
Wireless Sensor Networks - New Challenges in Software Engineering

Jan Blumenthal, Matthias Handy,
Frank Golatowski, Marc Haase, Dirk Timmermann
Institute of Applied Microelectronics and Computer Science
Dept. of Electrical Engineering and Information Technology

University of Rostock
Richard-Wagner-Str. 31, 18119 Rostock,

GERMANY

Abstract − Software development for wireless sensor
networks requires novel programming paradigms and
technologies. This article describes the concept of a new
service oriented software architecture for mobile sensor
networks. With this architecture, a flexible, scalable
programming of applications based on an adaptive
middleware is possible. The middleware supports
mechanisms for cooperative data mining, self-organization,
networking, and energy optimization to build higher-level
service structures. The purpose of our research activities is
the development of a framework, which radically simplifies
the development of software for sensor network applications.

I. INTRODUCTION

In future, the increasing miniaturization of electronic
components and advances in modern communication
technology make the development of powerful spontaneously
networked and mobile systems possible. In the next 15 years,
wireless sensor networks have an enormous economical
potential, if the research issues stated in this work can be
solved satisfactorily.

Sensor networks consist of a huge number of small sensor
nodes, which communicate wirelessly. These sensor nodes
can be spread out in hard accessible areas by what new
applications fields can be pointed out. A sensor node
combines the abilities to compute, communicate and sense.
The aim is to fit all mentioned features in a single chip
solution. In principle, controlling of an actuator is possible,
too. Fig.1 shows the structure of a sensor node. The
development of sensor nodes is influenced by

• increasing device complexity on microchips,
• high performance, wireless networking

technologies,
• a combination of digital signal processing and

sensor data acquisition,
• advances in the development of micro-

electromechanical systems (MEMS), and
• availability of high performance development tools.

Fig.1 Structure of a Sensor Node

The use of energy-efficient components and procedures in
sensor nodes is important for the lifetime of network nodes.
The application fields of sensor nodes are determined by
processor performance, transmission range, radio sensitivity,
power consumption, weight, and size. Possible applications
are medical monitoring of various health parameters (intra
and extra-corporal), environment monitoring, control of
industrial machines and devices.

Well-known research activities in the field of sensor
networks are UCLA´s WINS [18], Berkeley´s smart-dust
[15], WEbS [16], and PicoRadio [17]. An example of
European research activities is the EYES-Project [19].
Detailed surveys on sensor networks can be found in [20]
and [21].

The remainder of the paper is organized as follows. The
requirements of sensor networks are discussed in detail in
Section II. Section III explains aspects of software
development and points out existing solutions. In Section IV,
a new concept of software architecture for sensor networks is
presented, Section V describes the associated software
development design flow. Section VI concludes this paper
with an outlook on future research activities.

II. SENSOR NETWORK REQUIREMENTS

Besides application-specific tasks of a node, the entire
network requires an adaptation to dynamical system
requirements. The development focus changes from the
single result of a sensor node to the cumulative result of the
network. Consequentially, the following requirements for the
design and implementation process of sensor networks arise:

1. Sensor networks have to be self-organizing.
2. Cooperative processing of tasks should lead to more

precise results and new application fields.
3. Sensor networks require security mechanisms that are

adaptive to environmental conditions.
4. All algorithms and protocols must be energy optimized.

These requirements are described in detail in the
following subsections.

A. Self Organization

A.1 Network Setup
The enormous number of nodes in sensor networks

requires sophisticated solutions for the automatic
organization of the network. A manual boot procedure by an
administrator is nearly impossible. Therefore, the software of

a node has to autonomously set-up an operating network
infrastructure by interaction with its neighboring nodes. For
self-organizing networks, the knowledge of the current
context (context awareness) is important. During set-up
phase, infrastructure context (perception of network
bandwidth and reliability) and domain context (relations
between the network participants) are primarily important.
The current system context e.g., the knowledge of data sinks
of the system, is necessary for a sensor node to operate
correctly. This context can change permanently because of
the mobility of nodes, therefore update mechanisms have to
be considered.

A.2 Network Maintenance

Software development for wireless sensor networks
requires novel programming paradigms and technologies.
Conventional principles of communication are mostly
inapplicable due to dynamic topology and the need for
cooperative task processing in sensor networks.

Traditional wired networks are usually based on the
client-server-principle, with the client sending a request and
the server replying. However, communication in sensor
networks should be event-based: Exceeding a threshold value
at a specific node triggers an event that is forwarded to data
sinks. Contrary to conventional communication via request-
reply, energy-dissipating polling can be avoided [5].

