
of Electrical Engineering, Mathematics
& Computer Science, UT. 2008-11

M. Farshi. A Theoretical and Exper-
imental Study of Geometric Networks.
Faculty of Mathematics and Computer
Science, TU/e. 2008-12

G. Gulesir. Evolvable Behavior Spec-
ifications Using Context-Sensitive Wild-
cards. Faculty of Electrical Engineering,
Mathematics & Computer Science, UT.
2008-13

F.D. Garcia. Formal and Computa-
tional Cryptography: Protocols, Hashes
and Commitments. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2008-14

P. E. A. Dürr. Resource-based Verifica-
tion for Robust Composition of Aspects.
Faculty of Electrical Engineering, Math-
ematics & Computer Science, UT. 2008-
15

E.M. Bortnik. Formal Methods in Sup-
port of SMC Design. Faculty of Mechan-
ical Engineering, TU/e. 2008-16

R.H. Mak. Design and Performance
Analysis of Data-Independent Stream
Processing Systems. Faculty of Math-
ematics and Computer Science, TU/e.
2008-17

M. van der Horst. Scalable Block Pro-
cessing Algorithms. Faculty of Math-
ematics and Computer Science, TU/e.
2008-18

C.M. Gray. Algorithms for Fat Objects:
Decompositions and Applications. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2008-19

J.R. Calamé. Testing Reactive Systems
with Data - Enumerative Methods and
Constraint Solving. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2008-20

E. Mumford. Drawing Graphs for Car-
tographic Applications. Faculty of Math-
ematics and Computer Science, TU/e.
2008-21

E.H. de Graaf. Mining Semi-
structured Data, Theoretical and Exper-
imental Aspects of Pattern Evaluation.

Faculty of Mathematics and Natural Sci-
ences, UL. 2008-22

R. Brijder. Models of Natural Compu-
tation: Gene Assembly and Membrane
Systems. Faculty of Mathematics and
Natural Sciences, UL. 2008-23

A. Koprowski. Termination of Rewrit-
ing and Its Certification. Faculty of
Mathematics and Computer Science,
TU/e. 2008-24

U. Khadim. Process Algebras for Hy-
brid Systems: Comparison and Develop-
ment. Faculty of Mathematics and Com-
puter Science, TU/e. 2008-25

J. Markovski. Real and Stochastic
Time in Process Algebras for Perfor-
mance Evaluation. Faculty of Math-
ematics and Computer Science, TU/e.
2008-26

H. Kastenberg. Graph-Based Software
Specification and Verification. Faculty of
Electrical Engineering, Mathematics &
Computer Science, UT. 2008-27

I.R. Buhan. Cryptographic Keys from
Noisy Data Theory and Applications.
Faculty of Electrical Engineering, Math-
ematics & Computer Science, UT. 2008-
28

R.S. Marin-Perianu. Wireless Sen-
sor Networks in Motion: Clustering Al-
gorithms for Service Discovery and Pro-
visioning. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2008-29