Node addressing in wireless sensor networks differs from
the approach in wired networks. For sensor networks,
explicit node addressing via ID or IP is unfavorable since
random node distribution and mobility impedes assignment
of node addresses to the position of a measurement. Since we
do not need to communicate with a specific node described
by its address, we use an addressing mechanism called
attribute-based-naming [6]. A satisfying request processing
requires a node’s position and its context. An example for a
network request could be: „What is the temperature at
location (x,y)?”.

In large sensor networks, packets have to be routed from
data sources to data sinks over intermediate nodes. That
means, besides the measurement task, all nodes have to
perform additional tasks to maintain network integrity. These
tasks considerably affect the lifetime and functionality of a
sensor node. For the design and implementation of sensor
network software, special techniques have to be used to find
trade-offs between task processing, network functionality and
lifetime of nodes.

A potential approach could be the strategy of
communication avoidance resp. communication reduction
e.g., through context-dependent routing. The decision for a
specific routing algorithm depends on several criteria, such
as mobility, network load, transmission delay, or energy
consumption. In terms of energy consumption, a reactive
routing protocol can outperform a proactive one, since
routes are only established on demand. For static networks
and high network loads, a proactive routing algorithm can be
more applicable than a reactive one. An optimal routing
algorithm for wireless sensor networks should adapt its
strategy to the mobility of nodes. A review and comparison

of current routing protocols for mobile ad-hoc networks are
given in [22] and [23].

B. Cooperative Algorithms

Compared to networked macro sensors, an advantage of
wireless sensor networks is the possibility to implement
cooperative algorithms. A potential application for these
algorithms is the reduction of network traffic by data
preprocessing and aggregation. For a sensor application, it is
not important whether a data aggregation is performed within
the node itself or by a neighboring node. However,
communication directed to data sinks has to be minimized
since data sinks are usually located far away. An example for
a cooperative algorithm is location determination by
triangulation. This algorithm needs at least measurements
from three different nodes. Computed positions then can be
used for addressing or routing.

C. Security Mechanisms

The selection of proper security mechanisms for wireless
sensor networks depends on network application and
environmental conditions. Additionally, the resources of
sensor nodes (processor performance, memory capacity and
energy) have to be taken into account.

Besides the standard security requirements, such as
availability, confidentiality, integrity, authentication, and
non-repudiation, special security requirements for wireless
sensor networks, such as message freshness, intrusion
detection, intrusion tolerance, or containment exist [24].

To fulfill the security requests mentioned above, adapted
security mechanisms for wireless sensor networks have been
developed and tested by several research groups [12]. A
main task for a sensor node software is the selection and
management of security mechanisms depending on security
policies defined by the operator of a sensor network.

D. Low-Power Approach

Sensor nodes are typically battery-driven, however too
small and too numerous to replace or recharge batteries.
Moreover, micro sensor networks are often deployed in
remote or dangerous environment. Hence, the increase of the
lifetime of sensor nodes is a main design and implementation
challenge.

Microcontroller hardware used for sensor nodes provides
manifold power saving techniques. One of these is Dynamic
Power Management (DPM). DPM switches off hardware
components that are not needed and uses clock scaling.

An Operating System (OS) for sensor nodes should
implement a low-power task-scheduling. A scheduling
algorithm for example could take advantage of nonlinear
battery effects to reduce energy consumption [14].
Furthermore, a proper selection of communication protocols
can additionally reduce energy consumption. The most
promising layers for energy savings are physical-, link- and
network layer.

III. SOFTWARE ENGINEERING

For the development of application software for sensor
networks, the use of a component based framework is
desirable. The components of the framework provide the
functionality of single sensors, sensor nodes, and the whole
sensor network. According to these components, applications
are classified into sensor applications, node applications and
network applications.

A sensor application contains the readout of a sensor as
well as the local storage of data. It has full access to the
hardware and is able to access the operating system directly.
The sensor application provides essential basic functions of
the local sensor node, which may be used by the node
application.

The node application contains all application specific
tasks and functions of the middleware to build up and
maintain the network e.g., routing, looking for nodes,
discovering services, and self localization.

The sensor network application describes the main tasks
and required services of the entire network without assigning
any tasks or services to individual nodes. It represents an
interface to the administrator to evaluate the network results.

The purpose of our research activities is the development
of a framework, which radically simplifies the development
of software for sensor-, sensor node-, and sensor network
applications. It provides support for distribution,
configuration, scalability and portability. The framework
should contain a middleware that allows machine-intimate
programming of embedded systems. Thereby, the
programming effort is reduced.

A. Current Software Architectures of Small Distributed

Devices with Wireless Network Connection

For embedded systems, solutions already exist, which
support service architectures and context awareness. In [10]
the distributed middleware infrastructure GAIA is presented.
It features coordination of software units and heterogeneous
networks. The network appears to the environment as a
single enclosed device. Because of the use of CORBA,
XML, SQL and JAVA, GAIA is not an efficient choice for
sensor networks because of its resource requirements.

Another approach is Tiny-OS that already provides an
advanced framework for sensor networks [3]. It is optimized
in terms of memory usage and energy efficiency. Tiny-OS
[11] provides mechanisms (events and components) to
statically define linking between layers. The predefinition of
needed instances at compile time prevents from dynamical
memory allocation at runtime. Tiny-OS supports the
execution of multiple threads and provides a variety of
additional extensions like the virtual machine Maté [2] and
the database TinyDB for cooperative data acquisition.
Services are currently not provided. Programs for Maté are
precompiled and, because of the minimal instruction set, very
short. They can be carried in a single Tiny-OS data packet of
a maximum length of 24 bytes. Thus, Maté allows a
dynamical adaptation of the node application at runtime.

The open and platform independent architecture OSGI is
suggested in [9] for services in embedded systems. However,
OSGI is not appropriate for sensor networks due to its very
high resource demands. Therefore, it is mandatory to develop
a service architecture that features minimal resource
consumption.

As a general rule, services have, at least partly, to be
executed locally to start communication to the service
provider. The execution can take place in native code or in
an adapted virtual machine.

B. Characteristics of a Middleware for Sensor Networks

The term middleware refers to the software layer between
operating system and sensor application on the one hand and
the distributed application which interacts over the network
on the other hand. Primary objective of the middleware layer
is to hide the complexity of the network environment by
isolating the application from protocol handling, memory
management, network functionality and parallelism [13]. A
middleware for sensor networks has to be:

• scalable
• generic
• adaptive
• reflective

Resource constraints (memory, processing speed,
bandwidth) of available node hardware require an
optimization of every node application. Optimization is
performed at compile time. Thereby, the application is
reduced to all essential components and data types and
interfaces are customized (scalable middleware).

The components of the middleware require a generic
interface in order to minimize customization effort for other
applications or nodes. The use of identical middleware
components in different applications leads to a higher
number of complex interfaces. Reducing this overhead is the
objective of a generic middleware. It is important to
customize interfaces to the application in contrast to
customize the application to common interfaces. As example,
a middleware function SetBaudrate (int transmitter, long
baudrate) identifies the network interface with its first
parameter. However, a node that has only one interface, does
not need this parameter. Consequently, knowledge of this
information at compile time can be used for optimization.

Another possibility is to change the semantics of data
types. A potential use case is the definition of accuracy of
addresses that results in a change of data type’s width. The
width of a data type has vital influence on network traffic.
Besides hardware-oriented optimization, an application
specific data type optimization exists.

The mobility of nodes and changes of infrastructure
require adaptations of the middleware at runtime depending
on the sensor network application. The middleware must be
able to dynamically exchange and run components (adaptive
middleware).

Reflection covers the ability of a system to understand and
influence itself. A reflective system is able to present its own
behavior. Thereby, two essential mechanisms are
distinguished – the inspection and the adaptation of the own

behavior [1][4]. Inspection covers ways to analyze behavior
e.g., with debugging or logging. Adaptation allows the
modification of internal layers to change the behavior
presented to the application. In contrast to an adaptive
middleware, a reflective middleware does not exchange
components but changes their behavior. An example of
reflective behavior is the modification of the routing strategy
depending on mobility. The interface between the software
layers remains constant.

C. Services in Sensor Networks

Besides the native network functions, such as routing and
packet forwarding, future service architectures are required
enabling location and utilization of services. A service is a
program which can be accessed about standardized functions
over a network. Services allow a cascading without previous
knowledge of each other, and thus enable the solution of
complex tasks.

A typical service used during the initialization of a node is
the localization of a data sink for sensor data. Gateways or
neighboring nodes can provide this service. To find this
service, nodes use a service discovery protocol.

JINI is an emerging technology for desktop applications,
but for sensor networks unsuitable due to resource
requirements. Sun Microsystems suggests the surrogate host
architecture for embedded systems [7], [8]. This is primarily
suitable for systems that are controlled by an IP based
network. The client can access non-standardized services in a
sensor network by inquiring a proxy server. The surrogate
host translates the standardized protocol to the proprietary
protocol and vice versa. It acts as service provider to the IP
based network. Service architectures for sensor networks are
part of the sensor application and, in contrast to the event-
driven node application, are based on client-server principle.

IV. CONCEPT OF A SOFTWARE-ARCHITECTURE FOR
WIRELESS SENSOR NETWORKS

Fig.3 shows an example of a simple service architecture

applicable to a sensor network. In this special case, the client
wants to acquire information about the surface conditions in
the area of interest. First, the client requests the surrogate
proxy via standardized protocols for the surface profile of a

part of the observed area. The proxy communicates with the
distributed nodes using a proprietary protocol. Nodes located
in the target area try to determine the surface profile using
cooperative algorithms and send it to the proxy. The proxy
translates the information into standardized protocols and
sends it back to the client.

The different requirements and objectives for sensor
networks described in Sections II and III can only be
achieved by the use of a flexible architecture of the node
software. Therefore, node software is divided into three
software parts as shown in Fig.2.

Fig.2 Structure of a Node Application

The main objective of our architecture is the separation of
functional blocks in order to increase flexibility and enhance
scalability of sensor node software. Therefore, we separate
the OS-layer into Node-specific Operating System and a
Driver Layer which contains at least one Sensor Driver and
several Hardware Drivers, such as timer driver and RF
driver. The Node-specific Operating System handles device-
specific tasks e.g., bootup, initialization of hardware,
memory management, and process management as well as
scheduling. Host Middleware is the superior software layer.
Its main task is to organize the cooperation of distributed
nodes in the network. Middleware Management handles four
optional components, which can be implemented and
exchanged according to a node’s task. Modules are
additional components that increase the functionality of the
middleware. Typical modules are routing modules or security
modules. Algorithms describe the behavior of modules.

Fig.3 Example of a Surrogate Architecture in Sensor Networks

Service Proxy

Physical Physical

LAN Bluetooth

Surrogate Host

Proprietary protocol

Sensor A
Sensor B

Sensor C

Surface profile service

Surface profile ?

Client

Request Request

TCP/IP Reply Reply

Fig.4 Structure of a Sensor Network

For example, the behavior of a security module can vary if
the encryption algorithm changes. The services component
contains the required software to perform local and
cooperative services. This component usually cooperates
with other nodes to fulfill its task. Virtual Machines (VM)
enable an execution of platform independent programs.

Fig.4 shows the expansion of the proposed architecture to
a whole sensor network from the logical point of view.
Nodes can only be contacted through services of the
middleware layers. They do not perform any individual tasks.
The Distributed Middleware coordinates the cooperation of
services within the network. It is logically located in the
network layer but physically exists in the nodes. All layers
together in conjuction with their configuration compose the
sensor network application.

The Administration-Terminal is an external entity to
configure the network and evaluate results. It can be
connected to the network at any location.

V. SOFTWARE DEVELOPMENT DESIGN FLOW

All functional blocks of the described architecture are
represented by components containing real source code and a
description about dependencies, interfaces, and parameters.
One functional block can be rendered by alternative
components. These components are pre-defined in libraries.

Fig.5a shows the development process of sensor node
software. First, for each functional block the components
must be identified and included. During design phase, the
chosen components are interconnected and dependencies are
resolved. During this phase, interface as well as parameter
optimization is done and final source code is generated.
Additionally, logging components can be included to monitor
runtime behavior. Next, during compilation process, the
executable is created. Finally, during evaluation phase, the
created node application can be downloaded to the node and
executed. Considering the monitoring results an improved
design cycle can be started. As a result of the design flow,
optimized node application software is produced. The node
application consists of special tailored parts only needed by
the specific application of the node (Fig.5b).

Fig.5 a) Development Process of Node Software, b) Example of a Node

Software with Optimized Interfaces

Optionally, the software components in a node can be
linked together statically or dynamically. Statical linking
facilitates an optimization of interfaces between several
components within a node. This optimization is called
software scaling. It performs in faster and smaller programs.
A dynamic link process is used for components exchanged
during runtime e.g., algorithms downloaded from other
nodes. This procedure results in system-wide interfaces with
significant overhead.

VI. CONCLUSION

Based on the requirements of sensor networks, this article

describes aspects of software engineering. The main
objective is the simplification of development of service
applications for wireless sensor networks. A key issue is to
separate the software from underlying hardware and to divide
the software into functional blocks. The presented software
architecture and design flow facilitates the programming on
high abstraction layers.

Our current research activities concentrate on the
realization of the proposed architecture embedded in a
framework. It simplifies the development of sensor-, node-,
and sensor network applications. Besides that, it provides
functionalities to configure and manage the whole network,
whereby the scalability and portability of applications
increases.

VII. ACKNOWLEDGEMENTS

This work is partly supported by the German Research
Foundation DFG and the Gottlieb Daimler- and Karl Benz-
Foundation, Ladenburg. The authors would like to thank Ralf
Salomon for providing a critical review of this document.

VIII. REFERENCES

[1] G. Coulson, “What is reflective middleware?”, URL:

http://dsonline.computer.org/middleware/RMarticle1.
htm, DS Online, 2003.

[2] P. Levis, D. Culler, “Maté: a tiny virtual machine for
sensor networks”, in Proc. of ACM Conference on
Architecture Support for Programming Languages
and Operating Systems (ASPLOS), Oct. 2002.

[3] J. Hill et al., “System architecture directions for
networked sensors”, in Proc. of the Ninth
International Conference on Architectural Support
for Programming Languages and Operating Systems,
Nov. 2000.

[4] P. Meas, “Concepts and experiments in computational
reflection”, PhD Thesis, Vrije University Brüssel,
1987.

[5] K. Römer, O. Kasten, F. Mattern, “Middleware
challenges for wireless sensor networks”, Mobile
Computing and Communications Review, vol. 6,
no. 2, 2002.

[6] P. Rentala, R. Musunuri, S. Gandham, U. Saxena,
“Survey on sensor networks”, in Proc. of
International Conference on Mobile Computing and
Networking, 2001.

[7] J. Waldo, The JiniTM specification, 2nd Edition,
Addison-Wesley, 2001.

[8] „The JiniTM technology surrogate architecture
overview“, Sun Microsystems, 2001.

[9] Open Service Gateway Initiative, URL:
http://www.osgi.org/about/mission.asp

[10] M. Román et al., “Gaia : a middleware infrastructure
to enable actives spaces“, Digital Computer Labs,
University of Illinois, 2002.

[11] D. Culler, “Tiny OS – a component-based OS for the
networked sensor regime“, URL:
http://webs.cs.berkeley.edu/tos/, 2003.

[12] A. Perrig, D. Culler et al., “SPINS: Security protocols
for sensor networks”, in Proc. of the Seventh Annual
International Conference on Mobile Computing and
Networking, Juli 2001.

[13] K. Geihs, “Middleware Challenges Ahead”, IEEE
Computer, Juni/2001, S. 24-31.

[14] D. Rakhmatov, S. Vrudhula, C. Chakrabarti, „Battery-
concious task sequencing for portable devices
including voltage/clock scaling”, in Proc. of the 39th
Design and Automation Conference, New Orleans,
2002.

[15] J.M. Kahn, R.H. Katz, K.S.J. Pister, “Next century
challenges: mobile networking for smart dust”, in
Proc. of the ACM MobiCom´99, Washington, USA,
1999, pp. 271-278

[16] D. Culler, E. Brewer, D. Wagner, “A Platform for
WEbS (wireless embedded sensor actuator) systems”,
Technical Report, University of California, Berkeley,
2001

[17] Jan Rabaey, et.al., “PicoRadio Supports Ad Hoc
Ultra-Low Power Wireless Networking”, IEEE
Computer, pp. 42-48, July 2000

[18] G.J. Pottie, W.J. Kaiser, “Wireless integrated network
sensors”, CACM, Vol. 43, Issue 5, pp. 51-58, 200

[19] EYES- Energy efficient Energy-Efficient Sensor
Networks, http.//eyes.eu.org

[20] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, and
E.Cayirci, “A Survey on Sensor Networks”, IEEE
Communications Magazine, pp. 102- 114, August
2002

[21] P. Rentala, R. Musunuri, S. Gandham, U.Saxena,
”Survey on Sensor Networks”, Technical Report
UTDCS-10-03, University of Texas,
http://www.utdallas.edu/~gshashi/survey.pdf

[22] X. Hong, K. Xu, M. Gerla, “Scalable Routing
Protocols for Mobile Ad Hoc Networks”, IEEE
Network Magazine, July/August 2002

[23] E. M. Royer, “A Review of Current Routing Protocols
for Ad Hoc Mobile Wireless Networks”, IEEE
Personal Communications, April 1999

[24] L. Zhou, Z. J. Haas, “Securing Ad Hoc Networks”,
IEEE Network Magazine, 13(6),
November/December 1999

